
REST API Contract
This page was an initial attempt to start a conversation over the new REST API contract. We have now agree to have this conversation over a dedicated
GitHub repository using pull requests and issues

see https://github.com/DSpace-Labs/RestContract

Other useful resources about the necessary endpoints and functionalities of the REST API are:

Terrence W Brady's brainstorming on GitHub https://github.com/terrywbrady/restBrainstorm/blob/master/README.md
John Francis Mukulu's brainstorming on Google Docs https://goo.gl/tPND8g

Old notes not yet moved to the above github repository

Browse milestone - Feature requests
Browse milestone

The repository has a homepage. The community / collection / item structure can be browsed. There are community and collection home pages and item
pages. Bitstreams can be downloaded. The repository can be indexed by google scholar.

Bitstream

name
description
format
size
download URL
relationships

Bundle
Metadata
What with derived bitstreams?

thumbnails

would be best to keep the logic that determines bitstream X is the thumbnail of bitstream Y out of the UI.
andrea: rest is indeed better, but should we improve this in the datamodel?
tim: do it in rest, keep it based on the filename in dspace 7 fix it later
andrea: it is easy, using metadata for all

extracted texts
…

Bundle

Name
relationships

Bitstreams
PrimaryBitstream

tim: should primarybitstream be on bundle or item?
andrea: let’s just keep using the current implementation and keep it there

Item
Metadata

Item

Name
Handle
lastModified
isArchived
isWithdrawn
relationships

Bundle
Metadata
Collection(s)

Collection/Community

Name

https://github.com/DSpace-Labs/RestContract
https://wiki.lyrasis.org/display/~terrywbrady
https://github.com/terrywbrady/restBrainstorm/blob/master/README.md
https://wiki.lyrasis.org/display/~john.f.mukulu@gmail.com
https://goo.gl/tPND8g

Handle
copyrightText
introductoryText
shortDescription
sidebarText
license
number of items
relationships

Parent(s)
Collections
Items
Logo

What are the “browse” endpoints?

`/collections/65/items` or `/items?collection=65` (or `items?q=collection:65`, …)
maybe both?
andrea: items can be in multiple collections
andrea: start with `/items` if we find a good use case to use `/collections/54/items` we can implement it later

General questions

Handle

returns a reference to the proper endpoint?
andrea: redirect, that way it can be the same for other persistent identifiers

Is there a use for a separate metadata endpoint in rest?

where you could retrieve or query for metadata rather than items/collections
as opposed to discovery, where the unit is the item.
tim: wait until we identify a real use case
andrea: don’t think so
terry: the DSpace 6 rest query tools query on metadata from the perspective of an item. It is possible that a metadata service could be useful as
a query starting point. Example: find all metadat with a URL to a DOI

JSON API or HAL

Some references

HAL: Hypertext Application Language
Hypermedia as the Engine of Application State

andrea: json api is more complete, but spring-data-rest works with HAL
art: katharsis works with json api, but I have no experience with it
art: and spring-data-rest looks like the bigger project so I would be ok with partial json api support due to that

How does pagination work?

useful info

results per page
total # of elements/pages
HATEOAS link to first/previous/next/last page
both agree

Sorting?

direction
sort field(s)

Limiting the number of fields in the response

profiles

minimal

all DSO’s have this
for e.g. in the trail

https://en.wikipedia.org/wiki/Hypertext_Application_Language
https://spring.io/understanding/HATEOAS

fields

DSO name
id

list-summary

all

DSO name
id

Item specific

authors
date issued

for collections/communities it is identical to minimal
list-detailed

all

DSO name
id

collection/community specific

description
Item specific

authors
date issued
abstract

view

item

author
date issued
abstract
identifier.uri

collection/community

returns everything
omitting the profile returns everything
e.g. GET `/items?field-profile=list-summary`
andrea & tim: ok
andrea: should be configurable on the backend

also retain the ability to specify a custom set of fields?

e.g. GET `/items?fields=handle,dc.contributor.creator,dc.identifier.doi`
maybe that should be: GET `/items?fields=handle&fields[metadata]=dc.contributor.creator,dc.identifier.doi` because metadata is a
relationship of item, not an attribute
andrea: not sure if necessary, if you have a rest endpoint that allows the creation a new profile
tim: let’s go with a limited set of profiles (with configurable fields), and leave configuring new profiles via the rest api until later
terry: I like the idea of a configurable profiles appropriate to an instance

How do we handle relationships for objects that have a lot of them?

e.g. a collection can contain several thousand items
but an item can also have more bitstreams that it may make sense to display at once.
That problem is separate from regular pagination as the relation section should only return HATEOAS links, nothing else, unless you ask for it.
However maybe we can use the same params, and first/previous/next/last links for relationships. e.g. see this forum post

andrea: we may avoid this problem by leaving out some relationships, for example, don’t specify all items in a collection objects
andrea: we can also mitigate this problem by using profiles that work on relationships as well as attributes, so you could specify a profile
that leaves out certain relationships
tim: if all else fails we may need to look at pagination

How does inclusion of related resources work?

often it will make sense to request related resources in the same request
e.g. request an item, and get not only the bundles, but the bitstreams inside those bundles as well
`include` param? e.g. GET `/items/15?include=bundles.bitstreams`

would return the item, it’s bundles and their bitstreams in a single response
multiple includes can be comma separated: GET `/collections/23?include=parents,logo`

we’ll that the JSON API way

Every DSpace Object needs to show its location in the trail

When showing an item page you don’t want to trigger a sequence of GETs to simply get the names of all its parent objects.
Should we include the entire path to the root in the relationships section?

http://discuss.jsonapi.org/t/how-to-handle-an-excessive-number-of-included-resources/209/2

Maybe an includes option with a profile for the trail that only returns their name and an identifier (to be able to link to them)

That way we can cache the parent objects already, and just add extra information when we need it.
Andrea: we could also solve this by showing in the trail how you arrived there instead of where it is in the tree, but there will most likely be a use
case where we need to show the item in the repository tree

Use UUIDs?

Not easy to type or to memorize
What if two items merge, or versioning is used. We need a persistent URI for an object.
Maybe we should also have a shorter ID that’s only unique within one type of object?
We could also use handles

In the UI I’d prefer to use `items/5123` instead of `handle/123456789/4561` handle should redirect to the item url
But we could use `items/123456789/4561` or some kind of permutation or hash of the handle
Problem with versioned items perhaps?

tim: we have to use UUIDs or handles. Not calling them handles may not be a bad idea

	REST API Contract

