Creating a VIVO authorization policy - an example

® Overview
® The example
© Lines 1-39: imports
O Lines 40-56: Class declaration, variables, constructor
O Lines 57-68: Implement the isAuthorized() method
© Lines 69-81: Make quick and easy decisions
© Lines 82-105: Execute the SPARQL query and test the result
O Lines 106-171: Subroutines
® Setup when VIVO starts
O Lines 172-193: The Setup class
© Invoking the Setup class
®* A more complicated example

Overview

The ability of users to access data in VIVO is controlled by a collection of Policy objects. By creating or controlling Policy objects, you can control access to
the data.

The Policy objects are instances of Java classes that implement the Pol i cyl f ace interface. These objects are created when VIVO starts up, and are
collected in the Ser vl et Pol i cyLi st . When code in VIVO needs to know whether a user is authorized to perform a particular action, the code creates a R
equest edAct i on object and passes it to the Policy list for approval.

When the list is asked for approval, the first Policy in the list is asked first. It must respond with a decision that is AUTHORI ZED, UNAUTHORI ZED, or | NCONC
LUSI VE. If the decision is AUTHORI ZED or UNAUTHORI ZED, it is taken to be final, and the other Policies in the list are not consulted. If the decision is | NCO
NCLUSI VE, then the next Policy in the list is asked to approve the same request, and the process repeats until a conclusive answer is obtained, or until all
policies have answered. If no Policy has answered with AUTHORI ZED, the request fails.

The code below is an example of such a Policy. The entire class is available in the attached file.

The example

This Policy will check each request to edit an object property statement. The request will be rejected if the statement appears in any graph that is not in the
approved set.

The use case is where an individual whose data is stored in the default graph (vi t r 0- kb2) links to data in other graphs which were created by ingest and
may not be edited. The result of this Policy is that there will be no edit link from the profile page of the individual to that data.

Lines 1-39: imports

https://wiki.lyrasis.org/download/attachments/96995961/RestrictEditingByGraphPolicy.java?version=1&modificationDate=1522783593551&api=v2

/* $This file is distributed under the terns of the license in /doc/license.txt$ */
package edu. cornel|l.mannlib. vitro.webapp. auth. policy;

import java.util.Arraylist;
inport java.util.Arrays;
import java.util.Collections;
import java.util.HashSet;
inport java.util.List;

import java.util. Set;

i nport javax.servlet. Servl et Context;
i mport javax.servlet. Servl et Cont ext Event;
i mport javax.servlet. Servl et ContextListener;

i mport org.apache. conmons. | oggi ng. Log;
i nport org.apache. commons. | oggi ng. LogFact ory;

inport com hp. hpl . jena. query. Dat aset ;

i nport com hp. hpl . jena. query. Query;

i mport com hp. hpl . jena. query. Quer yExecuti on;

i mport com hp. hpl . j ena. query. Quer yExecuti onFact ory;
inport com hp. hpl . jena. query. QueryFactory;

i mport com hp. hpl.jena. query. Resul t Set;

inport com hp. hpl . j ena. query. Synt ax;

i mport com hp. hpl . jena.rdf. nodel . RDFNode;

i mport com hp. hpl . j ena. shared. Lock;

i mport edu.cornell.nmannlib.vitro.webapp.auth.identifier.IdentifierBundle;

inport edu.cornell.mannlib.vitro.webapp.auth.identifier.conmmon.|sRootUser;

i nport edu.cornell.mannlib.vitro.webapp.auth. policy.ifaces. Authorization;

i mport edu.cornell.nmannlib.vitro.webapp. auth. policy.ifaces. PolicyDecision;

inport edu.cornell.mannlib.vitro.webapp.auth.policy.ifaces.Policylface;

i mport edu.cornell.mannlib.vitro.webapp. auth. requestedAction.ifaces. Request edActi on;

i mport edu.cornell.nmannlib.vitro.webapp. auth. requestedAction. propstnt. Edi t Obj ect PropertySt at enent;
i nport edu. cornell.mannlib.vitro.webapp.dao.jena. Queryltils;

i mport edu.cornell.nmannlib.vitro.webapp. servlet. setup.JenaDat aSour ceSet upBase;

i mport edu.cornell.nmannlib.vitro.webapp. startup. StartupStatus;

Import statements for the classes used in the Policy
Lines 40-56: Class declaration, variables, constructor

/**
* Deny authorization to edit a statenent fromone of the prohibited graphs.
*/
public class RestrictEditi ngByG aphPolicy inplenents Policylface {
private static final Log |og = LogFactory
.getLog(RestrictEditingByG aphPolicy.cl ass);

private static final Syntax SYNTAX = Synt ax.synt axARQ
private static final Set<String> PERM TTED_GRAPHS = new HashSet <>(
Arrays. asList(new String[] { "http://vitro.mannlib. cornell.edu/default/vitro-kb-2" }));

private final Dataset dataset;

public RestrictEditingByG aphPolicy(ServletContext ctx) {
t hi s. dat aset = JenaDat aSour ceSet upBase. get St art upDat aset (ct x) ;
}

The class must implement the Pol i cyl f ace interface.

The constructor stores a reference to the st ar t upDat aset , which will be used to execute SPARQL queries. Because this reference is taken from the
context, it will contend with all other context-based references for access to a single database connection. It would be more efficient to use a Dat aset that
was provided by the Ht t pSer vl et Request , but a Policy never has access to the Request. This will be changed in a future release. (See this JIRA issue.)

https://jira.duraspace.org/browse/VIVO-269

The PERM TTED_GRAPHS constant holds the set of graph URIs for which editing is permitted. It would be a simple code change to use a PROH Bl TED_CGR
APHS constant instead.

Lines 57-68: Implement the isAuthorized() method

* For each request to Edit an ObjectProperty, find out what graph the
* statenment is in. Prohibit editing if the statement is in the wong graph.

* Note that this will not work with a DataProperty, since the
* EditDataProperty object does not contains the value of the property. W
* didn't anticipate that editing privileges would be determ ned by the
* contents of the string.
*/
@verride
public PolicyDecision isAuthorized(ldentifierBundl e whoToAut h,
Request edAct i on what ToAut h) {

Every Pol i cyl Face class must implement this method.

®* whoToAut h is a collection of | dent i fi er s, each one holding a piece of information about the user who is currently logged in.
® what ToAut h is the action being requested.

Lines 69-81: Make quick and easy decisions

if (whoToAuth == null) {
return inconcl usi veDeci si on("whoToAuth was null");

}
if (whatToAuth == null) {
return inconcl usiveDeci si on("what ToAuth was null");

}
if (1sRootUser.isRootUser(whoToAuth)) {

return inconcl usiveDeci sion("Anything for the root user");

if (!(whatToAuth instanceof EditCbjectPropertyStatenent)) {
return inconcl usiveDecision("Only interested in editing object properties");

}

Policies are called very frequently, especially when a large profile page is displayed. Whenever possible, answer the easy questions first before doing
more expensive tests.

Checking for nul | arguments should not be necessary - these arguments should never be null. However, it is simple defensive programming, and not
costly.

This policy is only interested in requests to edit object property statements, so we can quickly reject any other type of Request edAct i on. Again, the | NCO
NCLUSI VE decision is equivalent to saying "let someone else decide."

This policy does not attempt to restrict the editing of data property statements. This is because the Edi t Dat aPr opert ySt at ement class does not
include the value of the data property. At one time it was felt that this could not affect the decision of whether to permit the request. This will be changed in
a future release (See this JIRA issue).

This policy will not restrict the root account from attempting to edit statements.

We already have Root User Pol i cy, which says that the root user is permitted to do anything. So why do we need this test?

We need to consider the order in which policies are called, and to remember that polling ono a Request edAct i on will stop when any policy returns a
decision that is not | NCONCLUSI VE. So, if this Policy is placed before Root User Pol i cy, and returns an UNAUTHORI ZED decision, then the Root User Po

I'i cy will never been consulted.

The question of "what to do when one Policy would authorize and another Policy would prohibit" is a tricky one.

Lines 82-105: Execute the SPARQL query and test the result

https://jira.duraspace.org/browse/VIVO-268

Edi t Obj ect PropertyStatenent stnt = (EditObjectPropertyStatenment) what ToAuth;

String queryString = assenbl eQueryString(stnt);
Li st<String> graphUris = executeQuery(queryString);
| 0og. debug("graph URI's: " + graphUris);

if (graphUris.isEmpty()) {
log.warn("Can't find this statenent in any graph: " + stnt);
return inconclusiveDecision("Can't find this statement in any graph:
+ stnt);
}

graphUris. removeAl | (PERM TTED_GRAPHS) ;
if (graphUris.isEmpty()) {
| og. debug("Permtted: " + stnt);
return inconcl usiveDecision("Statenent is only in permtted graphs:
+ stnt);

}

| og. debug("Statenent is prohibited: " + stnt + ", graphs=" + graphUris);
return unaut hori zedDeci sion("Statenent is in a prohibited graph, "
+ stnt + " in " + graphUris);

Assemble the query and execute it. This results in a list of the URIs of all Graphs that contain this statment. (See the subroutines in the next section).

What to do if we do not find the statement in any graph? It would be possible to err on the side of caution and return an UNAUTHORI ZED decision. We
could even throw a Runt i neExcept i on of some sort to abort the page display. In this case, we choose to return | NCONCLUSI VE and write a warning to
the log.

If the statement appears only in the permitted graphs, return a decision of | NCONCLUSI VE, letting some other policy decide.

If the statement appears in other, prohibited graphs, return a decision of UNAUTHORI ZED, rejecting the requested action.
Lines 106-171: Subroutines

private static final String QUERY_TEMPLATE = "" + [/
" SELECT ?graph WHERE{" + //
" GRAPH ?graph{" + //
" ?s ?p ?0 ." + /]
R Y
"} LIMT 10"; //

private String assenbl eQueryString(EditObjectPropertyStatenment stnt) {
String q = QUERY_TEMPLATE;

q = QueryUtils.subUri ForQueryVar(qg, "s", stnt.getSubjectUri());

g = QueryUtils.subUriForQueryVar(q, "p", stnt.getPredicateUri());

q = QueryUtils.subUriForQueryVar(qg, "o", stnt.getQbjectUri());

return q;

We have a template for the SPARQL query. Substitute the values for this statement into the query. The only unresolved variable will be ?gr aph.

private List<String> executeQuery(String queryStr) {

| og. debug("sel ect query is: '" + queryStr + "'");

QueryExecution ge = null;

dat aset . get Lock().enterCritical Secti on(Lock. READ);

try {
Query query = QueryFactory.create(queryStr, SYNTAX);
ge = QueryExecutionFactory.create(query, dataset);
return parseResul ts(queryStr, ge.execSelect());

} catch (Exception e) {

log.error("Failed to execute the Select query: " + queryStr, e);
return Col |l ections. enptyList();
} finally {
if (ge !=null) {
ge. close();
}

dat aset . getLock() .l eaveCritical Section();

}

private List<String> parseResults(String queryStr, ResultSet results) {
List<String> uris = new ArrayList<>();
if (results.hasNext()) {
try {
RDFNode node = results.next().get("graph");
if ((node != null) && node.isResource()) {
uris. add(node. asResource().getURI());
}
} catch (Exception e) {
log.warn("Failed to parse the query result" + queryStr, e);
}
}

return uris;

Execute the SPARQL query against the Dat aset . Extract the graph URIs from the result.

/**
* An UNAUTHORI ZED deci si on says
* "Not allowed. Don't bother asking anyone el se".
*/
private PolicyDecision unauthorizedDecision(String nessage) {
return new Basi cPol i cyDeci si on(Aut hori zati on. UNAUTHORI ZED, get Cl ass()

.getSinpleNane() + ": " + nessage);
}
/**
* An | NCONCLUSI VE deci si on says "Let soneone el se decide".
*/

private PolicyDecision inconclusiveDecision(String nessage) {
return new Basi cPol i cyDeci si on(Aut hori zati on. | NCONCLUSI VE, get Cl ass()
.getSinpleNane() + ": " + nessage);

Convenience methods for creating Pol i cyDeci si on return values.

Setup when VIVO starts

When VIVO starts execution, the St art upManager processes the file st art up_| i st eners. t xt, and instantiating each class that is named in the file,
and invoking the cont ext sl ni ti al i zed() method on each class.

Lines 172-193: The Setup class

R L I e LT
/1 Setup class - must be specified in startup_listeners.txt before any
/1 policy that might be nore perm ssive.

e PP
public static class Setup inplenents ServletContextListener {

@verride

public void contextlnitialized(ServletContextEvent sce) {
Servl et Context ctx = sce.getServletContext();
StartupStatus ss = StartupStatus. get Bean(ctx);

RestrictEditi ngByG aphPolicy p = new RestrictEditi ngByG aphPol i cy(
ctx);
Servl et Pol i cyLi st. addPol i cy(ctx, p);
ss.info(this,
"Editing object properties is only permitted in these graphs:
+ RestrictEditi ngByGraphPol i cy. PERM TTED_GRAPHS) ;

}

@verride

public void contextDestroyed(Servl et ContextEvent sce) { /* nothing */
}

The Setup class must implement Ser vl et Cont ext Li st ener.
On startup, create an instance of the Policy, and add it to the Ser vl et Pol i cyLi st . Produce an informative message for the startup status screen.

On shutdown, there is nothing to be done. If there were resources to be freed or files to be closed, this would be the place to do it.

Invoking the Setup class

Initialize the policy in startup_listeners.txt

edu. cornel | . mannl i b. vitro.webapp. aut h. policy. RestrictEditingByG aphPol i cy$Set up

Add this lineto st art up_I i st eners. t xt . Consult the note above regarding placement of this Policy relative to the other Policies.

A more complicated example

For another example of writing a policy, look at A more elaborate authorization policy

https://wiki.lyrasis.org/display/VIVODOC110x/A+more+elaborate+authorization+policy

	Creating a VIVO authorization policy - an example

