
Filesystem Federation

Overview
Limits of Federation
Filesystem Federation

Configuration
Repository Configuration
Multiple Directories

External Datastreams
Separate Properties Store
How-Tos
Other Connectors

Custom Connector References

Overview
Fedora 4 has the ability to expose external content, as if it were a part of the repository. Federation may be useful for migrating content into Fedora 4 or
serving large files already on disk.

Modeshape's provides more background on how federation works and the underlying concepts.federation overview

Note: The term "projection" is sometimes used as a synonym for the "federation" feature.

Limits of Federation
Federated content is accessible through the REST API – however, some features will not work:

Performance testing on federations has shown a performance impact when more than ~3000 files are found in any given filesystem directory. It is
recommended that the files on the filesystem be structured in a balanced hierarchy of directories.
Filesystem federation is read-only, currently.
Access control can currently only be applied to an entire federated filesystem, not sub-directories/files within the resource.
Transactions are not available.
Versioning is not supported.

Filesystem Federation
Filesystem federation maps a node in the repository to a directory on disk. This allows files on disk to be served and updated by Fedora 4 as though they
were in the repository. Filesystem federation circumvents the need to transfer files using HTTP – and with larger file sizes (or a large number of files), this
feature can improve performance significantly. If you are ingesting a large number of multi-gigabyte files, we recommend you consider filesystem
federation.

Another use for filesystem federation is interoperability with another system. If you have files on disk managed by another application or workflow, you can
use filesystem federation to serve them with Fedora 4 without having to ingest them using the REST API or create another copy of the files.

Configuration
Once you have run Fedora with a federated filesystem configuration, do not change the configuration name (" in the example federated-directory"
below), or federation will not be loaded correctly.

An example filesystem federation configuration to include in your Modeshape repository.json :

"externalSources" : {
 "federated-directory" : {
 "classname" : "org.fcrepo.connector.file.FedoraFileSystemConnector",
 "directoryPath" : "/path/to/files",
 "propertiesDirectoryPath" : "/path/to/external/properties",
 "projections" : ["default:/federated => /"],
 "contentBasedSha1" : "false",
 "readonly" : true,
 "extraPropertiesStorage" : "none",
 "cacheTtlSeconds" : 5
 }
},

directoryPath - base directory for all files shared with the repository

https://docs.jboss.org/author/display/MODE/Federation
https://wiki.lyrasis.org/display/FEDORA45/Large+Numbers+of+Containers
https://wiki.lyrasis.org/display/FEDORA45/Configuration+Options+Inventory#ConfigurationOptionsInventory-repository.json-Themodeshapeconfigurationspecification

propertiesDirectoryPath - (optional) a path, that causes computed properties to be stored in an external file structure
projections - lists one or more mappings from the repository to the filesystem. The format is "{workspace}:{repository path} => {path relative
to }". See the section "Multiple Directories" below for how to handle multiple mappings.directoryPath
contentBasedSha1 - controls how internal identifiers are computed for files. By default (= true), Modeshape computes contentBaseSha1
the SHA-1 checksum of a file's content every time the file is accessed. For small files this creates a modest overhead. For large files, however,
this dramatically reduces performance, since generating the checksum can take several seconds per gigabyte of data. For this reason, we
recommend setting to false when serving files larger than 100MBcontentBasedSha1

 controls whether the contents of the filesbase directory for all files shared with the repository are read-only (currently read-only is readonly -
the only supported mode)

 - sets the format for storing "extra" properties (properties that can't be set using filesystem extraPropertiesStorage
attributes). Recommended values are "json" for the current JSON properties format, or "none" for disabling extra properties. This property is
ignored if propertiesDirectoryPath is set, since an external properties store will be used. (A warning or notice will appear in the logs indicating that
the asserted preference here is overridden.)

 - the maximum time that cached entrcacheTtlSeconds ies are held before being refreshed. Setting to a low value will make changes to the
filesystem (like adding new files) show up more quickly in the REST API. Setting to a higher value will improve performance for files that don't
change often.

Modeshape's provide additional information about configuring the filesystem connector.FileSystemConnector documentation and configuration

Repository Configuration

The most direct way of customizing the repository configuration ('repository.json') file is to specify the location of an external configuration to the servlet
container at startup. See the ("Configuration Elements -> fcrepo.modeshape.configuration") for details.configuration documentation

Multiple Directories

If you want to map multiple directories, the first entry in the projections array should map the parent directory (i.e, the directory in). SubsedirectoryPath
quent entries can map subdirectories to other repository paths. For example, if you have a directory that contains two directories (/pub/ /pub

 and) which you want to map the and directories to the top level of the repository:/project1/ /pub/project2/ project1 project2

"externalSources" : {
 "federated-1" : {
 "classname" : "org.fcrepo.connector.file.FedoraFileSystemConnector",
 "directoryPath" : "/pub",
 "projections" : ["default:/pub => /", "default:/project1 => /project1", "default:/project2 =>
/project2"],
 "contentBasedSha1" : "false",
 "readonly" : true,
 "extraPropertiesStorage" : "none",
 "cacheTtlSeconds" : 5
 }
},

This configuration would provide the following mappings:

Repository URL Filesystem Path

http://localhost:8080/rest/pub/ /pub/

http://localhost:8080/rest/project1/ /pub/project1/

http://localhost:8080/rest/project2/ /pub/project2/

External Datastreams

One use case for filesystem federation is to store objects and metadata in the repository, but link to large files on disk instead of ingesting them as
datastream content. To do this, create an binary, with a a URL that resolves to the federated filesystem: external content

Content-Type: message/external-body; access-type=URL; URL="http://localhost:8080/rest/federated/file"

For more information, see and of the RESTful HTTP API - Containers PUT method documentation.External Content Example 4

Separate Properties Store

For a connector, even a read-only connector, some properties are computed and stored. These include a modification date and a checksum (if enabled)
which is only recomputed when the file is altered. If it is not desirable or possible to store these properties on the same file system path that is being
projected over, you may specify an alternate location (propertiesDirectoryPath) in which those properties will be cached. This is especially important when
using checksums in directories of large files.

https://docs.jboss.org/author/display/MODE/File+system+connector
https://wiki.lyrasis.org/display/FEDORA45/Application+Configuration
https://wiki.lyrasis.org/display/FEDORA45/External+Content
https://wiki.lyrasis.org/display/FEDORA45/External+Content
https://wiki.lyrasis.org/display/FEDORA45/RESTful+HTTP+API+-+Containers#RESTfulHTTPAPIContainers-external-content

How-Tos

External Content
How to federate over a filesystem that is updated externally
How to audit fixity in a filesystem federation
How to incorporate static filesystem resources into your repository

Other Connectors

In addition to the filesystem connector, Modeshape includes , for federating content from Git, CMIS repositories, and relational several other connectors
databases.

Custom connectors can also be developed to support other system. The filesystem connector is a good reference implementation, particularly for file-
based resources.

Custom Connector References

Modeshape Connector reference
FileSystemConnector JavaDoc reference
Sample Connector Project

https://wiki.lyrasis.org/display/FEDORA45/External+Content
https://wiki.lyrasis.org/display/FEDORA45/How+to+federate+over+a+filesystem+that+is+updated+externally
https://wiki.lyrasis.org/display/FEDORA45/How+to+audit+fixity+in+a+filesystem+federation
https://wiki.lyrasis.org/display/FEDORA45/How+to+incorporate+static+filesystem+resources+into+your+repository
https://docs.jboss.org/author/display/MODE/Built-in+connectors
https://docs.jboss.org/author/display/MODE/Custom+connectors
http://docs.jboss.org/modeshape/3.4.0.Final/api/org/modeshape/connector/filesystem/FileSystemConnector.html
https://github.com/ModeShape/modeshape-examples/tree/master/modeshape-federation-example

	Filesystem Federation

