
1.

2.

3.

Batch Processing
In the current DSpace design, the database transactions are in most of the cases relatively long: from Context creation to the moment the Context is
completed. Especially when doing batch processing, that transaction can become very long. The new data access layer introduced in DSpace 6 which is
based on Hibernate has built-in cache and auto-update mechanisms. But these mechanisms do not work well with long transactions and even have an
exponentially adverse-effect on performance.

Therefore we added a new method to the DSpace Context class which tells our database connection that we are going to do some enableBatchMode()
batch processing. The database connection (Hibernate in our case) can then itself to deal with a large number of inserts, updates and deletes. optimize
Hibernate will then not postpone update statements anymore which is better in the case of batch processing. The method lets isBatchModeEnabled()
you check if the current Context is in "batch mode".

When dealing with a lot of records, it is also important to deal with the size of the (Hibernate) cache. A large cache can also lead to decreased
performance and eventually to "out of memory" exceptions. To help developers to better manage the cache, a method was added to getCacheSize()
the DSpace Context class that will give you the number of database records currently cached by the database connection. Another new method uncacheE

 will allow you to clear the cache (of a single object) and free up (heap) memory. The method (ReloadableEntity entity)ntity uncacheEntity()
may be used to immediately remove an object from heap memory once the batch processing is finished with it. Besides the method, uncacheEntity()
the method in the DSpace Context class will also clear the cache, flush all pending changes to the database and commit the current database commit()
transaction. The database changes will then be visible to other threads.

BUT and come at a price. After calling this method all previously fetched entities (hibernate terminology for database uncacheEntity() commit()
record) are "detached" (pending changes are not tracked anymore) and cannot be combined with "attached" entities. If you change a value in a detached
entity, Hibernate will not automatically push that change to the database. If you still want to change a value of a detached entity or if you want to use that
entity in combination with attached entities (e.g. adding a bitstream to an item) after you have cleared the cache, you first have to reload that entity. Reloadi
ng means asking the database connection to re-add the entity from the database to the cache and get a new object reference to the required entity. From
then on, it is important that you use that new object reference. To simplify the process of reloading detached entities, we've added a reloadEntity

 method to the DSpace Context class with a new interface . This method will give the user a new (ReloadableEntity entity) ReloadableEntity
"attached" reference to the requested entity. All DSpace Objects and some extra classes implement the interface so that they can be ReloadableEntity
easily reloaded.

Examples on how to use these new methods can be found in the IndexClient class. But to summarize, when batch processing it is important that:

You put the Context into batch processing mode using the method:

boolean originalMode = context.isBatchModeEnabled();
context.enableBatchMode(true);

Perform necessary batch operations, being careful to call whenever you complete operations on each object. Alternatively, uncacheEntity()
you can the context once the object cache reaches a particular size (see). Remember, once an object is commit() getCacheSize()
"uncached", you will have to reload it (see) before you can work with it again: reloadEntity()

final Iterator<Item> itemIterator = itemService.findByCollection(context, collection);

// Loop through all items
while (itemIterator.hasNext()) {
 // Get access to next Item
 Item item = itemIterator.next();

 ... do something with Item ...

 // To prevent memory issues, discard Item from the cache after processing
 context.uncacheEntity(item);
}

// Remember: calling commit() will decache all objects
context.commit();

// So, if you need to reuse your Collection *post* commit(), you'd have to reload it
Collection collection = context.reloadEntity(collection);

When you're finished with processing the records, you put the context back into its original mode:

context.enableBatchMode(originalMode);

	Batch Processing

