
Call Java methods from XSLT (Manakin)
Sometimes you may want to do a complicated operation in your theme. While it may be possible to create a XSLT template that achieves the desired
result, it may be too much code or it may be too slow - XSLT is best used as a templating language, not a programming language. Especially since
DSpace currently only supports XSLT 1.0, it lacks many useful functions which are part of XSLT 2.0 and may be too cumbersome to implement in form of
templates.

Luckily, the extensibility of XSLT allows us to call functions implemented in other programming languages. In DSpace XMLUI, you call call simple Java
functions directly from XSLT.

Example 1: URL as URL parameter
Let's say we want to use a URL shortening service. This hypothetical service (") requires us to pass the URL we want to be "http://example.com
shortened to the service as a parameter (" "): . But not all characters that can ?url= http://example.com?url=http://url-we-want-to-shorten
occur in url-we-want-to-shorten are allowed in a URL parameter value (e.g. the "?", "&" and "=" characters). Thus, we need to escape such characters,
which is commonly done by . Implementing the urlencode function in XSLT would be certainly possible, but quite lengthy. Instead, we can just url encoding
use a Java method from the class that already implements this.java.net.URLEncoder

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 ...
 xmlns:confman="org.dspace.core.ConfigurationManager"
 xmlns:urlenc="java.net.URLEncoder"
 exclude-result-prefixes="xsl ... urlenc">

...

<xsl:template match="dim:dim" name="url-in-url-parameter-example">
 <a href="{concat('http://example.com?url=', urlenc:encode(dim:field[@element='relation' and
@qualifier='uri'], 'UTF-8'))}">example link
</xsl:template>

Example 2: accessing DSpace configuration parameters
This way, we can use any class that your servlet container has in its classpath. That includes DSpace classes, so we can call any simple DSpace method
that returns simple result type and runs in a reasonable time.

In this use case, we'll explore rendering your theme based on configuration parameters in the DSpace configuration files. To access them, we'll use the Co
 class. We'll print the configuration parameter located in this file: nfigurationManager https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/config

/modules/discovery.cfg#L8

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 ...
 xmlns:confman="org.dspace.core.ConfigurationManager"
 exclude-result-prefixes="xsl ... confman">

...

<xsl:template name="configuration-value-example">
 <xsl:value-of select="confman:getProperty('discovery', 'search.server')"/>
</xsl:template>

https://en.wikipedia.org/wiki/Percent-encoding
http://docs.oracle.com/javase/7/docs/api/java/net/URLEncoder.html
http://demo.dspace.org/javadocs/5/apidocs/org/dspace/core/ConfigurationManager.html
http://demo.dspace.org/javadocs/5/apidocs/org/dspace/core/ConfigurationManager.html
https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/config/modules/discovery.cfg#L8
https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/config/modules/discovery.cfg#L8

	Call Java methods from XSLT (Manakin)

