
Discovery

1 What is DSpace Discovery
1.1 What is a Sidebar Facet
1.2 What is a Search Filter

2 Discovery Changelist
2.1 DSpace 4.0
2.2 DSpace 3.0
2.3 DSpace 1.8
2.4 DSpace 1.7

3 Enabling Discovery
4 Configuration files
5 General Discovery settings (config/modules/discovery.cfg)
6 Modifying the Discovery User Interface (config/spring/api/discovery.xml)

6.1 Structure Summary
6.2 Default settings
6.3 Search filters & sidebar facets Customization

6.3.1 Hierarchical (taxonomies based) sidebar facets
6.4 Sort option customization for search results
6.5 DiscoveryConfiguration

6.5.1 Configuring lists of sidebarFacets and searchFilters
6.5.2 Configuring and customizing search sort fields
6.5.3 Adding default filter queries (OPTIONAL)
6.5.4 Access Rights Awareness

6.5.4.1 Access Rights Awareness - technical details
6.5.5 Customizing the Recent Submissions display
6.5.6 Customizing hit highlighting & search snippets

6.5.6.1 Hit highlighting technical details
6.5.7 "More like this" configuration

6.5.7.1 "More like this" technical details
6.5.8 "Did you mean" spellcheck aid for search configuration

6.5.8.1 "Did you mean" spellcheck aid for search technical details
7 Discovery Solr Index Maintenance

7.1 Routine Discovery Solr Index Maintenance
8 Advanced Solr Configuration

What is DSpace Discovery

The Discovery Module enables faceted searching & browsing for your repository.

Although these techniques are new in DSpace, they might feel familiar from other platforms like Aquabrowser or Amazon, where facets help you to select
the right product according to facets like price and brand. DSpace Discovery offers very powerful browse and search configurations that were only possible
with code customization in the past.

Watch the DSpace Discovery introduction video

Since DSpace 4.0 Discovery is the default Search and Browse infrastructure for both XMLUI and JSPUI.

What is a Sidebar Facet

From the user perspective, faceted search (also called faceted navigation, guided navigation, or parametric search) breaks up search results into multiple
categories, typically showing counts for each, and allows the user to "drill down" or further restrict their search results based on those facets.

When you have successfully enabled Discovery in your DSpace, you will notice that the different enabled facets are visualized in a "Discover" section in
your sidebar, by default, right below the Browse options.

http://www.youtube.com/v/abRSXTUEwws

In this example, there are 3 Sidebar Facets, Author, Subject and Date Issued. It's important to know that multiple metadata fields can be included in one
facet. For example, the Author facet above includes values from both dc.contributor.author as well as dc.creator.

Another important property of Sidebar Facets is that their contents are automatically updated to the context of the page. On collection homepages or
community homepages it will include information about the items included in that particular collection or community.

What is a Search Filter

In a standard search operation, a user specifies his complete query prior to launching the operation. If the results are not satisfactory, the user starts over
again with a (slightly) altered query.

In a faceted search, a user can modify the list of displayed search results by specifying additional "filters" that will be applied on the list of search results. In
DSpace, a filter is a contain condition applied to specific facets. In the example below, a user started with the search term "health", which yielded 500
results. After applying the filter "public" on the facet "Subject", only 227 results remain. Each time a user selects a sidebar facet it will be added as a filter.
Active filters can be altered or removed in the 'filters' section of the search interface.

Another example: Using the standard search, a user would search for something like [wetland + "dc.author=Mitsch, William J" + dc.subject="water
]. With filtered search, they can start by searching for [], and then filter the results by the other attributes, author and subject.quality" wetland

Discovery Changelist

DSpace 4.0
Starting from DSpace 4.0, Discovery is the default search and browse solution for DSpace.

General improvements:

Browse interfaces now also use Discovery index (rather than the legacy Lucene index)
"Did you means" spell check aid for search

DSpace 3.0
Starting from DSpace 3.0, Discovery is also supported in JSPUI.

General improvements:

Hierarchical facets sidebar facets
Improved & more intuitive user interface
Access Rights Awareness (enabled by default). Access restricted or embargoed content is hidden from anonymous search/browse.
Authority control & variants awareness (are shown separately in a facet if they have different authority ID). All variant forms as homonyms
recognized by the authority framework are indexed. See Authority Framework

XMLUI-only:

Hit highlighting and search snippets support
"More like this" (related items)

Bugfixes and other changes

Auto-complete functionality has been removed in XMLUI from search queries due to performance issues. JSPUI still supports auto-complete
functionality without performance issues.

DSpace 1.8

Configuration moved from dspace.cfg into and config/modules/discovery.cfg config/spring/api/discovery.xml
Individual communities and collections can have their own Discovery configuration.
Tokenization for Auto-complete values (see SearchFilter)
Alphanumeric sorting for Sidebarfacets
Possibility to avoid indexation of specific metadata fields.
Grouping of multiple metadata fields under the same SidebarFacet

DSpace 1.7

Sidebar browse facets that can be configured to use contents from any metadata field
Dynamically generated timespans for dates

Customizable "recent submissions" view on the repository homepage, collection and community pages
Hit highlighting & search snippets

Enabling Discovery

Because Discovery was adopted as the default infrastructure for search and browse in DSpace 4, no manual steps are required to enable Discovery. If you
want to enable Discovery on older versions of DSpace, please refer to the DSpace documentation for that particular version.

Configuration files

The configuration for discovery is located in 2 separate files.

General settings: The file located in the .discovery.cfg [dspace-install-dir]/config/modules directory
User Interface Configuration: The file is located in directory.discovery.xml [dspace-install-dir]/config/spring/api/

General Discovery settings ()config/modules/discovery.cfg

The file is located in the directory and contains following properties:discovery.cfg [dspace-install-dir]/config/modules

Pr
op
ert
y:

search.server

Ex
am
ple
Val
ue:

search.server=[http://localhost:8080/solr/search]

https://wiki.lyrasis.org/display/DSDOC4x/Configuration+Reference#ConfigurationReference-AuthorityControlSettings

Inf
or
ma
tio
nal
No
te:

Discovery relies on a Solr index for storage and retrieval of its information. This parameter determines the location of the Solr index.

Pr
op
ert
y:

index.ignore

Ex
am
ple
Val
ue:

index.ignore=dc.description.provenance,dc.language

Inf
or
ma
tio
nal
No
te:

By default, Discovery will include all of the DSpace metadata in its search index. In cases where specific metadata is confidential, repository
managers can include those fields by adding them to this comma separated list.

Pr
op
ert
y:

index.authority.ignore[.field]

Ex
am
ple
Val
ue:

index.authority.ignore=true

index.authority.ignore.dc.contributor.author=false

Inf
or
ma
tio
nal
No
te:

By default, Discovery will use the authority information in the metadata to disambiguate homonyms. Setting this property to false will make the
doesn't include authority information. The configuration can be different on a field (<schema>.indexing process the same as the metadata

<element>.<qualifier>) basis, the property without field set the default value.

Pr
op
ert
y:

index.authority.ignore-prefered[.field]

Ex
am
ple
Val
ue:

index.authority.ignore-prefered=true

index.authority.ignore-prefered.dc.contributor.author=false

Inf
or
ma
tio
nal
No
te:

By default, Discovery will use the authority information in the metadata to query the authority for the prefered label. Setting this property to false
doesn't include authority information (i.e. the prefered form is the one recorded in the will make the indexing process the same as the metadata

metadata value). The configuration can be different on a field (<schema>.<element>.<qualifier>) basis, the property without field set the default
value. If the authority is a remote service, disabling this feature can greatly improve performance.

Pr
op
ert
y:

index.authority.ignore-variants[.field]

Ex
am
ple
 V
alu
e:

index.authority.ignore-variants=true

index.authority.ignore-variants.dc.contributor.author=false

Inf
or
ma
tio
nal
No
te:

By default, Discovery will use the authority information in the metadata to query the authority for variants. Setting this property to false will make
doesn't include authority information. The configuration can be different on a per-field the indexing process the same, as the metadata

(<schema>.<element>.<qualifier>) basis, the property without field set the default value. If authority is a remote service, disabling this feature
can greatly improve performance.

Modifying the Discovery User Interface ()config/spring/api/discovery.xml

The file is located in the directory.discovery.xml [dspace-install-dir]/config/spring/api

Structure Summary

This file is in XML format, you should be familiar with XML before editing this file. The configurations are organized together in beans, depending on the
purpose these properties are used for.
This purpose can be derived from the class of the beans. Here's a short summary of classes you will encounter throughout the file and what the
corresponding properties in the bean are used for.

Download the configuration file and review it together with the following parameters

Class: DiscoveryConfigurationService

Purpose: Defines the mapping between separate Discovery configurations and individual collections/communities

Default: All communities, collections and the homepage (key=default) are mapped to defaultConfiguration

Class: DiscoveryConfiguration

Purpose: Groups configurations for sidebar facets, search filters, search sort options and recent submissions

Default: There is one configuration by default called defaultConfiguration

Class: DiscoverySearchFilter

Purpose: Defines that specific metadata fields should be enabled as a search filter

Default: dc.title, dc.contributor.author, dc.creator, dc.subject.* and dc.date.issued are defined as search filters

Class: DiscoverySearchFilterFacet

Purpose: Defines which metadata fields should be offered as a contextual sidebar browse options, each of these facets has also got to be a search
filter

Default: dc.contributor.author, dc.creator, dc.subject.* and dc.date.issued

Class: HierarchicalSidebarFacetConfiguration

Purpose: Defines which metadata fields contain hierarchical data and should be offered as a contextual sidebar option

Class: DiscoverySortConfiguration

Purpose: Further specifies the sort options to which a DiscoveryConfiguration refers

Default: dc.title and dc.date.issued are defined as alternatives for sorting, other than Relevance (hard-coded)

Class: DiscoveryHitHighlightingConfiguration

Purpose: Defines which metadata fields can contain hit highlighting & search snippets

Default: dc.title, dc.contributor.author, dc.subject, dc.description.abstract & full text from text files.

Default settings

In addition to the summarized descriptions of the default values, following details help you to better understand these defaults. If you haven't already done
so, .download the configuration file and review it together with the following parameters
The file contains one default configuration that defines following sidebar facets, search filters, sort fields and recent submissions display:

Sidebar facets
searchFilterAuthor: groups the metadata fields dc.contributor.author & dc.creator with a facet limit of 10, sorted by occurrence count
searchFilterSubject: groups all subject metadata fields (dc.subject.*) with a facet limit of 10, sorted by occurrence count
searchFilterIssued: contains the dc.date.issued metadata field, which is identified with the type "date" and sorted by specific date values

Search filters
searchFilterTitle: contains the dc.title metadata field
searchFilterAuthor: contains the dc.contributor.author & dc.creator metadata fields

https://wiki.lyrasis.org/download/attachments/34640847/discovery.xml?version=1&modificationDate=1349553945667&api=v2
https://wiki.lyrasis.org/download/attachments/34640847/discovery.xml?version=1&modificationDate=1349553945667&api=v2

searchFilterSubject: contains the dc.subject.* metadata fields
searchFilterIssued: contains the dc.date.issued metadata field with the type "date"

Sort fields
sortTitle: contains the dc.title metadata field
sortDateIssued: contains the dc.date.issued metadata field, this sort has the type date configured.

defaultFilterQueries
The default configuration contains no defaultFilterQueries
The default filter queries are disabled by default but there is an example in the default configuration in comments which allows discovery
to only return items (as opposed to also communities/collections).

Recent Submissions
The recent submissions are sorted by dc.date. accessioned which is a date and a maximum number of 5 recent submissions are
displayed.

Hit highlighting
The fields dc.title, dc.contributor.author & dc.subject can contain hit highlighting.
The dc.description.abstract & full text field are used to render search snippets.

Many of the properties contain lists that use references to point to the configuration elements. This way a certain configuration type can be used in multiple
discovery configurations so there is no need to duplicate them.

Search filters & sidebar facets Customization

This section explains the properties for search filters & sidebar facets. Each sidebar facet must occur in the reference list of the search filters. Below is an
example configuration of a search filter that is not used as a sidebar facet.

<bean id="searchFilterTitle" class="org.dspace.discovery.configuration.DiscoverySearchFilter">
 <property name="indexFieldName" value="title"/>
 <property name="metadataFields">
 <list>
 <value>dc.title</value>
 </list>
 </property>
</bean>

The id & class attributes are mandatory for this type of bean. The properties that it contains are discussed below.

indexFieldName (Required) A unique search filter name, the metadata will be indexed in Solr under this field name.:
metadataFields (Required): A list of the metadata fields that need to be included in the facet.

Sidebar facets extend the search filter and add some extra properties to it, below is an example of a search filter that is also used as a sidebar facet.

<bean id="searchFilterAuthor" class="org.dspace.discovery.configuration.SidebarFacetConfiguration">
 <property name="indexFieldName" value="author"/>
 <property name="metadataFields">
 <list>
 <value>dc.contributor.author</value>
 <value>dc.creator</value>
 </list>
 </property>
 <property name="facetLimit" value="10"/>
 <property name="sortOrder" value="COUNT"/>
 <property name="type" value="text"/>
 </bean>

Note that the class has changed from to this is needed to support the extra properties.DiscoverySearchFilter SidebarFacetConfiguration

facetLimit (optional) The maximum number of values to be shown. This property is optional, if none is specified the default value "10" will be :
used. If the filter has the type , this property will not be used since dates are automatically grouped together.date
sortOrder (optional) The sort order for the sidebar facets, it can either be COUNT or VALUE. The default value is COUNT.:

COUNT Facets will be sorted by the amount of times they appear in the repository
VALUE Facets will be sorted alphabetically

type(optional): the type of the sidebar facet it can either be "date" or "text", "text" is the default value.
text: The facets will be treated as is
date: Only the year will be stored in the Solr index. These years are automatically displayed in ranges that get smaller when you select
one.

Hierarchical (taxonomies based) sidebar facets

Discovery supports specialized drill down in hierarchically structured metadata fields. For this drill down to work, the metadata in the field for which you
enable this must be composed out of terms, divided by a splitter. For example, you could have a dc.subject.taxonomy field in which you keep metadata like
"CARTOGRAPHY::PHOTOGRAMMETRY", in which Cartography and Photogrammetry are both terms, divided by the splitter "::". The sidebar will only
display the top level facets, when clicking on view more all the facet options will be displayed.

<bean id="searchFilterSubject" class="org.dspace.discovery.configuration.HierarchicalSidebarFacetConfiguration">
 <property name="indexFieldName" value="subject"/>
 <property name="metadataFields">
 <list>
 <value>dc.subject</value>
 </list>
 </property>
 <property name="sortOrder" value="COUNT"/>
 <property name="splitter" value="::"/>
 <property name="skipFirstNodeLevel" value="false"/>
</bean>

Note that the class has changed from to this is needed to support the extra SidebarFacetConfiguration HierarchicalSidebarFacetConfiguration
properties.

splitter (required) The splitter used to split up the separate nodes:
skipFirstNodeLevel (optional) Whether or not to show the root node level. For some hierarchical data there is a single root node. In most cases :
it doesn't need to be shown since it isn't relevant. This property is true by default.

Sort option customization for search results

This section explains the properties of an individual SortConfiguration, like sortTitle and sortDateIssued from the default configuration. In order to create
custom sort options, you can either modify specific properties of those that already exist or create a totally new one from scratch.

Here's what the sortTitle SortConfiguration looks like:

<bean id="sortTitle" class="org.dspace.discovery.configuration.DiscoverySortFieldConfiguration">
 <property name="metadataField" value="dc.title"/>
 <property name="type" value="text"/>
 </bean>

The id & class attributes are mandatory for this type of bean. The properties that it contains are discussed below.

metadataField (Required): The metadata field indicating the sort values
type (optional): the type of the sort option can either be date or text, if none is defined text will be used.

DiscoveryConfiguration

The DiscoveryConfiguration Groups configurations for sidebar facets, search filters, search sort options and recent submissions. If you want to show the
same sidebar facets, use the same search filters, search options and recent submissions everywhere in your repository, you will only need one
DiscoveryConfiguration and you might as well just edit the defaultConfiguration.

The DiscoveryConfiguration makes it very easy to use custom sidebar facets, search filters, ... on specific communities or collection homepage. This is
particularly useful if your collections are heterogeneous. For example, in a collection with conference papers, you might want to offer a sidebar facet for
conference date, which might be more relevant than the actual issued date of the proceedings. In a collection with papers, you might want to offer a facet
for funding bodies or publisher, while these fields are irrelevant for items like learning objects.

A DiscoveryConfiguration consists out of five parts

The list of applicable sidebarFacets
The list of applicable searchFilters
The list of applicable searchSortFields
Any default filter queries (optional)
The configuration for the Recent submissions display

Configuring lists of sidebarFacets and searchFilters
After modifying sidebarFacets and searchFilters, don't forget to reindex existing items by running [dspace]/bin/dspace index-discovery , -b
otherwise the changes will not appear.

Below is an example of how one of these lists can be configured. It's important that each of the bean references corresponds to the exact name of the
earlier defined facets, filters or sort options.

Each sidebar facet must also occur in the list of the search filters.

<property name="sidebarFacets">
 <list>
 <ref bean="sidebarFacetAuthor" />
 <ref bean="sidebarFacetSubject" />
 <ref bean="sidebarFacetDateIssued" />
 </list>
</property>

Configuring and customizing search sort fields

The search sort field configuration block contains the available sort fields and the possibility to configure a default sort field and sort order.
Below is an example of the sort configuration.

<property name="searchSortConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoverySortConfiguration">
 <!--<property name="defaultSort" ref="sortDateIssued"/>-->
 <!--DefaultSortOrder can either be desc or asc (desc is default)-->
 <property name="defaultSortOrder" value="desc"/>
 <property name="sortFields">
 <list>
 <ref bean="sortTitle" />
 <ref bean="sortDateIssued" />
 </list>
 </property>
 </bean>
</property>

The property name & the bean class are mandatory. The property field names are discusses below.

defaultSort (optional): The default field on which the search results will be sorted, this must be a reference to an existing search sort field bean. If
none is given relevance will be the default. Sorting according to the internal relevance algorithm is always available, even though it's not explicitly
mentioned in the sortFields section.
defaultSortOrder (optional): The default sort order can either be asc or desc.
sortFields (mandatory): The list of available sort options, each element in this list must link to an existing sort field configuration bean.

Adding default filter queries (OPTIONAL)

Default filter queries are applied on all search operations & sidebarfacet clicks. One useful application of default filter queries is ensuring that all returned
results are items. As a result, subcommunities and collections that are returned as results of the search operation, are filtered out.
Similar to the lists above, the default filter queries are defined as a list. They are optional.

<property name="defaultFilterQueries">
 <list>
 <value>query1</value>
 <value>query2</value>
 </list>
</property>

This property contains a simple list which in turn contains the queries. Some examples of possible queries:

search.resourcetype:2
dc.subject:test
dc.contributor.author: "Van de Velde, Kevin"
...

Access Rights Awareness

By default, when searching and browsing using Discovery, you will only see items that you have access to. So, your search/browse results may differ if
you are logged into DSpace. This Access Rights Awareness feature ensures that anonymous users (and search engines) are not able to access
information (both files and metadata) about embargoed or private items. It also provides you with more direct control over who can see individual items
within your DSpace.

How does Access Rights Awareness work?

Access Rights Awareness checks the "READ" access on the Item.

If the "Anonymous" group has "READ" access on the Item, then anonymous/public users will be able to view that Item's metadata and locate that Item via
DSpace's search/browse system. In addition, search engines will also be able to index that Item's metadata. However, even with Anonymous READ set at
the Item-level, you may still choose to access-restrict the downloading/viewing of within the Item. To do so, you would restrict "READ" access on files
individual Bitstream(s) attached to the Item.

If the "Anonymous" group does NOT have "READ" access on the Item, then anonymous users will never see that Item appear within their search/browse
results (essentially the Item is "invisible" to them). In addition, that Item will be invisible to search engines, so it will never be indexed by them. However,
any users who have been given READ access will be able to find/locate the item after logging into DSpace. For example, if a "Staff" group was provided
"READ" access on the Item, then members of that "Staff" group would be able to locate the item via search/browse after logging into DSpace.

How can I disable Access Rights Awareness?

If you prefer to allow all access-restricted or embargoed Items to be findable within your DSpace, you can choose to turn off Access Rights
Awareness. However, please be aware that this means that restricting "READ" access on an Item will not really do anything – the Item metadata will be
available to the public no matter what group(s) were given READ access on that Item.

This feature can be switched off by going to the file & commenting out the bean & the alias [dspace.dir]/config/spring/api/discovery.xml
shown below.

<bean class="org.dspace.discovery.SolrServiceResourceRestrictionPlugin" id="solrServiceResourceIndexPlugin"/>

<alias name="solrServiceResourceIndexPlugin" alias="org.dspace.discovery.SolrServiceResourceRestrictionPlugin"/>

The Browse Engine only supports the "Access Rights Awareness" if the Solr/Discovery backend is enabled (see). Defining the Storage of the Browse Data
However, it is enabled by default for DSpace 3.x and above.

Access Rights Awareness - technical details

The class has an method which will be triggered each time an authorization policy changes. This method is only DSpaceObject updateLastModified()
implemented in the item class where the last_modified timestamp will be updated and a modify event will be fired. By doing this we ensure that the
discovery consumer is called and the item is reindexed. Since this feature can be switched off a separate plugin has been created: the SolrServiceResourc

 Whenever we reindex a DSpace object all the read rights will be stored in the read field. We make a distinction between groups and eRestrictionPlugin.
users by adding a ' prefix for groups and the ' prefix for epersons.g' e'

When searching in discovery all the groups the user belongs to will be added as a filter query as well as the users identifier. If the user is an admin all
items will be returned since an admin has read rights on everything.

Customizing the Recent Submissions display
This paragraph only applies to XMLUI. JSPUI relies on the Browse Engine to show "recent submissions". This requires that the Solr/Discovery backend is
enabled (see).Defining the Storage of the Browse Data

The recent submissions configuration element contains all the configuration settings to display the list of recently submitted items on the home page or
community/collection page. Because the recent submission configuration is in the discovery configuration block, it is possible to show 10 recently
submitted items on the home page but 5 on the community/collection pages.

Below is an example configuration of the recent submissions.

<property name="recentSubmissionConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryRecentSubmissionsConfiguration">
 <property name="metadataSortField" value="dc.date.accessioned"/>
 <property name="type" value="date"/>
 <property name="max" value="5"/>
 </bean>
</property>

The property name & the bean class are mandatory. The property field names are discusses below.

metadataSortField (mandatory): The metadata field to sort on to retrieve the recent submissions
max (mandatory): The maximum number of results to be displayed as recent submissions
type (optional): the type of the search filter. It can either be date or text, if none is defined text will be used.

Customizing hit highlighting & search snippets
This paragraph only applies to XMLUI. JSPUI does not currently support "highlighting & search snippets".

The hit highlighting configuration element contains all settings necessary to display search snippets & enable hit highlighting.

Changes made to the configuration will not automatically be displayed in the user interface. By default, only the following fields are displayed: dc.title, dc.
contributor.author, dc.creator, dc.contributor, dc.date.issued, dc.publisher, dc.description.abstract and fulltext.

If additional fields are required, look for the "itemSummaryList" template.

Below is an example configuration of hit highlighting.

https://wiki.lyrasis.org/display/DSDOC4x/Configuration+Reference#ConfigurationReference-DefiningthestorageoftheBrowseData
https://wiki.lyrasis.org/display/DSDOC4x/Configuration+Reference#ConfigurationReference-DefiningthestorageoftheBrowseData

<property name="hitHighlightingConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightingConfiguration">
 <property name="metadataFields">
 <list>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.title"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.contributor.author"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.subject"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.description.abstract"/>
 <property name="maxSize" value="250"/>
 <property name="snippets" value="2"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="fulltext"/>
 <property name="maxSize" value="250"/>
 <property name="snippets" value="2"/>
 </bean>
 </list>
 </property>
 </bean>
</property>

The property name & the bean class are mandatory. The property field names are:

field (mandatory) The metadata field to be highlighted (can also be if all the metadata fields should be highlighted).: *
maxSize (optional): Limit the number of characters displayed to only the relevant part (use metadata field as search snippet).
snippets (optional) The maximum number of snippets that can be found in one metadata field.:

Hit highlighting technical details

The object has a setter & getter for the hit highlighting configuration set in Discovery configuration. If this org.dspace.discovery.DiscoveryQuery
configuration is given the method located in the class will use the standard Solr highlighting resolveToSolrQuery org.dspace.discovery.SolrServiceImpl
feature (). The class has a method to set the highlighted fields for http://wiki.apache.org/solr/HighlightingParameters org.dspace.discovery.DiscoverResult
each object & field.

The rendering of search results is no longer handled by the METS format but uses a special type of list named "TYPE_DSO_LIST". Each metadata field (&
fulltext if configured) is added in the DRI and IF the field contains hit higlighting the Java code will split up the string & add to the list. The DRI highlights
XSL for the themes also contains special rendering XSL for the DRI; for Mirage, the changes are located in the file. For themes using the old discovery.xsl
themes based on structural.xsl, look for the template matching " .dri:list[@type='dsolist']"

"More like this" configuration
This paragraph only apply to XMLUI. The JSPUI does not currently support the "More like this" feature.

The "more like this"-configuration element contains all the settings for displaying related items on an item display page.
Below is an example of the "more like this" configuration.

http://wiki.apache.org/solr/HighlightingParameters

<property name="moreLikeThisConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryMoreLikeThisConfiguration">
 <property name="similarityMetadataFields">
 <list>
 <value>dc.title</value>
 <value>dc.contributor.author</value>
 <value>dc.creator</value>
 <value>dc.subject</value>
 </list>
 </property>
 <!--The minimum number of matching terms across the metadata fields above before an item is found as
related -->
 <property name="minTermFrequency" value="5"/>
 <!--The maximum number of related items displayed-->
 <property name="max" value="3"/>
 <!--The minimum word length below which words will be ignored-->
 <property name="minWordLength" value="5"/>
 </bean>
</property>

The property name & the bean class are mandatory. The property field names are discussed below.

similarityMetadataFields: the metadata fields checked for similarity
minTermFrequency: The minimum number of matching terms accross the metadata fields above before an item is found as related
max: The maximum number of related items displayed
minWordLength: The minimum word length below which words will be ignored

"More like this" technical details

The object has received a method. This method requires an item & the more-like-this configuration org.dspace.discovery.SearchService getRelatedItems()
bean from above. This method is implemented in the which uses the item as a query & uses the default Solr org.dspace.discovery.SolrServiceImpl
parameters for more-like-this to pass the bean configuration to solr (). The result will be a list https://cwiki.apache.org/confluence/display/solr/MoreLikeThis
of items or if none found an empty list. The rendering of this list is handled in the class.org.dspace.app.xmlui.aspect.discovery.RelatedItems

"Did you mean" spellcheck aid for search configuration

DSpace 4 introduces the use of SOLR's SpellCheckComponent as an aid for search. When a user's search does not return any hits, the user is presented
with a suggestion for an alternative search query.

The feature currently only one line of configuration to discovery.xml. Changing the value from true to false will disable the feature.

<property name="spellCheckEnabled" value="true" />

"Did you mean" spellcheck aid for search technical details

Similar to the More like this configuration, SOLR's spell check component is used with default configuration values. Any of these values can be overridden
in the solrconfig.xml file located in dspace/solr/search/conf/. Following links provide more information about the SOLR SpellCheckComponent:

http://wiki.apache.org/solr/SpellCheckComponent

https://cwiki.apache.org/confluence/display/solr/Spell+Checking

Discovery Solr Index Maintenance

Command used: [dspace]/bin/dspace index-discovery [-cbhf[r <item handle>]]

https://cwiki.apache.org/confluence/display/solr/MoreLikeThis
http://wiki.apache.org/solr/SpellCheckComponent
https://cwiki.apache.org/confluence/display/solr/Spell+Checking

Java class: org.dspace.discovery.IndexClient

Arguments (short and long forms): Description

 called without any options, will update/clean an existing index

-b (re)build index, wiping out current one if it exists

-c clean existing index removing any documents that no longer exist in the db

-f if updating existing index, force each handle to be reindexed even if uptodate

-h print this help message

-o optimize search core

-r <item handle> remove an Item, Collection or Community from index based on its handle

-s Rebuild the spellchecker, can be combined with -b and -f.

Routine Discovery Solr Index Maintenance

It is strongly recommended to run maintenance on the Discovery Solr index daily (from crontab or your system's scheduler), to prevent your servlet
container from running out of memory:

[dspace]/bin/dspace index-discovery -o

Advanced Solr Configuration

Discovery is built as an application layer on top of the Solr open source enterprise search server. Therefore, Solr configuration can be applied to the
Solr cores that are shipped with DSpace.
The DSpace Solr instance itself now runs two cores. One for collection DSpace Solr based "statistics", the other for Discovery Solr based "search".

solr
 search
 conf
 admin-extra.html
 elevate.xml
 protwords.txt
 schema.xml
 scripts.conf
 solrconfig.xml
 spellings.txt
 stopwords.txt
 synonyms.txt
 xslt
 DRI.xsl
 example.xsl
 example_atom.xsl
 example_rss.xsl
 luke.xsl
 conf2
 solr.xml
 statistics
 conf
 admin-extra.html
 elevate.xml
 protwords.txt
 schema.xml
 scripts.conf
 solrconfig.xml
 spellings.txt
 stopwords.txt
 synonyms.txt
 xslt
 example.xsl
 example_atom.xsl
 example_rss.xsl
 luke.xsl

	Discovery

