
Configuration Reference
There are a numbers of ways in which DSpace may be configured and/or customized. This chapter of the documentation will discuss the configuration of
the software and will also reference customizations that may be performed in the chapter following.

For ease of use, the Configuration documentation is broken into several parts:

General Configuration - addresses general conventions used with configuring not only the dspace.cfg file, but other configuration files which use
similar conventions.
The build.properties Configuration Properties File - specifies the basic file settings (these basic settings are used when build.properties
building/installing/upgrading DSpace)
The dspace.cfg Configuration Properties File - specifies the basic file settings (these settings are used when DSpace is actually dspace.cfg
running)
Optional or Advanced Configuration Settings - contain other more advanced settings that are optional in the dspace.cfg configuration file.

As of version 1.8 much of the DSpace configuration has been moved to discrete configuration files related to specific functionality and is
documented in subsequent sections of this document.

The full table of contents follows:

1 General Configuration
1.1 Input Conventions
1.2 Update Reminder

2 The build.properties Configuration Properties File
3 The dspace.cfg Configuration Properties File

3.1 Main DSpace Configurations
3.2 DSpace Database Configuration
3.3 DSpace Email Settings

3.3.1 Wording of E-mail Messages
3.4 File Storage
3.5 SRB (Storage Resource Brokerage) File Storage
3.6 Logging Configuration
3.7 General Plugin Configuration
3.8 Configuring the Search Engine
3.9 Handle Server Configuration
3.10 Delegation Administration: Authorization System Configuration

3.10.1 Login as feature
3.11 Restricted Item Visibility Settings
3.12 Proxy Settings
3.13 Configuring Media Filters
3.14 Crosswalk and Packager Plugin Settings

3.14.1 Configurable MODS Dissemination Crosswalk
3.14.2 XSLT-based Crosswalks

3.14.2.1 Testing XSLT Crosswalks
3.14.3 Configurable Qualified Dublin Core (QDC) dissemination crosswalk
3.14.4 Configuring Crosswalk Plugins
3.14.5 Configuring Packager Plugins

3.15 Event System Configuration
3.16 Embargo
3.17 Checksum Checker Settings
3.18 Item Export and Download Settings
3.19 Subscription Emails
3.20 Hiding Metadata
3.21 Settings for the Submission Process
3.22 Configuring the Sherpa/RoMEO Publishers Policy Database Integration
3.23 Configuring Creative Commons License
3.24 WEB User Interface Configurations
3.25 Browse Index Configuration

3.25.1 Defining the storage of the Browse Data
3.25.2 Defining the Indexes
3.25.3 Defining Sort Options
3.25.4 Browse Index Normalization Rule Configuration
3.25.5 Other Browse Options
3.25.6 Browse Index Authority Control Configuration
3.25.7 Tag cloud

3.26 Author (Multiple metadata value) Display
3.27 Links to Other Browse Contexts
3.28 Recent Submissions
3.29 Submission License Substitution Variables
3.30 Syndication Feed (RSS) Settings
3.31 OpenSearch Support
3.32 Content Inline Disposition Threshold
3.33 Multi-file HTML Document/Site Settings
3.34 Sitemap Settings
3.35 Authority Control Settings
3.36 JSPUI Upload File Settings
3.37 JSP Web Interface (JSPUI) Settings

1.
2.

3.38 JSPUI Configuring Multilingual Support
3.38.1 Setting the Default Language for the Application
3.38.2 Supporting More Than One Language

3.38.2.1 Changes in dspace.cfg
3.38.2.2 Related Files

3.39 JSPUI Item Mapper
3.40 Display of Group Membership
3.41 JSPUI / XMLUI SFX Server
3.42 JSPUI Item Recommendation Setting
3.43 Controlled Vocabulary Settings
3.44 XMLUI Specific Configuration

4 Optional or Advanced Configuration Settings
4.1 The Metadata Format and Bitstream Format Registries

4.1.1 Metadata Format Registries
4.1.2 Bitstream Format Registry

4.2 XPDF Filter
4.2.1 Installation Overview
4.2.2 Install XPDF Tools
4.2.3 Fetch and install jai_imageio JAR
4.2.4 Edit DSpace Configuration
4.2.5 Build and Install

4.3 Configuring Usage Instrumentation Plugins
4.3.1 The Passive Plugin
4.3.2 The Tab File Logger Plugin

4.4 JSPUI: Per item visual indicators for browse and search results
4.5 Optimized 'Select Collection' Performance

General Configuration

In the following sections you will learn about the different configuration files that you will need to edit so that you may make your DSpace installation work.
Of the several configuration files which you will work with, it is the dspace.cfg file you need to learn to configure first and foremost.

In general, most of the configuration files, namely and will provide a good source of information not only with configuration dspace.cfg xmlui.xconf
but also with customization (cf. Customization chapters)

Input Conventions

We will use the dspace.cfg as our example for input conventions used throughout the system. It is a basic Java properties file, where lines are either
comments, starting with a '#', blank lines, or property/value pairs of the form:

property.name = property value

Some property defaults are "commented out". That is, they have a "#" preceding them, and the DSpace software ignores the config property. This may
cause the feature not to be enabled, or, cause a default property to be used when the software is compiled and updated.

The property value may contain references to other configuration properties, in the form }. This follows the ant convention of allowing ${property.name
references in property files. A property may not refer to itself. Examples:

property.name = word1 ${other.property.name} more words
property2.name = ${dspace.dir}/rest/of/path

Property values can include other, previously defined values, by enclosing the property name in ${...}. For example, if your dspace.cfg contains:

dspace.dir = /dspace
dspace.history = ${dspace.dir}/history

Then the value of dspace.history property is expanded to be /dspace/history. This method is especially useful for handling commonly used file paths.

Update Reminder

Things you should know about editing files.dspace.cfg
It is important to remember that there are * files in serveral places after an installation of DSpace.* The only two you should multiple dspace.cfg
notice are:

The "source" file that is found in [dspace-source]/dspace/config/dspace.cfg
The "runtime" file that is found in [dspace]/config/dspace.cfg
The runtime file is supposed to be the of the source file, which is considered the master version. However, the DSpace server and copy
command programs only look at the configuration file, so when you are revising your configuration values, it is tempting to runtime only edit the

. do this. Always make the same changes to the source version of in addition to the runtime file. The two files runtime file DO NOT dspace.cfg
should always be identical, since the source will be the basis of your next upgrade.dspace.cfg

1.
2.

a.

3.
a.
b.

i.
ii.
iii.

4.

To keep the two files in synchronization, you can edit your files in and then you would run the following [dspace-source]/dspace/config/
commands:

cd [dspace-source]/dspace/
mvn package
cd [dspace-source]/dspace/target/dspace-installer
ant update_configs

This will copy the source (along with other configuration files) into the runtime () directory.dspace.cfg [dspace]/config

Please note that there are in fact two options available, choose whichever you prefer :-

"ant update_configs" ==> Moves existing configs in to *.old files and replaces them with what is in [dspace]/config/ [dspace-source]
/dspace/config/

"ant -Doverwrite=false update_configs" ==> Leaves existing configs in intact. Just copies new configs from[dspace]/config/
 over to *.new files.[dspace-source]/dspace/config/

The Configuration Properties Filebuild.properties

As of DSpace 3.0, we now provide a as an easy means of configuration a subset of properties before you build [dspace-source]/build.properties
DSpace (by running "mvn package" or similar). Any properties set in this file will be automatically copied over to your final build.properties dspace.

 file as part of the Maven build process.cfg

Users/Developers may also choose to copy the under a different name for different environments (e.g. development, test & build.properties
production), and choose which environment to build DSpace for by passing a "-Denv" (environment) flag to the Maven build process (e.g. "mvn package -
Denv=test" would build DSpace using a custom "test.properties" file).

Here's a basic example of how build.properties (or any *.properties) file may be used to simplify installation & development:

A developer or user downloads a copy of DSpace to build & install
He/She can edit the to specify the very basic settings for building & installing DSpace[dspace-source]/build.properties

OR, alternatively he/she can copy/rename the "build.properties" to a different "*.properties" file & edit it. For example, you could
choose to create a separate properties file for each environment (dev.properties, test.properties, prod.properties)

He/She can then build the DSpace Installation Package using the *.properties file they choose
Running simply "mvn package" will always use the default "build.properties" settings.
Passing in the "-Denv" (environment) flag, will cause the build process to use a custom properties file. Some examples:

"mvn package -Denv=test" would build DSpace using a custom file named [dspace-source]/test.properties
"mvn package -Denv=local" would build DSpace using a custom file named [dspace-source]/local.properties
"mvn package -Denv=john" would build DSpace using a custom file named [dspace-source]/john.properties

No matter which build options are used, the values in the enabled properties file will be automatically copied over to your [dspace-source]
 file in the DSpace Installation Package. That way they can be installed using the dspace.cfg/dspace/target/dspace-[version]-build/

appropriate Apache Ant command (see for all the details of the full install.)Installing DSpace

build.properties file is only used with building/compiling DSpace

It is worth noting that the file (or custom properties file) is ONLY used in the act of building/installing/upgrading [dspace-source]/build.properties
DSpace. During that build/install/upgrade process, any setting currently available in the will be inherited (copied) to the build.properties dspace.cfg
file. However, if you need to add new settings to your file, you will need to modify your file in order for it to be inherited build.properties dspace.cfg
(see the note below titled "You may add new settings to your build.properties or custom *.properties").

Once DSpace is installed, the system only uses the settings in your file. So, the build.properties file will not be copied [dspace]/config/dspace.cfg
into your installation directory, and all runtime configurations are pulled from the final file.dspace.cfg
Do not remove or comment out settings in build.properties

When you edit the "build.properties" file (or a custom *.properties file), take care not to remove or comment out any settings. Doing so, may cause your
final "dspace.cfg" file to be misconfigured with regards to that particular setting. Instead, if you wish to remove/disable a particular setting, just clear out its
value. For example, if you don't want to be notified of new user registrations, ensure the "mail.registration.notify" setting has no value, e.g.

mail.registration.notify=

As another example, if you are running the DSpace UI of your choice (XMLUI or JSPUI) directly under tomcat's root, leave "dspace.ui" empty but do not
delete the setting, e.g.

dspace.ui=

https://wiki.lyrasis.org/display/DSDOC5x/Installing+DSpace

1.

a.

b.

2.

a.

b.

3.

You may add new settings to your build.properties or custom *.properties

Based on your institution's needs, you may wish to add settings to your own build.properties (or custom *.properties) file. This is actually a relatively easy
process.

Any existing DSpace configuration (any config in or in any configuration file under) dspace.cfg [dspace-src]/dspace/config/modules/*.cfg
can be "moved" into your local build.properties file via the following process:

First, copy the existing configuration from the *.cfg file into your local build.properties file. You can actually choose to rename this configuration in
build.properties, if it makes more sense. Essentially, the name of the new configuration in build.properties is entirely up to you.

For example, if you want to copy the LDAP " " from provider_url [dspace-src]/dspace/config/modules/authentication-
 to your build.properties, you may wish to rename it to " " within build.propertiesldap.cfg ldap.provider_url

You can also choose to keep the name of the configuration the same in build.properties. For example, if you wish to move the "xmlui.
" (from dspace.cfg) to your build.properties, you could keep the name the same.google.analytics.key

Second, you will need to modify the corresponding configuration file (the config file you copied the setting from) so that it now references your
newly added build.properties setting. This is achieved by using the "${setting-in-build.properties}" placeholder.

For example, to reference a new "ldap.provider_url" setting in build.properties (mentioned in 1.a above) , just modify the [dspace-src]
 file to have a line that says (/dspace/config/modules/authentication-ldap.cfg provider_url=${ldap.provider_url}

The first part is the name of the actual config in authentication-ldap.cfg, and the second part is the name of the config in build.properties)
Another example: To reference a new "xmlui.google.analytics.key" setting in build.properties (mentioned in 1.b above), just modify the [d

 file to have a line that says space-src]/dspace/config/dspace.cfg xmlui.google.analytics.key=${xmlui.google.
 (The first part is the name of the actual config in dspace.cfg, and the second part is the name of the config in build.analytics.key}

properties)
Finally, rebuild DSpace (using Maven), and redeploy (using Ant). The new settings in your build.properties file will automatically be copied into
your configuration file during the rebuild process.

The Configuration Properties Filedspace.cfg

The contains basic information about a DSpace installation, including system path information, network host information, and other like dspace.cfg
items. It is the primary configuration file for DSpace, used by DSpace when it is actively running.

In ordinary use, this file is assumed to be . If you define a system property [dspace]/config/dspace.cfg -Ddspace.configuration=/some/path
 then that file will be used instead./to/a/file

Main DSpace Configurations

Prope
rty:

dspace.dir

Exam
ple
Value:

/dspace

Infor
matio
nal
Note:

Root directory of DSpace installation. Omit the trailing slash ' '. Note that if you change this, there are several other parameters you will /
probably want to change to match, e.g. .assetstore.dir

(For example: "C:/dspace" is a valid path for Windows.)On Windows be sure to use forward slashes for the directory path!

Prope
rty:

dspace.hostname

Exam
ple
Value:

dspace.hostname = dspace.mysu.edu

Infor
matio
nal
Note:

Fully qualified hostname; do not include port number.

Prope
rty:

dspace.baseUrl

Exam
ple
Value:

http://dspacetest.myu.edu:8080

Infor
matio
nal
Note:

Main URL at which DSpace Web UI webapp is deployed. Include any port number, but do not include the trailing ' './

Prope
rty:

dspace.url

http://dspacetest.myu.edu:8080

Exam
ple
Value:

dspace.url = /xmluihttp://dspacetest.myu.edu:8080

Infor
matio
nal
note

URL that determines whether JSPUI or XMLUI will be loaded by default. Include port number etc., but NOT trailing slash. Alternatively to the
example, this url can have /jspui at the end if you are using jspui instead of xmlui. You can also opt to run your UI app as your servlet engine's
"ROOT" webapp. In that case, ensure that you remove /xmlui or /jspui.

Prope
rty:

dspace.oai.url

Exam
ple
Value:

dspace.oai.url = ${dspace.baseUrl}/oai

Infor
matio
nal
note:

The base URL of the OAI webapp (do not include /request).

Prope
rty:

dspace.name

Exam
ple
Value:

dspace.name = DSpace at My University

Infor
matio
nal
Note:

Short and sweet site name, used throughout Web UI, e-mails and elsewhere (such as OAI protocol)

DSpace Database Configuration

Many of the database configurations are software-dependent. That is, it will be based on the choice of database software being used. Currently, DSpace
properly supports PostgreSQL and Oracle.

Property: db.url

Example
Value:

db.url = jdbc:postgresql://localhost:5432/dspace_-services

Informatio
nal Note:

The above value is the default value when configuring with PostgreSQL. When using Oracle, use this value: jbdc.oracle.thin:@
//host:port/dspace

Property: db.username

Example
Value:

db.username = dspace

Informatio
nal Note:

In the installation directions, the administrator is instructed to create the user "dspace" who will own the database "dspace".

Property: db.password

Example
Value:

db.password = dspace5

Informatio
nal Note:

This is the password that was prompted during the installation process (cf. 3.2.3. Installation)

Property: db.schema

Example
Value:

db.schema = vra

Informatio
nal Note:

If your database contains multiple schemas, you can avoid problems with retrieving the definitions of duplicate objects by specifying the
schema name here that is used for DSpace by uncommenting the entry. This property is optional.

Property: db.maxconnections

Example
Value:

db.maxconnections = 30

Informatio
nal Note:

Maximum number of Database connections in the connection pool

http://dspacetest.myu.edu:8080/

Property: db.maxwait

Example
Value:

db.maxwait = 5000

Informatio
nal Note:

Maximum time to wait before giving up if all connections in pool are busy (in milliseconds).

Property: db.maxidle

Example
Value:

db.maxidle = -1

Informatio
nal Note:

Maximum number of idle connections in pool. (= unlimited)-1

Property: db.statementpool

Example
Value:

db.statementpool = true

Informatio
nal Note:

Determines if prepared statement should be cached. (Default is set to true)

Property: db.poolname

Example
Value:

db.poolname = dspacepool

Informatio
nal Note:

Specify a name for the connection pool. This is useful if you have multiple applications sharing Tomcat's database connection pool. If
nothing is specified, it will default to 'dspacepool'

Property: db.jndi

Example
Value:

db.jndi = jdbc/dspace

Informatio
nal Note:

Specify the name of a configured connection pool to be fetched from a directory using JNDI. If this property is not configured or no such
pool can be retrieved, then DSpace will fall back to creating its own pool using the other properties.db.*

DSpace Email Settings

The configuration of email is simple and provides a mechanism to alert the person(s) responsible for different features of the DSpace software.

DSpace will look up a javax.mail.Session object in JNDI and, if found, will use that to send email. Otherwise it will create a Session using some of the
properties detailed below.

Prope
rty:

mail.server

Exam
ple
Value:

mail.server = smtp.my.edu

Infor
matio
nal
Note:

The address on which your outgoing SMTP email server can be reached.

Prope
rty:

mail.server.username

Exam
ple
Value:

mail.server.username = myusername

Infor
matio
nal
Note:

SMTP mail server authentication username, if required. This property is optional.

Prope
rty:

mail.server.password

Exam
ple
Value:

mail.server.password = mypassword

Infor
matio
nal
Note:

SMTP mail server authentication password, if required. This property is optional/

Prope
rty:

mail.server.port

Exam
ple
Value:

mail.server.port = 25

Infor
matio
nal
Note:

The port on which your SMTP mail server can be reached. By default, port 25 is used. Change this setting if your SMTP mailserver is running
on another port. This property is optional.

Prope
rty:

mail.from.address

Exam
ple
Value:

mail.from.address = dspace-noreply@myu.edu

Infor
matio
nal
Note:

The "From" address for email. Change the 'myu.edu' to the site's host name.

Prope
rty:

feedback.recipient

Exam
ple
Value:

feedback.recipient = dspace-help@myu.edu

Infor
matio
nal
Note:

When a user clicks on the feedback link/feature, the information will be sent to the email address of choice. This configuration is currently
limited to only one recipient. Since DSpace 4.0, this is also the email address displayed on the contacts page.

Prope
rty:

mail.admin

Exam
ple
Value:

mail.admin = dspace-help@myu.edu

Infor
matio
nal
Note:

Email address of the general site administrator (Webmaster)

Prope
rty:

alert.recipient

Exam
ple
Value:

alert.recipient = john.doe@myu.edu

Infor
matio
nal
Note:

Enter the recipient for server errors and alerts. This property is optional.

Prope
rty:

registration.notify

Exam
ple
Value:

registration.notify = mike.smith@myu.edu

Infor
matio
nal
Note:

Enter the recipient that will be notified when a new user registers on DSpace. This property is optional.

Prope
rty:

mail.charset

Exam
ple
Value:

mail.charset = UTF-8

Infor
matio
nal
Note:

Set the default mail character set. This may be over-ridden by providing a line inside the email template ' ', otherwise this charset: <encoding>
default is used.

Prope
rty:

mail.allowed.referrers

Exam
ple
Value:

mail.allowed.referrers = localhost

Infor
matio
nal
Note:

A comma separated list of hostnames that are allowed to refer browsers to email forms. Default behavior is to accept referrals only from dspace.
. This property is optional.hostname

Prope
rty:

mail.extraproperties

Exam
ple
Value:

mail.extraproperties = mail.smtp.socketFactory.port=465, \
 mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory, \
 mail.smtp.socketFactory.fallback=false

Infor
matio
nal
Note:

If you need to pass extra settings to the Java mail library. Comma separated, equals sign between the key and the value. This property is
optional.

Prope
rty:

mail.server.disabled

Exam
ple
Value:

mail.server.disabled = false

Infor
matio
nal
Note:

An option is added to disable the mailserver. By default, this property is set to ' '. By setting value to ' ', DSpace will not send out false true
emails. It will instead log the subject of the email which should have been sent. This is especially useful for development and test environments
where production data is used when testing functionality. This property is optional.

Prope
rty:

mail.session.name

Exam
ple
Value:

mail.session.name = myDSpace

Infor
matio
nal
Note:

Specifies the name of a javax.mail.Session object stored in JNDI under . The default value is "Session".java:comp/env/mail

Prope
rty:

default.language

Exam
ple
Value:

default.language = en_US

Infor
matio
nal
Note:

If no other language is explicitly stated in the , the default language will be attributed to the metadata values.input-forms.xml

Wording of E-mail Messages

Sometimes DSpace automatically sends e-mail messages to users, for example, to inform them of a new work flow task, or as a subscription e-mail alert.
The wording of emails can be changed by editing the relevant file in . Each file is commented. Be careful to keep the right [dspace]/config/emails
number 'placeholders' (e.g.).{2}

Note: You should replace the contact-information " " with your own contact details in:dspace-help@myu.edu or call us at xxx-555-xxxx
 config/emails/change_password

config/emails/register

File Storage

DSpace supports two distinct options for storing your repository bitstreams (uploaded files). The files are not stored in the database in which Metadata,
user information, ... are stored. An assetstore is a directory on your server, on which the bitstreams are stored and consulted afterwards. The usage of
different assetstore directories is the default "technique" in DSpace. The parameters below define which assetstores are present, and which one should be
used for newly incoming items. As an alternative, DSpace can also use SRB (Storage Resource Brokerage) as an alternative. See for SRB File Storage
details regarding SRB.

Proper
ty:

assetstore.dir

Exam
ple
Value:

assetstore.dir = ${dspace.dir}/assetstore

Inform
ational
Note:

This is Asset (bitstream) store number 0 (Zero). You need not place your assetstore under the directory, but may want to place it on a /dspace
different logical volume on the server that DSpace resides. So, you might have something like this: assetstore.dir = /storevgm

 ./assestore

Proper
ty: assetstore.dir.1

assetstore.dir.2

Exam
ple
Value:

assetstore.dir.1 = /second/assetstore
assetstore.dir.2 = /third/assetstore

Inform
ational
Note:

This property specifies extra asset stores like the one above, counting from one (1) upwards. This property is commented out (#) until it is
needed.

Proper
ty:

assetstore.incoming

Exam
ple
Value:

assetstore.incoming = 1

Inform
ational
Note:

Specify the number of the store to use for new bitstreams with this property. The default is 0 [zero] which corresponds to the 'assestore.dir'
above. As the asset store number is stored in the item metadata (in the database), always keep the assetstore numbering consistent and don't
change the asset store number in the item metadata.

Be Careful

In the examples above, you can see that your storage does not have to be under the directory. For the default installation it needs to reside on /dspace
the same server (unless you plan to configure SRB (see below)). So, if you added storage space to your server, and it has a different logical volume/name
/directory, you could have the following as an example:

assetstore.dir = /storevgm/assetstore
 assetstore.dir.1 = /storevgm2/assetstore

assetstore.incoming = 1

Please Note: When adding additional storage configuration, you will then need to uncomment and declare assestore.incoming = 1

SRB (Storage Resource Brokerage) File Storage

An alternate to using the default storage framework is to use Storage Resource Brokerage (SRB). This can provide a different level of storage and disaster
recovery. (Storage can take place on storage that is off-site.) Refer to for complete details regarding SRB.http://www.sdsc.edu/srb/index.php/Main_Page

The same framework is used to configure SRB storage. That is, the asset store number (0..n) can reference a file system directory as above or it can
reference a set of SRB account parameters. But any particular asset store number can reference one or the other but not both. This way traditional and
SRB storage can both be used but with different asset store numbers. The same cautions mentioned above apply to SRB asset stores as well. The
particular asset store a bitstream is stored in is held in the database, so don't move bitstreams between asset stores, and do not renumber them.

Prop
erty:

srb.hosts.1

http://www.sdsc.edu/srb/index.php/Main_Page

Exa
mple
valu
e:

srb.hosts.1 = mysrbmcathost.myu.edu

Prop
erty:

srb.port.1

Exa
mple
valu
e:

srb.port.1 = 5544

Prop
erty:

srb.mcatzone.1

Exa
mple
valu
e:

srb.mcatzone.1 = mysrbzone

Infor
mati
onal
Note:

Your SRB Metadata Catalog Zone. An SRB Zone (or zone for short) is a set of SRB servers 'brokered' or administered through a single MCAT.
Hence a zone consists of one or more SRB servers along with one MCAT-enabled server. Any existing SRB system (version 2.x.x and below)
can be viewed as an SRB zone. For more information on zones, please check .http://www.sdsc.edu/srb/index.php/Zones

Prop
erty:

srb.mdasdomainname.1

Exa
mple
Valu
e:

srb.mdasdomainname.1 = mysrbdomain

Infor
mati
onal
Note:

Your SRB domain. This domain should be created under the same zone, specified in srb.mcatzone. Information on domains is included here http
.://www.sdsc.edu/srb/index.php/Zones

Prop
erty:

srb.defaultstorageresource.1

Exa
mple
Valu
e:

srb.defaultstorageresource.1 = mydefaultsrbresource

Infor
mati
onal
Note:

Your default SRB Storage resource.

Prop
erty:

srb.username.1

Exa
mple
Valu
e:

srb.username.1 = mysrbuser

Infor
mati
onal
Note:

Your SRB Username.

Prop
erty:

srb.password.1

Exa
mple
Valu
e:

srb.password.1 = mysrbpassword

Infor
mati
onal
Note:

Your SRB Password.

http://www.sdsc.edu/srb/index.php/Zones
http://www.sdsc.edu/srb/index.php/Zones
http://www.sdsc.edu/srb/index.php/Zones

Prop
erty:

srb.homedirectory.1

Exa
mple
Valu
e:

srb.homedirectory.1 =
 /mysrbzone/home/ mysrbuser.mysrbdomain

Infor
mati
onal
Note:

Your SRB Homedirectory

Prop
erty:

srb.parentdir.1

Exa
mple
Valu
e:

srb.parentdir.1 = mysrbdspaceassetstore

Infor
mati
onal
Note:

Several of the terms, such as mcatzone, have meaning only in the SRB context and will be familiar to SRB users. The last, , srb.paratdir.n
can be used for additional (SRB) upper directory structure within an SRB account. This property value could be blank as well.

The 'assetstore.incoming' property is an integer that references where bitstreams will be stored. The default (say the starting reference) is zero. The new
value will be used to identify the storage where all new bitstreams will be stored until this number is changed. This number is stored in the Bitstream table
(store_number column) in the DSpace database, so older bitstreams that may have been stored when ' ' had a different value can be found.asset.incoming

In the simple case in which DSpace uses local (or mounted) storage the number can refer to different directories (or partitions). This gives DSpace some
level of scalability. The number links to another set of properties 'assetstore.dir', 'assetstore.dir.1' (remember zero is default), assetstore.dir.2', etc., where
the values are directories.

To support the use of SRB DSpace uses the same scheme but broaden to support:

using SRB instead of the local file system
using the local file system (native DSpace)
using a mix of SRB and local file system
in this broadened use of the 'asset.incoming' integer will refer to one of the following storage locations:

a local file system directory (native DSpace)
a set of SRB account parameters (host, port, zone, domain, username, password, home directory, and resource
Should there be any conflict, like '2' referring to a local directory and to a set of SRB parameters, the program will select the local directory.

If SRB is chosen from the first install of DSpace, it is suggested that 'assetstore.dir' (no integer appended) be retained to reference a local directory (as
above under File Storage) because build.xml uses this value to do a . In this case, 'assetstore.incoming' can be set to 1 (i.e. uncomment the line in mkdir
File Storage above) and the 'assetstore.dir' will not be used.

Logging Configuration

Prop
erty:

log.init.config

Exa
mple
Valu
e:

log.init.config = ${dspace.dir}/config/log4j.properties

Infor
matio
nal
Note:

This is where your logging configuration file is located. You may override the default log4j configuration by providing your own. Existing
alternatives are:

log.init.config = ${dspace.dir}/config/log4j.properties
log.init.config = ${dspace.dir}/config/log4j-console.properties

Prop
erty:

log.dir

Exa
mple
value:

log.dir = ${dspace.dir}/log

Infor
matio
nal
Note:

This is where to put the logs. (This is used for initial configuration only)

Prop
erty:

useProxies

Exa
mple
Valu
e:

useProxies = true

Infor
matio
nal
Note:

If your DSpace instance is protected by a proxy server, in order for log4j to log the correct IP address of the user rather than of the proxy, it
must be configured to look for the X-Forwarded-For header. This feature can be enabled by ensuring this setting is set to This also affects true.
IPAuthentication, and should be enabled for that to work properly if your installation uses a proxy server.

Previous releases of DSpace provided an example as an alternative to . This caused some confusion and ${dspace.dir}/config/log4j.xml log4j.properties
has been removed. log4j continues to support both Properties and XML forms of configuration, and you may continue (or begin) to use any form that log4j
supports.

General Plugin Configuration

Property: plugin.classpath

Example
Value:

/opt/dspace/plugins/aPlugin.jar:/opt/dspace/moreplugins

Information
al Note:

Search path for third-party plugin classes. This is a colon-separated list of directories and JAR files, each of which will be searched for
plugin classes after looking in all the places where DSpace classes are found. In this way you can designate one or more locations for
plugin files which will not be affected by DSpace upgrades.

Configuring the Search Engine
Since DSpace 4.0 the advanced search module named Discovery (based on Apache SOLR) is the default search provider. It provides up-to-date features,
such as filtering/faceting, hit highlighting, search snippets, etc.

A detailed documentation is available for customization, see Discovery

Please refer to if you want re-enable and customize the "legacy" DSpace search engine (based on Apache Legacy methods for re-indexing content
Lucene).

Handle Server Configuration
The CNRI Handle system is a 3rd party service for maintaining persistent URL's. For a nominal fee, you can register a handle prefix for your repository. As
a result, your repository items will be also available under the links <<handle prefix>>/<<item id>>. As the base url of your repository http://handle.net/
might change or evolve, the persistent handle.net URL's secure the consistency of links to your repository items. For complete information regarding the
Handle server, the user should consult section of Installing DSpace.The Handle Server

Pr
op
ert
y:

handle.canonical.prefix

Ex
a
m
ple
Va
lue

handle.canonical.prefix = http://hdl.handle.net/
handle.canonical.prefix = ${dspace.url}/handle/

Inf
or
m
ati
on
al
No
te:

Canonical Handle URL prefix. By default, DSpace is configured to use as the canonical URL prefix when generating http://hdl.handle.net/ dc.
 during submission, and in the 'identifier' displayed in item record pages. If you do not subscribe to CNRI's handle service, you identifier.uri

can change this to match the persistent URL service you use, or you can force DSpace to use your site's URL, e.g. handle.canonical.
. Note that this will not alter metadata for existing items (only for subsequent prefix = ${dspace.url}/handle/ dc.identifer.uri

submissions).

https://wiki.lyrasis.org/display/DSDOC5x/Discovery
https://wiki.lyrasis.org/display/DSDOC5x/Legacy+methods+for+re-indexing+content
http://handle.net/
https://wiki.lyrasis.org/display/DSDOC5x/Installing+DSpace
http://hdl.handle.net/
http://hdl.handle.net/

Pr
op
ert
y:

handle.prefix

Ex
a
m
ple
Va
lue

handle.prefix = 1234.56789

Inf
or
m
ati
on
al
No
te:

The default installed by DSpace is but you will replace this upon receiving a handle from CNRI.123456789

Pr
op
ert
y:

handle.dir

Ex
a
m
ple
Va
lue:

handle.dir = ${dspace.dir}/handle-server

Inf
or
m
ati
on
al
No
te:

The default files, as shown in the Example Value is where DSpace will install the files used for the Handle Server.

Delegation Administration: Authorization System Configuration

It is possible to delegate the administration of Communities and Collections. This functionality eliminates the need for an Administrator Superuser account
for these purposes. An EPerson that will be attributed Delegate Admin rights for a certain community or collection will also "inherit" the rights for underlying
collections and items. As a result, a community admin will also be collection admin for all underlying collections. Likewise, a collection admin will also gain
admin rights for all the items owned by the collection.

Authorization to execute the functions that are allowed to user with WRITE permission on an object will be attributed to be the ADMIN of the object (e.g.
community/collection/admin will be always allowed to edit metadata of the object). The default will be " " for all the configurations.true

Community Administration: Subcommunities and Collections

Property: core.authorization.community-admin.create-subelement

Example Value: core.authorization.community-admin.create-subelement =
true

Informational Note: Authorization for a delegated community administrator to create
subcommunities or collections.

Property: core.authorization.community-admin.delete-subelement

Example Value: core.authorization.community-admin.delete-subelement =
true

Informational Note: Authorization for a delegated community administrator to delete
subcommunities or collections.

Community Administration: Policies and The group of administrators

Property: core.authorization.community-admin.policies

Example Value: core.authorization.community-admin.policies = true

Informational Note: Authorization for a delegated community administrator to administrate the
community policies.

Property: core.authorization.community-admin.admin-group

Example Value: core.authorization.community-admin.admin-group = true

Informational Note: Authorization for a delegated community administrator to edit the group of
community admins.

Community Administration: Collections in the above Community

Property: core.authorization.community-admin.collection.policies

Example Value: core.authorization.community-admin.collection.policies =
true

Informational Note: Authorization for a delegated community administrator to administrate the
policies for underlying collections.

Property: core.authorization.community-admin.collection.template-
item

Example Value: core.authorization.community-admin.collection.template-
item = true

Informational Note: Authorization for a delegated community administrator to administrate the
item template for underlying collections.

Property: core.authorization.community-admin.collection.submitters

Example Value: core.authorization.community-admin.collection.submitters
= true

Informational Note: Authorization for a delegated community administrator to administrate the
group of submitters for underlying collections.

Property: core.authorization.community-admin.collection.workflows

Example Value: core.authorization.community-admin.collection.workflows
= true

Informational Note: Authorization for a delegated community administrator to administrate the
workflows for underlying collections.

Property: core.authorization.community-admin.collection.admin-group

Example Value: core.authorization.community-admin.collection.admin-
group = true

Informational Note: Authorization for a delegated community administrator to administrate the
group of administrators for underlying collections.

Community Administration: Items Owned by Collections in the Above
Community

Property: core.authorization.community-admin.item.delete

Example Value: core.authorization.community-admin.item.delete = true

Informational Note: Authorization for a delegated community administrator to delete items in
underlying collections.

Property: core.authorization.community-admin.item.withdraw

Example Value: core.authorization.community-admin.item.withdraw = true

Informational Note: Authorization for a delegated community administrator to withdraw items in
underlying collections.

Property: core.authorization.community-admin.item.reinstate

Example Value: core.authorization.community-admin.item.reinstate = true

Informational Note: Authorization for a delegated community administrator to reinstate items in
underlying collections.

Property: core.authorization.community-admin.item.policies

Example Value: core.authorization.community-admin.item.policies = true

Informational Note: Authorization for a delegated community administrator to administrate item
policies in underlying collections.

Community Administration: Bundles of Bitstreams, related to items
owned by collections in the above Community

Property: core.authorization.community-admin.item.create-bitstream

Example Value: core.authorization.community-admin.item.create-bitstream
= true

Informational Note: Authorization for a delegated community administrator to create additional
bitstreams in items in underlying collections.

Property: core.authorization.community-admin.item.delete-bitstream

Example Value: core.authorization.community-admin.item.delete-bitstream
= true

Informational Note: Authorization for a delegated community administrator to delete bitstreams
from items in underlying collections.

Property: core.authorization.community-admin.item.cc-license

Example Value: core.authorization.community-admin.item.cc-license = true

Informational Note: Authorization for a delegated community administrator to administer licenses
from items in underlying collections.

Community Administration:
The properties for collection administrators work similar to those
of community administrators,
with respect to collection administration.

core.authorization.collection-admin.policies
core.authorization.collection-admin.template-item
core.authorization.collection-admin.submitters
core.authorization.collection-admin.workflows
core.authorization.collection-admin.admin-group

Collection Administration:
Item owned by the above CollectionThe properties for collection
administrators work similar to those of
community administrators,
with respect to administration of
items in underlying collections.

core.authorization.collection-admin.item.delete
core.authorization.collection-admin.item.withdraw
core.authorization.collection-admin.item.reinstatiate
core.authorization.collection-admin.item.policies

Collection Administration:
Bundles of bitstreams, related to items owned by collections in the
above Community. The properties for collection administrators
work similar to those of community administrators, with respect to
administration of bitstreams related to items in underlying collections.

core.authorization.collection-admin.item.create-
bitstream
core.authorization.collection-admin.item.delete-
bitstream
core.authorization.collection-admin.item-admin.cc-
license

Item Administration.
The properties for item administrators work similar to those
of community and collection administrators, with respect to
administration of
items in underlying collections.

core.authorization.item-admin.policies

Item Administration:
Bundles of bitstreams, related to items owned by collections in the
above Community. The properties for item administrators work
similar to those of community and collection administrators,
with respect to administration of bitstreams
related to items in underlying collections.

core.authorization.item-admin.create-bitstream
core.authorization.item-admin.delete-bitstream
core.authorization.item-admin.cc-license

Login as feature

Proper
ty:

webui.user.assumelogin

Examp
le
Value:

webui.user.assumelogin = true

Inform
ational
Note:

Determine if super administrators (those whom are in the Administrators group) can login as another user from the "edit eperson" page. This is
useful for debugging problems in a running dspace instance, especially in the workflow process. The default value is false, i.e., no one may
assume the login of another user.

Please note that this configuration parameter has changed name in DSpace 4.0 from xmlui.user.assumelogin to webui.user.
assumelogin as it is now supported also in the JSP UI

Restricted Item Visibility Settings

By default RSS feeds and subscription emails will include ALL items regardless of permissions set on them. If you wish to only expose items through these
channels where the ANONYMOUS user is granted READ permission, then set the following options to false.

Property: harvest.includerestricted.rss

Example Value: harvest.includerestricted.rss = true

Informational
Note:

When set to 'true' (default), items that haven't got the READ permission for the ANONYMOUS user, will be included in RSS feeds
anyway.

Property: harvest.includerestricted.subscription

Example Value: harvest.includerestricted.subscription = true

Informational
Note:

When set to true (default), items that haven't got the READ permission for the ANONYMOUS user, will be included in Subscription
emails anyway.

Proxy Settings

These settings for proxy are commented out by default. Uncomment and specify both properties if proxy server is required for external http requests. Use
regular host name without port number.

Property: http.proxy.host

Example Value http.proxy.host = proxy.myu.edu

Informational Note Enter the host name without the port number.

Property: http.proxy.port

Example Value http.proxy.port = 2048

Informational Note Enter the port number for the proxy server.

Configuring Media Filters

Media or Format Filters are classes used to generate derivative or alternative versions of content or bitstreams within DSpace. For example, the PDF
Media Filter will extract textual content from PDF bitstreams, the JPEG Media Filter can create thumbnails from image bitstreams.

Media Filters are configured as Named Plugins, with each filter also having a separate configuration setting (in) indicating which formats it can dspace.cfg
process. The default configuration is shown below.

Property: filter.plugins

Example
Value: filter.plugins = PDF Text Extractor, Html Text Extractor, \

 Word Text Extractor, JPEG Thumbnail

Informatio
nal Note:

Place the names of the enabled MediaFilter or FormatFilter plugins. To enable Branded Preview, comment out the previous one line and
then uncomment the two lines in found in :dspace.cfg

Word Text Extractor, JPEG Thumbnail,\
 Branded Preview JPEG

Property: plugin.named.org.dspace.app.mediafilter.FormatFilter

Example
Value: plugin.named.org.dspace.app.mediafilter.FormatFilter = \

 org.dspace.app.mediafilter.PDFFilter = PDF Text Extractor, \
 org.dspace.app.mediafilter.HTMLFilter = HTML Text Extractor, \
 org.dspace.app.mediafilter.WordFilter = Word Text Extractor, \
 org.dspace.app.mediafilter.JPEGFilter = JPEG Thumbnail, \
 org.dspace.app.mediafilter.BrandedPreviewJPEGFilter = Branded Preview JPEG

Informatio
nal Note:

Assign "human-understandable" names to each filter

Property:
filter.org.dspace.app.mediafilter.PDFFilter.inputFormats
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats
filter.org.dspace.app.mediafilter.WordFilter.inputFormats
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats

Example
Value: filter.org.dspace.app.mediafilter.PDFFilter.inputFormats = Adobe PDF

filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats = HTML, Text
filter.org.dspace.app.mediafilter.WordFilter.inputFormats = Microsoft Word
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats = BMP, GIF, JPEG, \
 image/png
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats = BMP, \
 GIF, JPEG, image/png

Informatio
nal Note:

Configure each filter's input format(s)

Property: pdffilter.largepdfs

Example
Value:

pdffilter.largepdfs = true

Informatio
nal Note:

It this value is set for "true", all PDF extractions are written to temp files as they are indexed. This is slower, but helps to ensure that
PDFBox software DSpace uses does not eat up all your memory.

Property: pdffilter.skiponmemoryexception

Example
Value:

pdffilter.skiponmemoryexception = true

Informatio
nal Note:

If this value is set for "true", PDFs which still result in an "Out of Memory" error from PDFBox are skipped over. These problematic PDFs
will never be indexed until memory usage can be decreased in the PDFBox software.

Names are assigned to each filter using the field (e.g. by default the PDFilter is plugin.named.org.dspace.app.mediafilter.FormatFilter
named "PDF Text Extractor".

Finally, the appropriate defines the valid input formats which each filter can be applied. These format names filter.<class path>.inputFormats m
 the field of the Bitstream Format Registry.ust match short description

You can also implement more dynamic or configurable Media/Format Filters which extend .SelfNamedPlugin

More Information on MediaFilters

For more information on Media/Format Filters, see the section on .Mediafilters for Transforming DSpace Content

Crosswalk and Packager Plugin Settings

The subsections below give configuration details based on the types of crosswalks and packager plugins you need to implement.

More Information on Packagers & Crosswalks

For more information on using Packagers and Crosswalks, see the section on .Importing and Exporting Content via Packages

Configurable MODS Dissemination Crosswalk

https://wiki.lyrasis.org/display/DSDOC5x/Mediafilters+for+Transforming+DSpace+Content
https://wiki.lyrasis.org/display/DSDOC5x/Importing+and+Exporting+Content+via+Packages

The MODS crosswalk is a self-named plugin. To configure an instance of the MODS crosswalk, add a property to the DSpace configuration starting with "c
"; the final word of the property name becomes the plugin's name. For example, a property name rosswalk.mods.properties. crosswalk.mods.

 defines a crosswalk plugin named " ".properties.MODS MODS

The value of this property is a path to a separate properties file containing the configuration for this crosswalk. The pathname is relative to the DSpace
configuration directory, i.e. the subdirectory of the DSpace install directory. Example from the file:config dspace.cfg

Properties: crosswalk.mods.properties.MODS
crosswalk.mods.properties.mods

Example
Values:

crosswalk.mods.properties.MODS = crosswalks/mods.properties
crosswalk.mods.properties.mods = crosswalks/mods.properties

Information
al Note:

This defines a crosswalk named MODS whose configuration comes from the file [dspace]/config/crosswalks/mods.properties
. (In the above example, the lower-case name was added for OAI-PMH)

The MODS crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned into elements of the MODS XML
output document. The property name is a concatenation of the metadata schema, element name, and optionally the qualifier. For example, the contributor.

 element in the native Dublin Core schema would be: . The value of the property is a line containing two segments separated by author dc.contributor.author
the vertical bar (" "_): The first part is an XML fragment which is copied into the output document. The second is an XPath expression describing where in |
that fragment to put the value of the metadata element. For example, in this property:

dc.contributor.author = <mods:name>
 <mods:role>
 <mods:roleTerm type="text">author</mods:roleTerm>
 </mods:role>
 <mods:namePart>%s</mods:namePart>
 </mods:name>

Some of the examples include the string " " in the prototype XML where the text value is to be inserted, but don't pay any attention to it, it is an artifact %s
that the crosswalk ignores. For example, given an author named , the crosswalk will insertJack Florey

<mods:name>
 <mods:role>
 <mods:roleTerm type="text">author</mods:roleTerm>
 </mods:role>
 <mods:namePart>Jack Florey</mods:namePart>
</mods:name>

into the output document. Read the example configuration file for more details.

XSLT-based Crosswalks

The XSLT crosswalks use XSL stylesheet transformation (XSLT) to transform an XML-based external metadata format to or from DSpace's internal
metadata. XSLT crosswalks are much more powerful and flexible than the configurable MODS and QDC crosswalks, but they demand some esoteric
knowledge (XSL stylesheets). Given that, you can create all the crosswalks you need just by adding stylesheets and configuration lines, without touching
any of the Java code.

The default settings in the file for submission crosswalk:dspace.cfg

Properties: crosswalk.submission.MODS.stylesheet

Example Value: crosswalk.submission.MODS.stylesheet = crosswalks/mods-submission.xsl

Informational Note: Configuration XSLT-driven submission crosswalk for MODS

As shown above, there are three (3) parts that make up the properties "key":

crosswalk.submission.PluginName.stylesheet =
 1 2 3 4

crosswalk first part of the property key.
 second part of the property key.submission
 is the name of the plugin. The value is the path to the file containing the crosswalk stylesheet (relative to).PluginName path /[dspace]/config

Here is an example that configures a crosswalk named "LOM" using a stylesheet in :[dspace]/config/crosswalks/d-lom.xsl
 crosswalk.submission.LOM.stylesheet = crosswalks/d-lom.xsl

A dissemination crosswalk can be configured by starting with the property key . Example:crosswalk.dissemination
 crosswalk.dissemination.PluginName.stylesheet = path

The is the name of the plugin (!) . The value is the path to the file containing the crosswalk stylesheet (relative to).PluginName path /[dspace]/config

You can make two different plugin names point to the same crosswalk, by adding two configuration entries with the same path:

crosswalk.submission.MyFormat.stylesheet = crosswalks/myformat.xslt
 crosswalk.submission.almost_DC.stylesheet = crosswalks/myformat.xslt

The dissemination crosswalk must also be configured with an XML Namespace (including prefix and URI) and an XML schema for its output format. This is
configured on additional properties in the DSpace configuration:

crosswalk.dissemination.PluginName.namespace.Prefix = namespace-URI
 crosswalk.dissemination.PluginName.schemaLocation = schemaLocation value

For example:

crosswalk.dissemination.qdc.namespace.dc = http://purl.org/dc/elements/1.1/
 crosswalk.dissemination.qdc.namespace.dcterms = http://purl.org/dc/terms/
 crosswalk.dissemination.qdc.schemalocation = http://purl.org/dc/elements/1.1/ \
 http://dublincore.org/schemas/xmls/qdc/2003/04/02/qualifieddc.xsd

If you remove all XSLTDisseminationCrosswalks please disable the XSLTDisseminationCrosswalk in the list of selfnamed plugins. If no
XSLTDisseminationCrosswalks are configured but the plugin is loaded the PluginManager will log an error message ("Self-named plugin class "org.dspace.
content.crosswalk.XSLTDisseminationCrosswalk" returned null or empty name list!").

Testing XSLT Crosswalks

The XSLT crosswalks will automatically reload an XSL stylesheet that has been modified, so you can edit and test stylesheets without restarting DSpace.
You can test a crosswalk by using a command-line utitlity. To test a dissemination crosswalk you have to run:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk <plugin name> <handle>
[output-file]

For example, you can test the marc plugin on the handle 123456789/3 with:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk marc 123456789/3

Informations from the script will be printed to stderr while the XML output of the dissemination crosswalk will be printed to stdout. You can give a third
parameter containing a filename to write the output into a file, but be careful: the file will be overwritten if it exists.

Testing a submission crosswalk works quite the same way. Use the following command-line utility, it calls the crosswalk plugin to translate an XML
document you submit, and displays the resulting intermediate XML (DIM). Invoke it with:

[dspace]/bin/dspace dsrun
 org.dspace.content.crosswalk.XSLTIngestionCrosswalk [-l] <plugin name> <input-file>

where > is the name of the crosswalk plugin to test (e.g. "LOM"), and < is a file containing an XML document of metadata in the <plugin name input-file>
appropriate format.

Add the option to pass the ingestion crosswalk a list of elements instead of a whole document, as if the List form of the ingest() method had been -l
called. This is needed to test ingesters for formats like DC that get called with lists of elements instead of a root element.

Configurable Qualified Dublin Core (QDC) dissemination crosswalk

The QDC crosswalk is a self-named plugin. To configure an instance of the QDC crosswalk, add a property to the DSpace configuration starting with "cros
"; the final word of the property name becomes the plugin's name. For example, a property name swalk.qdc.properties. crosswalk.qdc.

 defines a crosswalk plugin named " ".properties.QDC QDC

The following is from file:dspace.cfg

Properties: crosswalk.qdc.namspace.qdc.dc

Example Value: crosswalk.qdc.namspace.qdc.dc = http://purl.org/dc/elements/1.1_

Properties: crosswalk.qdc.namspace.qdc.dcterms

Example Value: crosswalk.qdc.namspace.qdc.dc = http://purl.org/dc/terms/_

http://purl.org/dc/elements/1.1
http://purl.org/dc/terms/

Properties: crosswalk.qdc.schemaLocation.QDC

Example Value:
crosswalk.qdc.schemaLocation.QDC = http://www.purl.org/dc/terms \
 http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd \
 http://purl.org/dc/elements/1.1 \
 http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd

Properties: crosswalk.qdc.properties.QDC

Example Value: crosswalk.qdc.properties.QDC = crosswalks/QDC.properties

Informational
Note:

Configuration of the QDC Crosswalk dissemination plugin for Qualified DC. (Add lower-case name for OAI-PMH. That is, change
}}QDC to qdc.)

In the property key " " the value of this property is a path to a separate properties file containing the configuration for crosswalk.qdc.properties.QDC
this crosswalk. The pathname is relative to the DSpace configuration directory . Referring back to the "Example Value" for this /[dspace]/config
property key, one has which defines a crosswalk named whose configuration comes from the file crosswalks/qdc.properties QDC [dspace]

 ./config/crosswalks/qdc.properties

You will also need to configure the namespaces and schema location strings for the XML output generated by this crosswalk. The namespaces properties
names are formatted:

crosswalk.qdc.namespace.prefix = uri

where is the namespace prefix and is the namespace URI. See the above Property and Example Value keys as the default dspace.cfg has been prefix uri
configured.

The QDC crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned into elements of the Qualified DC
XML output document. The property name is a concatenation of the metadata schema, element name, and optionally the qualifier. For example, the contr

 element in the native Dublin Core schema would be: . The value of the property is an XML fragment, the ibutor.author dc.contributor.author
element whose value will be set to the value of the metadata field in the property key.

For example, in this property:

dc.coverage.temporal = <dcterms:temporal />

the generated XML in the output document would look like, e.g.:
<dcterms:temporal>Fall, 2005</dcterms:temporal>

Configuring Crosswalk Plugins

Ingestion crosswalk plugins are configured as named or self-named plugins for the interface org.dspace.content.crosswalk.
. Dissemination crosswalk plugins are configured as named or self-named plugins for the interface IngestionCrosswalk org.dspace.content.

.crosswalk.DisseminationCrosswalk

You can add names for existing crosswalks, add new plugin classes, and add new configurations for the configurable crosswalks as noted below.

Configuring Packager Plugins

Package ingester plugins are configured as named or self-named plugins for the interface . org.dspace.content.packager.PackageIngester
Package disseminator plugins are configured as named or self-named plugins for the interface org.dspace.content.packager.

 .PackageDisseminator

You can add names for the existing plugins, and add new plugins, by altering these configuration properties. See the for more Plugin Manager architecture
information about plugins.

Event System Configuration

If you are unfamiliar with the Event System in DSpace, and require additional information with terms like "Consumer" and "Dispatcher" please refer to Event
.SystemPrototype

Property: event.dispatcher.default.class

Example Value: event.dispatcher.default.class = org.dspace.event.BasicDispatcher

Informational Note: This is the default synchronous dispatcher (Same behavior as traditional DSpace).

Property: event.dispatcher.default.consumers

Example Value: event.dispatcher.default.consumers = search, browse, eperson

Informational Note: This is the default synchronous dispatcher (Same behavior as traditional DSpace).

#
#
#

Property: event.dispatcher.noindex.class

Example Value: event.dispatcher.noindex.class = org.dspace.event.BasicDispatcher

Informational Note: The noindex dispatcher will not create search or browse indexes (useful for batch item imports).

Property: event.dispatcher.noindex.consumers

Example Value: event.dispatcher.noindex.consumers = eperson

Informational Note: The noindex dispatcher will not create search or browse indexes (useful for batch item imports).

Property: event.consumer.search.class

Example Value: event.consumer.search.class = org.dspace.search.SearchConsumer

Informational Note: Consumer to maintain the search index.

Property: event.consumer.search.filters

Example Value: {{event.consumer.search.filters = }}
Community | Collection | Item | Bundle+Add | Create | Modify | Modify_Metadata | Delete | Remove

Informational Note: Consumer to maintain the search index.

Property: event.consumer.browse.class

Example Value: event.consumer.browse.class = org.dspace.browse.BrowseConsumer

Informational Note: Consumer to maintain the browse index.

Property: event.consumer.browse.filters

Example Value: event.consumer.browse.filters =
Community | Collection | Item | Bundle+Add | Create | Modify | Modify_Metadata | Delete | Remove

Informational Note: Consumer to maintain the browse index.

Property: event.consumer.eperson.class

Example Value: event.consumer.eperson.class = org.dspace.eperson.EPersonConsumer

Informational Note: Consumer related to EPerson changes

Property: event.consumer.eperson.filters

Example Value: event.consumer.eperson.filters = EPerson+Create

Informational Note: Consumer related to EPerson changes

Property: event.consumer.test.class

Example Value: event.consumer.test.class = org.dspace.event.TestConsumer

Informational Note: Test consumer for debugging and monitoring. Commented out by default.

Property: event.consumer.test.filters

Example Value: event.consumer.test.filters = All+All

Informational Note: Test consumer for debugging and monitoring. Commented out by default.

Property: testConsumer.verbose

Example Value: testConsumer.verbose = true

Informational Note: Set this to true to enable testConsumer messages to standard output. Commented out by default.

Embargo

DSpace embargoes utilize standard metadata fields to hold both the "terms" and the "lift date". Which fields you use are configurable, and no specific
metadata element is dedicated or predefined for use in embargo. Rather, you specify exactly what field you want the embargo system to examine when it
needs to find the terms or assign the lift date.

Propert
y:

embargo.field.terms

Exampl
e
Value:

embargo.field.terms = SCHEMA.ELEMENT.QUALIFIER

Informa
tional
Note:

Embargo terms will be stored in the item metadata. This property determines in which metadata field these terms will be stored. An example
could be dc.embargo.terms

Propert
y:

embargo.field.lift

Exampl
e
Value:

embargo.field.lift = SCHEMA.ELEMENT.QUALIFIER

Informa
tional
Note:

The Embargo lift date will be stored in the item metadata. This property determines in which metadata field the computed embargo lift date
will be stored. You may need to create a DC metadata field in your Metadata Format Registry if it does not already exist. An example could be
dc.embargo.liftdate

Propert
y:

embargo.terms.open

Exampl
e
Value:

embargo.terms.open = forever

Informa
tional
Note:

You can determine your own values for the embargo.field.terms property (see above). This property determines what the string value will be
for indefinite embargos. The string in terms field to indicate indefinite embargo.

Propert
y:

plugin.single.org.dspace.embargo.EmbargoSetter

Exampl
e
Value:

plugin.single.org.dspace.embargo.EmbargoSetter = org.dspace.embargo.DefaultEmbargoSetter

Informa
tional
Note:

To implement the business logic to set your embargos, you need to override the EmbargoSetter class. If you use the value
DefaultEmbargoSetter, the default implementation will be used.

Propert
y:

plugin.single.org.dspace.embargo.EmbargoLifter

Exampl
e
Value:

plugin.single.org.dspace.embargo.EmbargoLifter = org.dspace.embargo.DefaultEmbargoLifter

Informa
tional
Note:

To implement the business logic to lift your embargos, you need to override the EmbargoLifter class. If you use the value
DefaultEmbargoLifter, the default implementation will be used.

More Embargo Details

More details on Embargo configuration, including specific examples can be found in the section of the documentation.Embargo

Checksum Checker Settings

DSpace now comes with a Checksum Checker script () which can be scheduled to verify the checksum of every item [dspace]/bin/dspace checker
within DSpace. Since DSpace calculates and records the checksum of every file submitted to it, this script is able to determine whether or not a file has
been changed (either manually or by some sort of corruption or virus). The idea being that the earlier you can identify a file has changed, the more likely
you'd be able to recover it (assuming it was not a wanted change).

Propert
y:

plugin.single.org.dspace.checker.BitstreamDispatcher

Exampl
e
Value:

plugin.single.org.dspace.checker.BitstreamDispatcher = org.dspace.checker.SimpleDispatcher

Informa
tional
Note:

The Default dispatcher is case non is specified.

Propert
y:

checker.retention.default

https://wiki.lyrasis.org/display/DSDOC5x/Embargo

Exampl
e
Value:

checker.retention.default = 10y

Informa
tional
Note:

This option specifies the default time frame after which all checksum checks are removed from the database (defaults to 10 years). This
means that after 10 years, all successful or unsuccessful matches are removed from the database.

Propert
y:

checker.retention.CHECKSUM_MATCH

Exampl
e
Value:

checker.retention.CHECKSUM_MATCH = 8w

Informa
tional
Note:

This option specifies the time frame after which a successful match will be removed from your DSpace database (defaults to 8 weeks). This
means that after 8 weeks, all successful matches are automatically deleted from your database (in order to keep that database table from
growing too large).

More Checksum Checking Details

For more information on using DSpace's built-in Checksum verification system, see the section on .Validating CheckSums of Bitstreams

Item Export and Download Settings

It is possible for an authorized user to request a complete export and download of a DSpace item in a compressed zip file. This zip file may contain the
following:
dublin_core.xml
license.txt
contents (listing of the contents)
handle file itself and the extract file if available

The configuration settings control several aspects of this feature:

Property: org.dspace.app.itemexport.work.dir

Example
Value:

org.dspace.app.itemexport.work.dir = ${dspace.dir}/exports

Informati
onal
Note:

The directory where the exports will be done and compressed.

Property: org.dspace.app.itemexport.download.dir

Example
Value:

org.dspace.app.itemexport.download.dir = ${dspace.dir}/exports/download

Informati
onal Note

The directory where the compressed files will reside and be read by the downloader.

Property: org.dspace.app.itemexport.life.span.hours

Example
Value:

org.dspace.app.itemexport.life.span.hours = 48

Informati
onal Note

The length of time in hours each archive should live for. When new archives are created this entry is used to delete old ones.

Property: org.dspace.app.itemexport.max.size

Example
Value:

org.dspace.app.itemexport.max.size = 200

Informati
onal Note

The maximum size in Megabytes (Mb) that the export should be. This is enforced before the compression. Each bitstream's size in each
item being exported is added up, if their cumulative sizes are more than this entry the export is not kicked off.

Subscription Emails

DSpace, through some advanced installation and setup, is able to send out an email to collections that a user has subscribed. The user who is subscribed
to a collection is emailed each time an item id added or modified. The following property key controls whether or not a user should be notified of a
modification.

Property: eperson.subscription.onlynew

Example Value: eperson.subscription.onlynew = true

https://wiki.lyrasis.org/display/DSDOC5x/Validating+CheckSums+of+Bitstreams

1.
2.
3.

Informational
Note:

For backwards compatibility, the subscription emails by default include any modified items. The property key is COMMENTED OUT
by default.

Hiding Metadata

It is now possible to hide metadata from public consumption that is only available to the Administrator.

Prop
erty:

metadata.hide.dc.description.provenance

Exa
mple
Valu
e:

metadata.hide.dc.description.provenance = true

Infor
mati
onal
Note:

Hides the metadata in the property key above except to the administrator. Fields named here are hidden in the following places UNLESS the
logged-in user is an Administrator:

XMLUI metadata XML view, and Item splash pages (long and short views).
JSPUI Item splash pages
OAI-PMH server, "oai_dc" format. (Note: Other formats are * * affected.)To designate a field as hidden, add a property here in the form: not m

. This default configuration hides the field, etadata.hide.SCHEMA.ELEMENT.QUALIFIER = true dc.description.provenance
since that usually contains email addresses which ought to be kept private and is mainly of interest to administrators.

Settings for the Submission Process

These settings control three aspects of the submission process: thesis submission permission, whether or not a bitstream file is required when submitting
to a collection and whether to show a progress bar during the file upload.

Property: webui.submit.blocktheses

Example
Value:

webui.submit.blocktheses = false

Informati
onal
Note:

Controls whether or not the UI blocks a submission which is marked as a thesis.

Property: webui.submit.upload.required

Example
Value:

webui.submit.upload.required = true

Informati
onal
Note:

Whether or not a file is to be uploaded during the "Upload" step in the submission process. The default is true. If set to "false", required
then the submitter (human being) has the option to skip the uploading of a file.

Property: webui.submit.upload.html5

Example
Value:

webui.submit.upload.html5 = true

Informati
onal
Note:

If the browser supports it, JSPUI uses html5 File API to enhance file upload. If this property is set to false the enhanced file upload is not
used even if the browser would support it.

Property: webui.submit.upload.progressbar (new in DSpace 4.0)

Example
Value:

webui.submit.upload.progressbar = true

Informati
onal
Note:

Whether to show a progress bar during file upload. Please note that to work this feature requires a JSON endpoint (json/uploadProgress)
that is enabled by default. See the named plugin for the interface org.dspace.app.webui.json.JSONRequest

org.dspace.app.webui.json.UploadProgressJSON = uploadProgress

This property is actually supported only by the JSPUI. The XMLUI doesn't yet provide a progress bar indicator for file upload.

Configuring the Sherpa/RoMEO Publishers Policy Database Integration

DSpace 4.0 introduced integration with the Sherpa/RoMEO Publishers Policy Database in order to allow displaying the publisher policy in the submission
upload step. The submission step interface is available in JSPUI (since DSpace 4.0) and in XMLUI (since DSpace 5.0) and enabled by default, however to
use it in production (over 500 requests per day), you must register for a free API key (see below for details).

Property: webui.submission.sherparomeo-policy-enabled

Example Value: webui.submission.sherparomeo-policy-enabled = true

Informational
Note:

Controls whether or not the UI submission should try to use the Sherpa/RoMEO Publishers Policy Database Integration (default true
)

Property: sherpa.romeo.url

Example Value: sherpa.romeo.url = http://www.sherpa.ac.uk/romeo/api29.php

Informational
Note:

The Sherpa/RoMEO endpoint. Shared with the authority control feauture for Journal Title autocomplete see AuthorityControlSettings

Property: sherpa.romeo.apikey

Example Value: sherpa.romeo.apikey = YOUR-API-KEY

Informational
Note:

Allow to use a specific API key to raise the usage limit (500 calls/day for unregistred user).

You can register for a free api access key at http://www.sherpa.ac.uk/news/romeoapikeys.htm

The functionality rely on understanding to which Journal (ISSN) is related the submitting item. This is done out of box looking to some item metadata but a
different strategy can be used as for example look to a metadata authority in the case that the Sherpa/RoMEO autocomplete for Journal is used (see Autho

)rityControlSettings

The strategy used to discover the Journal related to the submission item is defined in the spring file /config/spring/api/sherpa.xml

http://www.sherpa.ac.uk/news/romeoapikeys.htm

<bean class="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService"
 id="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService">
 <property name="issnItemExtractors">
 <list>
 <bean class="org.dspace.app.sherpa.submit.MetadataValueISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.identifier.issn</value>
 </list>
 </property>
 </bean>
 <!-- Use the follow if you have the SHERPARoMEOJournalTitle enabled
 <bean class="org.dspace.app.sherpa.submit.MetadataAuthorityISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.title.alternative</value>
 </list>
 </property>
 </bean> -->
 </list>
 </property>
 </bean>

Configuring Creative Commons License

The following configurations are for the Creative Commons license step in the submission process. Submitters are given an opportunity to select a
Creative Common license to accompany the item. Creative Commons licenses govern the use of the content. For further details, refer to the Creative
Commons website at .http://creativecommons.org

Creative Commons licensing is optionally available and may be configured for any given collection that has a defined submission sequence, or be part of
the "default" submission process. This process is described in the section of this manual. There is a Creative Commons step Submission User Interface
already defined (step 5), but it is commented out, so enabling Creative Commons licensing is typically just a matter of uncommenting the CC License step.

Since DSpace 5.6 Creative Commons licensing is captured in exactly the same way in each UI. The Create Commons REST API is utilized. This allows
DSpace to store metadata references to the selected CC license, while also storing the CC License as a bitstream. The following CC License information
are captured:

The URL of the CC License is stored in the "dc.rights.uri" metadata field (or whatever field is configured in the "cc.license.uri" setting below)
The name of the CC License is stored in the "dc.rights" metadata field (or whatever field is configured in the " " setting below). This cc.license.name
only occurs if "cc.submit.setname=true" (default value)
The RDF version of the CC License is stored in a bitstream named "license_rdf" in the CC-LICENSE bundle (as long as "cc.submit.
addbitstream=true", which is the default value)

The following configurations (in dspace.cfg) relate to the Creative Commons license process:

Propert
y:

cc.api.rooturl

Exampl
e
Value:

cc.api.rooturl = http://api.creativecommons.org/rest/1.5

Informa
tional
Note:

Generally will never have to assign a different value - this is the base URL of the Creative Commons
service API.

Propert
y:

cc.license.uri

Exampl
e
Value:

cc.license.uri = dc.rights.uri

Informa
tional
Note:

The field that holds the Creative Commons license URI. If you change from the default value (dc.rights.
uri), you will have to reconfigure the XMLUI for proper display of license data

Propert
y:

cc.license.name

http://creativecommons.org/
https://wiki.lyrasis.org/display/DSDOC6x/Submission+User+Interface
http://cc.license.name/
http://api.creativecommons.org/rest/1.5

Exampl
e
Value:

cc.license.name = dc.rights

Informa
tional
Note:

The field that holds the Creative Commons license Name. If you change from the default value (dc.
rights), you will have to reconfigure the XMLUI for proper display of license data

Propert
y:

cc.submit.setname

Exampl
e
Value:

cc.submit.setname = true

Informa
tional
Note:

If true, the license assignment will add the field configured with the "cc.license.name" with the name
of the CC license; if false, only "cc.license.uri" field is added.

Propert
y:

cc.submit.addbitstream

Exampl
e
Value:

cc.submit.addbitstream = true

Informa
tional
Note:

If true, the license assignment will add a bitstream with the CC license RDF; if false, only metadata
field(s) are added.

Propert
y:

cc.license.classfilter

Exampl
e
Value:

cc.license.classfilter = recombo,mark

Informa
tional
Note:

This list defines the values that will be excluded from the license (class) selection list, as defined
by the web service at the URL: http://api.creativecommons.org/rest/1.5/classes

Propert
y:

cc.license.jurisdiction

Exampl
e
Value:

cc.license.jurisdiction = nz

Informa
tional
Note:

Should a jurisdiction be used? If so, which one? See for a list of possible codes (e.g. nz = New http://creativecommons.org/international/
Zealand, uk = England and Wales, jp = Japan)

Commenting out this field will cause DSpace to select the latest, unported CC license (currently version 4.0). However, as Creative Commons
4.0 does not provide jurisdiction specific licenses, if you specify this setting, your DSpace will continue to use older, Creative Commons 3.0
jurisdiction licenses.

WEB User Interface Configurations

General Web User Interface Configurations
In this section of Configuration, we address the agnostic WEB User Interface that is used for JSPUI and XMLUI. Some of the configurations will give
information towards customization or refer you to the appropriate documentation.

Pro
pert
y:

webui.licence_bundle.show

Exa
mpl
e
Val
ue:

webui.licence_bundle.show = false

Info
rma
tion
al
Not
e:

Sets whether to display the contents of the license bundle (often just the deposit license in the standard DSpace installation).

http://api.creativecommons.org/rest/1.5/classes
http://creativecommons.org/international/

Pro
pert
y:

webui.browse.thubnail.show

Exa
mpl
e
Val
ue:

webui.browse.thubnail.show = true

Info
rma
tion
al
Not
e:

Controls whether to display thumbnails on browse and search result pages. If you have customized the Browse columnlist, then you must also
include a "thumbnail" column in your configuration. _(This configuration property key is not used by XMLUI. To show thumbnails using XMLUI,
you need to create a theme which displays them)._

Pro
pert
y:

webui.browse.thumbnail.maxheight

Exa
mpl
e
Val
ue:

webui.browse.thumbnail.maxheight = 80

Info
rma
tion
al
Not
e:

This property determines the maximum height of the browse/search thumbnails in pixels (px). This only needs to be set if the thumbnails are
required to be smaller than the dimensions of thumbnails generated by MediaFilter.

Pro
pert
y:

webui.browse.thumbnail.maxwidth

Exa
mpl
e
Val
ue:

webui.browse.thumbnail.maxwidth = 80

Info
rma
tion
al
Not
e:

This determines the maximum width of the browse/search thumbnails in pixels (px). This only needs to be set if the thumbnails are required to be
smaller than the dimensions of thumbnails generated by MediaFilter.

Pro
pert
y:

webui.item.thumbnail.show

Exa
mpl
e
Val
ue:

webui.item.thumbnail.show = true

Info
rma
tion
al
Not
e:

This determines whether or not to display the thumbnail against each bitstream. (This configuration property key is not used by XMLUI. To show
thumbnails using XMLUI, you need to create a theme which displays them).

Pro
pert
y:

webui.browse.thumbnail.linkbehavior

Exa
mpl
e
Val
ue:

webui.browse.thumbnail.linkbehavior = item

Info
rma
tion
al
Not
e:

This determines where clicks on the thumbnail in browse and search screens should lead. The only values currently supported are "item" or
"bitstream", which will either take the user to the item page, or directly download the bitstream.

Pro
pert
y:

thumbnail.maxwidth

Exa
mpl
e
Val
ue:

thumbnail.maxwidth = 80

Info
rma
tion
al
Not
e:

This property sets the maximum width of generated thumbnails that are being displayed on item pages.

Pro
pert
y:

thumbnail.maxheight

Exa
mpl
e
Val
ue:

thumbnail.maxheight = 80

Info
rma
tion
al
Not
e:

This property sets the maximum height of generated thumbnails that are being displayed on item pages.

Pro
pert
y:

webui.preview.enabled

Exa
mpl
e
Val
ue:

webui.preview.enabled = false

Info
rma
tion
al
Not
e:

Whether or not the user can "preview" the image.

Pro
pert
y:

webui.preview.maxwidth

Exa
mpl
e
Val
ue:

webui.preview.maxwidth = 600

Info
rma
tion
al
Not
e:

This property sets the maximum width for the preview image.

Pro
pert
y:

webui.preview.maxheight

Exa
mpl
e
Val
ue:

webui.preview.maxheight = 600

Info
rma
tion
al
Not
e:

This property sets the maximum height for the preview image.

Pro
pert
y:

webui.preview.brand

Exa
mpl
e
Val
ue:

webui.preview.brand = My Institution Name

Info
rma
tion
al
Not
e:

This is the brand text that will appear with the image.

Pro
pert
y:

webui.preview.brand.abbrev

Exa
mpl
e
Val
ue:

webui.preview.brand.abbrev = MyOrg

Info
rma
tion
al
Not
e:

An abbreviated form of the full Branded Name. This will be used when the preview image cannot fit the normal text.

Pro
pert
y:

webui.preview.brand.height

Exa
mpl
e
Val
ue:

webui.preview.brand.height = 20

Info
rma
tion
al
Not
e:

The height (in px) of the brand.

Pro
pert
y:

webui.preview.brand.font

Exa
mpl
e
Val
ue:

webui.preview.brand.font = SansSerif

Info
rma
tion
al
Not
e:

This property sets the font for your Brand text that appears with the image.

Pro
pert
y:

webui.preview.brand.fontpoint

Exa
mpl
e
Val
ue:

webui.preview.brand.fontpoint = 12

Info
rma
tion
al
Not
e:

This property sets the font point (size) for your Brand text that appears with the image.

Pro
pert
y:

webui.preview.dc

Exa
mpl
e
Val
ue:

webui.preview.dc = rights

Info
rma
tion
al
Not
e:

The Dublin Core field that will display along with the preview. This field is optional.

Pro
pert
y:

webui.strengths.show

Exa
mpl
e
Val
ue:

webui.strengths.show = false

Info
rma
tion
al
Not
e:

Determines if communities and collections should display item counts when listed. The default behavior if omitted, is false.

Pro
pert
y:

webui.strengths.cache

Exa
mpl
e
Val
ue:

webui.strengths.cache = false

Info
rma
tion
al
Not
e:

With Discovery enabled (by default), this option does nothing.
With Lucene enabled: When showing the strengths, should they be counted in real time, or fetched from the cache. Counts fetched in real time
will perform an actual count of the database contents every time a page with this feature is requested, which will not scale. If you set the property
key is set to cache ("true") you must run the following command periodically to update the count: . The /[dspace]/bin/dspace itemcounter
default is to count in real time (set to "false").

Browse Index Configuration

The browse indexes for DSpace can be extensively configured. These configurations are used by both the Legacy Seach / Browse (Lucene and DB-
 and . This section of the configuration allows you to take control of the indexes you wish to browse, and how you wish to present the browse) Discovery

results. The configuration is broken into several parts: defining the indexes, defining the fields upon which users can sort results, defining truncation for
potentially long fields (e.g. authors), setting cross-links between different browse contexts (e.g. from an author's name to a complete list of their items),
how many recent submissions to display, and configuration for item mapping browse.

Property: webui.browse.index.<n>

Example Value: webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*,dc.creator:text

Informational Note: This is an example of how one "Defines the Indexes". See " " in the next sub-section.Defining the Indexes

Property: webui.itemlist.sort-option.<n>

Example Value: webui.itemlist.sort-option.1 = title:dc.title:title

Informational Note: This is an example of how one "Defines the Sort Options". See " " in the following sub-section.Defining Sort Options

Defining the storage of the Browse Data
Starting from DSpace 3.0 you can configure which implementation use for the Browse DAOs both for create/update operations and for read operations.
This allows you to customize which browse engine is utilized in your DSpace. Options include:

SOLR Browse Engine (SOLR DAOs), - This enables Apache Solr to be utilized as a backend for all browsing of default since DSpace 4.0
DSpace. This option requires that you have (Solr search/browse engine) enabled in your DSpace.Discovery
PostgreSQL Browse Engine (PostgreSQL DAOs) - This enables all browsing to be done via PostgreSQL database tables. (This is the traditional
browsing option for users who have PostgreSQL installed.)
Oracle Browse Engine (Oracle DAOs) - This enables all browsing to be done via Oracle database tables. (This is the traditional browsing option
for users who have Oracles installed.)

Property: browseDAO.class

Example
Value:

browseDAO.class = org.dspace.browse.SolrBrowseDAO

Information
al Note:

This property configures the Java class that is used for READ operations by the Browse System. You need to have enabled Discovery
(this is the default since DSpace 4.0) to use the Solr Browse DAOs

Property: browseCreateDAO.class

Example
Value:

browseCreateDAO.class = org.dspace.browse.SolrBrowseCreateDAO

Information
al Note:

This property configures the java class that is used for WRITE operations by the Browse System. You need to have enabled Discovery (
 to use the Solr Browse DAOsthis is the default since DSpace 4.0)

If you want to re-enable the legacy DBMS Browse Engine please refer to Legacy methods for re-indexing content

Defining the Indexes
If you make changes in this section be sure to update your SOLR indexes running the Discovery Maintenance Script, see Discovery

DSpace comes with four default indexes pre-defined: author, title, date issued, and subjects. Users may also define
additional indexes or re-configure the current indexes for different levels of specificity. For example, the default
entries that appear in the dspace.cfg as default installation:

webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*,dc.creator:text
webui.browse.index.3 = title:item:title
webui.browse.index.4 = subject:metadata:dc.subject.*:text
#webui.browse.index.5 = dateaccessioned:item:dateaccessioned

There are two types of indexes which are provided in this default integration:

" " indexes which have a format of item webui.browse.index.<n> = <index-name> : item : <sort-type> : (asc | desc)
" " indexes which have a format of metadata webui.browse.index.<n> = <index-name> : metadata : <comma-separated-list-
of-metadata-fields> : (date | text) : (asc | dec)

 Please notice that the punctuation is paramount in typing this property key in the file. The following table explains each element:dspace.cfg

Element Definition and Options (if available)

https://wiki.lyrasis.org/display/DSDOC5x/Legacy+methods+for+re-indexing+content
https://wiki.lyrasis.org/display/DSDOC5x/Legacy+methods+for+re-indexing+content
https://wiki.lyrasis.org/display/DSDOC5x/Discovery
https://wiki.lyrasis.org/display/DSDOC5x/Discovery
https://wiki.lyrasis.org/display/DSDOC5x/Discovery
https://wiki.lyrasis.org/display/DSDOC5x/Discovery
https://wiki.lyrasis.org/display/DSDOC5x/Legacy+methods+for+re-indexing+content
https://wiki.lyrasis.org/display/DSDOC5x/Discovery

webui.
browse.
index.
<n>

n is the index number. The index numbers must start from 1 and increment continuously by 1 thereafter. Deviation from this will cause an
error during install or a configuration update. So anytime you add a new browse index, remember to increase the number. (Commented
out index numbers may be used over again).

<index-
name>

The name by which the index will be identified. In order for the DSpace UI to display human-friendly description for this index, you'll need
to update either your Messages.properties (JSPUI) or messages.xml (XMLUI) with new message keys referencing this <index-name>.

JSPUI Example (Messages.properties):

browse.type.metadata.<index-name> = My New Field

XMLUI Example (messages.xml):

<message key="xmlui.ArtifactBrowser.Navigation.browse_<index-name>">My New Fields</message>
<message key="xmlui.ArtifactBrowser.ConfigurableBrowse.title.metadata.<index-name>">Browsing {0}
by My New Field {1}</message>
<message key="xmlui.ArtifactBrowser.ConfigurableBrowse.trail.metadata.<index-name>">Browsing {0}
by My New Field</message>
<message key="xmlui.ArtifactBrowser.ConfigurableBrowse. .column_heading"<index-name> >My New Field<
/message>

(metadat
a|item)

Only two options are available: " " or " "metadata item

" " indexes allow you to index all items based on one or more metadata fields. The list of fields should be provided as part metadata
of the "metadata" configuration. Only items which have values for these fields will appear in this index (e.g. if you have a "metadata"
index for " ", an item will not appear in that browse/search if it doesn't have a " " value)dc.subject.* dc.subject.*

NOTE: "metadata" indexes should all have a " " of either "date" or "text". This allows the index to appear properly <sort-type>
sorted based on whether it refers to a textual field or a date-based field.

" " indexes provide you with a browseable list of ALL items in the site, sorted by a particular metadata field. The field this index is item
sorted by is referenced by (which should refer to a corresponding " " <sort-option-name> webui.itemlist.sort-option.<n>
setting... see below for more information)Defining Sort Options

<schema-
prefix>

(Only for "metadata" indexes) The schema used for the field to be index. The default is dc (for Dublin Core).

<element> (Only for "metadata" indexes) The schema element. In Dublin Core, for example, the author element is referred to as "Contributor". The
user should consult the default Dublin Core Metadata Registry table in Appendix A.

<qualifi
er>

(Only for "metadata" indexes) This is the qualifier to the <element> component. The user has two choices: an asterisk "" or a proper
qualifier of the element. The asterisk is a wildcard and causes DSpace to index all types of the schema element. For example, if

" then you would index all contributor data regardless of the qualifier. Another you have the element "contributor" and the qualifier "
example, you have the element "subject" and the qualifier "lcsh" would cause the indexing of only those fields that have the qualifier "lcsh".
(This means you would only index Library of Congress Subject Headings and not all data elements that are subjects.

<sort-
type>

This refers to the sort type / data type of the field:

date the index type will be treated as a date object and sorted as such
text the index type will be treated as plain text and sorted as such
(any other value refers to a custom <sort-type> which should be defined in a corresponding webui.itemlist.sort-option.<n>
setting. See below for more information.)Defining Sort Options

<sort-
order>

(Optional) The default sort order. Choose (ascending) or (descending). Ascending is the default value, but descending may be asc desc
useful for date-based indexes (e.g. to display most recent submissions first)

Defining Sort Options
If you make changes in this section be sure to update your SOLR indexes running the Discovery Maintenance Script, see Discovery

Sort options/types will be available when browsing a list of items (see also the " " index type above). You can define an arbitrary number of fields to item
sort on. For example, the default entries that appear in the as default installation:dspace.cfg

webui.itemlist.sort-option.1 = title:dc.title:title
webui.itemlist.sort-option.2 = dateissued:dc.date.issued:date
webui.itemlist.sort-option.3 = dateaccessioned:dc.date.accessioned:date

The format of each entry is web.browse.sort-option.<n> = <sort-type-name>:<schema-prefix>.<element>.<qualifier>:<datatype>
. Please notice the punctuation used between the different elements. The following table explains the each element:

Element Definition and Options (if available)

webui.itemlist.
sort-option.<n>

n is an arbitrary number you choose.

https://wiki.lyrasis.org/display/DSDOC5x/Discovery

<sort-type-name> The name by which the sort option will be identified. This is the name by which it is referred in the "webui.browse.index"
settings (see).Defining the Indexes

<schema-prefix> The schema used for the field to be sorted on in the index. The default is dc (for Dublin Core).

<element> The schema element. In Dublin Core, for example, the author element is referred to as "Contributor". The user should
consult the default Dublin Core Metadata Registry table in Appendix A.

<qualifier> This is the qualifier to the <element> component. The user has two choices: an asterisk "*" or a proper qualifier of the
element.

<datatype> This refers to the datatype of the field:
 the sort field will be treated as a date object date
 the sort field will be treated as plain text.text

 the sort field will be treated like a title, which will include a link to the item pagetitle

Browse Index Normalization Rule Configuration
If you make changes in this section be sure to update your SOLR indexes running the Discovery Maintenance Script, see Discovery

Normalization Rules are those rules that make it possible for the indexes to intermix entries without regard to case sensitivity. By default, the display of
metadata in the browse indexes are case-sensitive. In the example below, you retrieve separate entries:
Twain, Marktwain, markTWAIN, MARK
However, clicking through from either of these will result in the same set of items (i.e., any item that contains either representation in the correct field).

Prope
rty:

webui.browse.metadata.case-insensitive

Exam
ple
Value:

webui.browse.metadata.case-insensitive = true

Inform
ationa
l Note:

This controls the normalization of the index entry. Uncommenting the option (which is commented out by default) will make the metadata items
case-insensitive. This will result in a single entry in the example above. However, the value displayed may be any one of the above‚ depending
on what representation was present in the first item indexed.

At the present time, you would need to edit your metadata to clean up the index presentation.

Other Browse Options

We set other browse values in the following section.

Pr
op
ert
y:

webui.browse.metadata.show-freq. < n >

Ex
a
m
pl
e
V
al
ue:

webui.browse.metadata.show-freq.1 = false

Inf
or
m
ati
on
al
N
ot
e:

This enable/disable the show of frequencies (count) in metadata browse < n > refers to the browse configuration. As default frequencies are shown
for all metadata browse

Pr
op
ert
y:

webui.browse.value_columns.max

https://wiki.lyrasis.org/display/DSDOC5x/Discovery

Ex
a
m
pl
e
V
al
ue:

webui.browse.value_columns.max = 500

Inf
or
m
ati
on
al
N
ot
e:

This sets the options for the size (number of characters) of the fields stored in the database. The default is 0, which is unlimited size for fields
holding indexed data. Some database implementations (e.g. Oracle) will enforce their own limit on this field size. Reducing the field size will
decrease the potential size of your database and increase the speed of the browse, but it will also increase the chance of mis-ordering of similar
fields. The values are commented out, but proposed values for reasonably performance versus result quality. This affects the size of field for the
browse value (this will affect display, and value sorting)

Pr
op
ert
y:

webui.browse.sort_columns.max

Ex
a
m
pl
e
V
al
ue:

webui.browse.sort_columns.max = 200

Inf
or
m
ati
on
al
N
ot
e:

Size of field for hidden sort columns (this will affect only sorting, not display). Commented out as default.

Pr
op
ert
y:

webui.browse.value_columns.omission_mark

Ex
a
m
pl
e
V
al
ue:

webui.browse.value_columns.omission_mark = ...

Inf
or
m
ati
on
al
N
ot
e:

Omission mark to be placed after truncated strings in display. The default is "...".

Pr
op
ert
y:

plugin.named.org.dspace.sort.OrderFormatDelegate

Ex
a
m
pl
e
V
al
ue:

plugin.named.org.dspace.sort.OrderFormatDelegate = \
org.dspace.sort.OrderFormatTitleMarc21=title

Inf
or
m
ati
on
al
N
ot
e:

This sets the option for how the indexes are sorted. All sort normalizations are carried out by the OrderFormatDelegate. The plugin manager can
be used to specify your own delegates for each datatype. The default datatypes (and delegates) are:

author = org.dspace.sort.OrderFormatAuthor
title = org.dspace.sort.OrderFormatTitle
text = org.dspace.sort.OrderFormatText

If you redefine a default datatype here, the configuration will be used in preferences to the default. However, if you do not explicitly redefine a
datatype, then the default will still be used in addition to the datatypes you do specify. As of DSpace release 1.5.2, the multi-lingual MARC21 title
ordering is configured as default, as shown in the example above. To use the previous title ordering (before release 1.5.2), comment out the
configuration in your file.dspace.cfg

Browse Index Authority Control Configuration

Property: webui.browse.index.< >n

Example Value: webui.browse.index.5 = lcAuthor:metadataAuthority:dc.contributor.author:authority

Informational Note:

Tag cloud

Apart from the single (type=metadata) and full (type=item) browse pages, tag cloud is a new way to display the unique values of a metadata field.

To enable “tag cloud” browsing for a specific index you need to declare it in the dspace.cfg configuration file using the following option:

Property: webui.browse.index.tagcloud. <n>

Example Value: webui.browse.index.tagcloud.1 = true

Informational
Note:

 Enable/Disable tag cloud in browsing for a specific index. ‘n’ is the index number of the specific index which needs to be of type
‘metadata’.

Possible values: true, false

Default value is false.

If no option exists for a specific index, it is assumed to be false.
You do not have to re-index discovery when you change this configuration

Tag cloud configuration

The appearance configuration for the tag cloud is located in the Discovery xml configuration file (). Without dspace/config/spring/api/discovery.xml
configuring the appearance, the default one will be applied to the tag cloud

In this file, there must be a bean named “ ” of class “ ”. This bean browseTagCloudConfiguration org.dspace.discovery.configuration.TagCloudConfiguration
can have any of the following properties. If some is missing, the default value will be applied.

displayScore Should display the score of each tag next to it? Default: false

shouldCenter Should display the tag as center aligned in the page or left aligned? Possible values: true | false. Default: true

totalTags How many tags will be shown. Value -1 means all of them. Default: -1

cloudCase The letter case of the tags.

Possible values: Case.LOWER | Case.UPPER | Case.CAPITALIZATION | Case.PRESERVE_CASE | Case.CASE_SENSITIVE

Default: Case.PRESERVE_CASE

randomColo
rs

If the 3 css classes of the tag cloud should be independent of score (random=yes) or based on the score. Possible values: true | false .
Default: true

fontFrom The font size (in em) for the tag with the lowest score. Possible values: any decimal. Default: 1.1

fontTo The font size (in em) for the tag with the lowest score. Possible values: any decimal. Default: 3.2

cuttingLevel The score that tags with lower than that will not appear in the rag cloud. Possible values: any integer from 1 to infinity. Default: 0

ordering The ordering of the tags (based either on the name or the score of the tag)

Possible values: Tag.NameComparatorAsc | Tag.NameComparatorDesc | Tag.ScoreComparatorAsc | Tag.ScoreComparatorDesc

Default: Tag.GreekNameComparatorAsc

When tagCloud is rendered there are some CSS classes that you can change in order to change the tagcloud appearance.

Class Note

tagcloud General class for the whole tagcloud

tagcloud_1 Specific tag class for tag of type 1 (baed on score)

tagcloud_2 Specific tag class for tag of type 2 (baed on score)

tagcloud_3 Specific tag class for tag of type 3 (baed on score)

Author (Multiple metadata value) Display

This section actually applies to any field with multiple values, but authors are the define case and example here.

Property: webui.browse.author-field

Example Value: webui.browse.author-field = dc.contributor.*

Informational Note: This defines which field is the author/editor, etc. listing.

Replace with another field if appropriate. The field should be listed in the configuration for , otherwise dc.contributor.* webui.itemlist.columns
you will not see its effect. It must also be defined in as being of the datatype otherwise the functionality will be webui.itemlist.columns text
overridden by the specific data type feature. (This setting is not used by the XMLUI as it is controlled by your theme).

Now that we know which field is our author or other multiple metadata value field we can provide the option to truncate the number of values displayed by
default. We replace the remaining list of values with "et al" or the language pack specific alternative. Note that this is just for the default, and users will
have the option of changing the number displayed when they browse the results. See the following table:

Property: webui.browse.author-limit

Example Value: webui.browse.author-limit = < n >

Informational Note: Where < n > is an integer number of values to be displayed. Use -1 for unlimited (the default value).

Links to Other Browse Contexts

We can define which fields link to other browse listings. This is useful, for example, to link an author's name to a list of just that author's items. The effect
this has is to create links to browse views for the item clicked on. If it is a "single" type, it will link to a view of all the items which share that metadata
element in common (i.e. all the papers by a single author). If it is a "full" type, it will link to a view of the standard full browse page, starting with the value of
the link clicked on.

Prop
erty:

webui.browse.link.< >n

Exa
mple
Valu
e:

webui.browse.link.1 = author:dc.contributor.*

Infor
mati
onal
Note:

This is used to configure which fields should link to other browse listings. This should be associated with the name of one of the browse indexes (
) with a metadata field listed in above. If this condition is not fulfilled, cross-linking will webui.browse.index.n webui.itemlist.columns

not work. Note also that crosslinking only works for metadata fields not tagged as in .title webui.itemlist.columns

The format of the property key is Please notice the punctuation used between the webui.browse.link.<n> = <index name>:<display column metadata>
elements.

Element Definition and Options (if available)

webui.browse.link. n {{ is an arbitrary number you choosen

<index name> This need to match your entry for the index name from property key.webui.browse.index

<display column metadata> Use the DC element (and qualifier)

Examples of some browse links used in a real DSpace installation instance:

webui.browse.link.1 = author:dc.contributor.*
Creates a link for all types of contributors (authors, editors,
illustrators, others, etc.)
webui.browse.link.2 = subject:dc.subject.lcsh
Creates a link to subjects that are Library of Congress only.
In this case, you have a browse index that contains only LC
Subject Headings
webui.browse.link.3 = series:dc.relation.ispartofseries
Creates a link for the browse index "Series". Please note this
is again, a customized browse index and not part of the
DSpace distributed release.

Recent Submissions
Since DSpace 4.0 this will apply by default only to JSPUI. XML UI will use a new way to configure the recent submissions that does not rely on the Browse
System. See Discovery

This allows us to define which index to base Recent Submission display on, and how many we should show at any one time. This uses the PluginManager
to automatically load the relevant plugin for the Community and Collection home pages. Values given in examples are the defaults supplied in dspace.cfg

Property: recent.submission.sort-option

Example Value: recent.submission.sort-option = dateaccessioned

Informational Note: Define the sort name (from) to use for displaying recent submissions.webui.browse.sort-options

Property: recent.submissions.count

Example Value: recent.submissions.count = 5

Informational Note: Defines how many recent submissions should be displayed at any one time.

There will be the need to set up the processors that the PluginManager will load to actually perform the recent submissions query on the relevant pages.
This is already configured by default so there should be no need for the administrator/programmer to worry about this.dspace.cfg

plugin.sequence.org.dspace.plugin.CommunityHomeProcessor = \
 org.dspace.app.webui.components.RecentCommunitySubmissions

plugin.sequence.org.dspace.plugin.CollectionHomeProcessor = \
 org.dspace.app.webui.components.RecentCollectionSubmissions

Submission License Substitution Variables

Property:
plugin.named.org.dspace.content.license.
 LicenseArgumentFormatter

(property key broken up for display purposes only)

Example Value:
plugin.named.org.dspace.content.license.LicenseArgumentFormatter = \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = collection, \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = item, \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = eperson

Informational
Note:

It is possible include contextual information in the submission license using substitution variables. The text substitution is driven by a
plugin implementation.

Syndication Feed (RSS) Settings

This will enable syndication feeds‚ links display on community and collection home pages. This setting is not used by the XMLUI, as you enable feeds in
your theme.

https://wiki.lyrasis.org/display/DSDOC5x/Discovery

Pro
pert
y:

webui.feed.enable

Exa
mpl
e
Val
ue:

webui.feed.enable = true

Info
rma
tion
al
Not
e:

By default, RSS feeds are set to true (on) . Change key to "false" to disable.

Pro
pert
y:

webui.feed.items

Exa
mpl
e
Val
ue:

webui.feed.items = 4

Info
rma
tion
al
Not
e:

Defines the number of DSpace items per feed (the most recent submissions)

Pro
pert
y:

webui.feed.cache.size

Exa
mpl
e
Val
ue:

webui.feed.cache.size = 100

Info
rma
tion
al
Not
e:

Defines the maximum number of feeds in memory cache. Value of " " will disable caching.0

Pro
pert
y:

webui.feed.cache.age

Exa
mpl
e
Val
ue:

webui.feed.cache.age = 48

Info
rma
tion
al
Not
e:

Defines the number of hours to keep cached feeds before checking currency. The value of " " will force a check with each request.0

Pro
pert
y:

webui.feed.formats

Exa
mpl
e
Val
ue:

webui.feed.formats = rss_1.0,rss_2.0,atom_1.0

Info
rma
tion
al
Not
e:

Defines which syndication formats to offer. You can use more than one; use a comma-separated list. The following list are the available values:
rss_0.90, rss_0.91, rss_0.92, rss_0.93, rss_0.94, rss_1.0, rss_2.0, atom_1.0.

Pro
pert
y:

webui.feed.localresolve

Exa
mpl
e
Val
ue:

webui.feed.localresolve = false

Info
rma
tion
al
Not
e:

By default, (set to false), URLs returned by the feed will point at the global handle resolver (e.g.). If set to thhttp://hdl.handle.net/123456789/1 true
e local server URLs are used (e.g.).http://myserver.myorg/handle/123456789/1

Pro
pert
y:

webui.feed.item.title

Exa
mpl
e
Val
ue:

webui.feed.item.title = dc.title

Info
rma
tion
al
Not
e:

This property customizes each single-value field displayed in the feed information for each item. Each of the fields takes a metadata field. single
The form of the key is <scheme prefix>.<element>.<qualifier> In place of the qualifier, one may leave it blank to exclude any qualifiers or use the
wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.date

Exa
mpl
e
Val
ue:

webui.feed.item.date = dc.date.issued

Info
rma
tion
al
Not
e:

This property customizes each single-value field displayed in the feed information for each item. Each of the fields takes a metadata field. single
The form of the key is <scheme prefix>.<element>.<qualifier> In place of the qualifier, one may leave it blank to exclude any qualifiers or use the
wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.description

Exa
mpl
e
Val
ue:

webui.feed.item.description = dc.title, dc.contributor.author, \
 dc.contributor.editor, dc.description.abstract, \
 dc.description

Info
rma
tion
al
Not
e:

One can customize the metadata fields to show in the feed for each item's description. Elements are displayed in the order they are specified in ds
.Like other property keys, the format of this property key is: . In pace.cfg webui.feed.item.description = <scheme prefix>.<element>.<qualifier>

place of the qualifier, one may leave it blank to exclude any qualifiers or use the wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.author

http://hdl.handle.net/123456789/1
http://myserver.myorg/handle/123456789/1

Exa
mpl
e
Val
ue:

webui.feed.item.author = dc.contributor.author

Info
rma
tion
al
Not
e:

The name of field to use for authors (Atom only); repeatable.

Pro
pert
y:

webui.feed.logo.url

Exa
mpl
e
Val
ue:

webui.feed.logo.url = ${dspace.url}/themes/mysite/images/mysite-logo.png

Info
rma
tion
al
Not
e:

Customize the image icon included with the site-wide feeds. This must be an absolute URL.

Pro
pert
y:

webui.feed.item.dc.creator

Exa
mpl
e
Val
ue:

webui.feed.item.dc.creator = dc.contributor.author

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.item.dc.date

Exa
mpl
e
Val
ue:

webui.feed.item.dc.date = dc.date.issued

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.item.dc.description

Exa
mpl
e
Val
ue:

webui.feed.item.dc.description = dc.description.abstract

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.podcast.collections

Exa
mpl
e
Val
ue:

webui.feed.podcast.collections = 1811/45183,1811/47223

Info
rma
tion
al
Not
e:

This optional property enables Podcast Support on the RSS feed for the specified collection handles. The podcast is iTunes compatible and will
expose the bitstreams in the items for viewing and download by the podcast reader. Multiple values are separated by commas. For more on using
/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.communities

Exa
mpl
e
Val
ue:

webui.feed.podcast.communities = 1811/47223

Info
rma
tion
al
Not
e:

This optional property enables Podcast Support on the RSS feed for the specified community handles. The podcast is iTunes compatible and will
expose the bitstreams in the items for viewing and download by the podcast reader. Multiple values are separated by commas. For more on using
/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.mimetypes

Exa
mpl
e
Val
ue:

webui.feed.podcast.mimetypes = audio/x-mpeg,application/pdf

Info
rma
tion
al
Not
e:

This optional property for Podcast Support, allows you to choose which MIME types of bitstreams are to be enclosed in the podcast feed. Multiple
values are separated by commas. For more on using/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.sourceuri

Exa
mpl
e
Val
ue:

webui.feed.podcast.sourceuri = dc.source.uri

Info
rma
tion
al
Not
e:

This optional property for the Podcast Support will allow you to use a value for a metadata field as a replacement for actual bitstreams to be
enclosed in the RSS feed. A use case for specifying the external sourceuri would be if you have a non-DSpace media streaming server that has a
copy of your media file that you would prefer to have the media streamed from. For more on using/enabling Media RSS Feeds to share content
via iTunesU, see: Enable Media RSS Feeds

OpenSearch Support

#
#
#
#

OpenSearch is a small set of conventions and documents for describing and using "search engines", meaning any service that returns a set of results for a
query. See extensive description in the of the documentation.Business Layer section

Please note that for result data formatting, OpenSearch uses Syndication Feed Settings (RSS). So, even if Syndication Feeds enable, they are not must
be configured to enable OpenSearch. OpenSearch uses all the configuration properties for DSpace RSS to determine the mapping of metadata fields to
feed fields. Note that a new field for authors has been added (used in Atom format only).

Property: websvc.opensearch.enable

Example
Value:

websvc.opensearch.enable = false

Information
al Note:

Whether or not OpenSearch is enabled. By default, the feature is disabled. Change the property key to "true" to enable.

Property: websvc.opensearch.uicontext

Example
Value:

websvc.opensearch.uicontext = simple-search

Information
al Note:

Context for HTML request URLs. Change only for non-standard servlet mapping.
: If you are using XMLUI and have Discovery enabled, this property's value should be changed to .IMPORTANT discover

Property: websvc.opensearch.svccontext

Example
Value:

websvc.opensearch.svccontext = open-search/

Information
al Note:

Context for RSS/Atom request URLs. Change only for non-standard servlet mapping.
: If you are using XMLUI and have Discovery enabled, this property's value should be changed to open-search/ .IMPORTANT discover

Property: websvc.opensearch.autolink

Example
Value:

websvc.opensearch.autolink = true

Information
al Note:

Present autodiscovery link in every page head.

Property: websvc.opensearch.validity

Example
Value:

websvc.opensearch.validity = 48

Information
al Note:

Number of hours to retain results before recalculating. This applies to the Manakin interface only.

Property: websvc.opensearch.shortname

Example
Value:

websvc.opensearch.shortname = DSpace

Information
al Note:

A short name used in browsers for search service. It should be sixteen (16) or fewer characters.

Property: websvc.opensearch.longname

Example
Value:

websvc.opensearch.longname = ${dspace.name}

Information
al Note:

A longer name up to 48 characters.

Property: websvc.opensearch.description

Example
Value:

websvc.opensearch.description = ${dspace.name} DSpace repository

Information
al Note:

Brief service description

Property: websvc.opensearch.faviconurl

Example
Value:

websvc.opensearch.faviconurl = http://www.dspace.org/images/favicon.ico

Information
al Note:

Location of favicon for service, if any. They must by 16 x 16 pixels. You can provide your own local favicon instead of the default.

http://www.dspace.org/images/favicon.ico_

Property: websvc.opensearch.samplequery

Example
Value:

websvc.opensearch.samplequery = photosynthesis

Information
al Note:

Sample query. This should return results. You can replace the sample query with search terms that should actually yield results in your
repository.

Property: websvc.opensearch.tags

Example
Value:

websc.opensearch.tags = IR DSpace

Information
al Note:

Tags used to describe search service.

Property: websvc.opensearch.formats

Example
Value:

websvc.opensearch.formats = html,atom,rss

Information
al Note:

Result formats offered. Use one or more comma-separated from the list: html, atom, rss. Please note that html is required for auto
discovery in browsers to function, and must be the first in the list if present.

Content Inline Disposition Threshold

The following configuration is used to change the disposition behavior of the browser. That is, when the browser will attempt to open the file or download it
to the user-specified location. For example, the default size is 8MB. When an item being viewed is larger than 8MB, the browser will download the file to
the desktop (or wherever you have it set to download) and the user will have to open it manually.

Property: webui.content_disposition_threshold

Example value: webui.content_disposition_threshold = 8388608

Informational Note: The default value is set to 8MB. This property key applies to the JSPUI interface.

Property: xmlui.content_disposition_threshold

Example Value: xmlui.content_disposition_threshold = 8388608

Informational Note: The default value is set to 8MB. This property key applies to the XMLUI (Manakin) interface.

Other values are possible:
4 MB = 41943048 MB = 838860816 MB = 16777216

Multi-file HTML Document/Site Settings

The setting is used to configure the "depth" of request for html documents bearing the same name.

Pr
op
er
ty:

webui.html.max-depth-guess

E
xa
m
pl
e
V
al
ue:

webui.html.max-depth-guess = 3

Inf
or
m
ati
on
al
N
ot
e:

When serving up composite HTML items in the JSP UI, how deep can the request be for us to serve up a file with the same name? For example, if
one receives a request for " " and one has a bitstream called just " ", DSpace will serve up the former bitstream (foo/bar/index.html index.html foo/bar

) for the request if is 2 or greater. If is 1 or less, then DSpace would not serve /index.html webui.html.max-depth-guess webui.html.max-depth-guess
that bitstream, as the depth of the file is greater. If webui.html.max-depth-guess is zero, the request filename and path must always exactly match
the bitstream name. The default is set to 3.

Pr
op
er
ty:

xmlui.html.max-depth-guess

E
xa
m
pl
e
V
al
ue:

xmlui.html.max-depth-guess = 3

Inf
or
m
ati
on
al
N
ot
e:

When serving up composite HTML items in the XMLUI, how deep can the request be for us to serve up a file with the same name? For example, if
one receives a request for " " and one has a bitstream called just " ", DSpace will serve up the former bitstream (foo/bar/index.html index.html foo/bar

) for the request if is 2 or greater. If is 1 or less, then DSpace would not serve /index.html webui.html.max-depth-guess xmlui.html.max-depth-guess
that bitstream, as the depth of the file is greater. If _webui.html.max-depth-guess _is zero, the request filename and path must always exactly
match the bitstream name. The default is set to 3.

Sitemap Settings

To aid web crawlers index the content within your repository, you can make use of sitemaps.

Pro
per
ty:

sitemap.dir

Ex
am
ple
Val
ue:

sitemap.dir = ${dspace.dir}/sitemaps

Inf
or
ma
tio
nal
Not
e:

The directory where the generate sitemaps are stored.

Pro
per
ty:

sitemap.engineurls

Ex
am
ple
Val
ue:

sitemap.engineurls = http://www.google.com/webmasters/sitemaps/ping?sitemap=

Inf
or
ma
tio
nal
Not
e:

Comma-separated list of search engine URLs to "ping" when a new Sitemap has been created. Include everything except the Sitemap UL itself
(which will be URL-encoded and appended to form the actual URL "pinged").Add the following to the above parameter if you have an application
ID with Yahoo: http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_ . (Replace the component

 with your application ID). There is no known "ping" URL for MSN/Live search._REPLACE_ME

Authority Control Settings

Two features fall under the header of Authority Control: Choice Management and Authority Control of Item ("DC") metadata values. Authority control is a
fully optional feature in DSpace 1.6. Implemented out of the box are the Library of Congress Names service, and the Sherpa Romeo authority plugin.

For an in-depth description of this feature, please consult: Authority Control of Metadata Values

Prop
erty:

plugin.named.org.dspace.content.authority.ChoiceAuthority

http://www.google.com/webmasters/sitemaps/ping?sitemap=_
http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_
#

Exam
ple
Value:

plugin.named.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.SampleAuthority = Sample, \
 org.dspace.content.authority.LCNameAuthority = LCNameAuthority, \
 org.dspace.content.authority.SHERPARoMEOPublisher = SRPublisher, \
 org.dspace.content.authority.SHERPARoMEOJournalTitle = SRJournalTitle

Infor
matio
nal
Note:

--

Prop
erty:

plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority

Exam
ple
Value:

plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.DCInputAuthority

Prop
erty:

lcname.url

Exam
ple
Value:

lcname.url = http://alcme.oclc.org/srw/search/lcnaf_

Infor
matio
nal
Note:

Location (URL) of the Library of Congress Name Service

Prop
erty:

sherpa.romeo.url / sherpa.romeo.apikey

Infor
matio
nal
Note:

Please refers to the Sherpa/RoMEO Publishers Policy Database Integration section for details about such properties. See Configuring the
Sherpa/RoMEO Publishers Policy Database Integration

Prop
erty:

authority.minconfidence

Exam
ple
Value:

authority.minconfidence = ambiguous

Infor
matio
nal
Note:

This sets the default lowest confidence level at which a metadata value is included in an authority-controlled browse (and search) index. It is a
symbolic keyword, one of the following values (listed in descending order): accepted, uncertain, ambiguous, notfound, failed, rejected, novalue,
unset. See source for descriptions.org.dspace.content.authority.Choices

Prop
erty:

xmlui.lookup.select.size

Exam
ple
Value:

xmlui.lookup.select.size = 12

Infor
matio
nal
Note:

This property sets the number of selectable choices in the Choices lookup popup

JSPUI Upload File Settings

To alter these properties for the XMLUI, please consult the Cocoon specific configuration at /WEB-INF/cocoon/properties/core.properties.

Property: upload.temp.dir

Example Value: upload.temp.dir = ${dspace.dir}/upload

Informational Note: This property sets where DSpace temporarily stores uploaded files.

http://alcme.oclc.org/srw/search/lcnaf_

Property: upload.max

Example Value: upload.max = 536870912

Informational Note: Maximum size of uploaded files in bytes. A negative setting will result in no limit being set. The default is set for 512Mb.

JSP Web Interface (JSPUI) Settings

The following section is limited to JSPUI. If the user wishes to use XMLUI settings, please refer to Chapter 7: XMLUI Configuration and Customization.

P
r
o
p
e
rt
y:

webui.itemdisplay.default

E
x
a
m
pl
e
V
al
u
e:

webui.itemdisplay.default = dc.title, dc.title.alternative, \
 dc.contributor.*, dc.subject, dc.data.issued(date), \
 dc.publisher, dc.identifier.citation, \
 dc.relation.ispartofseries, dc.description.abstract, \
 dc.description, dc.identifier.govdoc, \
 dc.identifier.uri(link), dc.identifier.isbn, \
 dc.identifier.issn, dc.identifier.ismn, dc.identifier

In
fo
r
m
at
io
n
al
N
ot
e:

This is used to customize the DC metadata fields that display in the item display (the brief display) when pulling up a record. The format is: <schema
 . In place of the qualifier, one can use the wildcard "*" to include all fields of the same element, or, >.<element>.<_optional_qualifier>

leave it blank for unqualified elements. Additionally, two additional options are available for behavior/rendering: (date) and (link). See the following
examples:

 = Dublin Core element "title" (unqualified)dc.title
 = DC element "title", qualifier "alternative"dc.title.alternative

 = All fields with Dublin Core element 'title' (any or no qualifier)dc.title.*
 = DC identifier.uri, rendered as a linkdc.identifier.uri(link)

 = DC date.issued, rendered as a datedc.date.issued(date)
The file controls how the fields defined above will display to the user. If the field is missing from the Messages.properties Messages.properties
file, it will not be displayed. Look in under the . Example:Messages.properties metadata.dc.<field>

 metadata.dc.contributor.other = Authors
 metadata.dc.contributor.author = Authors

 metadata.dc.title.* = Title
 The order in which you place the values to the property key control the order in which they will display to the user on the outside Please note:

world. (See the Example Value above).

P
r
o
p
e
rt
y:

webui.resolver.1.urn
webui.resolver.1.baseurl
webui.resolver.2.urn
webui.resolver.2.baseurl

E
x
a
m
pl
e
V
al
u
e:

webui.resolver.1.urn = doi
webui.resolver.1.baseurl = http://dx.doi.org/
webui.resolver.2.urn = hdl
webui.resolver.2.baseurl = http://hdl.handle.net/

In
fo
r
m
at
io
n
al
N
ot
e:

When using "resolver" in to render identifiers as resolvable links, the base URL is taken from <code>webui.resolver.<n>.webui.itemdisplay
baseurl<code> where <code>webui.resolver.<n>.baseurl<code> matches the urn specified in the metadata value. The value is appended to the
"baseurl" as is, so the baseurl needs to end with the forward slash almost in any case. If no urn is specified in the value it will be displayed as
simple text. For the doi and hdl urn defaults values are provided, respectively and are used. If a metadata value http://dc.doi.org http://hdl.handle.net
with style "doi", "handle" or "resolver" matches a URL already, it is simply rendered as a link with no other manipulation.

P
r
o
p
e
rt
y:

plugin.single.org.dspace.app.webui.util.StyleSelection

E
x
a
m
pl
e
V
al
u
e:

plugin.single.org.dspace.app.webui.util.StyleSelection = \
 org.dspace.app.web.util.CollectionStyleSelection
 #org.dspace.app.web.util.MetadataStyleSelection

In
fo
r
m
at
io
n
al
N
ot
e:

Specify which strategy to use for select the style for an item.

P
r
o
p
e
rt
y:

webui.itemdisplay.thesis.collections

E
x
a
m
pl
e
V
al
u
e:

webui.itemdisplay.thesis.collections = 123456789/24, 123456789/35

In
fo
r
m
at
io
n
al
N
ot
e:

Specify which collections use which views by Handle.

http://dc.doi.org
http://hdl.handle.net

P
r
o
p
e
rt
y:

webui.itemdisplay.metadata-style
webui.itemdisplay.metadata-style

E
x
a
m
pl
e
V
al
u
e:

webui.itemdisplay.metadata-style = schema.element[.qualifier|.*]
webui.itemdisplay.metadata-style = dc.type

In
fo
r
m
at
io
n
al
N
ot
e:

Specify which metadata to use as name of the style

P
r
o
p
e
rt
y:

webui.itemlist.columns

E
x
a
m
pl
e
V
al
u
e:

webui.itemlist.columns = thumbnail, dc.date.issued(date), dc.title, \
 dc.contributor.*

In
fo
r
m
at
io
n
al
N
ot
e:

Customize the DC fields to use in the item listing page. Elements will be displayed left to right in the order they are specified here. The form is
<schema prefix>.<element>[.<qualifier> | .*][(date)], ...
Although not a requirement, it would make sense to include among the listed fields at least the date and title fields as specified by the webui.

 configuration options in the next section mentioned. (cf.) browse.index
If you have enabled thumbnails (webui.browse.thumbnail.show), you must also include a 'thumbnail' entry in your columns‚ this is where the
thumbnail will be displayed.

P
r
o
p
e
rt
y:

webui.itemlist.width

E
x
a
m
pl
e
V
al
u
e:

webui.itemlist.width = *, 130, 60%, 40%

In
fo
r
m
at
io
n
al
N
ot
e:

You can customize the width of each column with the following line--you can have numbers (pixels) or percentages. For the 'thumbnail' column, a
setting of '*' will use the max width specified for browse thumbnails (cf.)webui.browse.thumbnail.maxwidth, thumbnail.maxwidth

P
r
o
p
e
rt
y:

webui.itemlist.browse.<index name>.sort.<sort name>.columns
webui.itemlist.sort.<sort name>.columns
webui.itemlist.browse.<browse name>.columns
webui.itemlist.<sort or index name>.columns

E
x
a
m
pl
e
V
al
u
e:

In
fo
r
m
at
io
n
al
N
ot
e:

You can override the DC fields used on the listing page for a given browse index and/or sort option. As a sort option or index may be defined on a
field that isn't normally included in the list, this allows you to display the fields that have been indexed/sorted on. There are a number of forms the
configuration can take, and the order in which they are listed below is the priority in which they will be used (so a combination of an index name and
sort name will take precedence over just the browse name).In the last case, a sort option name will always take precedence over a browse index
name. Note also, that for any additional columns you list, you will need to ensure there is an entry in the messages file.itemlist.<field name>

P
r
o
p
e
rt
y:

webui.itemlist.dateaccessioned.columns

E
x
a
m
pl
e
V
al
u
e:

webui.itemlist.dateaccessioned.columns = thumbnail, dc.date.accessioned(date), dc.title, dc.contributor.*

In
fo
r
m
at
io
n
al
N
ot
e:

This would display the date of the accession in place of the issue date whenever the dateaccessioned browsed index or sort option is selected. Just
like , you will need to include a 'thumbnail' entry to display the thumbnails in the item list.webui.itemlist.columns

P
r
o
p
e
rt
y:

webui.itemlist.dateaccessioned.widths

E
x
a
m
pl
e
V
al
u
e:

webui.itemlist.dateaccessioned.widths = *, 130, 60%, 40%

In
fo
r
m
at
io
n
al
N
ot
e:

As in the aforementioned property key, you can customize the width of the columns for each configured column list, substituting " for ".widths" .
 in the property name. See the setting for for more information.columns" webui.itemlist.widths

P
r
o
p
e
rt
y:

webui.itemlist.tablewidth

E
x
a
m
pl
e
V
al
u
e:

webui.itemlist.tablewidth = 100%

In
fo
r
m
at
io
n
al
N
ot
e:

You can also set the overall size of the item list table with the following setting. It can lead to faster table rendering when used with the column
widths above, but not generally recommended.

P
r
o
p
e
rt
y:

webui.session.invalidate

E
x
a
m
pl
e
V
al
u
e:

webui.session.invalidate = true

In
fo
r
m
at
io
n
al
N
ot
e:

Enable or disable session invalidation upon login or logout. This feature is enabled by default to help prevent session hijacking but may cause
problems for shibboleth, etc. If omitted, the default value is " ". [Only used for JSPUI authentication].true

P
r
o
p
e
rt
y:

jspui.google.analytics.key

E
x
a
m
pl
e
V
al
u
e:

UA-XXXXXX-Xjspui.google.analytics.key =

In
fo
r
m
at
io
n
al
N
ot
e:

If you would like to use Google Analytics to track general website statistics then use the following parameter to provide your Analytics key.

JSPUI Configuring Multilingual Support

[i18n – Locales]

Setting the Default Language for the Application

Prope
rty:

default.locale

Exam
ple
Value:

default.locale = en

Infor
matio
nal
Note:

The default language for the application is set with this property key. This is a locale according to i18n and might consist of country,
country_language or country_language_variant. If no default locale is defined, then the server default locale will be used. The format of a local
specifier is described here: http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html

Supporting More Than One Language

Changes in dspace.cfg

Property: webui.supported.locales

Example Value: webui.supported.locales = en, de

or perhaps webui.supported.locales = en, en_ca, de

Informational Note: All the locales that are supported by this instance of DSpace. Comma separated list.

The table above, if needed and is used will result in:

a language switch in the default header
the user will be enabled to choose his/her preferred language, this will be part of his/her profile
wording of emails

mails to registered users, e.g. alerting service will use the preferred language of the user
mails to unregistered users, e.g. suggest an item will use the language of the session

according to the language selected for the session, using dspace-admin Edit News will edit the news file of the language according to session

Related Files

If you set webui.supported.locales make sure that all the related additional files for each language are available. should correspond to the locale LOCALE
set in , e. g.: for webui.supported.locales = en, de, fr, there should be:webui.supported.locales

[dspace-source]/dspace/modules/jspui/src/main/resources/Messages.properties
[dspace-source]/dspace/modules/jspui/src/main/resources/Messages_en.properties
[dspace-source]/dspace/modules/jspui/src/main/resources/Messages_de.properties
[dspace-source]/dspace/modules/jspui/src/main/resources/Messages_fr.properties
Files to be localized:

[dspace-source]/dspace/modules/jspui/src/main/resources/Messages_LOCALE.properties
[dspace-source]/dspace/config/input-forms_LOCALE.xml
[dspace-source]/dspace/config/default_LOCALE.license - should be pure ASCII
[dspace-source]/dspace/config/news-top_LOCALE.html
[dspace-source]/dspace/config/news-side_LOCALE.html
[dspace-source]/dspace/config/emails/change_password_LOCALE
[dspace-source]/dspace/config/emails/feedback_LOCALE
[dspace-source]/dspace/config/emails/internal_error_LOCALE
[dspace-source]/dspace/config/emails/register_LOCALE
[dspace-source]/dspace/config/emails/submit_archive_LOCALE
[dspace-source]/dspace/config/emails/submit_reject_LOCALE
[dspace-source]/dspace/config/emails/submit_task_LOCALE
[dspace-source]/dspace/config/emails/subscription_LOCALE
[dspace-source]/dspace/config/emails/suggest_LOCALE
[dspace]/webapps/jspui/help/collection-admin_LOCALE.html - in html keep the jump link as original; must be
copied to [dspace-source]/dspace/modules/jspui/src/main/webapp/help
[dspace]/webapps/jspui/help/index_LOCALE.html - must be copied to [dspace-source]/dspace/modules/jspui/src
/main/webapp/help
[dspace]/webapps/jspui/help/site-admin_LOCALE.html - must be copied to [dspace-source]/dspace/modules/jspui
/src/main/webapp/help

JSPUI Item Mapper

Because the item mapper requires a primitive implementation of the browse system to be present, we simply need to tell that system which of our indexes
defines the author browse (or equivalent) so that the mapper can list authors' items for mapping

Define the index name (from) to use for displaying items by author.webui.browse.index

Property: itemmap.author.index

Example Value: itemmap.author.index = author

Informational Note: If you change the name of your author browse field, you will also need to update this property key.

Display of Group Membership

Property: webui.mydspace.showgroupmembership

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html

Example Value: webui.mydspace.showgroupmembership = false

Informational Note: To display group membership set to "true". If omitted, the default behavior is false.

JSPUI / XMLUI SFX Server

SFX Server is an OpenURL Resolver.

Property: sfx.server.url

Example Value: sfx.server.url = http://sfx.myu.edu:8888/sfx?

sfx.server.url = http://worldcatlibraries.org/registry/gateway?

Informational Note: SFX query is appended to this URL. If this property is commented out or omitted, SFX support is switched off.

All the parameters mapping are defined in file. The program will check the parameters in and retrieve the correct [dspace]/config/sfx.xml sfx.xml
metadata of the item. It will then parse the string to your resolver.

For the following example, the program will search the first query-pair which is DOI of the item. If there is a DOI for that item, your retrieval results will be,
for example:
http://researchspace.auckland.ac.nz/handle/2292/5763

Example. For setting DOI in sfx.xml

<query-pairs>
 <field>
 <querystring>rft_id=info:doi/</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>doi</dc-qualifier>
 </field>
</query-pairs>

If there is no DOI for that item, it will search next query-pair based on the and then so on.[dspace]/config/sfx.xml

Example of using ISSN, volume, issue for item without DOI
[http://researchspace.auckland.ac.nz/handle/2292/4947]

For parameter passing to the <querystring>

<querystring>rft_id=info:doi/</querystring>

Please refer to these:
 [http://ocoins.info/cobgbook.html]

[http://ocoins.info/cobg.html]

Program assume won't get empty string for the item, as there will at least author, title for the item to pass to the resolver.

For contributor author, program maintains original DSpace SFX function of extracting author's first and last name.

<field>
 <querystring>rft.aulast=</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>contributor</dc-element>
 <dc-qualifier>author</dc-qualifier>
</field>
<field>
 <querystring>rft.aufirst=</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>contributor</dc-element>
 <dc-qualifier>author</dc-qualifier>
</field>

JSPUI Item Recommendation Setting

Property: webui.suggest.enable

http://sfx.myu.edu:8888/sfx
http://worldcatlibraries.org/registry/gateway
http://researchspace.auckland.ac.nz/handle/2292/5763

Example Value: webui.suggest.enable = true

Informational Note: Show a link to the item recommendation page from item display page.

Property: webui.suggest.loggedinusers.only

Example Value: webui.suggest.loggedinusers.only = true

Informational Note: Enable only if the user is logged in. If this key commented out, the default value is false.

Controlled Vocabulary Settings

DSpace now supports controlled vocabularies to confine the set of keywords that users can use while describing items.

Property: webui.controlledvocabulary.enable

Example Value: webui.controlledvocabulary.enable = true

Informational
Note:

Enable or disable the controlled vocabulary add-on. WARNING: This feature is not compatible with WAI (it requires JavaScript to
function).

The need for a limited set of keywords is important since it eliminates the ambiguity of a free description system, consequently simplifying the task of
finding specific items of information.

The controlled vocabulary add-on allows the user to choose from a defined set of keywords organized in an tree (taxonomy) and then use these keywords
to describe items while they are being submitted.

We have also developed a small search engine that displays the classification tree (or taxonomy) allowing the user to select the branches that best
describe the information that he/she seeks.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 </isComposedBy>
 </node>
 </isComposedBy>
</node>

You are free to use any application you want to create your controlled vocabularies. A simple text editor should be enough for small projects. Bigger
projects will require more complex tools. You may use Protegé to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to
transform your documents to the appropriate format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL
or RDF.

In order to make DSpace compatible with WAI 2.0, the add-on is by default (the add-on relies strongly on JavaScript to function). It can be turned off
activated by setting the following property in :dspace.cfg

webui.controlledvocabulary.enable = true

New vocabularies should be placed in and must be according to the structure described. A [dspace]/config/controlled-vocabularies/
validation XML Schema (named) is also available in that directory.controlledvocabulary.xsd

Vocabularies need to be associated with the correspondent DC metadata fields. Edit the file and place a [dspace]/config/input-forms.xml "vocabu
 tag under the element that you want to control. Set value of the element to the name of the file that contains the vocabulary, lary" "field" "vocabulary"

leaving out the extension (the add-on will only load files with extension "*.xml"). For example:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <!-- An input-type of twobox MUST be marked as repeatable -->
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>twobox</input-type>
 <hint> Enter appropriate subject keywords or phrases below. </hint>
 <required></required>
 <vocabulary [closed="false"]>nsi</vocabulary>
</field>

The vocabulary element has an optional boolean attribute that can be used to force input only with the JavaScript of controlled-vocabulary add-on. closed
The default behavior (i.e. without this attribute) is as set . This allow the user also to enter the value in free way.closed="false"

The following vocabularies are currently available by default:

nsi - - The Norwegian Science Indexnsi.xml
srsc - - Swedish Research Subject Categoriessrsc.xml

3. JSPUI Session Invalidation

Property: webui.session.invalidate

Example
Value:

webui.session.invalidate = true

Information
al Note:

Enable or disable session invalidation upon login or logout. This feature is enabled by default to help prevent session hijacking but may
cause problems for shibboleth, etc. If omitted, the default value is 'true'.

XMLUI Specific Configuration

The DSpace digital repository supports two user interfaces: one based upon JSP technologies and the other based upon the Apache Cocoon framework.
This section describes those configurations settings which are specific to the XMLUI interface based upon the Cocoon framework. (Prior to DSpace
Release 1.5.1 XMLUI was referred to Manakin. You may still see references to "Manakin")

Pro
per
ty:

xmlui.force.ssl

Ex
am
ple
Val
ue:

xmlui.force.ssl = true

Inf
or
ma
tion
al
Not
e:

Force all authenticated connections to use SSL, only non-authenticated connections are allowed over plain http. If set to true, then you need to
ensure that the " " parameter is set correctly.dspace.hostname

Pro
per
ty:

xmlui.user.registration

Ex
am
ple
Val
ue:

xmlui.user.registration = true

Inf
or
ma
tion
al
Not
e:

Determine if new users should be allowed to register. This parameter is useful in conjunction with Shibboleth where you want to disallow
registration because Shibboleth will automatically register the user. Default value is true.

Pro
per
ty:

xmlui.user.editmetadata

Ex
am
ple
Val
ue:

xmlui.user.editmetadata = true

Inf
or
ma
tion
al
Not
e:

Determines if users should be able to edit their own metadata. This parameter is useful in conjunction with Shibboleth where you want to disable
the user's ability to edit their metadata because it came from Shibboleth. Default value is true.

Pro
per
ty:

xmlui.session.ipcheck

Ex
am
ple
Val
ue:

xmlui.session.ipcheck = true

Inf
or
ma
tion
al
Not
e:

Check if the user has a consistent ip address from the start of the login process to the end of the login process. Disabling this check is not
recommended unless absolutely necessary as the ip check can be helpful for preventing session hijacking. Possible reasons to set this to false:
many-to-many wireless networks that prevent consistent ip addresses or complex proxying of requests.
The default value is true.

Pro
per
ty:

xmlui.user.loginredirect

Ex
am
ple
Val
ue:

xmlui.user.loginredirect = /profile

Inf
or
ma
tion
al
Not
e:

After a user has logged into the system, which url should they be directed? Leave this parameter blank or undefined to direct users to the
homepage, or for the user's profile, or another reasonable choice is to see if the user has any tasks awaiting their attention. /profile /submissions
The default is the repository home page.

Pro
per
ty:

xmlui.theme.allowoverrides

Ex
am
ple
Val
ue:

xmlui.theme.allowoverrides = false

Inf
or
ma
tion
al
Not
e:

Allow the user to override which theme is used to display a particular page. When submitting a request add the HTTP parameter "themepath"
which corresponds to a particular theme, that specified theme will be used instead of the any other configured theme. Note that this is a potential
security hole allowing execution of unintended code on the server, this option is only for development and debugging it should be turned off for
any production repository. The default value unless otherwise specified is "false".

Pro
per
ty:

xmlui.theme.enableConcatenation

Ex
am
ple
Val
ue:

xmlui.theme.enableConcatenation = false

Inf
or
ma
tion
al
Not
e:

Enabling this property will concatenate CSS, JS and JSON files where possible. CSS files can be concatenated if multiple CSS files with the same
media attribute are used in the same page. Links to the CSS files are automatically referring to the concatenated resulting CSS file. The theme
sitemap should be updated to use the ConcatenationReader for all js, css and json files before enabling this property.

Pro
per
ty:

xmlui.theme.enableMinification

Ex
am
ple
Val
ue:

xmlui.theme.enableMinification = false

Inf
or
ma
tion
al
Not
e:

Enabling this property will minify CSS, JS and JSON files where possible. The theme sitemap should be updated to use the ConcatenationReader
for all js, css and json files before enabling this property.

Pro
per
ty:

xmlui.theme.mirage.item-list.emphasis

Ex
am
ple
Val
ue:

xmlui.theme.mirage.item-list.emphasis = file

Inf
or
ma
tion
al
Not
e:

When set to "file" the item listings in your repository will include the generated thumbnails of uploaded files. Alternatively, you can set this
parameter to metadata to put more emphasis on the metadata and effectively hide the thumbnails.
The default value is "metadata".

Pro
per
ty:

mirage2.item-view.bitstream.href.label.1
mirage2.item-view.bitstream.href.label.2

Ex
am
ple
Val
ue:

mirage2.item-view.bitstream.href.label.1 = label
mirage2.item-view.bitstream.href.label.2 = title

Inf
or
ma
tion
al
Not
e:

Mirage 2 theme ONLY

Determines if the bitstream filename (title) or description (label) is being used as the display label on the hyperlinks to download the actual files.
By default, the file description (label) will be shown. If this value is empty, the filename (title) will be used as a fallback. More information and

.screenshots

Pro
per
ty:

xmlui.bundle.upload

Ex
am
ple
Val
ue:

xmlui.bundle.upload = ORIGINAL, METADATA, THUMBNAIL, LICENSE, CC_LICENSE

https://wiki.lyrasis.org/display/DSDOC5x/Mirage+2+Configuration+and+Customization
https://wiki.lyrasis.org/display/DSDOC5x/Mirage+2+Configuration+and+Customization

Inf
or
ma
tion
al
Not
e:

Determine which bundles administrators and collection administrators may upload into an existing item through the administrative interface. If the
user does not have the appropriate privileges (add and write) on the bundle then that bundle will not be shown to the user as an option.

Pro
per
ty:

xmlui.community-list.render.full

Ex
am
ple
Val
ue:

xmlui.community-list.render.full = true

Inf
or
ma
tion
al
Not
e:

On the community-list page should all the metadata about a community/collection be available to the theme. This parameter defaults to true, but if
you are experiencing performance problems on the community-list page you should experiment with turning this option off.

Pro
per
ty:

xmlui.community-list.cache

Ex
am
ple
Val
ue:

xmlui.community-list.cache = 12 hours

Inf
or
ma
tion
al
Not
e:

Normally, the XMLUI will fully verify any cache pages before using a cache copy. This means that when the community-list page is viewed the
database is queried for each community/collection to see if their metadata has been modified. This can be expensive for repositories with a large
community tree. To help solve this problem you can set the cache to be assumed valued for a specific set of time. The downside of this is that
new or editing communities/collections may not show up the website for a period of time.

Pro
per
ty:

xmlui.bitstream.mods

Ex
am
ple
Val
ue:

xmlui.bitstream.mods = true

Inf
or
ma
tion
al
Not
e:

Optionally, you may configure XMLUI to take advantage of metadata stored as a bitstream. The MODS metadata file must be inside the
"METADATA" bundle and named MODS.xml. If this option is set to 'true' and the bitstream is present then it is made available to the theme for
display.

Pro
per
ty:

xmlui.bitstream.mets

Ex
am
ple
Val
ue:

xmlui.bitstream.mets = true

Inf
or
ma
tion
al
Not
e:

Optionally, you may configure Manakin to take advantage of metadata stored as a bitstream. The METS metadata file must be inside the
"METADATA" bundle and named METS.xml. If this option is set to "true" and the bitstream is present then it is made available to the theme for
display.

Pro
per
ty:

xmlui.google.analytics.key

Ex
am
ple
Val
ue:

xmlui.google.analytics.key = UA-XXXXXX-X

Inf
or
ma
tion
al
Not
e:

If you would like to use Google Analytics to track general website statistics then use the following parameter to provide your analytics key. First
sign up for an account at , then create an entry for your repositories website. Google Analytics will give you a snippet of http://analytics.google.com
javascript code to place on your site, inside that snip it is your Google Analytics key usually found in the line: _uacct = "UA-XXXXXXX-X" Take this
key (just the UA-XXXXXX-X part) and place it here in this parameter.

Pro
per
ty:

xmlui.controlpanel.activity.max

Ex
am
ple
Val
ue:

xmlui.controlpanel.activity.max = 250

Inf
or
ma
tion
al
Not
e:

Assign how many page views will be recorded and displayed in the control panel's activity viewer. The activity tab allows an administrator to
debug problems in a running DSpace by understanding who and how their dspace is currently being used. The default value is 250.

Pro
per
ty:

xmlui.controlpanel.activity.ipheader

Ex
am
ple
Val
ue:

xmlui.controlpanel.activity.ipheader = X-Forward-For

Inf
or
ma
tion
al
Not
e:

Determine where the control panel's activity viewer receives an events IP address from. If your DSpace is in a load balanced environment or
otherwise behind a context-switch then you will need to set the parameter to the HTTP parameter that records the original IP address.

Optional or Advanced Configuration Settings

The following section explains how to configure either optional features or advanced features that are not necessary to make DSpace "out-of-the-box"

The Metadata Format and Bitstream Format Registries

The directory contains three XML files. These are used to load the contents of the Dublin Core Metadata registry and [dspace]/config/registries initial
Bitstream Format registry and SWORD metadata registry. After the initial loading (performed by above), the registries reside in the ant fresh_install
database; the XML files are not updated.

In order to change the registries, you may adjust the XML files before the first installation of DSpace. On an already running instance it is recommended to
change bitstream registries via DSpace admin UI, but the metadata registries can be loaded again at any time from the XML files without difficult. The
changes made via admin UI are not reflected in the XML files.

Metadata Format Registries

The default metadata schema is Dublin Core, so DSpace is distributed with a default Dublin Core Metadata Registry. Currently, the system requires that
every item have a Dublin Core record.

There is a set of Dublin Core Elements, which is used by the system and should not be removed or moved to another schema, see Appendix: Default
Dublin Core Metadata registry.

http://analytics.google.com

1.
2.
3.
4.

Note: altering a Metadata Registry has no effect on corresponding parts, e.g. item submission interface, item display, item import and vice versa. Every
metadata element used in submission interface or item import must be registered before using it.

Note also that deleting a metadata element will delete all its corresponding values.

If you wish to add more metadata elements, you can do this in one of two ways. Via the DSpace admin UI you may define new metadata elements in the
different available schemas. But you may also modify the XML file (or provide an additional one), and re-import the data as follows:

[dspace]/bin/dspace dsrun org.dspace.administer.MetadataImporter -f [xml file]

The XML file should be structured as follows:

<dspace-dc-types>
 <dc-type>
 <schema>dc</schema>
 <element>contributor</element>
 <qualifier>advisor</qualifier>
 <scope_note>Use primarily for thesis advisor.</scope_note>
 </dc-type>
</dspace-dc-types>

Bitstream Format Registry

The bitstream formats recognized by the system and levels of support are similarly stored in the bitstream format registry. This can also be edited at install-
time via or by the administration Web UI. The contents of the bitstream format registry are entirely up to [dspace]/config/registries/bitstream-formats.xml
you, though the system requires that the following two formats are present:

Unknown
License
Deleting a format will cause any existing bitstreams of this format to be reverted to the unknown bitstream format.

XPDF Filter

This is an alternative suite of MediaFilter plugins that offers faster and more reliable text extraction from PDF Bitstreams, as well as thumbnail image
generation. It replaces the built-in default PDF MediaFilter.

If this filter is so much better, why isn't it the default? The answer is that it relies on external executable programs which must be obtained and installed for
your server platform. This would add too much complexity to the installation process, so it left out as an optional "extra" step.

Installation Overview

Here are the steps required to install and configure the filters:

Install the xpdf tools for your platform, from the downloads at http://www.foolabs.com/xpdf
Acquire the Sun Java Advanced Imaging Tools and create a local Maven package.
Edit DSpace configuration properties to add location of xpdf executables, reconfigure MediaFilter plugins.
Build and install DSpace, adding -Pxpdf-mediafilter-support to Maven invocation.

Install XPDF Tools

First, download the XPDF suite found at: and install it on your server. The executables can be located anywhere, but make a http://www.foolabs.com/xpdf
note of the full path to each command.

You may be able to download a binary distribution for your platform, which simplifies installation. Xpdf is readily available for Linux, Solaris, MacOSX,
Windows, NetBSD, HP-UX, AIX, and OpenVMS, and is reported to work on AIX, OS/2, and many other systems.

The only tools you need are:really

pdfinfo - displays properties and Info dict
pdftotext - extracts text from PDF
pdftoppm - images PDF for thumbnails

Fetch and install jai_imageio JAR

Fetch and install the Java Advanced Imaging Image I/O Tools.

For AIX, Sun support has the following: "JAI has native acceleration for the above but it also works in pure Java mode. So as long as you have an
appropriate JDK for AIX (1.3 or later, I believe), you should be able to use it. You can download any of them, extract just the jars, and put those in your
$CLASSPATH."

Download the library version 1.0_01 or 1.1 found at: .jai_imageio https://jai-imageio.dev.java.net/binary-builds.html#Stable_builds

http://www.foolabs.com/xpdf/
http://www.foolabs.com/xpdf/
https://jai-imageio.dev.java.net/binary-builds.html#Stable_builds

For these filters you do NOT have to worry about the native code, just the JAR, so choose a download for any platform.

curl -O http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-lib-linux-i586.tar.gz
tar xzf jai_imageio-1_1-lib-linux-i586.tar.gz

The preceding example leaves the JAR in . Now install it in your local Maven repository, e.g.: (changing the path after jai_imageio-1_1/lib/jai_imageio.jar
 if necessary)file=

mvn install:install-file \
 -Dfile=jai_imageio-1_1/lib/jai_imageio.jar \
 -DgroupId=com.sun.media \
 -DartifactId=jai_imageio \
 -Dversion=1.0_01 \
 -Dpackaging=jar \
 -DgeneratePom=true

You may have to repeat this procedure for the library, as well, if it is not available in any of the public Maven repositories. Once acquired, this jai_core.jar
command installs it locally:

mvn install:install-file -Dfile=jai_core-1.1.2_01.jar \
 -DgroupId=javax.media -DartifactId=jai_core -Dversion=1.1.2_01 -Dpackaging=jar -DgeneratePom=true

Edit DSpace Configuration

First, be sure there is a value for and that it corresponds to the size you want for preview images for the UI, e.g.: (this code thumbnail.maxwidth NOTE:
doesn't pay any attention to but it's best to set it too so the other thumbnail filters make square images.)thumbnail.maxheight

maximum width and height of generated thumbnails
 thumbnail.maxwidth= 80
 thumbnail.maxheight = 80

Now, add the absolute paths to the XPDF tools you installed. In this example they are installed under (a logical place on Linux and MacOSX), /usr/local/bin
but they may be anywhere.

xpdf.path.pdftotext = /usr/local/bin/pdftotext
 xpdf.path.pdftoppm = /usr/local/bin/pdftoppm
 xpdf.path.pdfinfo = /usr/local/bin/pdfinfo

Change the MediaFilter plugin configuration to remove the old and add the new filters, e.g: (New sections are in bold)org.dspace.app.mediafilter.PDFFilter

filter.plugins = \
 PDF Text Extractor, \
 PDF Thumbnail, \
 HTML Text Extractor, \
 Word Text Extractor, \
 JPEG Thumbnail
 plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.XPDF2Text = PDF Text Extractor, \
 org.dspace.app.mediafilter.XPDF2Thumbnail = PDF Thumbnail, \
 org.dspace.app.mediafilter.HTMLFilter = HTML Text Extractor, \
 org.dspace.app.mediafilter.WordFilter = Word Text Extractor, \
 org.dspace.app.mediafilter.JPEGFilter = JPEG Thumbnail, \
 org.dspace.app.mediafilter.BrandedPreviewJPEGFilter = Branded Preview JPEG

Then add the input format configuration properties for each of the new filters, e.g.:

filter.org.dspace.app.mediafilter.XPDF2Thumbnail.inputFormats = Adobe PDF
filter.org.dspace.app.mediafilter.XPDF2Text.inputFormats = Adobe PDF

Finally, if you want PDF thumbnail images, don't forget to add that filter name to the property, e.g.:filter.plugins

1.
2.
3.
4.

1.
2.
3.
4.
5.
6.

filter.plugins = PDF Thumbnail, PDF Text Extractor, ...

Build and Install

Follow your usual DSpace installation/update procedure, only add to the Maven invocation:-Pxpdf-mediafilter-support

mvn -Pxpdf-mediafilter-support package
 ant -Dconfig=\[dspace\]/config/dspace.cfg update

Configuring Usage Instrumentation Plugins

A usage instrumentation plugin is configured as a singleton plugin for the abstract class org.dspace.app.statistics.AbstractUsageEvent.

The Passive Plugin

The Passive plugin is provided as the class org.dspace.app.statistics.PassiveUsageEvent. It absorbs events without effect. Use the Passive plugin when
you have no use for usage event postings. This is the default if no plugin is configured.

The Tab File Logger Plugin

The Tab File Logger plugin is provided as the class org.dspace.app.statistics.UsageEventTabFileLogger. It writes event records to a file in tab-separated
column format. If left unconfigured, an error will be noted in the DSpace log and no file will be produced. To specify the file path, provide an absolute path
as the value for usageEvent.tabFileLogger.file in dspace.cfg.

Property:

webui.submit.upload.required

JSPUI: Per item visual indicators for browse and search results

Visual indicators per item allow users to mark items in browse and search results. This could be useful in many scenarios, some of them follow:

If your repository contains items of different type (articles, book chapters, pictures) you can mark the type of each item using an icon.
If your repository has items with bitstreams but also has items with no bitstream, you could indicate this fact to the users using the visual indicators
If you have applied copyright licences in the bitstreams or items, you could notify users about that in the browse or result list
If you want your users to spot some items out of the list easily or if you want to differentiate some items from the others you could use the visual
indicators

The visual indicators extension has the following specs:

Multiple marks can be added per item (i.e. mark the type of the item and the availability of the bitstreams)
Easy configuration of the strategy of what mark to display in every item
Marks based on images or a generic class (i.e. a glyphicon icon for bootstrap)
Display tooltip when hovering the mark + localization of the tooltip
Easy addtion of new strategies for any type of mark the user desires
Add css styles for the user to configure the position of the marks in the list row

Some theory:

A mark is an instance of the class: .org.dspace.app.itemmarking.ItemMarkingInfo

Each mark can have the following properties:

imageName: a path to the image that will be displayed for the specific mark
classInfo: the css class to be applied in the mark (useful if you do not want to add an image but just an icon from the bootstrap glyph icons)
link: the link to be applied in the mark (optional)
tooltip: the tooltip to be shown when hovering over the mark (optional)

When you need to add a mark in an Item then you need to create a strategy that determined what mark to display per item. Strategy classes need to
implement the interface:

org.dspace.app.itemmarking.ItemMarkingExtractor

Your strategy class just needs to implement the following method from the above Interface:

public ItemMarkingInfo getItemMarkingInfo(Context context, Item item) throws SQLException;

Which is, given an item, return the Mark info to display.

Currently, there are three Strategies included by default:

ItemMarkingMetadataStrategy

This strategy decides the mark to display per item based on a value of a metadata field (i.e. dc:type)

It accepts two properties:

metadataField: the metadata field to be used for searching the value in the form “schema.element.qualifier”
mapping: a Java Map of s to sString ItemMarkingInfo

If the String (key of the map) is found as a value in the metadataField field, then the mark denoted by the value of the map will be displayed.

ItemMarkingCollectionStrategy

This strategy decides the mark to display per item based on the collection this item belongs to.

It accepts one property:

mapping: a Java Map of s to s String ItemMarkingInfo

The String (key of the map) is the collection handle (i.e.: 123456789/1) and if an items belongs to this collection, the mark denoted by the object of
the map will be displayed

ItemMarkingAvailabilityBitStreamStrategy

This strategy decides the mark to display per item based on the availability (exists or not) of a bitstream within the item.

It accepts to properties:

nonAvailableImageName: the image to display for the mark if no bitstreams exist for the item
nonAvailableImageName: the image to display for the mark if at least one bistream exist for the item

Moreover, this strategy add a link in the mark (in case there are bitstreams in the item) to the first bitstream of the item

How to:

In order to enable a mark for the result or browse list you need to change the option:

webui.itemlist.columns

of the file.dspace.cfg

You need to include a ‘mark_[value]’ key in any column order you like. Do not add the brackets and you can replace the “value” with any word has a
meaning for your marking type. You may add multiple marks (i.e.: one in the first column and one at the last)

For example, the following line is a valid option value:

webui.itemlist.columns = mark_type, dc.date.issued(date), dc.title, dc.contributor.*, mark_availability

In the aforementioned case, you just added two marks, one in the first column for the type of the item and one in the last item for the availability.

Now it’s time to declare what “ ” and “ ” means. This is done in the Spring configuration file mark_type mark_availability config/sping/api/item-marking.
, via the dependency injection feature.xml

In this file, for each “ ” key you add in the file, you need to add a Spring bean with mark_[value] dspace.cfg id=org.dspace.app.itemmarking.
The class of this bean must be an implementation of ItemMarkingExtractor.[value]. org.dspace.app.itemmarking.ItemMarkingExtractor.

That’s all!

For our example, we need to declare two beans (one for and one for).“ ”mark_type “ ”mark_availability

<!-- Enable this strategy in order to mark item based on the value of a metadata field -->
<bean class="org.dspace.app.itemmarking.ItemMarkingMetadataStrategy" id="org.dspace.app.itemmarking.
ItemMarkingExtractor.type">
 <property name="metadataField" value="dc.type" />
 <property name="mapping" ref="typeMap"/>
</bean>

<!-- Enable this strategy in order to mark items based on the availability of their bitstreams -->
<bean class="org.dspace.app.itemmarking.ItemMarkingAvailabilityBitstreamStrategy" id="org.dspace.app.
itemmarking.ItemMarkingExtractor.availability">
 <property name="availableImageName" value="image/available.png" />
 <property name="nonAvailableImageName" value="image/nonavailable.png" />
</bean>

For the “ ”, we have declared the strategy to be which means that the value of a metadata field (dc.type in our mark_type ItemMarkingMetadataStrategy
case) will determine the mark of each item. Here is the mapping:

<bean class="java.util.HashMap" id="typeMap">
 <constructor-arg>
 <map>
 <entry>
 <key>
 <value>image</value>
 </key>
 <ref bean="type1MarkingInfo"/>
 </entry>
 <entry>
 <key>
 <value>video</value>
 </key>
 <ref bean="type2MarkingInfo"/>
 </entry>
 </map>
 </constructor-arg>
</bean>

Thus, if the value of field is equal to image the “ ” bean will be used for the marking, if it is equal to video the “ ”dc.type type1MarkingInfo type2MarkingInfo
bean will be used, otherwise, no mark will be displayed.

<bean class="org.dspace.app.itemmarking.ItemMarkingInfo" id="type1MarkingInfo">
 <property name="classInfo" value="glyphicon glyphicon-picture"/>
 <property name="tooltip" value="itemlist.mark.type1MarkingInfo"/>
</bean>
<bean class="org.dspace.app.itemmarking.ItemMarkingInfo" id="type2MarkingInfo">
 <property name="imageName" value="image/type2.png"/>
 <property name="tooltip" value="itemlist.mark.type2MarkingInfo"/>
</bean>

Tooltip property contains the localized key to display.

Keep in mind that the Strategy that you may write can have its own logic on how to create the per item. The only requirement of the ItemMarkingInfo
feature is to add in the Spring configuration file the initial beans one for each mark you have declared in the dspace.cfg file.

Styling:

The title for the column of each mark is titled based on the localized key “ ”, so you just need to add the specific keys in the itemlist.mark_[value]
messages.propertied files.

Moreover, the following CSS styles are applied to the various aspects of the mark:

mark_[value]_th: a style applied to the column header
mark_[value]_tr: a style applied to the each row

Add these classes to the css file and apply any style you like (like centering the text or the image)

Optimized 'Select Collection' Performance

Property: org.dspace.content.Collection.findAuthorizedPerformanceOptimize

Example
Value:

 = trueorg.dspace.content.Collection.findAuthorizedPerformanceOptimize

Informational
Note:

Enable performance optimization for select-collection-step collection query (for example, in the dropdown lists used to select a collection
for item submission).
This option is enabled by default in DSpace 5.0, 5.1, 5.2 but disabled by default in DSpace 5.3 as it can cause problems looking up
Special Groups configured for LDAP and Shibboleth.

Behaviour change

Since DSpace 5.6 Creative Commons licensing is captured in exactly the same way in each UI and some fix has been introduced.

For JSPUI users this mean:

The full (HTML) text of the CC License is not longer stored in a bitstream named "license_txt" in the CC-LICENSE bundle
Previous existent license_txt remain untouched but new item will not receive such bitstream

For XMLUI users:

the RDF version of the CC License is now stored properly without the Creative Commons API XML envelop (

)Jira server for this macro. It may be due to Application Link configuration.

previous RDF license, i.e. the one associated with item created with version less than 5.6 remain untouched

|

 Unable to locate

Jira server for this macro. It may be due to Application Link configuration.

	Configuration Reference

