APPENDIX H - All About Tuque

Islandora introduces support for a Fedora repository to be connected to and manipulated using the Tuque PHP library. This library can be accessed using
functions included with Islandora, available inside a properly-bootstrapped Drupal environment. It can also be accessed directly outside of an Islandora
environment.

Tuque is an API, written and accessible via PHP, that connects with a Fedora repository and mirrors its functionality. Tuque can be used to work with
objects inside a Fedora repository, accessing their properties, manipulating them, and working with datastreams.

This guide will highlight methods of working with Fedora and Fedora objects using Tuque both by itself and from a Drupal environment.

Variables repeated often in this guide

From here on out, we're going to be repeating the use of a few specific PHP variables after the guide demonstrates how they are instantiated or
constructed:

Variable PHP Class Description
$repository FedoraRepository A PHP object representation of the Fedora repository itself.
$obj ect Fedor ahj ect A generic Fedora object.

$dat astream Fedor aDat astream A generic Fedora object datastream.

Accessing the Fedora Repository

Connecting to Fedora

Tuque or Islandora

$connection = new RepositoryConnection($fedora_url, $usernane, $password)

Islandora Only (via module)

$connection = islandora_get_tuque_connection($user)

Accessing the repository

Tuque or Islandora

/**
* Assuming our $connection has been instantiated as a new RepositoryConnection object.
*/

$api = new Fedor aApi ($connection);

$repository = new Fedor aReposi tory($api, new sinpleCache(););

Islandora only, manually, using the Islandora Tuque wrapper:

| **

* Assunming our $connection has been instantiated as a new RepositoryConnection object.
*
/

nmodul e_l oad_i nclude('inc', 'islandora', 'includes/tuque');
nmodul e_l oad_i nclude('inc', 'islandora', 'includes/tuque_w apper');
$api = new I sl andor aFedor aApi ($connecti on);

$repository = new | sl andor aFedor aReposi tory($api, new Si npl eCache());

Islandora only, automatically, using the Islandora module:

/**
* Assunmi ng $connection has been created via islandora_get_tuque_connection().
*/

$repository = $connecti on->repository;

Islandora only, using the IslandoraFedoraObject wrapper:

/**
* This nmethod tends to be the nost reliable when working with a single object,
* since it builds on the success of the attenpt to | oad that object.

*/
$pid = 'object:pid;
$obj ect = islandora_object _| oad($pi d);

if ($object) {
$repository = $object->repository;

}

From here, all Fedora repository functionality supported by Tuque is available to you through $r eposi t or y. This functionality is described in the rest of
this document.

As of Islandora 7.x, there is a wrapper object, | sl andor aFedor aObj ect , that handles some errors and fires some hooks in includes/tugue.inc. More
error handling is available if one uses the wrapper functions in islandora.module.

Working with existing objects

Loading an object

Method Code On Success On Fail
Tuque or Islandora, from aFedor aRep | $obj ect = $t hi s->repository- Returns aFedor atbj ect loaded from the Throws a 'Not Found'Reposi t o
ository >get Obj ect ($pi d); given $pi d. ryExcepti on.
Islandora only, from anl sl andor aFed @ $obj ect = $this->repository- Returns anl sl andor aFedor aCbj ect loaded = Throws a 'Not Found'Reposi t o
oraRepository >get Obj ect ($pi d); from the given$pi d. ryExcepti on.
Islandora only, using the module itself $obj ect = islandora_object_| oad @ Returns anl sl andor aFedor aCbj ect loaded = Returns FALSE
($pid); from the given$pi d.

Because the third method returns FALSE on failure, you can check if the object loaded correctly using ! $obj ect , e.g.:

$obj ect = islandora_object _| oad($pi d);

if (!$object) {

/**

* Logic for object load failure would go here.

*/

return;
}
/**

* Logic for object |oad success would continue through the rest of the method here.
*/

In the case of the other two methods, t r y to load the object and cat ch the load failure exception, e.g.:

try {

$obj ect = $this->repository->get Cbject ($pid);

}

catch (Exception $e) {

[**

* Logic for object

*/

| **

* Logic for object

*/

load failure would go here.

| oad success woul d continue through the rest of the nmethod here.

Objects loaded via Tuque (either through Islandora or directly) have the following properties and can be manipulated using the following methods:

Properties

Name

creat edDa
te

f or ceUpda
te

id

| abel

| ast Modi f
i edDat e

| ogMessage
nodel s
owner

rel ati ons
hi ps

repository

state

Methods

Name

constructD
at ast r eam
($id,
$control _g
roup)

count ()

del ete()

get Dat astr
ean($dsi d)

get Parents

0

i ngest Dat a
stream

(&S$abstrac
t_datastre

am

Type Description

Fedor aDat e = The object's date of creation.

bool Whether or not Tuque should respect Fedora object locking on this object (FALSE to uphold locking). Defaults to FALSE.

string The PID of the object. When constructing a new object, this can also be set to a namespace instead, to simply use the

next available ID for that namespace.

string The object's label.

Fedor aDat e = When the object was last modified.

string The log message associated with the creation of the object in Fedora.

array An array of content model PIDs (e.g. 'islandora:collectionCModel’) applied to the object.

string The object's owner.

Fedor aRel A Fedor aRel sExt object allowing for working with the object's relationship metadata. This is described in another

sExt section below.

FedoraRep | The Fedor aReposi t ory object this particular object was loaded from. This functions precisely the same as the $r epo

ository si t or ycreated in the "Accessing the repository” section above.

string The object's state (A/I/D).

Description Parameters Return Value
Constructs an empty datastream. Note that this does not ingest | $i d - the PID of the object; $cont r ol _gr oup- the An emptyAbst r act Dat as
a datastream into the object, but merely instantiates one as anA | Fedora control group the datastream will belong to, t r eanobject from the
bst ract Dat ast r eanpbject. Ingesting is done viai ngest Dat | whether Inline (X)ML, (M)anaged Content, (R)edirect, or = given information.
astreant(), described below. (E)xternal Referenced. Defaults to 'M'".

The number of datastreams this object contains. None The number of
datastreams, as ani nt .
Sets the object's state to 'D' (deleted). None None

Gets a datastream from the object based on its DSID. $obj ect | $dsi d - the datastream identifier for the datastream to AnAbst r act Dat ast ream

- >get Dat ast r ean($dsi d) works effectively the same as$ob | be loaded. objeect representing the
ject[$dsid]. datastream that was
gotten, orFALSE on failure.
Gets the IDs of the object's parents using itsi sMenber Of Col | = None An array of PIDs of parent
ecti onand i sMenber Of relationships. objects.
Takes a constructed datastream, with the properties you've Technically takes$abst r act _dat ast r eamas a A Fedor aDat ast r eanobj
given it, and ingests it into the object. This should be the last parameter, but this should be passed to it by reference ect representing the object
thing you do when creating a new datastream. after constructing a datastream withconst r uct Dat ast = that was just ingested.
rean().

purgeDat as | Purges the datastream identified by the given DSID. $dsi d - The datastream identifier of the object. TRUE on success,FALSE on

tream failure.
($dsi d)
refresh() Clears the object cache so that fresh information can be None None

requested from Fedora.

Purging an object

A loaded object can be purged from the repository using:

$reposi tory->pur gelbj ect ($obj ect) ;

Working with datastreams

Datastreams can be accessed from a loaded object like so:

Tuque or Islandora

$dat astream = $obj ect[' DSID];

Islandora Only

$dat ast ream = i sl andor a_dat ast ream | oad($dsi d, $obj ect);

This loads the datastream as a Fedor aDat ast r eamobject. From there, it can be manipulated using the following properties and methods:where $dsi d is
the datastream identifier as a st ri ng, and $obj ect is a loaded Fedora object.

Properties
Name Type Description
checksum string The datastream's base64-encoded checksum.
checksu string The type of checksum for this datastream, either DISABLED, MD5, SHA-1, SHA-256, SHA-384, SHA-512. Defaults to
niType DISABLED.
cont ent string The binary content of the datastream, as a string. Can be used to set the content directly if it is an (I)nternal or (M)
anaged datastream.
aont rol string The control group for this datastream , whether Inline (X)ML, (M)anaged Content, (R)edirect, or (E)xternal Referenced..
oup
created @ FedorabDate The date the datastream was created.
Dat e
forceUp | bool Whether or not Tugue should respect Fedora object locking on this datastream (FALSE to uphold locking). Defaults toFA
date LSE.
f or mat string The format URI of the datastream, if it has one. This is rarely used, but does apply to RELS-EXT.
id string The datastream identifier.
| abel string The datastream label.
location string A combination of the object ID, the DSID, and the DSID version ID.
| ogMess string The log message associated with actions in the Fedora audit datastream.
age

m metype string The datastream's mimetype.

par ent Abstract Fedo @ The object that the datastream was loaded from.
rabj ect

relatio FedoraRel sl nt The relationships that datastream holds internally within the object.
nshi ps

reposit Fedor aReposi | The Fedor aReposi t or y object this particular datastream was loaded from. This functions precisely the same as the$r
ory tory eposi t ory created in the "Accessing the repository" section above.

si ze int The size of the datastream, in bytes. This is only available to ingested datastreams, not ones that have been
constructed as objects but are yet to be ingested.

state string The state of the datastream (A/I/D).
url string The URL of the datastream, if it is a (R)edirected or (E)xternally-referrenced datastream.
version | bool Whether or not the datastream is versionable.
abl e
Methods
Name Description Parameters Return Value
count () The number of revisions in the datastream's history. None An i nt representing the number of
revisions in the datastream history.
get Content () Returns the binary content of the datastream. None A st ri ngrepresenting the contents of
the datastream.
refresh() Clears the object cache so that fresh information can be requested None None

from Fedora.

set Cont ent FronFi | | Sets the content of a datastream from the contents of a local file. $pat h - the path to the None
e($pat h) file to be used.

set Cont ent FronStr | Sets the content of a datastream from ast ri ng. $string - the string to None
ing($string) set the content from.

set Cont ent Fronlr| | Attempts to set the content of a datastream from content downloaded $url -the URL to grab None
($url) using a standatd HTTP request (NOT HTTPS). the data from.

Iterating over all of an object's datastreams

Since they exist on an object as an array, datastreams can be iterated over using standard array iteration methods, e.g.:

foreach ($object as $datastream {
strtoupper ($dat astream >i d);
$dat astream >l abel = "new | abel ";
$dat astream content = $dat astream >get Content ();

}

Example of creating or updating a datastream

$dsid = 'DSID ;

/1 Before we do anything, check if the datastreamexists. |If it does, load it; otherw se construct it.

/'l The easiest way to do this, as opposed to a string of cases or if/then/elses, is the ternary operator, e.g.
/1 $variable = isThisThingTrueO Fal se($thing) ? setToThislfTrue() : setToThislfFalse();

$dat astream = i sset ($obj ect[$dsid]) ? $object[$dsid] : $object->construct Dat ast rean($dsid);

$dat ast r eam >l abel = ' Dat astream Label ';

$dat ast ream >m meType = 'datastrean m netype';

$dat ast ream >set Content FronFi l e(' path/to/file');

/1 There's no harmin doing this if the datastreamis already ingested or if the object is only constructed.
$obj ect - >i ngest Dat ast r ean{ $dat ast rean) ;

/1 1f the object IS only constructed, ingesting it here also ingests the datastream

$reposi tory->i ngest Obj ect ($obj ect) ;

Creating new objects and datastreams

When using Tuque, Fedora objects and datastreams must first be constructed as PHP objects before being ingested into Fedora. Un-ingested, PHP-
constructed Fedora objects and datastreams function nearly identically to their ingested counterparts, as far as Tuque is concerned, with only a few
exceptions noted in the properties and methods tables below.

Constructing and ingesting an object

Constructing and ingesting an object

$obj ect = $repository->construct Object($pid); // $pid may al so be a namespace.
/**

* Here, you can nmani pul ate the constructed object using the properties and nethods descri bed above.
*/
$reposi tory->i ngest Obj ect ($obj ect) ;

Constructing and ingesting a datastream

$dat ast ream = $obj ect - >construct Dat astrean($dsid) // You may al so set the $control _group.
/**

* Here, you can manipul ate the constructed datastream using the properties and nmethods described above.
*/
$obj ect - >i ngest Dat ast rean{ $dsi d, $obj ect);

Accessing an object's relationships

Once an object is loaded, its relationships can be accessed via the object's r el at i onshi ps property:

$rel ati onshi ps = $obj ect->rel ati onshi ps;

From there, the object's relationships can be viewed and manipulated using the following properties and methods:

Properties
Name Type Description
autoCo | bool Whether or not changes to the RELS should be automatically committed. WARNING: Probably don't touch this if
i t you're not absolutely sure what you're doing.

dat ast Abst ract Fedor aDat | The datastream that this relationship is manipulating, if any.

ream astream
Methods
Name Description Parameters Return
Value
add Adds a relationship to the $predi cat e_uri -the namespace of the relationship predicate (if this is to be added via XML, use the ' None
($predicat object. regi st er Nanespace() function described below first);$pr edi cat e - the predicate tag to be added; $
e_uri, obj ect - the object to add the relationship to (not required if this is called using$obj ect -
$predicate >rel ati onshi ps->add()); $t ype - the type of the attribute to add (defaults toRELS_TYPE_URI).
f’BObj ect,
$type)
changeObj e ' Changes the ID referenced in | $i d - the new ID to use. None

ct1D($id) ther df : about attribute.

conmi t Rel a
tionships
($set _auto
_commit)

get

($predi cat
e_uri,
$predi cate

gBobj ect,
$type)

regi sterNa
nespace
($alias,
$uri)

renove
($predi cat
e_uri,
$predi cate

éobj ect,
$type)

Forces the committal of any
relationships cached while the
aut oConmi t property was
set toFALSE (or for whatever
other reason).

Queries an object's
relationships based on the
parameters given. See below
for an example of filtering
relationships using
parameters.

Registers a namespace to be
used by predicate URIs.

Removes a relationship from
the object.

Example of retrieving a filtered relationship

$set _auto_conmi t - determines the state of aut oConmi t after this method is run (defaults to TRUE). = None
$predi cate_uri -the URI to use as the namespace predicate, or NULLfor any predicate (defaults to N | The
ULL);$pr edi cat e - the predicate tag to filter by, or 'NULL' for any tag (defaults toNULL); $obj ect - relationships
the object to filter the relationship by (not required if this is called using$obj ect - >r el at i onshi ps- asanarray.
>get ()); $t ype - what typeRELS_TYPE_XXXattribute the retrieved should be (defaults toRELS_TYPE_ | See the note
URI). below for an
example.

$al i as - the namespace alias;$ur i - the URI to associate with that alias. None
$predi cate_uri -the namespace of the relationship predicate to be removed, or NULL to ignore None
(defaults toNULL); $pr edi cat e - the predicate tag to filter removed results by. or NULL to remove all
(defaults to NULL); $obj ect - the object to add the relationship to (not required if this is called using$ob
ject->rel ationshi ps->renpve()); $t ype - what typeRELS_TYPE_XXXattribute the removed
should be (defaults toRELS_TYPE_URI).

$obj ect _content _npdel s = $obj ect->rel ati onshi ps->get (' info:fedora/fedora-systemdef/nmobdel # , 'hasMdel"');

This would return an array containing only the object's hasModel relationships.

Example of aretrieved relationship array

Array
(
[0]
(
)
[
(
)

=> Array
[predicate] => Array
(
[val ue] => i sMenber O Col | ection
[alias] => fedora
[namespace] => info:fedoral/fedora-system def/rel ations-external #
)
[obj ect] => Array
(
[literal] => FALSE
[val ue] => islandora:sp_basic_i nage_col |l ection
)
=> Array
[predicate] => Array
(
[val ue] => hasModel
[alias] => fedora-nodel
[namespace] => info:fedoralfedora-system def/ nodel #
)
[object] => Array
(
[literal] => FALSE
[val ue] => islandora:sp_basic_image
)

Using the Fedora A and M APIs

Tugque can work with the Fedora repository's "Access" and "Manage" API services in much the same way one would using standard Fedora API requests.
This functionality is mimicked using an instantiated $r eposi t or y's api property.

Note that the methods above provide a much more PHP-friendly way of performing many of the tasks provided by API-A and API-M. They are nonetheless
listed in full below for documentation purposes. When a method in this section and a method above share functionality (e.g. addRel at i onshi p() here
versus $r eposi tory->rel ati onshi ps- >add() above, or | i st Dat ast r eans() here versus f or each ($obj ect as $datastrean) { print_r
($dat astrean); }above),itis always recommended to use the method above, as we cannot predict the composition of the Fedora APIs in the future; if
any Fedora functionality changes or is removed, your code may also lose functionality.

Documentation for the current version of each API can be found at:

® https://wiki.duraspace.org/display/FEDORA37/API-A
® https://wiki.duraspace.org/display/FEDORA37/API-M

Each API exists as a PHP object through Tuque, and can be created using:

$api _a = $repository->api->a; // For an Access API.
$api _m = $repository->api->m // For a Managenment API.

From here, the functionality provided by each APl mimics the functionality provided by the actual Fedora APIs, where the standard Fedora endpoints can
be called as API object methods, e.g.:

$dat astreans = $api _a->l i stDatastreans('islandora:1');

The following methods are available for each type of API:

FedoraApiA
All of these return results described in an array.
Method Description
descri beRepository() Returns repository information.
findObj ects($type, $query, $nmax_results, $display_fields) Finds objects based on the input parameters.
get Dat ast reanDi ssem nati on($pi d, $dsid, $as_of _date_tine, Gets the content of a datastream.
$file)
get Di ssemi nati on($pid, $sdef_pid, $nethod, Gets a dissemination based on the provided method.

$net hod_par anet er s)

get Obj ect Hi st or y($pi d) Gets the history of the specified object.

get Obj ect Profil e($pid, $as_of _date_tine) Gets the Fedora profile of an object.

l'i st Dat astreans($pi d, $as_of _date_tine) Lists an object's datastreams.

i stMethods($pid, $sdef_pid, $as_of _date_tine) Lists the methods that an object can use for dissemination.
resuneFi ndObj ect s($sessi on_t oken) Resumes afi ndCbj ect s() call that returned a resumption token.
user Attributes() Authenticates and provides information about a user's Fedora

attributes.

FedoraApiM

All of these return results described in an array.

https://wiki.duraspace.org/display/FEDORA37/API-A
https://wiki.duraspace.org/display/FEDORA37/API-M

Method

addDat astrean($pi d, $dsid, $type, $file, $parans)

addRel ationshi p($pid, $relationship, $is_literal,
$dat at ype)

export ($pid, $parans)
get Dat ast ream($pi d, $dsid, $parans)
get Dat astreanti st ory($pi d, $dsi d)

get Next Pi d($nanmespace, $nunpi ds)

get Obj ect Xnl ($pi d)

get Rel ati onshi ps($pi d, $rel ationship)
i ngest ($par ams)

nodi f yDat ast ream($pi d, $dsid, $parans)
nodi f yQoj ect ($pi d, $par ans)

pur geDat ast rean($pi d, $dsid, $parans)
pur geCbj ect ($pi d, $l og_nessage)

upl oad($file)

val i date($pi d, $as_of _date_time)

Using the Resource Index

The resource index can be queried from the repository using:

$ri = $repository->ri;

Description

Adds a datastream to the object specified.

Adds a relationship to the object specified.

Exports information about an object.
Returns information about the specified datastream.
Returns the datastream's history information.

Gets a new, unused PID, incrementing Fedora's PID counter for that
namespace.

Returns the object's FOXML.

Returns the object's relationships.

Ingests an object.

Makes specified modifications to an object's datastream.
Makes specified modifications to an object.

Purges the specified datastream.

Purges the specified object.

Uploads a file to the server.

Validates an object.

From there, queries can be made to the resource index. It is generally best to use SPARQL queries for forwards compatibility:

$itqgl _query_results = $ri->itqgl Query($query, $linmt);

$sparql _query_results = $ri->sparql Query($query,

/1 For an i TQL query.

/1l For a SPARQL query.

Methods
Method Description Parameters Return Value
itql Query Executes an iTQL query to $query - astringcontaining the query parameters; $l i mi t - ani nt representing the = An array containing

($query, $linmit) theresource index.

spar gl Query
($query, $linmit) theresource index.

number of hits to return (defaults to -1 for unlimited).

query results.

Executes a SparQL query to $query - a st ri ngcontaining the query parameters; $l i m t - ani nt representing the = An array containing
number of hits to return (defaults to -1 for unlimited).

query results.

	APPENDIX H - All About Tuque

