Old Release

This documentation covers an old version of Fedora. Looking for another version? See all documentation.

 

Data Overview

Stanford has a collection of publications consisting of page images, metadata, and arrangement (Saltworks), containing 16712 objects/655237 items/273GB of data with the following distribution:

 

> quantile(file_sizes$size, c(0, .5, .7, .9, 1))
0% 50% 70% 90% 100%
0 43447 195719 1835010 288032768
 
> quantile(object_size$V3, c(0, .5, .7, .9, .95, .99, 1))
        0%        50%        70%        90%        95%        99%       100% 
     51302    4680240   10743517   39806094   72375144  221829327 1230705287 

> quantile(file_counts$X1,  c(0, .5, .7, .9, .95, .99, 1))
     0%     50%     70%     90%     95%     99%    100% 
   7.00   22.00   29.00   62.00   99.40  280.08 1478.00

  

In production, the object metadata is stored in Fedora, but the page images and other assets are stored on the file system and (somehow associated back to the object.. TBD).

Objects contain the following datastreams:

Datastream IDMIME Type
DC
text/xml
RELS-EXT
text/xml
extracted_entities
application/xml
location
text/xml
zotero
application/rdf+xml

 

On the filesystem are a variety of files (including some duplicates of data in fedora?), e.g.:

  • 4.0K DC
  •  20K Feigenbaum_00013946-METS.xml
  • 4.0K Feigenbaum_00013946-TEXT.xml
  • 4.0K RELS-EXT
  •  44K bd826tf2716.pdf
  • 4.0K bd826tf2716.txt
  •  72K bd826tf2716_00001.jp2
  • 8.0K bd826tf2716_00001.xml
  •  64K bd826tf2716_00002.jp2
  • 8.0K bd826tf2716_00002.xml
  •  68K bd826tf2716_000BW.jp2
  • 4.0K checksum
  • 4.0K descMetadata
  • 4.0K extracted_entities.xml
  • 4.0K flipbook.json
  • 4.0K flipbook.old
  •    0 location
  •    0 properties
  •    0 stories
  • 4.0K thumb.jpg
  • 4.0K zotero.xml

 

Test 1: Simple Ingest into Fedora 3

For a first test, we're going to ingest all the data from the filesystem into a clean fcrepo3 repository, using the filename as the datastream name.

Using Fedora 3.7.1, clean install, using these properties:

database=mysql
database.driver=included
database.jdbcDriverClass=com.mysql.jdbc.Driver
database.mysql.jdbcDriverClass=com.mysql.jdbc.Driver
database.mysql.driver=included
database.jdbcURL=jdbc\:mysql\://localhost/fedora?useUnicode\=true
database.mysql.jdbcURL=jdbc\:mysql\://localhost/fedora?useUnicode\=true
database.username=fedora
database.password=redacted
install.type=custom
deploy.local.services=false
install.tomcat=false
servlet.engine=existingTomcat
fedora.home=/home/lyberadmin/apps/fedora/home
fedora.serverHost=sul-fedora-dev-a.stanford.edu
fedora.serverContext=fedora
tomcat.http.port=8080
tomcat.shutdown.port=8005
ssl.available=true
tomcat.ssl.port=8443
tomcat.home=/usr/share/tomcat6
ri.enabled=true
messaging.enabled=false
messaging.uri=
apim.ssl.required=false
apia.ssl.required=false
apia.auth.required=false
fesl.authz.enabled=false
fesl.authn.enabled=true
xacml.enabled=false
keystore.file=included

 

Tomcat is proxied through an Apache HTTPD server.

 

Using bash:

#!/bin/bash
base_url="http://fedoraAdmin:fedoraAdmin@localhost/fedora"

RuntimePrint()
{
 duration=$(echo "scale=3;(${m2t}-${m1t})/(1*10^09)"|bc|sed 's/^\./0./')
 echo -e "${objectId} ${datastreams} ${size} ${duration}\tsec"
 echo -e "${objectId} ${datastreams} ${size} ${duration}" >> /data/fcrepo3-total-create-object-time
}

CreateObject() {
    pid="druid:$1"
    curl -X POST "$base_url/objects/$pid" &> /dev/null
    cd /data-ro/assets/$1

    for f in $( ls ); do
      datastreams=$[$datastreams+1]
      size=$[$size+`stat -c "%s" $f`]
      curl -X POST --data-binary @$f "$base_url/objects/$pid/datastreams/$f?controlGroup=M"  &> /dev/null
    done
    cd /data
}

BenchmarkObject() {
  objectId=$1
  if [ -d /data-ro/assets/$objectId ]; then
    m1t=$(date +%s%N); m1l=$LINENO
    CreateObject $objectId
    m2t=$(date +%s%N); m2l=$LINENO; RuntimePrint
  fi
}

export -f BenchmarkObject
export -f CreateObject
export -f RuntimePrint
export base_url

cat - | parallel -P $THREADS --env _ BenchmarkObject

 

Test 1a: Single-threaded ingest

> quantile(create$V4, c(0, .5, .7, .9, .95, .99, 1))
       0%       50%       70%       90%       95%       99%      100% 
  0.39300   1.46300   2.31500   6.64700  11.65780  36.77232 353.48700 
0.2597 objects/s  (objects per second)

Test 1b: Single-threaded iteration

 

Retrieve object profile

> quantile(data$V2, c(0, .5, .7, .9, .95, .99, 1))
   0%   50%   70%   90%   95%   99%  100% 
0.002 0.054 0.062 0.077 0.089 0.123 3.580 

 

Test 1c: 8-thread ingest test

 

> quantile(create$V4, c(0, .5, .7, .9, .95, .99, 1))
       0%       50%       70%       90%       95%       99%      100% 
  0.71400   3.46600   5.09440  14.32520  23.55560  72.11128 632.71200 
2206.24user 5396.22system 4:29:58elapsed 46%CPU (0avgtext+0avgdata 1133728maxresident)k
584337920inputs+3216976outputs (67566major+823430581minor)pagefaults 0swaps
Tue Nov 19 19:09:08 PST 2013 : 16693 objects
 
1.031 objects/s  (objects per second)

 

 

Test 1d: Multi-threaded iteration test

4 threads:
> quantile(read$V2, c(0, .5, .7, .9, .95, .99, 1))
   0%   50%   70%   90%   95%   99%  100% 
0.011 0.013 0.014 0.017 0.020 0.031 0.073 
Tue Nov 19 14:08:44 PST 2013 : retrieving all objects
160.65user 247.90system 2:42.00elapsed 252%CPU (0avgtext+0avgdata 40736maxresident)k
0inputs+267608outputs (0major+63796227minor)pagefaults 0swaps
Tue Nov 19 14:11:26 PST 2013 : 16693 objects
Tue Nov 19 14:11:26 PST 2013 : done
103 objects/s  (objects per second)
 
8 threads:
> quantile(read$V2, c(0, .5, .7, .9, .95, .99, 1))
   0%   50%   70%   90%   95%   99%  100% 
0.011 0.022 0.025 0.031 0.034 0.045 0.093
Tue Nov 19 14:05:10 PST 2013 : retrieving all objects
159.54user 251.87system 2:28.86elapsed 276%CPU (0avgtext+0avgdata 40880maxresident)k
0inputs+267608outputs (0major+63891890minor)pagefaults 0swaps
Tue Nov 19 14:07:39 PST 2013 : 16693 objects
Tue Nov 19 14:07:39 PST 2013 : done
112.1 objects/s  (objects per second)
 
16 threads:
> quantile(read$V2, c(0, .5, .7, .9, .95, .99, 1))
   0%   50%   70%   90%   95%   99%  100% 
0.012 0.024 0.028 0.035 0.040 0.052 0.149 
Tue Nov 19 14:11:50 PST 2013 : retrieving all objects
161.64user 264.68system 2:30.56elapsed 283%CPU (0avgtext+0avgdata 41104maxresident)k
0inputs+267608outputs (0major+64217330minor)pagefaults 0swaps
Tue Nov 19 14:14:20 PST 2013 : 16693 objects
Tue Nov 19 14:14:20 PST 2013 : done
110.9 objects/s  (objects per second)

 

Test 2: Simple Ingest into Fedora 4

Ingest all the data into fcrepo4 as Glossary on Glossary.

Using jgroups configuration at https://gist.github.com/cbeer/fd3997e40fe014eab071

Using curl:

Test 2a: Ingest all the data as containers and binaries, one at a time

 

Test 2b: Ingest all the data as containers arranged in a druid tree

 

> quantile(create$V4, c(0, .5, .7, .9, .95, .99, 1))
       0%       50%       70%       90%       95%       99%      100% 
   0.6590    6.1800    9.1844   24.7972   44.7202  226.7644 1094.8120 

 

Ingest speed over time

Test 2c: Ingest all the data as containers in a druid tree AND use fcr:batch

> quantile(create$V4, c(0, .5, .7, .9, .95, .99, 1))
      0%      50%      70%      90%      95%      99%     100% 
  0.4670   5.2440   7.8554  20.3558  33.8186 101.2618 711.0130 

 

Test 2d: Use a 4-node cluster to do a druid-tree ingest

> quantile(create$V4, c(0, .5, .7, .9, .95, .99, 1))
       0%       50%       70%       90%       95%       99%      100% 
   0.9050    9.7360   13.9442   29.6692   48.0332  146.0208 1109.1760 


Test 3: Realistic Ingest into Fedora 3

Ingest all the data into fcrepo3 making reasonable content modeling assumptions:

 - each page as an object

 - ? 

Using ActiveFedora:

Test 4: Realistic Ingest into Fedora 4

  • add RDF as properties on Glossary
  • Each page as a ordered same-name sibling on an container 

 

Using ldp-client:

 

 

  • No labels