
JDBCFetch
JDBCFetch
Gathers information from a database and places it within a given RecordHandler organized according to how the data is arranged within the chosen
database.

Reason for use

Connection with different types of databases is essential to effectively populating a VIVO instance with viable data. Java Database Connectivity is available
and flexible, while allowing standard SQL queries to retrieve the information from the chosen database.

Parameters

The parameters for the tool can be placed in the specified config file.

wordiness

wordiness - (optional) sets the lowest level of log messages to be displayed to the console. The lower the log level, the more detailed the messages.
Possible Values:

<Param name="wordiness">OFF</Param> - Results in no messages being displayed.

<Param name="wordiness">ERROR</Param> - Results in only messages from the ERROR level to be displayed.
Error messages detail when the tool has experienced an error preventing it from completing its task

<Param name="wordiness">WARN</Param> - Results in only messages above and including WARN level messages to be displayed. Match
does not produce any WARN level messages.

<Param name="wordiness">INFO</Param> - (Default) Results in all messages above and including INFO level messages to be displayed. INFO
level messages detail when the tool has started and ended and when it begins/ends a phase ('Finding matches' and 'Beginning Rename of
matches') and how many matches have been found.

<Param name="wordiness">DEBUG</Param> - Results in all messages above and including DEBUG level messages to be displayed. DEBUG
level messages detail each matching input URI to its VIVO URI as they are processed. Additionally, it will display stacktrace information if an error
occurs.

<Param name="wordiness">ALL</Param> or <Param name="wordiness">TRACE</Param> - Results in all messages above and including
TRACE level messages to be displayed, since trace is the lowest level it is the same as ALL in practice. TRACE level messages details every
matching set as it is processed in each phase along with SPARQL queries and start and stop for their execution.

JDBCFetch Specific messages

Info:

The number of records added
The start of the run
Command line usage

Debug:

Finding data column names for each table
Finding relation column names for each table
Finding id column names for each table

Trace:

All column names found
Generated or user defined query
Each record being added

relational database

The proper information for the connection to the relational database

<Param name="driver"> - A JDBC driver is a java class which handles the interface between the program and a given database.The driver needs
to exist within the classpath for the program to be able to use it.

EXAMPLES:
<Param name="driver">org.h2.Driver</Param>

<Param name="connection"> - JDBC uses a connection string related to the Driver being used. It is in the general format "jdbc:somejdbcvendor:
other data needed"

EXAMPLES :

Microsoft SQL server : <Param name="connection">jdbc:jtds:sqlserver://127.0.0.1:8080/databasename</Param>
H2 database () : <Param name="connection">jdbc:h2:directory/location</Param>http://www.h2database.com

<Param name="username"> - A valid login with proper permissions
<Param name="password"> - The associated secure password

These are what the fetch uses when accessing the given database. These must be valid otherwise the harvest run will not have access
to the database. By default we use "sa" for system administrator and a blank password.

The database table information

<Param name="tableName"> - Each table has an identifying name associated with it. These names are case sensitive and should be checked
several times before the first run.

<Param name="id"> - To distinguish records from each other this should be a distinct non-null field. If such a field is not available, the
configuration supports forming a concatenation of several fields (aka a composite key). The concatenation is used by supplying a comma
separated list of field names rather than a single field name.

<Param name="query"> - Within this tag is placed an SQL query which will be ran on the supplied database table. The names attributed during
this query will supply the names applied to the data within the record handler.

<Param name="fields"> This parameter signifies which fields to harvest. If a field is found on this list it must exist in the associated table. Make
sure the table name is provided before the equals sign.

<Param name="validTableType"> This parameter is used to determine which types of tables are to be harvester from
Possible values (If the parameter is not present it uses the default value):

TABLE - If set to this then the JDBCFetch is expecting a table {DEFAULT}
VIEW - this setting expects a view generated from the database.

Overview
JDBCFetch is used to ingest data from RDB/JDBC interface. Brings in data from relational database sources defined by the configuration file and converts
them to XML, most likely within a .RecordHandler

Short Option Long Option Parameter Value Map Description Required

d driver JDBC_DRIVER jdbc driver class true

c connection JDBC_CONN jdbc connection string true

u username USERNAME database username true

p password PASSWORD database password true

o output CONFIG_FILE config file for output record handler true

O outputOverride VALUE override the RH_PARAM of output record handler using VALUE false

t tableName TABLE_NAME a single database table name][have multiple -t for more table names false

Q query SQL_QUERY use SQL_QUERY to select from TABLE_NAME false

I id ID_FIELD_LIST use columns in ID_FIELD_LIST] as identifier for TABLE_NAME[comma separated false

F fields FIELD_LIST fetch columns in FIELD_LIST [] for TABLE_NAMEcomma separated false

R relations RELATION_PAIR_LIST fetch columns in RELATION_PAIR_LIST] for TABLE_NAME[comma separated false

W whereClause CLAUSE_LIST filter TABLE_NAME records based on conditions in CLAUSE_LIST][comma separated false

T tableFromClause TABLE_LIST add tables to use in from clauses for TABLE_NAME false

 delimiterPrefix DELIMITER Prefix each field in the query with this character false

 delimiterSuffix DELIMITER Suffix each field in the query with this character false

Usage
JDBCFetch is often the first part of a harvest of data from a standard relational database. It pulls the information into a local which can then RecordHandler
be before being into a jena model.Translated transfered

Define Alias

JDBCFetch="java $OPTS Xms$MIN_MEM -Xmx$MAX_MEM -Dharvester-task=$HARVESTER_TASK -Dprocess-task=JDBCFetch -cp bin
$VERSION.jar:bin/dependency/* org.vivoweb.harvester.fetch.JDBCFetch"/harvester

Invocation

http://www.h2database.com
https://wiki.lyrasis.org/display/VIVO/RecordHandler
https://wiki.lyrasis.org/display/VIVO/RecordHandler
https://wiki.lyrasis.org/display/VIVO/XSLTranslator
https://wiki.lyrasis.org/display/VIVO/Transfer

$JDBCFetch -X config/tasks/DSR-JDBCFetch.xml

Configuration file example

<?xml version="1.0" encoding="UTF-8"?>
<Task type="org.vivoweb.ingest.fetch.JDBCFetch">
 <Param id="driver">com.mysql.jdbc.Driver</Param>
 <Param id="connection">jdbc:mysql://127.0.0.1:3306/jdbcdemoharvest</Param>
 <Param id="username">jdbcDemoHarvest</Param>
 <Param id="password">EFaY6nSxBNpL7cYb</Param>
 <Param id="output">config/recordHandlers/JDBCXMLRecordHandler.xml</Param>
</Task>

Flowchart

1.

1.
2.
3.
4.
5.
6.

1.
a.
b.
c.

1.
2.
3.

a.
b.
c.

Methods

getParser

parse the arguments from the parameter list above

buildSelect

start a stringbuilder
append and assemble the "select" part of the statement
append the relations
append the id fields of the table
append the "from" clauses
end query string with "where" clauses

execute

iterate over table names
buildSelect assembles a SQL select statement string specific for each table
executeQuery on table with the SQL string using the SQL Statement object
Make an RDF/XML record for each result of the query

main

Start Logger
Run JDBCFetch.execute passing the args[] to the constructor
catch errors

IllegalArgumentException
IOException
Exception

	JDBCFetch

