
BANG! Scripts
We used various scripts to analyze different data sources and set up code for viewing Fuseki data.

LOC Hub Analysis

We used client-side AJAX queries to retrieve the first 10,000 hubs from LOC and then navigate to related works and instances to analyze how
many LOC Hubs provide two or more instances with ISBNs or LCCns.

https://github.com/LD4P/blacklight-cornell/blob/bang/app/assets/javascripts/bang/evalHub.js
This code looks at how many hub to hub relationships provide LCCNs or ISBNs. To avoid throttling issues, the code queried
500 hubs at a time. When bringing up the page that ran the code, we would set the starting hub number, effectively paging
through the first 10,000 hubs returned from LOC.
Hubs were retrieved using this call " "https://id.loc.gov/search/?q=cs:http://id.loc.gov/resources/hubs&count= + this.sampleSize +

 start + "&format=json" where the sample size and starting hub number could be specified.
--parse button--
Related view: https://github.com/LD4P/blacklight-cornell/blob/bang/app/views/bang/eval_hubs/index.erb

https://github.com/LD4P/blacklight-cornell/blob/bang/app/assets/javascripts/bang/evalHubAggregation.js
This code retrieves unique ISBNs for every hub that has more than 1 work. This code also uses the same sample size and
paging approach as the code above.
Related view: https://github.com/LD4P/blacklight-cornell/blob/bang/app/views/bang/eval_hubs/same_hub.erb

bhttps://github.com/LD4P/blacklight-cornell/blob/bang/app/controllers/bang/eval_hubs_controller.r
We wrote scripts to further analyze these groupings of hubs to see how many catalog matches we could get.

LCCN analysis
Finding catalog matches for LCCN sets grouped under LOC Hubs

This file () lists an LOC Hub on each line followed by a list of LCCNs from instances that fall under HubSetsLccn.csv
that hub.
A script () reads in this file and then generates the file () which lists the LCCN rows that processlccn.rb lccnhubonlyfirst
matched at least two catalog items, and then ends with a summary. (The output says "ISBN" but is in fact "LCCN"
because the same code was copied/used the ISBN analysis).

Finding catalog matches for LCCN sets grouped under LOC Hub to Hub relationships
Each line in the file () lists the name of the relationship (e.g. "hasTranslation") that links two prophublccnsets.csv
different hubs, followed by the LCCNs that fall under those hubs.
A script () reads in this file and then generates the file () which starts with a list of the processrellccn.rb lcchubrels
property and LCCN groups that resulted in at least two catalog matches (e.g. "hasTranslation :
2017328875,92911176,93910013") followed by a summary of the total number of rows and LCCNs in the original file
and the number of matching rows/LCCNs. In addition, the file also lists those hub relationship and LCCN groupings
from the original CSV file that resulted in exactly one match in the catalog.

ISBN analysis
Finding catalog matches for ISBN sets grouped under LOC Hubs

The script () analyzes the file (), which lists LOC Hubs with the groups of ISBNs that fall processcsv.rb HubSets.csv
under each hub, and generates a file (). This resulting file first lists the sets of ISBNs from the tenthousandresults
original CSV where each set has at least two catalog matches. The file ends with a summary of the total number of
rows processed from the original file and the rows that matched at least two catalog items (i.e. ISBN sets).

Finding catalog matches for ISBN sets grouped under LOC Hub to Hub relationships
The script () analyzes the file () . This CSV file (you can sense a pattern now) which processrelcsv.rb prophubsets.csv
lists the property connecting two LOC Hubs followed by a list of ISBNs that fall under the two hubs related by this
property. The analysis results in the file () which lists the relationship and ISBN groups that updateHubRelResults
result in at least two catalog matches. The file ends with a summary of total rows processed from the original file and
the number of rows which resulted in two catalog matches.

PCC data analysis

Analysis of ISBNs aggregated under the same Opus
Our first pass at queries had taken too long, so we broke the process up into separate portions.

First, we queried the PCC data using Dave's Fuseki server (or a copy of the data on our own Fuseki server) to retrieve a list of
all Opera that had at least two works with instances with ISBNs. The query we used is captured . Executing this query here
resulted in the following . list of Opera URIs
This takes the list of Opera URIs and executes SPARQL queries to retrieve the ISBNs of any instances that correspond script
to different work URIs aggregated by that Opus. Running the script results in a where each line has sets of ISBNs file
corresponding to an opus (Note that the script has the Fuseki SPARQL URL not included so running the script would require
replace that part of the code with the Fuseki SPARQL URL you wish to query.)
Another then takes the file with the ISBN groups to check which of these groups results in at least two catalog script
matches. The script outputs the ISBN groups that result in matches long with a summary (i.e. total number of rows, total
number of matches, etc.), the ISBN groups that listed in only one match, and those that didn't result in a match at all. The
output is captured . here

Analysis of LCCNs aggregated under the same Opus
Similar to our ISBN analysis, we first queried the PCC data to generate a list of all Opera that have at least two works with instances with
LCCNs. The query is captured and the results .here here
The same used above to execute SPARQL queries is also used for querying this list of Opera to get the LCCNs grouped under script
each opus. The line used for LCCNs is commented out at the bottom of the code. For LCCNs, this script output the following where file
each line has a set of LCCNs grouped under the same Opus.
This analyzes these LCCN groups to see which have more than one catalog match and lists the groups that resulted in a match script
along with a summary of total rows processed and the number of matches. The output file is and also contains the rows that here
resulted in only one catalog match and those that didn't result in any matches.

Analysis of work to work relationships
It is important to note that I've had to reverse engineer some of these connections between files and scripts for this analysis based on
the information made available. Time permitting, I may re-run the analyses to ensure that I have the correct process. In the meantime,
this documentation should serve as an adequate reference.

https://github.com/LD4P/blacklight-cornell/blob/bang/app/assets/javascripts/bang/evalHub.js
https://id.loc.gov/search/?q=cs:http://id.loc.gov/resources/hubs&count=
https://github.com/LD4P/blacklight-cornell/blob/bang/app/views/bang/eval_hubs/index.erb
https://github.com/LD4P/blacklight-cornell/blob/bang/app/assets/javascripts/bang/evalHubAggregation.js
https://github.com/LD4P/blacklight-cornell/blob/bang/app/views/bang/eval_hubs/same_hub.erb
https://github.com/LD4P/blacklight-cornell/blob/bang/app/controllers/bang/eval_hubs_controller.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/HubSetsLccn.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/processlccn.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/lccnhubonlyfirst
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/prophublccnsets.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/processrellccn.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/lcchubrels
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/processcsv.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/HubSets.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/tenthousandresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/processrelcsv.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/prophubsets.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/locanalysis/updateHubRelResults
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opusquery
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opusqueryresults.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/indopus.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opusisbngroups
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/processcsv.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opusisbncatmatches
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opuslccnqueryresults.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opuslccnqueryresults.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/indopus.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/querylccngroups
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/processlccncsv.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/opuslccncatmatches

Because a comprehensive query trying to retrieve just those works which had a relationship and which each work had an instance with
an ISBN was taking too long, we broke the process into the following parts:

This contains the query we used to retrieve those works that have relationships with each other and where the first work has file
an instance with an ISBN.
This contains (what I believe to be) results of running the query above against our local Fuseki server.file
This script then iterates through the works and predicates and sees if there are ISBNs that can be retrieved for these works. It
outputs the information delimited by "|". An output file matching the format of results from this script is .here
This goes through this file where each line has sets of ISBNs and the predicate which relates the works for the instances script
which have these ISBNs. The script checks how many rows have matches for both the left side of ISBNs and the right
side. For exampe, if the row has [ISBN1, ISBN2]| predicate | ISBN3, ISBN4, this means that the first work has instance(s) with
ISBN1 and ISBN2 values for ISBN identifiers, and the second work has ISBN3 and ISBN4 values for ISBN identifers, and the
two works are related using the predicate listed in between. The script then checks if there are any catalog matches for ISBN1
and ISBN2, and also for ISBN3 and ISBN4, and outputs this row as a match only if there are catalog matches for both sets of
ISBNs. The output is captured which shows 184 rows that have matched in this way. here

POD data analysis

We wanted to analyze the POD (Platform for Open Data) transformation provided by Jim Hahn (University of Pennsylvania) to see if we could
retrieve matches for our set of ISBNs that fell under the same LOC Hubs and that only had a single match in the Cornell catalog. This
transformation provided sets of CSV files per institution, where the headers represented MARC fields and the rows contained values per MARC
record mapped to those fields.

This contains the list of ISBN sets that resulted in a single match in the Cornell catalog.file
This reads in this file and compiles the ISBNs that occur in the file. The script then reads in the transformed CSVs which contain script
POD data mapped to MARC fields and values. If the script finds any of the target set of ISBNS represented within an institution's
transformed data, the script then outputs the transformed rows which match any of these ISBNs. The results of this script are included h

, with matching rows for , , , , , , , and .ere Brown Chicago Columbia Dartmouth Duke Harvard Penn Stanford
A separate retrieves the Cornell catalog record information for matching ISBNs, resulting in this which lists the original script file
set of ISBNs we were querying against, followed by the catalog id and title of the record, followed by the ISBNs for that item
captured in the record itself.

Using the results from the previous step, this reads in the information for MARC records matching the original set of ISBNs we are script
querying against, and uploads information to a Solr index we set up specifically to allow us to store and search across these multiple
records. We also add the institution information to the record, to specify where the data is coming from. If there are records that are not
added due to insufficient information, the identifies those records. In this case, three records from Brown did not have 001 fields output
and were not added to our Solr index.
This uses the original file with ISBN sets that result in a single Cornell catalog match, and queries both the LD4P3 copy of the script
Cornell Solr index and the POD index set up for this analysis to find which catalog records across these institutions matches these
ISBNs sets. The output generated is in the form of an HTML page available .here

Fuseki UI

We set up this lightweight code to enable the viewing of data accessible through a Fuseki SPARQL endpoint.
To try out this UI, please download the contents of this to your local machine.directory
The Fuseki SPARQL endpoint needs to be specified in the To create this file, copy over this example to the js js/config.js file. file
directory, and set the SPARQL endpoint URL as the value of the property "fusekiURL" which is currently commented out.
 You can now click on and open up the file in your browser to review the classes and predicates present in your data. Clicking on view
the class and predicate links will show example entities and statements respectively. More details and screenshots can be found in this r

.eport
If you want, you can see a set of random statements extracted using the "feeling lucky" .page

We also started some preliminary work to visualize hubs and relationships but this code probably requires a lot more review and work.here

https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/worktowork/worklevel
https://raw.githubusercontent.com/LD4P/discovery/main/scripts/bang/pccanalysis/worktowork/relworks.csv
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/worktowork/isbnworkrelmatches
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/worktowork/checkisbns.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/pccanalysis/worktowork/isbneval0121
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/singlematchisbn
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/readPod.rb
https://github.com/LD4P/discovery/tree/main/scripts/bang/podanalysis/results
https://github.com/LD4P/discovery/tree/main/scripts/bang/podanalysis/results
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/brownisbnresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/chicagoresults_hubisbn
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/columbiaisbnresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/dartmouthisbnresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/dukeisbnresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/hrvdresults_hubisbn
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/pennisbnresults
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/stfodresults_hubisbn
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/getcornellrecords.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/results/cornellrecordsforsinglematchisbn
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/updateSolr.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/solrupdate
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/htmloutput/outputgroups.rb
https://github.com/LD4P/discovery/blob/main/scripts/bang/podanalysis/htmloutput/displays.html
https://github.com/LD4P/discovery/tree/main/hubvis
https://github.com/LD4P/discovery/blob/main/hubvis/js/config.js
https://github.com/LD4P/discovery/blob/main/standalone/js/exampleconfig.js
https://github.com/LD4P/discovery/blob/main/standalone/view.html
https://ecommons.cornell.edu/handle/1813/111407
https://ecommons.cornell.edu/handle/1813/111407
https://github.com/LD4P/discovery/blob/main/standalone/feelinglucky.html
https://github.com/LD4P/discovery/tree/main/hubvis

	BANG! Scripts

