
Submission User Interface
This page explains various customization and configuration options that are available within DSpace for the Item Submission user interface.

1 Understanding the Submission Configuration File
1.1 The Structure of item-submission.xml
1.2 Defining Steps (<step>) within the item-submission.xml

1.2.1 Where to place your <step> definitions
1.2.2 The ordering of <step> definitions matters!
1.2.3 Structure of the <step> Definition

2 Reordering/Removing Submission Steps
3 Assigning a custom Submission Process to a Collection

3.1 Getting A Collection's Handle
4 Custom Metadata-entry Pages for Submission

4.1 Introduction
4.2 Describing Custom Metadata Forms
4.3 The Structure of input-forms.xml

4.3.1 Adding a Collection Map
4.3.1.1 Getting A Collection's Handle

4.3.2 Adding a Form Set
4.3.2.1 Forms and Pages
4.3.2.2 Composition of a Field
4.3.2.3 Item type Based Metadata Collection
4.3.2.4 Automatically Omitted Fields

4.3.3 Configuring Controlled Vocabularies
4.3.4 Adding Value-Pairs

4.3.4.1 Example
4.4 Deploying Your Custom Forms

5 Configuring the File Upload step
6 Creating new Submission Steps

6.1 Creating a Non-Interactive Step

Understanding the Submission Configuration File

The contains the submission configurations for the DSpace JSP user interface (JSPUI) or the DSpace XML user [dspace]/config/item-submission.xml both
interface (XMLUI or Manakin). This configuration file contains detailed documentation within the file itself, which should help you better understand how to
best utilize it.

The Structure of item-submission.xml

<item-submission>
 <!-- Where submission processes are mapped to specific Collections -->
 <submission-map>
 <name-map collection-handle="default" submission-name="traditional" /> ...
 </submission-map>
 <!-- Where "steps" which are used across many submission processes can be defined in a
 single place. They can then be referred to by ID later. -->
 <step-definitions>
 <step id="collection">
 <processing-class>org.dspace.submit.step.SelectCollectionStep</process;/processing-class>
 <workflow-editable>false</workflow-editable>
 </step>
 ...
 </step-definitions>
 <!-- Where actual submission processes are defined and given names. Each <submission-process> has
 many <step> nodes which are in the order that the steps should be in.-->
 <submission-definitions> <submission-process name="traditional">
 ...
 <!-- Step definitions appear here! -->
 </submission-process>
 ...
 </submission-definitions>
 </item-submission>

Because this file is in XML format, you should be familiar with XML before editing this file. By default, this file contains the "traditional" Item Submission
Process for DSpace, which consists of the following Steps (in this order):

Select Collection -> Initial Questions -> Describe -> Upload -> Verify -> License -> Complete

1.

2.

If you would like to customize the steps used or the ordering of the steps, you can do so within the section of the <submission-definition> item-submission.
 .xml

In addition, you may also specify different Submission Processes for different DSpace Collections. This can be done in the section. The <submission-map>
 file itself documents the syntax required to perform these configuration changes.item-submission.xml

Defining Steps () within the <step> item-submission.xml

This section describes how Steps of the Submission Process are defined within the .item-submission.xml

Where to place your definitions<step>

<step> definitions can appear in one of two places within the configuration file.item-submission.xml

Within the section<step-definitions>
This is for globally defined definitions (i.e. steps which are used in multiple definitions). Steps defined in <step> <submission-process>
this section define a unique which can be used to reference this step.must id
For example:

<step-definitions>
 <step id="custom-step">
 ...
 </step>
 ...
</step-definitions>

The above step definition could then be referenced from within a as simply <submission-process> <step id="custom-step"/>
Within a specific definition<submission-process>

This is for steps which are specific to a single definition.<submission-process>
For example:

<submission-process>
 <step>
 ...
 </step>
</submission-process>

The ordering of definitions matters!<step>

The ordering of the tags within a definition directly corresponds to the order in which those steps will appear!<step> <submission-process>

For example, the following defines a Submission Process where the step directly precedes the step (more information about the License Initial Questions
structure of the information under each <step> tag can be found in the section on Structure of the <step> Definition below):

<submission-process>
 <!--Step 1 will be to Sign off on the License-->
 <step>
 <heading>submit.progressbar.license</heading>
 <processing-class>org.dspace.submit.step.LicenseStep</processing-classing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPLicenseStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.LicenseStenseStep</xmlui-binding>
 <workflow-editable>false</workflow-editable>
 </step>
 <!--Step 2 will be to Ask Initial Questions-->
 <step>
 <heading>submit.progressbar.initial-questions</heading>
 <processing-class>org.dspace.submit.step.InitialQuestionsStep</process;/processing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPInitialQuestionsSteonsStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.InitialQutialQuestionsStep</xmlui-
binding>
 <workflow-editable>true</workflow-editable>
 </step>
 ...[other steps]...
</submission-process>

Structure of the <step> Definition

1.

2.

1.

2.

The same <step> definition is used by both the DSpace JSP user interface (JSPUI) an the DSpace XML user interface (XMLUI or Manakin). Therefore,
you will notice each <step> definition contains information specific to each of these two interfaces.

The structure of the <step> Definition is as follows:

<step>
 <heading>submit.progressbar.describe</heading>
 <processing-class>org.dspace.submit.step.DescribeStep</processing-classing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPDescribeStep</jspuilt;/jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.DescribeScribeStep</xmlui-binding>
 <workflow-editable>true</workflow-editable>
</step>

Each contains the following elements. The required elements are so marked:step

heading: Partial I18N key (defined in for JSPUI or for XMLUI) which corresponds to the text that should be Messages.properties messages.xml
displayed in the submission Progress Bar for this step. This partial I18N key is prefixed within either the Messages.properties or messages.xml
file, depending on the interface you are using. Therefore, to find the actual key, you will need to search for the partial key with the following prefix:

XMLUI: prefix is (e.g. "xmlui.Submission.submit.progressbar.describe" for 'Describe' step)xmlui.Submission.
JSPUI: prefix is (e.g. "jsp.submit.progressbar.describe" for 'Describe' step)jsp. The 'heading' need not be defined if the step should not
appear in the progress bar (e.g. steps which perform automated processing, i.e. non-interactive, should not appear in the progress bar).

processing-class (Required): Full Java path to the Processing Class for this Step. This Processing Class perform the primary processing must
of any information gathered in this step, for both the XMLUI and JSPUI. All valid step processing classes must extend the abstract org.dspace.

 class (or alternatively, extend one of the pre-existing step processing classes in submit.AbstractProcessingStep org.dspace.submit.
)step.*

jspui-binding: Full Java path of the JSPUI "binding" class for this Step. This "binding" class should initialize and call the appropriate JSPs to
display the step's user interface. A valid JSPUI "binding" class extend the abstract class. must org.dspace.app.webui.submit.JSPStep Thi
s property need not be defined if you are using the XMLUI interface, or for steps which only perform automated processing, i.e. non-interactive
steps.
xmlui-binding: Full Java path of the XMLUI "binding" class for this Step. This "binding" class should generate the Manakin XML (DRI document)
necessary to generate the step's user interface. A valid XMLUI "binding" class extend the abstract must org.dspace.app.xmlui.

 class. submission.AbstractSubmissionStep This property need not be defined if you are using the JSPUI interface, or for steps which only
perform automated processing, i.e. non-interactive steps.
workflow-editable: Defines whether or not this step can be edited during the process with the DSpace approval/rejection workflow Edit Metadata
process. Possible values include and . If undefined, defaults to (which means that workflow reviewers would be allowed to edit true false true
information gathered during that step).

Reordering/Removing Submission Steps

The removal of existing steps and reordering of existing steps is a relatively easy process!

Reordering steps

Locate the tag which defines the Submission Process that you are using. If you are unsure which Submission Process you <submission-process>
are using, it's likely the one with , since this is the traditional DSpace submission process.name="traditional"
Reorder the tags within that tag. Be sure to move the tag (i.e. everything between and including the <step> <submission-process> entire <step>
opening and closing tags).<step> </step>

Hint #1: The defining the step only allows the user to review information from steps which appear it. So, it's <step> Review/Verify before
likely you'd want this to appear as one of your last few steps
Hint #2: If you are using it, the defining the step should always appear the or steps <step> Initial Questions before Upload Describe
since it asks questions which help to set up those later steps.

Removing one or more steps

Locate the tag which defines the Submission Process that you are using. If you are unsure which Submission Process you <submission-process>
are using, it's likely the one with , since this is the traditional DSpace submission process.name="traditional"
Comment out (i.e. surround with and) the tags which you want to remove from that tag. Be sure to <! - -> <step> <submission-process>
comment out the and closing tags).entire {{<step>}}tag (i.e. everything between and including the opening _<step> </step>

Hint #1: You cannot remove the step, as an DSpace Item cannot exist without belonging to a Collection.Select a Collection
Hint #2: If you decide to remove the defining the step, you should be aware that this may affect your <step> Initial Questions Describe
and steps! The step asks questions which help to initialize these later steps. If you decide to remove the Upload Initial Questions Initial

 step you may wish to create a custom, automated step which will provide default answers for the questions asked!Questions

Assigning a custom Submission Process to a Collection

Assigning a custom submission process to a Collection in DSpace involves working with the section of the . For a submission-map item-submission.xml
review of the structure of the see the section above on Understanding the Submission Configuration File.item-submission.xml

Each element within associates a collection with the name of a submission definition. Its attribute is the name-map submission-map collection-handle
Handle of the collection. Its attribute is the submission definition name, which must match the attribute of a submission-name name submission-process
element (in the section of .submission-definitions item-submission.xml

For example, the following fragment shows how the collection with handle "12345.6789/42" is assigned the "custom" submission process:

<submission-map>
 <name-map collection-handle=" 12345.6789/42" submission-name="custom" />
 ...
</submission-map>

<submission-definitions>
 <submission-process name="custom">
 ...
</submission-definitions>

It's a good idea to keep the definition of the name-map from the example so there is always a default for collections which do not default input-forms.xml
have a custom form set.

Getting A Collection's Handle

You will need the of a collection in order to assign it a custom form set. To discover the handle, go to the "Communities & Collections" page under handle
"Browse" in the left-hand menu on your DSpace home page. Then, find the link to your collection. It should look something like:

http://myhost.my.edu/dspace/handle/12345.6789/42

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is what goes in the attribute of collection-handle
your element.name-map

Custom Metadata-entry Pages for Submission

Introduction

This section explains how to customize the Web forms used by submitters and editors to enter and modify the metadata for a new item. These metadata
web forms are controlled by the step within the Submission Process. However, they are also configurable via their own XML configuration file (Describe inp

).ut-forms.xml

You can customize the "default" metadata forms used by all collections, and also create alternate sets of metadata forms and assign them to specific
collections. In creating custom metadata forms, you can choose:

The number of metadata-entry pages.
Which fields appear on each page, and their sequence.
Labels, prompts, and other text associated with each field.
List of available choices for each menu-driven field.

NOTE: The cosmetic and ergonomic details of metadata entry fields remain the same as the fixed metadata pages in previous DSpace releases, and can
only be altered by modifying the appropriate stylesheet and JSP pages.

All of the custom metadata-entry forms for a DSpace instance are controlled by a single XML file, , in the subdirectory under the input-forms.xml config
DSpace home. DSpace comes with a sample configuration that implements the traditional metadata-entry forms, which also serves as a well-documented
example. The rest of this section explains how to create your own sets of custom forms.

Describing Custom Metadata Forms

The description of a set of pages through which submitters enter their metadata is called a (although it is actually a set of forms, in the HTML sense of form
the term). A form is identified by a unique symbolic . In the XML structure, the is broken down into a series of : each of these represents a name form pages
separate Web page for collecting metadata elements.

To set up one of your DSpace collections with customized submission forms, first you make an entry in the . This is effectively a table that relates form-map
a collection to a form set, by connecting the collection's to the form name. Collections are identified by handle because their names are mutable Handle
and not necessarily unique, while handles are unique and persistent.

A special map entry, for the collection handle "default", defines the form set. It applies to all collections which are not explicitly mentioned in the default
map. In the example XML this form set is named (for the "traditional" DSpace user interface) but it could be named anything.traditional

The Structure of input-forms.xml

The XML configuration file has a single top-level element, , which contains three elements in a specific order. The outline is as follows:input-forms

<input-forms>

 <-- Map of Collections to Form Sets -->
 <form-map>
 <name-map collection-handle="default" form-name="traditional" />
 ...
 </form-map>

 <-- Form Set Definitions -->
 <form-definitions>
 <form name="traditional">
 ...
 </form>
 ...
 </form-definitions>

 <-- Name/Value Pairs used within Multiple Choice Widgets -->
 <form-value-pairs>
 <value-pairs value-pairs-name="common_iso_languages" dc-term="language_iso">
 ...
 </value-pairs>
 ...
 </form-value-pairs>
</input-forms>

Adding a Collection Map

Each element within associates a collection with the name of a form set. Its attribute is the Handle of the collection, name-map form-map collection-handle
and its attribute is the form set name, which must match the attribute of a element.form-name name form

For example, the following fragment shows how the collection with handle "12345.6789/42" is attached to the "TechRpt" form set:

 <form-map>
 <name-map collection-handle=" 12345.6789/42" form-name=" TechRpt"/>
 ...
 </form-map>

 <form-definitions>
 <form name="TechRept">
 ...
 </form-definitions>

It's a good idea to keep the definition of the name-map from the example so there is always a default for collections which do not default input-forms.xml
have a custom form set.

Getting A Collection's Handle

You will need the of a collection in order to assign it a custom form set. To discover the handle, go to the "Communities & Collections" page under "handle
" in the left-hand menu on your DSpace home page. Then, find the link to your collection. It should look something like:Browse

http://myhost.my.edu/dspace/handle/12345.6789/42

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is what goes in the attribute of collection-handle
your element.name-map

Adding a Form Set

You can add a new form set by creating a new element within the element. It has one attribute, , which as seen above must form form-definitions name
match the value of the for the collections it is to be used for.name-map

Forms and Pages

The content of the is a sequence of elements. Each of these corresponds to a Web page of forms for entering metadata elements, presented in form page
sequence between the initial "Describe" page and the final "Verify" page (which presents a summary of all the metadata collected).

A must contain at least one and at most six pages. They are presented in the order they appear in the XML. Each element must include a form page number
attribute, that should be its sequence number, e.g.

<page number="1">

The element, in turn, contains a sequence of elements. Each field defines an interactive dialog where the submitter enters one of the Dublin page field
Core metadata items.

Composition of a Field

Each contains the following elements, in the order indicated. The required sub-elements are so marked:field

dc-schema (Required) : Name of metadata schema employed, e.g. for Dublin Core. This value must match the value of the element dc schema
defined in dublin-core-types.xml
dc-element (Required) : Name of the Dublin Core element entered in this field, e.g. .contributor
dc-qualifier: Qualifier of the Dublin Core element entered in this field, e.g. when the field is the value of this element would be contributor.advisor

. Leaving this out means the input is for an unqualified DC element.advisor
repeatable: Value is when multiple values of this field are allowed, otherwise. When you mark a field repeatable, the UI servlet will add true false
a control to let the user ask for more fields to enter additional values. Intended to be used for arbitrarily-repeating fields such as subject keywords,
when it is impossible to know in advance how many input boxes to provide.
label (Required): Text to display as the label of this field, describing what to enter, e.g. " ".Your Advisor's Name
input-type(Required): Defines the kind of interactive widget to put in the form to collect the Dublin Core value. Content must be one of the
following keywords:

onebox – A single text-entry box.
twobox – A pair of simple text-entry boxes, used for values such as the DC item. The 'twobox' input type is repeatable subject Note:
rendered the same as a 'onebox' in the XML-UI, but both allow for ease of adding multiple values.
textarea – Large block of text that can be entered on multiple lines, e.g. for an abstract.
name – Personal name, with separate fields for family name and first name. When saved they are appended in the format 'LastName,
FirstName'
date – Calendar date. When required, demands that at least the year be entered.
series – Series/Report name and number. Separate fields are provided for series name and series number, but they are appended (with
a semicolon between) when saved.
dropdown – Choose value(s) from a "drop-down" menu list. You must also include a value for the attribute to Note: value-pairs-name
specify a list of menu entries from which to choose. Use this to make a choice from a restricted set of options, such as for the language
item.
qualdrop_value – Enter a "qualified value", which includes a qualifier from a drop-down menu and a free-text value. Used to enter both
items like alternate identifiers and codes for a submitted item, e.g. the DC field. As for the type, you must identifier Note: dropdown
include the attribute to specify a menu choice list.value-pairs-name
list – Choose value(s) from a checkbox or radio button list. If the attribute is set to , a list of checkboxes is displayed. If repeatable true
the attribute is set to , a list of radio buttons is displayed. You must also include a value for the repeatable false Note: value-pairs-name
attribute to specify a list of values from which to choose.

hint (Required): Content is the text that will appear as a "hint", or instructions, next to the input fields. Can be left empty, but it must be present.
required: When this element is included with any content, it marks the field as a required input. If the user tries to leave the page without entering
a value for this field, that text is displayed as a warning message. For example, <required>You must enter a title.</required> Note that leaving the
required element empty will mark a field as required, e.g.:not <required></required>
visibility: When this optional element is included with a value, it restricts the visibility of the field to the scope defined by that value. If the element
is missing or empty, the field is visible in all scopes. Currently supported scopes are:

workflow : the field will only be visible in the workflow stages of submission. This is good for hiding difficult fields for users, such as
subject classifications, thereby easing the use of the submission system.
submit : the field will only be visible in the initial submission, and not in the workflow stages. In addition, you can decide which type of
restriction apply: read-only or full hidden the field (default behaviour) using the attribute of the XML element. For otherwise visibility
example: Note that it is considered a configuration error to limit a field's scope while <visibility otherwise="readonly">workflow</visibility>
also requiring it - an exception will be generated when this combination is detected.
Look at the example and experiment with a a trial custom form to learn this specification language thoroughly. It is a very input-forms.xml
simple way to express the layout of data-entry forms, but the only way to learn all its subtleties is to use it.

For the use of controlled vocabularies see the Configuring Controlled Vocabularies section.

Item type Based Metadata Collection

This feature is available for use with the XMLUI since DSpace 3.0 and with JSPUI since 3.1. A field can be made visible depending on the value of . dc.type
A new field element, <type-bind>, has been introduced to facilitate this. In this example the field will only be visible if a value of "thesis" or "ebook" has
been entered into on an earlier page:dc.type

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>isbn</dc-qualifier>
 <label>ISBN</label>
 <type-bind>thesis,ebook</type-bind>
</field>

Automatically Omitted Fields

1.
2.

3.

You may notice that some fields are automatically skipped when a custom form page is displayed, depending on the kind of item being submitted. This is
because the DSpace user-interface engine skips Dublin Core fields which are not needed, according to the initial description of the item. For example, if
the user indicates there are no alternate titles on the first "Describe" page (the one with a few checkboxes), the input for the DC element is title.alternative
automatically omitted, even on custom submission pages.

When a user initiates a submission, DSpace first displays what we'll call the "initial-questions page". By default, it contains three questions with check-
boxes:

The item has more than one title, e.g. a translated title Controls field.title.alternative
The item has been published or publicly distributed before Controls DC fields:

date.issued
publisher
identifier.citation

The item consists of more than one file Does not affect any metadata input fields.

The answers to the first two questions control whether inputs for certain of the DC metadata fields will displayed, even if they are defined as fields in a
custom page. Conversely, if the metadata fields controlled by a checkbox are not mentioned in the custom form, the checkbox is omitted from the initial
page to avoid confusing or misleading the user.

The two relevant checkbox entries are "The item has more than one title, e.g. a translated title", and "The item has been published or publicly distributed
before". The checkbox for multiple titles trigger the display of the field with dc-element equal to "title" and dc-qualifier equal to "alternative". If the controlling
collection's form set does not contain this field, then the multiple titles question will not appear on the initial questions page.

Configuring Controlled Vocabularies

DSpace now supports controlled vocabularies to confine the set of keywords that users can use while describing items. The need for a limited set of
keywords is important since it eliminates the ambiguity of a free description system, consequently simplifying the task of finding specific items of
information. The controlled vocabulary allows the user to choose from a defined set of keywords organised in an tree (taxonomy) and then use these
keywords to describe items while they are being submitted.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 ...
 </isComposedBy>
 </node>
 ...
 </isComposedBy>
</node>

You are free to use any application you want to create your controlled vocabularies. A simple text editor should be enough for small projects. Bigger
projects will require more complex tools. You may use Protegé to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to
transform your documents to the appropriate format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL
or RDF.

New vocabularies should be placed in and must be according to the structure described.[dspace]/config/controlled-vocabularies/

Vocabularies need to be associated with the correspondant DC metadata fields. Edit the file and place a [dspace]/config/input-forms.xml "vocab
 tag under the element that you want to control. Set value of the element to the name of the file that contains the ulary" "field" "vocabulary"

vocabulary, leaving out the extension (the add-on will only load files with extension "*.xml"). For example:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>onebox</input-type>
 <hint>Enter appropriate subject keywords or phrases below.</hint>
 <required></required>
 <vocabulary>srsc</vocabulary>
</field>

The vocabulary element has an optional boolean attribute that can be used to force input only with the Javascript of controlled-vocabulary add-on. closed
The default behaviour (i.e. without this attribute) is as set . This allow the user also to enter the value in free way.closed="false"

The following vocabularies are currently available by default:

nsi - - The Norwegian Science Indexnsi.xml
srsc - - Swedish Research Subject Categoriessrsc.xml

Adding Value-Pairs

Finally, your custom form description needs to define the "value pairs" for any fields with input types that refer to them. Do this by adding a value-pairs
element to the contents of . It has the following required attributes:form-value-pairs

value-pairs-name – Name by which an refers to this list.input-type
dc-term – Qualified Dublin Core field for which this choice list is selecting a value. Each element contains a sequence of sub-value-pairs pair
elements, each of which in turn contains two elements:
displayed-value – Name shown (on the web page) for the menu entry.
stored-value – Value stored in the DC element when this entry is chosen. Unlike the HTML tag, there is no way to indicate one of the select
entries should be the default, so the first entry is always the default choice.

Example

Here is a menu of types of common identifiers:

<value-pairs value-pairs-name="common_identifiers" dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc #</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>
 </pair>
</value-pairs>

It generates the following HTML, which results in the menu widget below. (Note that there is no way to indicate a default choice in the custom input XML,
so it cannot generate the HTML attribute to mark one of the options as a pre-selected default.)SELECTED

<select name="identifier_qualifier_0">
 <option VALUE="govdoc">Gov't Doc #</option>
 <option VALUE="uri">URI</option>
 <option VALUE="isbn">ISBN</option>
</select>

Deploying Your Custom Forms

The DSpace web application only reads your custom form definitions when it starts up, so it is important to remember:

You must always restart Tomcat (or whatever servlet container you are using) for changes made to the file take effect.input-forms.xml

Any mistake in the syntax or semantics of the form definitions, such as poorly formed XML or a reference to a nonexistent field name, will cause a fatal
error in the DSpace UI. The exception message (at the top of the stack trace in the file) usually has a concise and helpful explanation of what dspace.log
went wrong. Don't forget to stop and restart the servlet container before testing your fix to a bug.

Configuring the File Upload step

The step in the DSpace submission process has two configuration options which can be set with your configuration file. Upload [dspace]/config/dspace.cfg
They are as follows:

upload.max- The maximum size of a file (in bytes) that can be uploaded from the JSPUI (not applicable for the XMLUI). It defaults to 536870912
bytes (512MB). You may set this to -1 to disable any file size limitation.

Note: Increasing this value or setting to -1 does guarantee that DSpace will be able to successfully upload larger files via the web, as not
large uploads depend on many other factors including bandwidth, web server settings, internet connection speed, etc.

webui.submit.upload.required - Whether or not all users are to upload a file when they submit an item to DSpace. It defaults to 'true'. required
When set to 'false' users will see an option to skip the upload step when they submit a new item.

Creating new Submission Steps

1.

2.

3.

4.

1.

2.

First, a brief warning: Creating a new Submission Step requires some Java knowledge, and is therefore recommended to be undertaken by a Java
programmer whenever possible

That being said, at a higher level, creating a new Submission Step requires the following (in this relative order):

() Create a new Step Processing classRequired
This class extend the abstract class and implement all methods defined by must org.dspace.submit.AbstractProcessingStep
that abstract class.
This class should be built in such a way that it can process the input gathered from the XMLUI or JSPUI interface.either

() Create the JSPs to display the user interface. Create a new JSPUI "binding" class to initialize and call these JSPs.For steps using JSPUI
Your JSPUI "binding" class must extend the abstract class and implement all methods org.dspace.app.webui.submit.JSPStep
defined there. It's recommended to use one of the classes in as a reference.org.dspace.app.webui.submit.step.*
Any JSPs created should be loaded by calling the showJSP() method of the org.dspace.app.webui.submit.JSPStepManager
class
If this step gathers information to be reviewed, you must also create a Review JSP which will display a read-only view of all data
gathered during this step. The path to this JSP must be returned by your getReviewJSP() method. You will find examples of Review
JSPs (named similar to) in the JSP directory.review-[step].jsp submit/

() Create an XMLUI "binding" Step Transformer which will generate the DRI XML which Manakin requires.For steps using XMLUI
The Step Transformer must extend and implement all necessary methods within the abstract class org.dspace.app.xmlui.
submission.AbstractSubmissionStep
It is useful to use the existing classes in as referencesorg.dspace.app.xmlui.submission.submit.*

() Add a valid Step Definition to the configuration file.Required item-submission.xml
This may also require that you add an I18N (Internationalization) key for this step's . See the sections on heading Configuring Multilingual

 or for more details.Support for JSPUI Configuring Multilingual Support for XMLUI
For more information on definitions within the , see the section above on Defining Steps () within <step> item-submission.xml <step>
the .item-submission.xml

Creating a Non-Interactive Step

Non-interactive steps are ones that have no user interface and only perform backend processing. You may find a need to create non-interactive steps
which perform further processing of previously entered information.

To create a non-interactive step, do the following:

Create the required Step Processing class, which extends the abstract class. In this class org.dspace.submit.AbstractProcessingStep
add any processing which this step will perform.
Add your non-interactive step to your at the place where you wish this step to be called during the submission process. For item-submission.xml
example, if you want it to be called the existing 'Upload File' step, then place its configuration immediately after the configuration immediately after
for that 'Upload File' step. The configuration should look similar to the following:

<step>
 <processing-class>org.dspace.submit.step.MyNonInteractiveStep</processing-class>
 <workflow-editable>false</workflow-editable>
</step>

Note: Non-interactive steps will not appear in the Progress Bar! Therefore, your submitters will not even know they are there. However, because they are
not visible to your users, you should make sure that your non-interactive step does not take a large amount of time to finish its processing and return
control to the next step (otherwise there will be a visible time delay in the user interface).

https://wiki.lyrasis.org/display/DSDOC3x/Configuration#Configuration-JSPUIConfiguringMultilingualSupport
https://wiki.lyrasis.org/display/DSDOC3x/Configuration#Configuration-JSPUIConfiguringMultilingualSupport
https://wiki.lyrasis.org/display/DSDOC3x/XMLUI+Configuration+and+Customization#XMLUIConfigurationandCustomization-MultilingualSupport

	Submission User Interface

