
REST API

What is DSpace REST API
Installing the REST API

Disabling SSL
REST Endpoints

Pagination
Index / Authentication

Shibboleth Apache configuration for the REST API
Communities
Collections
Items
Bitstreams
Handle
Hierarchy
Schema and Metadata Field Registry
Report Tools

Model - Object data types
Community Object
Collection Object
Item Object
Bitstream Object
ResourcePolicy Object
MetadataEntry Object
Schema Object
MetadataField Object
User Object
Status Object

Introduction to Jersey for developers
Configuration for DSpace REST
Recording Proxy Access by Tools
Additional Information

What is DSpace REST API
The REST API module provides a programmatic interface to DSpace Communities, Collections, Items, and Bitstreams.

DSpace 4 introduced the initial REST API, which did not allow for authentication, and provided only READ-ONLY access to publicly accessible
Communities, Collections, Items, and Bitstreams. DSpace 5 builds off of this and allows authentication to access restricted content, as well as allowing
Create, Edit and Delete on the DSpace Objects. DSpace 5 REST API also provides improved pagination over resources and searching. There has been a
minor drift between the DSpace 4 REST API and the DSpace 5 REST API, so client applications will need to be targeted per version.

Installing the REST API

The REST API deploys as a standard webapp for your servlet container / tomcat. For example, depending on how you deploy webapps, one way would be
to alter tomcat-home/conf/server.xml and add:

<Context path="/rest" docBase="/dspace/webapps/rest" />

In DSpace 4, the initial/official Jersey-based REST API was added to DSpace. The DSpace 4 REST API provides READ-ONLY access to DSpace Objects.

In DSpace 5, the REST API adds authentication, allows Creation, Update, and Delete to objects, can access restricted materials if authorized, and it
requires SSL.

Disabling SSL

For localhost development purposes, SSL can add additional getting-started difficulty, so security can be disabled. To disable DSpace REST's requirement
to require security/ssl, alter or [dspace]/webapps/rest/WEB-INF/web.xml [dspace-source]/dspace-rest/src/main/webapp/WEB-INF

 and comment out the block, and restart your servlet container. Production usages of the REST API should use /web.xml <security-constraint>
SSL, as authentication credentials should not go over the internet unencrypted.

REST Endpoints

The REST API is modeled after the DSpace Objects of Communities, Collections, Items, and Bitstreams. The API is not a straight database schema dump
of these entities, but provides some wrapping that makes it easy to follow relationships in the API output.

HTTP Header: Accept

Note: You must set your request header's "Accept" property to either JSON (application/json) or XML (application/xml) depending on the format you prefer
to work with.

Example usage from command line in XML format with pretty printing:

curl -s -H "Accept: application/xml" http://localhost:8080/rest/communities | xmllint --format -

Example usage from command line in JSON format with pretty printing:

curl -s -H "Accept: application/json" http://localhost:8080/rest/communities | python -m json.tool

For this documentation, we will assume that the URL to the "REST" webapp will be for production systems, this address will be http://localhost:8080/rest/
slightly different, such as: . The path to an endpoint, will go after the /rest/, such as /rest/communities, all-together this is: https://demo.dspace.org/rest/ http:/
/localhost:8080/rest/communities

Another thing to note is that there are Query Parameters that you can tack on to the end of an endpoint to do extra things. The most commonly used one
in this API is "?expand". Instead of every API call defaulting to giving you every possible piece of information about it, it only gives a most commonly used
set by default and gives the more "expensive" information when you deliberately request it. Each endpoint will provide a list of available expands in the
output, but for getting started, you can start with ?expand=all, to make the endpoint provide all of its information (parent objects, metadata, child objects).
You can include multiple expands, such as: ?expand=collections,subCommunities.

Pagination

DSpace 6.x supports pagination by allowing two query parameters: and . Note however that the aggregate results number is not supplied limit offset
(see). Endpoints which return arrays of objects, such as /communities, /collections or /items, are "paginated": the full list is broken into "pages" DS-3887
which start at from the beginning of the list and contain at most elements. By repeated queries you can retrieve any portion of the array or offset limit
all of it. The default value of is 0 and the default value of is 100. So, as an example, to retrieve the sixth through tenth elements of the full offset limit
list of Collections, you could do this:

curl -s -H "Accept: application/json" http://localhost:8080/rest/collections?offset=5\&limit=5

Index / Authentication
REST API Authentication has changed in DSpace 6.x. It now uses a cookie (see below). The previous (5.x) authentication scheme using a JSESSIONID

 is no longer supported.rest-dspace-token

Method Endpoint Description

GET / REST API static documentation page listing available endpoints and their function.

Example:

https://demo.dspace.org/rest

http://localhost:8080/rest/
https://demo.dspace.org/rest/
http://localhost:8080/rest/communities
http://localhost:8080/rest/communities
https://jira.duraspace.org/browse/DS-3887
https://demo.dspace.org/rest

POST /login Login to the REST API using a DSpace EPerson (user). It returns a , that can be used for future JSESSIONID cookie
authenticated requests.

Example Request:

Can use either POST or GET (POST recommended). Must pass the parameters "email" and
"password".
curl -v -X POST --data "email=admin@dspace.org&password=mypass" https://dspace.myu.edu
/rest/login

Example Response:

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8; Path=/rest/; Secure; HttpOnly

Example of using JSESSIONID cookie for subsequent (authenticated) requests:

curl -v --cookie "JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8" https://dspace.myu.edu/rest
/status
This should return <authenticated>true</authenticated>, and information about the
authenticated user session

Invalid email/password combinations will receive an response.HTTP 401 Unauthorized

Please note, special characters need to be HTTP URL encoded.
For example, an email address like (notice the + special character) would need to be dspacedemo+admin@gmail.com
encoded as .dspacedemo%2Badmin@gmail.com

GET /shibboleth-
login

Login to the REST API using Shibboleth authentication. In order to work, this requires . To additional Apache configuration
authenticate, execute the following steps:

1. Call the REST Shibboleth login point with a Cookie jar:

curl -v -L -c cookiejar "https://dspace.myu.edu/rest/shibboleth-login"

2. This should take you again to the IdP login page. You can submit this form using curl using the same cookie jar. However
this is IdP dependant so we cannot provide an example here.

3. Once you submit the form using curl, you should be taken back to the /rest/shibboleth-login URL which will return you the
JSESSIONID.

4. Using that JSESSIONID, check if you have authenticated successfully:

curl -v "http://localhost:8080/dspace-rest/status" --cookie
"JSESSIONID=0633C6379266A283E53F65DF8EF61AB9"

POST /logout Logout from the REST API, by providing a cookie. After being posted this cookie will no longer work.JSESSIONID

Example Request:

curl -v -X POST --cookie "JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8" https://dspace.myu.
edu/rest/logout

After posting a logout request, cookie is invalidated and the "/status" path should show you as unauthenticated (even when
passing that same cookie). For example:

curl -v --cookie "JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8" https://dspace.myu.edu/rest
/status
This should show <authenticated>false</authenticated>

Invalid token will result in HTTP 400 Invalid Request

1.
a.

b.

c.

GET /test Returns string "REST api is running", for testing that the API is up.

Example Request:

curl https://demo.dspace.org/rest/test

https://demo.dspace.org/rest/test

Example Response:

REST api is running.

GET /status Receive information about the currently authenticated user token, or the API itself (e.g. version information).

Example Request (XML by default):

curl -v --cookie "JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8" https://demo.dspace.org
/rest/status

https://demo.dspace.org/rest/status

Example Request (JSON):

curl -v -H "Accept: application/json" --cookie
"JSESSIONID=6B98CF8648BCE57DCD99689FE77CB1B8" https://demo.dspace.org/rest/status

Example JSON Response:

{
 "okay":true,
 "authenticated":true,
 "email":"admin@dspace.org",
 "fullname":"DSpace Administrator",
 "sourceVersion":"6.0",
 "apiVersion":"6"
}

Shibboleth Apache configuration for the REST API

Before Shibboleth authentication for the REST API will work, you need to secure the endpoint. Add this configuration /rest/shibboleth-login
section to your Apache HTTPD Shibboleth configuration:

<Location "/rest/shibboleth-login">
 AuthType shibboleth
 ShibRequireSession On
 # Please note that setting ShibUseHeaders to "On" is a potential security risk.
 # You may wish to set it to "Off". See the mod_shib docs for details about this setting:
 # https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig#NativeSPApacheConfig-
AuthConfigOptions
 # Here's a good guide to configuring Apache + Tomcat when this setting is "Off":
 # https://www.switch.ch/de/aai/support/serviceproviders/sp-access-rules.html#javaapplications
 ShibUseHeaders On
 require valid-user
</Location>

You can test your configuration in 3 different ways:

Using a web browser:
Go to , this should redirect you to the login page of your IdP if you don't have https://dspace.myu.edu/rest/shibboleth-login
a Shibboleth session yet.
Enter your test credentials and this should take you back to the URL. You should then see a blank page /rest/shibboleth-login
but in the response headers, the JSESSIONID cookie should be present.

https://demo.dspace.org/rest/test
https://demo.dspace.org/rest/status

1.

c.
2.

a.

b.

c.

d.

3.
a.

b.

c.
d.

e.

Then go to and you should see information on the current authenticated ePerson./rest/status
Using curl without a Shibboleth Session

Call the REST Shibboleth login point with a Cookie jar:

curl -v -L -c cookiejar "https://dspace.myu.edu/rest/shibboleth-login"

This should take you again to the IdP login page. You can submit this form using curl using the same cookie jar. However this is IdP
dependant so I cannot provide an example here.
Once you submit the form using curl, you should be taken back to the URL which will return you the /rest/shibboleth-login
JSESSIONID.
Using that JSESSIONID, check if you have authenticated successfully:

curl -v "https://dspace.myu.edu/dspace-rest/status" --cookie
"JSESSIONID=0633C6379266A283E53F65DF8EF61AB9"

Using curl with a Shibboleth Session (cookie)
When you post the Shibboleth login form, the Shibboleth daemon on the also returns you a Shibboleth Cookie. This DSpace server
cookie looks like You can also grab this cookie from your browser._shibsession_64656661756c74687...
Double check that the cookie you took is valid:

curl -v 'https://dspace-url/Shibboleth.sso/Session' -H 'Cookie:
_shibsession_64656661756c7468747470733a2f2f7265706f7369746f72792e636172646966666d65742e61632e756b2f
73686962626f6c657468=_a8d3ad20d8b655250c7357f7ac0e2910;'

This should give you information if the Shibboleth session is valid and on the number of attributes.
Use this cookie to obtain a Tomcat JSESSIONID:

curl -v 'https://dspace-url/rest/shibboleth-login' -H 'Cookie:
_shibsession_64656661756c7468747470733a2f2f7265706f7369746f72792e636172646966666d65742e61632e756b2f
73686962626f6c657468=_a8d3ad20d8b655250c7357f7ac0e2910;'

Use the returned JSESSIONID to check if you have authenticated successfully:

curl -v "http://dspace-url/rest/status" --cookie "JSESSIONID=0633C6379266A283E53F65DF8EF61AB9"

Communities

Communities in DSpace are used for organization and hierarchy, and are containers that hold sub-Communities and Collections (ex: Department of
Engineering).

For an alternative way to create a Community/Collection hierarchy to the REST API take a look at .Importing Community and Collection Hierarchy

HTTP
method

REST endpoint Description

GET /communities Return an array of all the in the repository. The results are .communities paginated

Example:

https://demo.dspace.org/rest/communities

GET /communities/top-communities Return an array of all top-level communities. The results are .paginated

Example:

https://demo.dspace.org/rest/communities/top-communities

GET /communities/{ }community id Return the specified community.

Example:

https://demo.dspace.org/rest/communities/e97b847b-2fd5-4751-8d91-fcf0d8895b81

GET /communities/{ }/collectionscommunity id Return an array of collections of the specified community. The results are .paginated

https://wiki.lyrasis.org/display/DSDOC6x/Importing+Community+and+Collection+Hierarchy
https://demo.dspace.org/rest/communities
https://demo.dspace.org/rest/communities/top-communities
https://demo.dspace.org/rest/communities/e97b847b-2fd5-4751-8d91-fcf0d8895b81

GET /communities/{ }/communitiescommunity id Return an array of sub-communities of the specified community. The results are pagi
.nated

POST /communities Create a new community at top level. You must POST a .community object data type

POST /communities/{ }/collectionscommunity id Create a new collections in the specified community. You must POST a collection
.object data type

POST /communities/{ }/communitiescommunity id Create a new sub-community in the specified community. You must POST a commu
.nity object data type

PUT /communities/{ }community id Update the specified community. You must PUT a .community object data type

DELETE /communities/{ }community id Delete the specified community.

DELETE /communities/{ }/collections/{community id collectio
}n id

Delete the specified collection in the specified community.

DELETE /communities/{ }/communities/{community id sub-
}community id

Delete the specified sub-community in the specified community.

Collections

Collections in DSpace are containers of Items. (ex: Engineering Faculty Publications).

For an alternative way to create a Community/Collection hierarchy to the REST API take a look at .Importing Community and Collection Hierarchy

HTTP
method

REST endpoint Description

GET /collections Return an array of all the collections in the repository. The results are .paginated

GET /collections/{ }collection id Return the specified collection.

GET /collections/{ }/itemscollection id Return an array all items of the specified collection. The results are .paginated

POST /collections/{ }/itemscollection id Create an item in the specified collection. You must POST an .item object data type

POST /collections/find-collection Find collection by passed name. Returns the first exact match or nothing. You must POST a single
string, not a JSON object.

PUT /collections/{ }collection id Update the specified collection. You must PUT a .collection object data type

DELETE /collections/{ }collection id Delete the specified collection.

DELETE /collections/{ }/items/collection id
{ }item id

Delete the specified item in the specified collection.

Items

Items in DSpace represent a "work" and combine metadata and files, known as Bitstreams.

HTTP
method

REST endpoint Description

GET /items Return an array of all the items in the repository. The results are .paginated

Example:

https://demo.dspace.org/rest/items

GET /items/{ }item id Return the specified item.

GET /items/{ }item id
/metadata

Return metadata of the specified item.

GET /items/{ }item id
/bitstreams

Return an array of all the bitstreams of the specified item. The results are .paginated

POST /items/find-by-
metadata-field

Find items by metadata entry. You must POST a .metadataentry object data type

https://wiki.lyrasis.org/display/DSDOC6x/Importing+Community+and+Collection+Hierarchy
https://demo.dspace.org/rest/items

POST /items/{ }item id
/metadata

Add metadata to the specified item. You must POST an array of .metadataentry object data type

POST
/GET

/items/{ }item id
/bitstreams?name=
{file name}

Add bitstream to the specified item. You must POST the file data and include the name parameter with the value as
{ } in the URL posted to.file name

Optional query parameters:

description: A description of the bitstream.

groupId: Id of group to set item resource policy to.

year: Year to set embargo date to

month: Month to set embargo date to

day: Day of month to set embargo date to

Example:

/items/{ }/bitstreams?name=The%20Children%27s%20Crusade%3A%20A%20Duty-Dance%20with%item id
20Death.pdf&description=All%20this%20happened%2C%20more%20or%20less.&groupID=1969&year=2045&mont
h=2&day=13

PUT /items/{ }item id
/metadata

Update metadata in the specified item. You must PUT a .metadataentry object data type

Each metadata entry that will replace all prior matching metadata entries, i.e. if you submit 'dc.subject' entries all n
pre-existing 'dc.subject' entries in the item will be deleted and replaced with the entriesn

DELETE /items/ }{item id Delete the specified item.

DELETE /items/{ }item id
/metadata

Clear the metadata of the specified item.

DELETE /items/{ }item id
/bitstreams/{bitstrea

}m id

Delete the specified bitstream of the specified bitstream.

Bitstreams

Bitstreams are files. They have a filename, size (in bytes), and a file format. Typically in DSpace, the Bitstream will the "full text" article, or some other
media. Some files are the actual file that was uploaded (tagged with bundleName:ORIGINAL), others are DSpace-generated files that are derivatives or
renditions, such as text-extraction, or thumbnails. You can download files/bitstreams. DSpace doesn't really limit the type of files that it takes in, so this
could be PDF, JPG, audio, video, zip, or other. Also, the logo for a Collection or a Community, is also a Bitstream.

HTTP
method

REST endpoint Description

GET /bitstreams Return an array of all the bitstreams in the repository. The results are .paginated

Example:

http://demo.dspace.org/rest/bitstreams

GET /bitstreams/{bitstream id} Return the specified bitstream.

GET /bitstreams/{bitstream id}/policy Return bitstream policies.

GET /bitstreams/{bitstream id}/retrieve Return data of bitstream.

POST /bitstreams/{bitstream id}/policy Add policy to item. You must POST a .resourcepolicy object data type

PUT /bitstreams/{bitstream id}/data Update the data/file of the specified bitstream. You must PUT the data.

PUT /bitstreams/{bitstream id} Update metadata of the specified bitstream. You must PUT a bitstream, does not alter the
file/data.

DELETE /bitstreams/{bitstream id} Delete the specified bitstream.

DELETE /bitstreams/{bitstream id}/policy/{policy
id}

Delete the specified resource policy of the specified bitstream.

You can access the parent object of a Bitstream (normally an Item, but possibly a Collection or Community when it is its logo) through: /bitstreams/:
bitstreamID?expand=parent

http://demo.dspace.org/rest/bitstreams

As the documentation may state "You must post a ResourcePolicy" or some other object type, this means that there is a structure of data types, that your
XML or JSON must be of type, when it is posted in the body.

Handle

In DSpace, Communities, Collections, and Items typically get minted a Handle Identifier. You can reference these objects in the REST API by their handle,
as opposed to having to use the internal item-ID.

HTTP method REST endpoint Description

GET /handle/{handle prefix}/{handle suffix} Returns a Community, Collection, or Item object that matches that handle.

Hierarchy

Assembling a full representation of the community and collection hierarchy using the communities and collections endpoints can be inefficient. Retrieve a
lightweight representation of the nested community and collection hierarchy. Each node of the hierarchy contains minimal information (id, handle, name).

HTTP method REST endpoint Description

GET /hierarchy Retrieve a lightweight representation of the nested community and collection hierarchy.

Schema and Metadata Field Registry

HTTP
method

REST endpoint Description

GET /registries/schema Return an array of all the schema in the registry

GET /registries/schema/{schema prefix} Return the specified schema

GET /registries/schema/{schema prefix}/metadata-fields/
{element}

Return the metadata field within a schema with an unqualified element name

GET /registries/schema/{schema prefix}/metadata-fields/
{element}/{qualifier}

Return the metadata field within a schema with a qualified element name

POST /registries/schema/ Add a schema to the schema registry. You must POST a schema object
.data type

POST /registries/schema/{schema prefix}/metadata-fields Add a metadata field to the specified schema. You must POST a metadatafiel
.d object data type

GET /registries/metadata-fields/{field id} Return the specified metadata field

PUT /registries/metadata-fields/{field id} Update the specified metadata field

DELETE /registries/metadata-fields/{field id} Delete the specified metadata field from the metadata field registry

DELETE /registries/schema/{schema id} Delete the specified schema from the schema registry

Note: since the schema object contains no data fields, the following method has not been implemented: PUT /registries/schema/{schema id}

Report Tools

Reporting Tools that allow a repository manager to audit a collection for metadata consistency and bitstream consistency. See REST Based Quality
 for more information or test the or on demo.dspace.org.Control Reports Collection Report Tool Metadata Query Tool

HTTP method REST endpoint Description

GET /reports Return a list of report tools built on the REST API

GET /reports/{nickname} Return a redirect to a specific report

GET /filters Return a list of use case filters available for quality control reporting

GET /filtered-collections Return collections and item counts based on pre-defined filters

GET /filtered-collections/{collection id} Return items and item counts for a collection based on pre-defined filters

GET /filtered-items Retrieve a set of items based on a metadata query and a set of filters

https://wiki.lyrasis.org/display/DSDOC6x/REST+Based+Quality+Control+Reports
https://wiki.lyrasis.org/display/DSDOC6x/REST+Based+Quality+Control+Reports
https://demo.dspace.org/rest/static/reports/index.html
https://demo.dspace.org/rest/static/reports/query.html

Model - Object data types

Here are all of the data types, not all fields are necessary or supported when posting/putting content, but the output contains this information:

Community Object

{
 "id":456,
 "name":"Reports Community",
 "handle":"10766/10213",
 "type":"community",
 "link":"/rest/communities/456",
 "expand":["parentCommunity","collections","subCommunities","logo","all"],
 "logo":null,
 "parentCommunity":null,
 "copyrightText":"",
 "introductoryText":"",
 "shortDescription":"Collection contains materials pertaining to the Able Family",
 "sidebarText":"",
 "countItems":3,
 "subcommunities":[],
 "collections":[]
}

Collection Object

{
 "id":730,
 "name":"Annual Reports Collection",
 "handle":"10766/10214",
 "type":"collection",
 "link":"/rest/collections/730",
 "expand":["parentCommunityList","parentCommunity","items","license","logo","all"],
 "logo":null,
 "parentCommunity":null,
 "parentCommunityList":[],
 "items":[],
 "license":null,
 "copyrightText":"",
 "introductoryText":"",
 "shortDescription":"",
 "sidebarText":"",
 "numberItems":3
}

Item Object

{
 "id":14301,
 "name":"2015 Annual Report",
 "handle":"123456789/13470",
 "type":"item",
 "link":"/rest/items/14301",
 "expand":["metadata","parentCollection","parentCollectionList","parentCommunityList","bitstreams","all"],
 "lastModified":"2015-01-12 15:44:12.978",
 "parentCollection":null,
 "parentCollectionList":null,
 "parentCommunityList":null,
 "bitstreams":null,
 "archived":"true",
 "withdrawn":"false"
}

Bitstream Object

{
 "id":47166,
 "name":"appearance and physiology 100 percent copied from wikipedia.pdf",
 "handle":null,
 "type":"bitstream",
 "link":"/rest/bitstreams/47166",
 "expand":["parent","policies","all"],
 "bundleName":"ORIGINAL",
 "description":"",
 "format":"Adobe PDF",
 "mimeType":"application/pdf",
 "sizeBytes":129112,
 "parentObject":null,
 "retrieveLink":"/bitstreams/47166/retrieve",
 "checkSum":{"value":"62778292a3a6dccbe2662a2bfca3b86e","checkSumAlgorithm":"MD5"},
 "sequenceId":1,
 "policies":null
}

ResourcePolicy Object

{
 "id":317127,
 "action":"READ",
 "epersonId":-1,
 "groupId":0,
 "resourceId":47166,
 "resourceType":"bitstream",
 "rpDescription":null,
 "rpName":null,
 "rpType":"TYPE_INHERITED",
 "startDate":null,
 "endDate":null
}

MetadataEntry Object

{
 "key":"dc.description.abstract",
 "value":"This is the description abstract",
 "language": null
}

Schema Object

{
 "namespace": "example.org/myschema",
 "prefix": "myschema"
}

MetadataField Object

{
 "description" : "myschema test field",
 "element" : "test",
 "name" : "myschema.test",
 "qualifier": null
}

User Object

{
 "email":"test@dspace.org",
 "password":"pass"
}

Status Object

{
 "okay":true,
 "authenticated":true,
 "email":"test@dspace.org",
 "fullname":"DSpace Test User",
 "token":"6d45daaa-7b02-4ae7-86de-a960838fae5c"
}

Introduction to Jersey for developers
The REST API for DSpace is implemented using Jersey, the reference implementation of the Java standard for building RESTful Web Services (JAX-RS
1). That means this API should be easier to expand and maintain than other API approaches, as this approach has been widely adopted in the industry. If
this client documentation does not fully answer about how an endpoint works, it is helpful to look directly at the , to see how it is Java REST API code
implemented. The code typically has required parameters, optional parameters, and indicates the type of data that will be responded.

There was no central ProviderRegistry that you have to declare your path. Instead, the code is driven by annotations, here is a list of annotations used in
the code for CommunitiesResource.java:

@Path("/communities"), which then allows it to be routed to , this is then the base path for all the requests within http://localhost:8080/communities
this class.
@GET, which indicates that this method responds to GET http requests
@POST, which indicates that this method responds to POST http requests
@PUT, which indicates that this method responds to PUT http requests
@DELETE, which indicates that this method responds to DELETE http requests

https://github.com/DSpace/DSpace/tree/master/dspace-rest/src/main/java/org/dspace/rest
http://localhost:8080/communities

@Path("/{community_id}"), the path is appended to the class level @Path above, this one uses a variable {community_id}. The total endpoint
would be where 123 is the ID.http://localhost:8080/rest/communities/123,
@Consumes({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML }), this indicates that this request expects input of either JSON
or XML. Another endpoint accepts HTML input.
@PathParam("community_id") Integer communityId, this maps the path placeholder variable {community_id} to Java int communityID
@QueryParam("userIP") String user_ip, this maps a query param like ?userIP=8.8.4.4 to Java String user_id variable, and user_id == "8.8.4.4"

Configuration for DSpace REST

Property rest.stats

Example Value true

Informational Note Boolean value indicates whether statistics should be recorded for access via the REST API; Defaults to 'false'.

Note that if the logging level (in the) is set to DEBUG the REST API will output the entire transaction to the logs. In cases where logging configuration
changes are being made to metadata by automatic processes this can result in several gigabyte sized logs depending on the volume.

Recording Proxy Access by Tools
For the purpose of more accurate statistics, a web-based tool may specify who is using it, by adding parameters to the request:

http://localhost:8080/rest/items/:ID?userIP=ip&userAgent=userAgent&xforwardedfor=xforwardedfor

If no parameters are given, the details of the HTTP request's sender are used in statistics. This enables tools to record the details of their user
rather than themselves.

Additional Information
Additional information can be found in the , and in the GitHub .README for dspace-rest Pull Request for DSpace REST (Jersey)

Usage examples can be found at: https://github.com/BrunoNZ/dspace-rest-requests

A tutorial on item deposits, together with Postman examples is available at

http://localhost:8080/rest/communities/123,
https://wiki.lyrasis.org/pages/viewpage.action?pageId=81952888#ConfigurationReference-LoggingConfiguration
https://github.com/DSpace/DSpace/tree/master/dspace-rest
https://github.com/DSpace/DSpace/pull/323
https://github.com/BrunoNZ/dspace-rest-requests

	REST API

