
Real World Performance
Below are the results of performance testing comparing performance of Fedora-based applications with real-world data.

Plum Ingest

Ingesting a large book with 1000 100MB TIFF images, repeated with Fedora 4.5.1 release (based on Modeshape 4), and the experimental Modeshape 5 
branch (in both cases, Fedora was configured to use the PostgreSQL database object store).  Durations are reported as HH:MM:SS, for batches of 100 
images loaded using Princeton's Hydra head, .Plum

Batch Duration (Modeshape4) Duration (Modeshape5) Improvement

1 0:19:19 0:13:52 28.2%

2 0:27:03 0:23:19 13.8%

3 0:39:16 0:33:41 14.2%

4 0:52:13 0:43:43 16.3%

5 1:06:22 0:56:36 14.7%

6 1:23:29 1:10:46 15.2%

7 1:41:26 1:26:30 14.7%

8 2:02:22 1:43:08 15.7%

9 3:17:40 2:37:31 20.3%

10 3:47:48 3:10:14 16.5%

Retrieving Objects With Many Links to Repository Objects

Compared to objects with a large number of literal properties or URI properties, objects with a large number of links to repository objects are much 
slower.  E.g., an object with 10,000 properties where the objects are literals or non-repository URIs can be retrieved in 200 milliseconds, but an object with 
10,000 properties where the objects are repository objects takes 7-36 seconds, depending on the settings, storage backend, etc.

There are also significant differences between LevelDB and PostgreSQL/MySQL backends, with LevelDB being much faster: 7-10 seconds as opposed to 
30+ seconds for the object with 10,000 links to repository objects.

Version/Branch LevelDB MySQL PostgreSQL

4.5.0 8 n/a n/a

4.5.1 10 43 36

master (a58f5a05) 7 32 29

modeshape5 (c177adc8) n/a 89 30

See .test scripts

Testing initially focused on:

using properties explicitly set on the object, as compared to IndirectContainers
debugging the RDF-generation code that produces the IndirectContainer triples
running under Tomcat instead of Jetty

However, those do not appear to significantly impact performance.  So the process of looking up which node a proxy points to and converting the node 
reference to a URI seem to be the problem.  The process is:

List the children of a direct container and load each node.
Load the node the proxyFor property points to.
Convert the member node to a URI.

Each of these steps is reasonably fast (~1msec).  But as the number of members grows, even 3 msec per member eventually adds up.  For example, a 
collection with 10,000 members would take 30 seconds.

Some possible options for improving performance include:

Caching nodes: this can improve the time to look up the member node and convert it to a URI.
Using properties explicitly set on the collection object instead of proxies: this can eliminate the extra node lookup for loading the proxy node.
Using Modeshape's internal query functionality: in theory this could be more efficient than iterating over the proxies.  However, it appears that 
Modeshape uses the database as a document store, and so winds up loading all of the members anyway, with performance very similar to just 
iterating over all the children.

 

https://github.com/pulibrary/plum/
https://gist.github.com/escowles/43e434979c9fd3762cb1ad1225655abf

	Real World Performance

