
Training - Introduction and Feature Tour
These training archives may be out of date, but have been retained and kept available for the community's benefit in reviewing previous sessions.

Current training documentation can be found here: Training

Learning Outcomes
Course Outline

Introduction to Fedora 4
What is a Repository?
Fedora 4 Guiding Principles
Exposing and Connecting Content with Fedora 4

Core Components
Durable Storage

Fixity
Backup and Restore
Export and Import
Versioning
Policy-Driven Storage

Data Modelling
Nodes
Properties
Content Models
Linked Data

User Interface
Administrative Console
Internal Search

External Components
Indexing

Triplestore
External Search

Authorization
Basic Authorization
XACML Authorization

Performance
Transactions
Clustering

Learning Outcomes
Understand the purpose of a repository
Learn what Fedora can do for you
Understand the key capabilities of the software

Course Outline

Introduction to Fedora 4

What is a Repository?

Secure software that stores, preserves, and provides access to digital materials
Supports complex semantic relationships between objects both within and outside the repository
Supports millions of objects, both large and small
Capable of interoperating with other applications and services

Fedora 4 Guiding Principles

Improved performance, enhanced vertical and horizontal scalability
More flexible storage options
Features to accommodate research data management
Better capabilities for participating in the world of linked open data
An improved platform for developers—one that is easier to work with and which will attract a larger core of developers.

Exposing and Connecting Content with Fedora 4

Flexible, extensible object modelling
Atomic objects with semantic connections using standard ontologies
RDF-based metadata using Linked Data
RESTful API with native RDF response format

https://wiki.lyrasis.org/display/FF/Training


Core Components

Durable Storage

One of the core components of Fedora 4 is its long-term storage and preservation capability. A number of features support this capability; they have been 
grouped here under the notion of Durable Storage.

Fixity

Over time, digital objects can become corrupt and unusable by suffering from bit rot and other digital preservation dangers
Fixity checks help preserve digital objects by verifying their integrity using techniques such as checksumming
On content ingest, Fedora can verify a user-provided checksum against the calculated value
A checksum can be recalculated and compared at any time via a REST-API request 

Backup and Restore

A full backup, including all Datastreams as well as a compact serialization of all objects, can be performed at any time
A full restore from a repository backup can be performed at any time

Export and Import

A specific Fedora object, its children objects, and associated Datastreams can be exported
The serialization of the Fedora object is more portable than the compact form found in the backup/restore feature
Exported objects are serialized in a standard JCR/XML format

An exported object or hierarchy of objects can be imported at any time

Versioning

Versions can be created across the entire repository or on particular API calls.
A previous version can be restored via the REST-API.

Policy-Driven Storage

Different types of content can be routed to different back-end stores on ingest
Policies can be written to route content based on properties (e.g. filetype)

Data Modelling

Nodes

Both objects and datastreams are represented as nodes.
Object nodes can have both Objects and Datastreams as children.
The tree structure allows for inheritance of things like security policies.

Properties

Nodes have a number of properties, which are expressed as RDF triples.
The node itself is the implicit subject of each triple.

Properties can be RDF literals (e.g. dc:title) or they can express relationships both internal and external to the repository.
Any number of RDF namespaces can be defined and used.

Content Models

Content can be modelled using Compact Node Definitions (CNDs).
Mixins can be used to define any number of properties. A mixin can be added to a CND to be applied to objects.
An object can inherit properties from any number of mixins; their effects are cumulative.

Linked Data

Fedora 4.0 is compliant with the   spec.LDP 1.0
Metadata can be represented as RDF triples that point to objects outside the repository.
Many possibilities for exposing, importing, sharing resources with other web applications.

User Interface

Administrative Console

Tour of the HTML administrative interface.

Internal Search

http://w3c.github.io/ldp-testsuite/


Internal search can search across all node properties.
It also functions as a limited SPARQL endpoint.

External Components

Indexing

Indexing repository content for external applications can be accomplished by using the JMS Message Consumer web application.
This is just one possible implementation - different message consumer implementations could be written.

The JMS Message Consumer receives JMS messages on repository updates and relays these messages to one or more external applications.
Repository content needs to be assigned the rdf:type property "indexible" in order to be indexed.

Triplestore

An external triplestore can be used to index the RDF triples of content managed by Fedora.
Any triplestore that supports SPARQL-update can be used; Fuseki and Sesame have been tested.

External Search

An external search application can be used to perform more complex search queries on repository content.
Any search application that supports SPARQL-update can be used; Solr has been tested.

Authorization

Authentication (not to be confused with authorization) is assumed to take place in a layer above the application.
The authorization framework provides a plug-in point within the repository that calls out to an optional authorization enforcement module.
Currently, two authorization implementations exist.

Basic Authorization

Basic authorization compares the user's role(s) with an Access Control List (ACL) defined on a Fedora resource.
ACLs can be inherited; if a given node does not have an associated ACL, Fedora will examine parent nodes until it finds one.

XACML Authorization

XACML policies can provide much more complex and granular authorization.
A default policy must be defined for the repository, and each node can override the default with another policy.
A XACML policy referenced by a node will also apply to all the node's children, unless they define their own XACML policies that override the 
parent policy.

Performance

Transactions

Multiple actions can be bundled together into a single repository event (transaction).
Transactions offer performance benefits by cutting down on the number of times data is written to the repository filesystem (which tends to be the 
slowest action).

Clustering

Two or more Fedora instances can be configured to work together in a cluster.
Fedora 4 currently supports clustering for high-availability use cases.

A load balancer can be setup in front of two or more Fedora instances to evenly distribute read requests across each instance.
If one Fedora instance in the cluster goes down, read requests can be directed to the other instance.
Ingests are replicated across all instances in the cluster.


	Training - Introduction and Feature Tour

