
1.
2.
3.

1.
a.

i.

b.
c.
d.

2.
a.
b.

Design - Audit Service
This page lays out the considerations and activities surrounding the Fedora 4 Audit Service.

Guiding Principles
Actions
Proposed Requirements

Functional - Write/Import
Role Commitments

Development
Stakeholder

Supplementary Documentation
UCSD

Guiding Principles
Any Fedora4 feature should be available through an API which is an implementation of LDP or an optional extension (ideally an existing standard)
Fedora4 features should favor existing tools over custom code
Fedora4 features should establish integration patterns where an implementation is not a part of the core code

Actions

 Action Owner

1 Define required Audit Service queries Dr. Arif Shaon

2 Perform of vs. (comparative analysis PROV-O PREMIS-RDF Reference: http://dcpapers.dublincore.org/pubs
)/article/view/3709

Nick Ruest

3 Define that should be recorded and supported by the Audit Servicerepository events and event agents Matt Critchlow

Unknown User
(escowles@ucsd.edu)

4 Define capability of the Audit Service REST-API Doron Shalvi

John Doyle

Proposed Requirements
: Legend - Needs refinement, consensus, or removal

Functional - Write/Import

Audit service MUST ensure that all events minimally include the following information
Event Agent

When connecting through a service account, the Agent should use the standard header principal provider to pass the actual
agent information.

Event Date/Time
Event Activity
Event Entity

Audit service MUST be able to include/import events that were performed external to the repository.
External events should be clearly labeled so they can be easily filtered from internal events
Ideally, we would use a system that at the point of digitization, an object is assigned a globally unique identifier. At this point we could
then trigger the CREATE event in a Fedora 4 system, likely a separate one that is only intended to store event data and provide the API
/REST services as well as SPARQL interface for queries. The GUID would then stay with the digital object through its lifecycle which
could be a significant amount of time before it is prepare for digital preservation. This is why we would use a separate Fedora 4 to store
this data and would continue to do so even after ingest into the digital repository.
The problem at hand is simply that our workflow is not to create an immediately ingest digital content into our Hydra repository. We could
configure other systems to store this data and in some cases this is taking place. But this puts us in a position of having some event data
stored in plain text files, some is stored in microsoft excel/access and then some is stored in various SQL instances. So as others have
indicated, we do need the ability to bring in event data that occurred prior to ingest of the object into Fedora.
It could also be possible that we use this separate Fedora 4 as the generator for the GUID making, what seems, like a smooth
integration point between the instance that only handles event data and the instance that handles digital preservation. It also avoids a
potential infinite loop. An event to say that we updated the record effectively updates the record which triggers an event to say we
updated a record, again. For very sensitive materials, the level of event logging we would perform may be just that granular.
The reason behind using a separate system for logging events is a fundamental principle of not having a system audit itself. So using a
separate instance helps to maintain this separation, in my eyes it is separating the prison guards from the inmates, we should not trust

https://wiki.lyrasis.org/display/FF/Audit+Service+Queries
https://wiki.lyrasis.org/display/~a.shaon
https://wiki.lyrasis.org/display/FF/Audit+Service+PROV-O+vs+PREMIS
http://www.w3.org/TR/prov-o/
http://id.loc.gov/ontologies/premis.html
http://dcpapers.dublincore.org/pubs/article/view/3709
http://dcpapers.dublincore.org/pubs/article/view/3709
https://wiki.lyrasis.org/display/~nruest
https://wiki.lyrasis.org/display/FF/Audit+Service+Repository+Events+and+Agents
https://wiki.lyrasis.org/display/~mcritchlow@ucsd.edu
https://wiki.lyrasis.org/display/~escowles@ucsd.edu
https://wiki.lyrasis.org/display/~escowles@ucsd.edu
https://wiki.lyrasis.org/display/FF/Audit+Service+REST+API
https://wiki.lyrasis.org/display/~dshalvi
https://wiki.lyrasis.org/display/~doylejo

2.

b.

c.

d.

i.
ii.

iii.

e.
3.
4.
5.
6.
7.

1.
2.
3.

a.
b.
c.
d.

4.
5.
6.

1.
2.
3.

the inmate to count themselves. But more importantly, we may want to track inmates that are on their way into the system, not just after
their arrival.
One of the primary external use cases at UCSD is the transfer of objects to preservation management systems such as Chronopolis and
Merritt. This will be triggered and performed external to Fedora, but the resulting Event metadata should be captured and linked to each
Object for future querying. The common workflow would be as follows:
1. Query Fedora for all Objects that have been created or modified since the last preservation transfer date.
2. Attach Event metadata to each transferred Object in Fedora that includes: event type (PREMIS Event Types), Date, Agent, and
optional outcome notes.
Examples of external events,

During ingest, audit service should accept audit log of an external application scanning a file for viruses.
During ingest, audit service should accept audit log of an external application validating a file's content against an external
schema, profile, or using domain-specific validation tools.
Periodically, audit service should accept audit log of an external application, or a internal service provided by the repository
itself, verifying a file's checksum.

Audit service should accept audit log of an external application that moves a resource file.
Audit service MUST be able to maintain events for purged resources
Audit service MUST be able to perform with a large number of audit events
Audit service MUST not be able to remove events
Audit service MUST allow events to be stored separately from the repository resources themselves
Audit service MUST import events with RDF triples drawn from the specified ontologies

Functional - Read/Export
Audit service MUST export and answer queries in RDF format
Audit service MUST be able to export all events in the repository
Audit service MUST service queries that vary by:

Single or all resources
Date range
Event type
Agent

Audit service MUST provide a single search endpoint for all repository resource-related events
Audit service MUST provide a SPARQL-Query search endpoint
Audit service MUST be able to limit the number of audit events returned by a query, e.g., the first and most recent fixity check events

Non-Functional
Scale?
Security?
Performance?

Role Commitments

Development

Mohamed Mohideen Abdul Rasheed
Unknown User (escowles@ucsd.edu)

Stakeholder

Matt Critchlow
Nick Ruest
Mark Jordan
Unknown User (westgardja)

Supplementary Documentation

UCSD

Document

DAMS-Events-Agents-Final Version--20120106.docx

Event type controlled value list.pdf

Event Class and Properties

https://wiki.lyrasis.org/display/~mohideen
https://wiki.lyrasis.org/display/~escowles@ucsd.edu
https://wiki.lyrasis.org/display/~mcritchlow@ucsd.edu
https://wiki.lyrasis.org/display/~nruest
https://wiki.lyrasis.org/display/~markj
https://wiki.lyrasis.org/display/~westgardja
https://wiki.lyrasis.org/download/attachments/68060244/DAMS-Events-Agents-Final%20Version--20120106.docx?version=1&modificationDate=1424448997814&api=v2
https://wiki.lyrasis.org/download/attachments/68060244/Event%20type%20controlled%20value%20list.pdf?version=1&modificationDate=1424449033873&api=v2
http://htmlpreview.github.io/?https://github.com/ucsdlib/dams/master/ontology/docs/data-dictionary.html#dams-event

user-stories.pdf

https://wiki.lyrasis.org/download/attachments/68060244/user-stories.pdf?version=1&modificationDate=1424449196822&api=v2

	Design - Audit Service

