
XSLT Ingest Example: Make URIs
Make URIs

Start Previous Next

This step produces a pair of XML files that are used to provide unique numbers (UNOs) from which we can construct URIs for the URPs and UROs just
counted. The unique numbers were generated by a Perl utility, developed by the author, called (included in the directory) that uses an nuno example/bin
8 character hexadecimal counter, an Inode number, a Unix user id and a token to ensure uniqueness. The counter is stored in a UNIX file and so can be
protected by UNIX security. The Inode number ensures that if the file is moved or copied the unique number sequence is different from the original
sequence. The UNIX user id is the ID of the utility caller (not the owner of the counter file) this ensures that if there are multiple users of the utility on the
same counter file then each user will obtain sequence different from all other users. The token mentioned above is useful when trying to SPARQL query
for individuals from a specific source. In our case this is ‘EX’ standing for ‘Example’.

The calls to the nuno utility are shown next.

 bin/nuno -t EX- -X -n 11 > EX-URP-UNOs.xml
 bin/nuno -t EX- -X -n 5 > EX-URO-UNOs.xml

An example output file of the first command, EX-URP-UNOs.xml is shown next (the second file is similar).

 <?xml version='1.0'?>
 <Mapping>
 <map n='1' nuno='EX-0203EF6807A00000000'/>
 <map n='2' nuno='EX-0203EF6807A00000001'/>
 <map n='3' nuno='EX-0203EF6807A00000002'/>
 <map n='4' nuno='EX-0203EF6807A00000003'/>
 ...
 </Mapping>

The attribute will be used to select which URI is assigned when creating new s as described in the next section. In our example, the n foaf:Person
following URIs will be assigned to the URPs.

 http://vivo.cornell.edu/individual/EX-0203EF6807A00000000
 http://vivo.cornell.edu/individual/EX-0203EF6807A00000001
 http://vivo.cornell.edu/individual/EX-0203EF6807A00000002
 http://vivo.cornell.edu/individual/EX-0203EF6807A00000003 ...

It is worth noting that your data source may guarantee that a particular data element is always present and is always uniquely associated with a single
. If this is the case, then that element would be appropriate for use as a local name in your URIs provided it also satisfies the URI formation rules. person

Suppose that we had such guarantees in our example in the case of . This would mean that a URI for 'Arthur R. Fuller' (arf72) like that shown next NETID
could be assigned during the Gather step.

 http://vivo.cornell.edu/individual/arf72

Unfortunately we can’t do this since the element might be empty or missing in our source data. While a is uniquely associated with a person NETID NETID
we are not assured by the source that one will always be present in each record. Hence we will still have to create URIs from scratch.

Start Previous Next

https://wiki.lyrasis.org/display/VIVO/A+Generalizable%2C+XSLT+Based+RDF+Ingest+Example
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Count
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Create+New+Persons+and+Organizations
https://wiki.lyrasis.org/display/VIVO/A+Generalizable%2C+XSLT+Based+RDF+Ingest+Example
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Count
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Create+New+Persons+and+Organizations

	XSLT Ingest Example: Make URIs

