
1.
2.
3.

a.
b.

4.
a.
b.
c.

5.
a.

6.
7.
8.

Authorization

Overview
Use Cases
Container Authentication
Additional Security Principals
Forwarding Security Credentials
Access Roles API
Fedora Policy Enforcement Point (PEP)

Overview
Fedora 4 authorization is designed to be fine grained, while at the same time manageable by administrators and end users. Authentication is managed by
the servlet container or externally, but authorization mechanisms are open to extension and many reference implementations are included. Roles-based
access control is an included feature that makes permissions more manageable and at the same time easier for external applications to retrieve, index and
enforce. Finer grained security checks have no impact on the performance of requests that have a Fedora administrator role.

Use Cases
Researchers control the polices on their own objects
Distributed authentication and authorization
University of North Carolina at Chapel Hill

Unified Authorization
Setting Individual Permissions

Yale University
Fedora managing access conditions
Programmers use API for access condition support in external systems, i.e. HydraTitle (goal)
Applications use API for updating access conditions stored in Fedora

University of Wisconsin - Madison
 External authentication and authorization
 Islandora

Hydra
Avalon Media System

Container Authentication
User authentication is generally handled by the Servlet container, i.e. Tomcat, JBoss AS, Jetty, etc. Authenticated requests will arrive at Fedora servlets
with a non-null values for getRemoteUser() and getUserPrincipal().

Fedora users may have the following servlet container roles.

fedoraAdmin - Grants superuser permissions to the the Fedora repository. Bypasses the configured policy enforcement point (PEP).
fedoraUser - The policy enforcement point (PEP) grants permissions on the basis of this authenticated user and the credentials on the request.
fedoraProxy - The policy enforcement point (PEP) grants permissions on the basis of end-user security credentials that are forwarded via
extended request headers.

Extension Point: Container Authentication

Implementations may configure the servlet container to employ any user authentication mechanism that meets specifications. This is container-specific, but
usually includes JAAS, LDAP, CAS, Shibboleth, etc..

See the overview on for more details.configuring servlet container authentication

Additional Security Principals
Access may hinge on additional security principals that are specific to an organization. These principals are often based on Shibboleth, LDAP, CAS,
databases and other sources. Additional principals can be included in authorization by implementing a PrincipalFactory. A PrincipalFactory examines
Servlet requests and returns a set of additional principals. Examples include a named IP range, an affiliation or group from a Shibboleth header, principals
extracted from SAML payloads, etc.. Fedora provides a configurable HeaderPrincipalFactory that extracts principals from headers.

Extension Point: Principal Factory

Implementations may enhance the security context for all authorization decisions downstream by implementing a Principal Factory, which extracts
additional security principals from servlet requests. Principals are extensible to whatever credential the organization wishes to privilege. Principal names
must be unique.
Reference Implementation: IP Range Principal Factory

In Development: Fedora ships with a principal factory for named IP ranges. The factory may be configured with a map of names to a set of IP ranges.
This allows Fedora administrators to assign privileges to all users within a named IP range, such as "On Campus".

https://wiki.lyrasis.org/display/FF/Researchers+control+the+policies+on+their+own+objects
https://wiki.lyrasis.org/display/FF/Use+Case%3A+Distributed+authentication+and+authorization
https://wiki.lyrasis.org/display/FF/University+of+North+Carolina+at+Chapel+Hill
https://wiki.lyrasis.org/display/FF/Yale+University
https://wiki.lyrasis.org/display/FF/University+of+Wisconsin+-+Madison#UniversityofWisconsinMadison-ExternalAuthNZ
https://wiki.lyrasis.org/pages/viewpage.action?pageId=34662293
https://wiki.lyrasis.org/display/FF/Hydra+Authorization+Use+Case
http://www.avalonmediasystem.org/blog-post/understanding-avalon-roles-and-permissions
https://wiki.lyrasis.org/display/FEDORA451/How+to+Configure+Servlet+Container+Authentication

Reference Implementation: Header Principal Factory

In Development: Fedora ships with this simple principal factory that creates string-based security principals from request headers. This is useful in cases,
like the Apache HTTP Shibboleth module, where additional attributes are supplied as request headers.

Forwarding Security Credentials
Since applications often act on behalf of end users with extended security attributes, such as those from Shibboleth, the ability to forward credentials to a
central point of authorization is key. Regardless of the approach used for of third-party applications, these applications will need to forward authentication
security attributes on behalf of end users for . An example of this pattern is the often used in web proxies, which we authorization X-Forwarded-For header
can use to forward the end-user IP address.

Fedora supports both end users and application users. It is helpful to feed both local and forwarded security credentials into a same pipeline for extracting
security principals that are the basis for authorization.

Access Roles API
The access roles API allows you manage the assignment of access roles throughout the repository tree. For details, please see the .Access Roles Module

Fedora Policy Enforcement Point (PEP)
Fedora includes an extension point that allows installers to build their own enforcement logic for all Fedora actions. A PEP enforces appropriate access for
fedora users and their proxies, i.e. applications acting on their behalf. The PEP interface is simple, for details please see . Some Authorization Delegates
policy enforcement points may be roles-aware, meaning that they leverage role assignments from the Access Roles API.

Extension Point: Policy Enforcement Point (PEP)

A policy enforcement point enforces appropriate access for Fedora users and their proxies, i.e. applications acting on their behalf. One policy enforcement
point may be configured at a time.
Reference Implementation: Basic Roles PEP

The basic roles enforcement point determines access on the basis of 4 simple roles that may be assigned throughout the repository. These are reader,
metadata reader, writer, and admin. For details please see the .Basic Role-based Authorization Delegate
Reference Implementation: XACML PEP

In Development: The XACML PEP forwards authorization requests to a XACML policy decision point. It is aware of access roles and may also make
determinations on the basis of a wide range of Fedora resource properties. Policy sets may be customized for different part of the repository tree. For
detail please see the .XACML Authorization Delegate

http://en.wikipedia.org/wiki/X-Forwarded-For
https://wiki.lyrasis.org/display/FEDORA451/Access+Roles+Module
https://wiki.lyrasis.org/display/FEDORA451/Authorization+Delegates
https://wiki.lyrasis.org/display/FEDORA451/Basic+Role-based+Authorization+Delegate
https://wiki.lyrasis.org/display/FEDORA451/XACML+Authorization+Delegate

	Authorization

