
Versioning Performance
OnParentVersion with many descendants

All tests involved creating a single with one or more descendant resources. Versioning had three modes: enabled on all test containers container resource
(TRUE), disabled on all test containers (FALSE), or enabled on the root container and on half of the children (HALF). onParentVersion was set to either
VERSION or COPY (for non-versioned tests this has no effect). Scaling was tested by increasing the number of descendants (100, 1000) and by
increasing the size of the jcr:content property on the descendant (roughly 10kb vs 1mb). Three types of descendant resources were tested: auto-named
children resources with auto-generated intermediate folders (child), named children resources (named), and (DS).binaries

After all the descendants were created and assigned the versionable mixin, when appropriate, a single new version of the root resource was created (New
Version Time). Total time spent creating descendants and enabling versioning on them is recorded as Total Child Creation Time.

Time to create a new version of the root resource

The creation of a new version of the root resource was only a small portion of the overall time spent in setting up each test (~1.6% mean, 7.6% max),
although there was a significant increase in the amount of time required when auto-named children were used as the descendants. Generally, using
COPY mode resulted in a slower new version creation times than VERSION.

Descendant Type # of Descendants Binary size COPY (ms) VERSION (ms)

child 100 10,000 572 616

 1,000,000 1,119 956

 1000 10,000 7,227 7,463

 1,000,000 7,600 7,009

DS 100 10,000 172 75

 1,000,000 222 117

 1000 10,000 1,369 262

 1,000,000 1,925 288

named 100 10,000 432 54

 1,000,000 438 99

 1000 10,000 5,471 247

 1,000,000 4,986 290

Disk Usage

Results for disk usage were not always consistent, particularly for small batches where in some cases the size of the binary store actually decreased after
a test, possibly due to background cleanup processes occurring in Modeshape. Usage was measured by using the du command on the data directory
before and after running the test. Binary content was never duplicated in any of the descendant types or onParentVersion modes tested. For descendants
with larger binary content the increase in disk usage for using any type of versioning over not versioning was small.

Descendant Type Number of descendants Binary size Not Versioned COPY (ms) VERSION (ms)

child 100 10,000 2,880 7,259 7,808

 1,000,000 132,636 136,706 136,629

 1000 10,000 37,094 77,579 77,143

 1,000,000 1,325,440 1,368,764 1,370,260

DS 100 10,000 1,678 3,506 2,658

 1,000,000 102,832 105,066 104,563

 1000 10,000 16,443 33,852 31,444

 1,000,000 1,315,988 1,331,370 1,324,400

https://wiki.lyrasis.org/display/FEDORA40/Glossary
https://wiki.lyrasis.org/display/FEDORA40/Glossary
https://wiki.lyrasis.org/display/FEDORA40/Glossary

named 100 10,000 3,088 6,360 4,472

 1,000,000 132,012 135,294 133,525

 1000 10,000 33,792 63,904 47,862

 1,000,000 1,323,540 1,353,080 1,336,844

Full data results:

https://docs.google.com/spreadsheets/d/1SnFE-mUMEJnFUr3hXvg8UVBhnl4pq05lDTGlGR_VwYw

Multiple versions of the same container
Created a single resource with one binary and then created new versions of the resource:

Performance drop-off was considerably faster when numerous binaries (1000) were added to the root resource prior to creating many new versions of the
resource.

https://docs.google.com/spreadsheets/d/1SnFE-mUMEJnFUr3hXvg8UVBhnl4pq05lDTGlGR_VwYw

Data

https://docs.google.com/spreadsheets/d/1QRieqQTq4LtR5r5AU0LpUPO7_C_ieBNGKU1ezqSrG5M

https://docs.google.com/spreadsheets/d/10B0ZaIrNeb0GYqQsEZszVZinXAVD1qB7xz30xuI_yws

https://docs.google.com/spreadsheets/d/1QRieqQTq4LtR5r5AU0LpUPO7_C_ieBNGKU1ezqSrG5M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/10B0ZaIrNeb0GYqQsEZszVZinXAVD1qB7xz30xuI_yws/edit?usp=sharing

	Versioning Performance

