Peoplesoft

The peoplesoft script can be found in the harvester scripts file, run-peoplesoft.sh. The code uses

® vivo.model.xml
® PeopleSoft XSLT

Header

This is just a header comment at the top of the code that describes the bsd license and who contributed to the creation of the file

#!/ bi n/ bash

#Copyright (c) 2010-2011 VIVO Harvester Team For full list of contributors, please see the AUTHORS file

provi ded.

#All rights reserved.

#Thi s program and the acconpanying naterials are nade avail able under the terms of the new BSD |icense which
acconpani es this distribution, and is avail able at http://ww. opensource.org/licenses/bsd-license. htm

#

Contributors:

Chri st opher Hai nes, Dale Scheppler, N cholas Skaggs, Stephen V. Wllians - initial APl and inplenmentation

Setup

https://wiki.lyrasis.org/display/VIVO/Harvester+vivo+configuration+file

set to the directory where the harvester was installed or unpacked

HARVESTER_INSTALL_DIR is set to the location of the installed harvester
If the deb file was used to install the harvester then the
directory should be set to /usr/share/vivo/harvester which is the
current location associated with the deb installation.

Since it is also possible the harvester was installed by
unconpressing the tar.gz the setting is available to be changed
and should agree with the installation |ocation

HARVESTER_| NSTALL_DI R=/ usr/ shar e/ vi vo/ har vest er

export HARVEST_NAME=peopl esof t

export DATE= date +%r-%m %' T' %4

H

H OH O R

Add harvester binaries to path for execution

The tools within this script refer to binaries supplied within the harvester

Since they can be located in another directory their path shoul d be

included within the classpath and the path environnental vari ables.

export PATH=$PATH: $HARVESTER | NSTALL_DI R/ bi n

export CLASSPATH=$CLASSPATH. $HARVESTER_ | NSTALL_DI R/ bi n/ harvester. j ar: $HARVESTER | NSTALL_DI R/ bi n/ dependency/ *
export CLASSPATH=$CLASSPATH: $HARVESTER | NSTALL_DI R/ bui | d/ harvest er. j ar: $HARVESTER | NSTALL_DI R/ bui | d/ dependency/ *

Exit on first error
The -e flag prevents the script fromcontinuing even though a tool fails.

Continuing after a tool failure is undesirable since the harvested
data could be rendered corrupted and i nconpati bl e.
set -e

Supply the location of the detailed log file which is generated during the script.
If there is an issue with a harvest, this file proves invaluable in finding
a solution to the problem | has beconme conmon practice in addressing a problem
to request this file. The passwords and usernanmes are filter out of this file
To prevent these logs fromcontaining sensitive information.
echo "Full Logging in $HARVEST_NAME. $DATE. | og"
if [! -dlogs]; then
nkdir | ogs
fi
cd | ogs
touch $HARVEST_NANE. $DATE. | og
I'n -sf $HARVEST_NAME. $DATE. | og $HARVEST_NAME. | at est . | og
cd ..

#cl ear old data
For a fresh harvest, the rempval of the previous information maintains data integrity.

If you are continuing a partial run or wish to use the old and already retrieved
data, you will want to comment out this line since it could prevent you from having
the required harvest data.

rm-rf data

cl one db

DatabaseClone is a tool used to make a | ocal copy of the database. One reason for this
is that constantly querying a database could put undue |oad on a repository. This
all ows the use of intensive queries to happen to a |local copy and only tie up the
resources in the | ocal machine.

har vest er - dat abasecl one - X dat abasecl one. confi g. xm

Fetch

The information is pulled into the system. Since it is a standard database JDBCFetch is used.

https://wiki.lyrasis.org/display/VIVO/JDBCFetch

Execute Fetch

This stage of the script is where the information is gathered together into one |ocal

place to facilitate the further steps of the harvest. The data is stored locally
in a format based off of the source. The format is a formof RDF yet its ontol ogy
too sinple to be put into a nodel and be useful.

The JDBCFetch tool in particular takes the data fromthe chosen source described inits
configuration XML file and places it into record set in the flat RDF directly

related to the rows, columms and tables described in the target database.
harvester-jdbcfetch -X jdbcfetch. config. xm

Translate

Now that we have our data, we need to translate it into the vivo ontology in rdf/xml format

Execute Transl ate

This is the part of the script where the outside data, inits flat ROF formis used to

create the nore linked and descriptive formrelated to the ontol ogical constructs.
The traditional XSL |anguage is used to achiveve this part of the workflow
harvester-xsltranslator -X xsltranslator.config.xm

Transfer

We now have to push all the translated records into a single jena model

Execute Transfer to inport fromrecord handler into |local tenp nodel

Fromthis stage on the script places the data into a Jena nodel. A nodel is a

data storage structure simlar to a database, but is in RDF.

The harvester tool Transfer is used to nove/add/renpve/ dunp data in nodels.

For this call on the transfer tool:

-s refers to the source translated records file, which was just produced by the translator step
-0 refers to the destination nodel for harvested data

-d means that this call will also produce a text dunmp file in the specificed |ocation

harvester-transfer -s translated-records. config.xm -o harvested-data.nodel.xm -d data/harvested-datal/inported-
records. rdf.xm

Scoring and Matching
The various name spaces determined during the translation are scored against specific data in the vivo model.
The scoring process results in a model which contains information about the score results to be used in the matches.

The matching process changes the URI of the matched data to the URI's present in VIVO.

Execute Score
In the scoring phase the data in the harvest is conpared to the data within Vivo and a new nodel
is created with the values / scores of the data conparsions.

Execute Score for People
harvester-score -X score-peopl e.config.xm

Execute Score for Departnents
harvester-score -X score-departnents. config.xm

Find matches using scores and renane nodes to natching uri

Using the data nodel created by the score phase, the match process changes the harvested uris for
conpar si on val ues above the chosen threshold within the xm configuration file.

Execute Match for People and Departnents

harvester-match - X nmat ch- peopl e-depart nents. confi g. xm

#Truncate Score Data nodel

Since we are finished with the scoring data for people and departnents,
we need to clear out all that old data before we add nore
harvester-jenaconnect -j score-data.nodel.xnml -t

Execute Score for Positions
harvester-score -X score-positions.config.xnl

Execute Match for Positions
harvest er-match - X mat ch-positions. config.xm

Changing Namespaces

For those parts which didn't find a match they are given URIs within the vivo's namespace.

Execute ChangeNanmespace to get unmatched into current namespace

This is where the new people, departnents, and positions fromthe harvest are given uris wthin the namespace
of Vivo

If there is an issue with uris being in another nanespace, this is the phase

whi ch shoul d give sonme light to the problem

Execute ChangeNanespace for People

har vest er - changenanespace - X changenanespace- peopl e. confi g. xm

Execute ChangeNanmespace for Departnents
har vest er - changenanespace - X changenanespace-depart nents. confi g. xm

Execute ChangeNanespace for Positions
har vest er - changenanespace - X changenanespace- positions. config. xn

Updating
The Subtraction and Additions are found while comparing to the previous harvest model.
*Note: The previous model should be equivalent to the actual data in VIVO. *

If the previously harvested data is edited, then that edit should also be applied to the previous model

Find Subtractions

When neking the previous harvest nodel agree with the current harvest, the entries that exist in
the previous harvest but not in the current harvest need to be identified for renoval.
harvester-diff -X diff-subtractions.config.xnl

Find Additions

When neking the previous harvest nodel agree with the current harvest, the entries that exist in
the current harvest but not in the previous harvest need to be identified for addition.
harvester-diff -X diff-additions.config.xm

Applying updates

The updates are applied to the previous model and then to VIVO. This should cause the previous model to be equal to the actual data harvested. The
VIVO should also now have the data which is reliant on the harvest changed to be equal to the new harvest's data.

Renpve Subtractions from Previ ous Harvest nodel
harvester-transfer -o previous-harvest.nodel.xm -r data/vivo-subtractions.rdf.xm -m
Add Additions to Previous Harvest nodel

harvester-transfer -o previous-harvest. nodel.xm -r data/vivo-additions.rdf.xm
Renove Subtractions fromVIVO for pre-1.2 versions

harvester-transfer -o vivo.nodel.xm -r data/vivo-subtractions.rdf.xm -m

Add Additions to VIVO for pre-1.2 versions

harvester-transfer -o vivo.nodel.xm -r data/vivo-additions.rdf.xm

See also

Peoplesoft Example Script 1.2

https://wiki.lyrasis.org/display/VIVO/Peoplesoft+Example+Script+1.2

	Peoplesoft

