
1.
a.

2.
a.

1.

a.

2.
3.

a.

DSpace 7 REST: Coding DSpace Objects

Code Branch
Code Representation of a DSpace Object

DSpace API Object (hibernate): org.dspace.content.DSpaceObject
Rest Object: org.dspace.app.rest.model.DSpaceObject
Hateoas Object: org.dspace.app.rest.model.hateoas.DSpaceResource
Converter Object: org.dspace.app.rest.converter.DSpaceObjectConverter
Repository Object: org.dspace.app.rest.repository.DSpaceRestRepository

Repository Object: search methods
Repository Object: massive conditional update/deletion

Linked Repository Object (TODO - proposal)
Managing Object Initialization (TODO)
Build the REST Controller(s)

Code Branch

The code of the DSapce 7 REST API have been merged in the master branch: https://github.com/DSpace/DSpace/tree/master/dspace-spring-rest

Code Representation of a DSpace Object

DSpace API Object (hibernate): org.dspace.content.DSpaceObject

This is the representation of an object from the DSpace database. Since DSpace 6, this object is populated with hibernate.

Rest Object: org.dspace.app.rest.model.DSpaceObject

This is a plain old java object (pojo) representation of a DSpace object.

Coding the REST object

Add private properties
Add a property to the class DSpaceObjectRest

Add a get/set method
Add get and set to the class DSpaceObjectRest
To exclude a property from JSON representation, add @JsonIgnore to the get method or to the property

Example of exclusion in the class DSpaceObjectRest
Another example of exclusion in the class DSpaceObjectRest

the REST Object should not includes collections (List, Set, etc.) to maintain relations with other REST Objects unless it makes sense to load in
memory all the linked objects, instead it should contains information (probably in form of annotation) to discovery linked entities. When a collection
could be already available in the corresponding Hibernate object depending on the performed operation the collections should be annotated to
provide a more efficient strategy to load the (paginated) information than the native (unpaginated) hibernate lazy-loading

Hateoas Object: org.dspace.app.rest.model.hateoas.DSpaceResource

This representation of an object allows for

the embedding of other DSpace objects within the object. Embedded objects are always linked.
property returns a RestModel object

linking to other external DSpace objects
property returns a RestModel. Property is marked with @JsonIgnore annotation.

The base class in this package uses reflection to identify attributes that are actual links to other REST resources.

DSpaceResource

If an attribute is of type RestModel, then the code will

wrap the linked REST resource inside a DSpaceResource (so to have the identifier, self link, and links to other resources). The wrapper is
actually created by the Repository responsible of the specific resource (ItemRepository, BitstreamRepository, etc.)

https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas
/DSpaceResource.java#L58
This give a chance to add custom logic for extra links in specific resource

put the wrapper in the embedded section
clean the attribute (not sure if useful/required/right):

 https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas
/DSpaceResource.java#L64

Converter Object: org.dspace.app.rest.converter.DSpaceObjectConverter

https://github.com/DSpace/DSpace/tree/master/dspace-spring-rest
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/DSpaceObjectRest.java#L24-L30
https://github.com/DSpace/DSpace/blob/master/dspace-spring-rest/src/main/java/org/dspace/app/rest/model/DSpaceObjectRest.java#L24-L30
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/DSpaceObjectRest.java#L34-L68
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/DSpaceObjectRest.java#L23
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/DSpaceObjectRest.java#L33
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas/DSpaceResource.java#L45-L74
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas/DSpaceResource.java#L58
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas/DSpaceResource.java#L58
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas/DSpaceResource.java#L64
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/model/hateoas/DSpaceResource.java#L64

1.

2.

Convert between the REST representation of an object and the Hibernate representation of an object.

Coding a converter object

In the fromModel() function, map all object attributes from the persistence/Hibernate model to the REST model.
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/converter
/DSpaceObjectConverter.java#L33-L50

In the toModel() method, map all attributes from the REST model to the persistence model.

Repository Object: org.dspace.app.rest.repository.DSpaceRestRepository

Provide repository interface functions that return and manage REST representations of DSpace objects. It should provide methods to

get a specific instance of the object (findOne)
get all the instances, paginated (findAll)
save an instance (save)
delete an instance (delete)

Additional methods should be added following the conventions defined in the subsequent paragraphs.

Repository Object: search methods

Any additional methods that return a subset of the collection exposed by the repository should be annotated with so to be @SearchRestMethod annotation
discovered as "search" capabilities of the repository and sub-path of the resource type (i.e. /communityautomatically exposed over the /search endpoint
/search/top).

The java method in the repository class can be named in any way, the sub-path used to build the rest endpoint is by default equals to the method name
but can be forced to a specific value using the name parameter in the annotation

The java method must return a Page of rest resources or a single resource but can accept any kind of arguments. If the method has a Pageable argument
it is automatically bind, the other argument are bind from HTTP parameters using the Spring Converter Framework but they need to be annotated with
the @Param annotation where the name attribute define the name of the HTTP parameter (see an example here)

Repository Object: massive conditional update/deletion

TBD. Probably it could be useful to introduce an approach similar to the one adopted for find methods with a common /bulk sub-path

Linked Repository Object (TODO - proposal)

Resources are typically linked with other resources of the same of different type. For example a collection is linked with the items that belong to the
collection. It is not effective to include a list of items in the collection object because it doesn't scale. Also if the Hateoas object can wrap the list adding
pagination on the server side we will have hit the full list. This mean that the linked objects need to be retrieved using optimized and paginated

. This could be done essentially in two ways:methods

the Hateoas object adds a link, say in the CollectionResource that refers to a search methods in the item repository (i.e. /items/searchitems
/findByCollection). The limit of this approach is that update of association couldn't be addressed on the same endpoint breking one of the REST
principle related to the URL structures and HTTP verbs. It doesn't make sense to send a POST to the endpoint /items/search/findByCollection?
id=xxxx to map a new item under the collection xxx. The same issue arise if we work on the other side of the relation, i.e. if we put the focus on
the single item we will end with the endpoint /collections/search/findByItem?id=xxx.
This mean that the search endpoint should be used for read-only relations or "custom views" over a relation.
the link is managed directly at the resource level. In our example this mean that the link will refers to an endpoint like /collections/:uuid/items items
This bring the issue to decide where put the implementation of the retrieval logic. It could be placed in the Repository Object assigned to the
specific type (for example CollectionRestRepository) or in a separate class. According to the Repository Pattern (https://martinfowler.com

) a repository is dedicated to a single Business Entity so this should be avoid. Thinking to the relation in terms of a /eaaCatalog/repository.html
separate Business Entity, it makes sense to define a specific repository for this Entity, the Linked Repository Object. This is the approach that we

are currently exploring to solve

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

this macro. It may be due to Application Link configuration.

Application Link configuration.

In we face with the issue to list all the items

available under a specific browse index. Also if this could look as a good example for the strategy #1 (it is a read-only relation) implementing it as a search
methods in the ItemRestRepository will mean couple the Item, core data model, with the browse system that is instead something additional maybe a
plugin or extra feature. Using a separate repository for the relation will automatically add an uniform support for update and deletion operations over the
relation and also will help to lazy load additional information during the wrapping of the object in its HAL Resource representational. Indeed the HAL
wrapper could inspect the object class and, if a relation is requested by the projection to be included in the serialization, the HAL wrapper can invoke the
same repository methods invoked when the specific relation endpoint is hit. This will assure consistency and avoid code duplication

 Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration. Unable to locate Jira server for

this macro. It may be due to Application Link configuration. Unable to locate Jira server for this macro. It may be due to

Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/converter/DSpaceObjectConverter.java#L33-L50
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/converter/DSpaceObjectConverter.java#L33-L50
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/SearchRestMethod.java
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/RestResourceController.java#L244
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/repository/CommunityRestRepository.java#L82
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/main/java/org/dspace/app/rest/repository/CommunityRestRepository.java#L97
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/repository.html

Managing Object Initialization (TODO)

When referencing a linked object, how do we control the initialization/load of reference object?
Proposal: as manage partial object is a common scenario in REST implementation regardless to the representation format used (HAL in our
case). It makes sense to add support for this capability directly on the RestModel base class. It should be able to discriminate which properties
are really null and which are uninitialized allowing the HAL Wrapper to lazy load relation if needed (see Linked Repository Object). The Converter
object should set only properties that are already initialized in the Hibernate object avoiding to hit hibernate lazy loading. If the property is required
to be included in the requested projection Hibernate Lazy load should be used only if there are not a defined Linked Repository Object able to
manage the requested relation

Build the REST Controller(s)

The goal is to have a pluggable infrastructure so that new endpoint can be added implementing the previous relevant classes without the explicitly need to
add new Spring MVC controllers. This assure easy and maintenable uniform implementation of the behavior described in the in terms of REST contract
HTTP Verbs meaning, ETAG, URL structure, etc.

Up to now we have two REST controller

org.dspace.app.rest.RootRestResourceController
It is responsible to produce the root HAL document listing all the defined endpoints of the REST API
ALPSController (TODO).

It will be probably introduced to add support for the ALPS protocol, see

to Application Link configuration.

org.dspace.app.rest.RestResourceController
It is the single point of entry of all the REST requests related to resources. It delegates the retrieval and save logic to the Repositories, HAL
wrappers and Converters previously described.

For specific functionalities it will be probably easier to create a separate controller instead to force the use of the Repository model. This is true for features
that don't deal with a specific resource like the ROOT HAL Document, ALPS, the global search (Discovery)

 Unable to locate Jira server for this macro. It may be due

to Application Link configuration.

https://github.com/DSpace/Rest7Contract

	DSpace 7 REST: Coding DSpace Objects

