
1.

2.

3.

a.

b.

c.

d.

e.

f.

1.

a.

2.

a.

b.

c.

Goals and Approach
Goals
Ability to search across multiple VIVO installations. This means:

harvesting information from several independent installations of VIVO or other software that can produce RDF compatible with the VIVO ontology
in one of 3 (or possibly more) ways

responding to linked open data requests in one of several RDF serializations
note that this may be directly from a VIVO application or from Harvard Profiles
or from another application configured to return RDF

e.g., Iowa's Loki software does not store data natively in RDF but can return it in response to linked data requests
or using D2R ()http://d24q.org
or using tools such as John Fereira's semantic services, although these were designed to deliver data from VIVO to
other applications not configured to consume RDF directly

returning an entire file of RDF from a web-accessible directory (a file with only the statements about the URI requested; it my also be
possible to return one big file containing that URI)
responding to SPARQL query requests from a public SPARQL endpoint

or, if the harvesting tool is provided with credentials, from a private SPARQL endpoint
indexing the information harvested, including the original URI in the source system and a subset of the content associated with that URI in the
source system, to facilitate text-based searching
providing a simple, Google-like search with options to limit in advance by type of result (e.g., people, organizations, publications, events)
providing results that have been relevance ranked across the sources being searched, in contrast to federated searches
providing short snippets of text for each result to aid interpretation
providing faceted display to aid users in filtering results; the two current facets are source institution and the type of result
linking back from each result to the source so that the full scope of the result can be seen in its original context

Search

What features are desired for the search?

What type of search?
What is the goal of the search?

Full text? - yes
"semantic"? - future – the indexing takes advantage of the semantic structure of the VIVO ontology to
include relevant text in the Solr document for each entry, but the search interface does not support
queries that depend directly on the semantic relationships (e.g., find all principal investigators of
grants investigating cancer who have collaborations with researchers on depression)
faceted? - yes, though this could benefit from expansion
Complex queries? - future
For people? - yes
For publications, organizations, etc? - yes, but needs further refinement

Approaches
Make a index to support the desired types of search and have a web site that facilitates user with querying that index. Keep that index up-to-date.

Approach to building the index

For each institution

Get a list of all URIs of interest for that institution
For each URI

Get the linked data RDF for the URI
Build a Solr index "document" using the RDF statements for which that URI is the subject; subsequent
request obtain additional data for related objects based on VIVO's linked data harvesting patterns, that
will add to the index a person's title(s) from their position(s) and other data from their VIVO page (real
or virtual, if from another system) that would normally be indexed with that person in VIVO's internal
search

 what governs the follow-on linked data requests, and do the results from what is TODO:
harvested into a local VIVO search?

Add the document to the Solr index

Notes

http://d24q.org

1.

a.

2.

a.

b.

3.

a.

b.

c.

1.

2.

3.

4.

Same as what is currently in place
Current VIVO does not have a direct way to get institutional URIs; VIVO has the option of differentiating internal from external URIs for any type of
entity, and this could be useful in harvesting only institutional URIs pertaining to the source of the system.
VIVO used to get RDF for each URI, then make subsequent requests as needed

Can investigate new approaches
Policy questions

How much data do we want to get from each resource (e.g. people)
This is the kind of thing that needs to be asked of the institutions
Suggestion to collect these tasks in a spreadsheet

Include time estimates, and outstanding questions
How to determine when external resources have changed

Approach to keeping the index up-to-date

For each institution

Get a list of URIs that have been modified, based on the last modified date for that URI in the source
system's internal VIVO search index

For each URI
Calculate what individuals are affected by this modification
Add to update list

For each URI in update list
Get the linked data RDF for the URI
Build a document using that data
Add the document to the Solr index

Notes

Hope is that the approach is same as building the index, with different input

Alternatives Approaches

 TODO: what other approaches are there?

what use should be made of the institutional internal class, if populated, to limit data harvested to what is part of the institution harvested (note
that we can't rely on this being populated, especially for data not produce by the VIVO software

this may not always be the intended effect – e.g., it may be desirable to harvest funding agencies but not the names of the institutions
listed with educational training

should the data harvested align with what is included in a VIVO internal search, or be much more limited (both by harvesting only certain types
and by doing fewer follow-on queries for data closely related to the individual being harvested

Technology Choices

There are some parts of the technology stack that are suggested by the goal of indexing data from VIVO.
Using HTTP requests for RDF to gather data from the sites is the most direct approach.

Most other options for gathering data from the VIVO sites would need additional coding.
In general we would go with Solr for the search index because of we have experience with it, because of its
documentation, because of it distributed features and because it is mature.
As of 2012 vivosearch.org uses Drupal and solrsearch javascript libraries. The js libraries allow the
development of the search UI with only client side interaction ().https://github.com/evolvingweb/ajax-solr

This choice could be revisited for the multi-site VIVO search project.
In order to scale the process out we were planing to use Hadoop to manage parallel tasks and to run the
indexing jobs on a set VMs setup as Hadoop nodes.

Many approaches to the problem of indexing linked data from VIVO sites would be embarrassingly
paralleled.
Brian Caruso Cornell has worked with RDF indexing to Solr on Hadoop clusters on Eucalyptus clouds.
Consider using a IaaS abstraction layer such as , or . These allow jclouds apache libcloud overmind
developing against an interface which can then target many different cloud service providers. The
primary goal of this would be to avoid lock in to one cloud provider.

Notes

HTTP for retrieving RDF, yes
What is the adoption of SPARQL in the community
It may be nice to demonstrate that a SPARQL endpoint is not needed to enable interesting results
Solr, seems reasonable for now

Considering having Solr in one place versus distributed Solr (master/slaves)

https://github.com/evolvingweb/ajax-solr
http://www.jclouds.org/documentation/gettingstarted/what-is-jclouds/
http://libcloud.apache.org/
https://github.com/tobami/overmind

1.

2.

3.

1.

a.

b.

Web interface: drupal with solrsearch.js
Most work is on clientside with js
This continues to be appealing
We have limited insight into this component
Suggestion to create list of default technologies, criteria, and alternatives

Hadoop is currently reasonable choice
Ruby (blacklight/hydra) or Drupal?

The js pattern allows from minimal reliance on Drupal
Need a mock-up of the UI to inform design of solr index
BootStrap is an interesting js framework to consider
Drupal upgrade cycle can be onerous

Technology Alternatives

We could use a different index software other than Solr.
What would that be?
A database server with full text capabilities?
What are other options?
Are there full text search NoSQL options?

What the the alternatives to Hadoop?
What other ways would sufficient management of multiple tasks?
Could we just do it as multiple java processes or multiple java threads?
OSGi?
Some of the hadoop related systems like hadoop Streaming or Cascade?

Serving the web site could be done with just about any system that allows interaction with Solr.
The solrsearch javascript libraries would allow any system that serves HTML and js to server this.
The options are expansive: httpd, wordpress, movible type, drupal, cold fusion.
If the solrsearch javascript can provide almost all of the interactivity on the client side it might be
desirable for the server side be as simple as possible.
It may even be possible to use static HTML and .js files served by any old web server.

Index Updates

Once an index was created how would it be updated?

Rebuild the whole index?
Get a list of modified individuals from each site and only reindex them?

	Goals and Approach

