
REST API
DSpace REST API
This page is outdated, and refers to documentation for the 2011 Google Summer of Code prototype REST API project. This GSoC project is not developed
anymore and it has spawned successors and alternatives. You can learn more about current REST API efforts here:

Official REST API in DSpace 4.x (JERSEY based, Read Only)
Official REST API in DSpace 5.x (JERSEY based, CRUD)
Review of Existing Dspace REST API Frameworks
DSpace Futures - REST API

This is a wiki page for DSpace REST API addon. The project is in development phase, but can be tested by the users. For the details please check this
page.

1 DSpace REST API
2 Details

2.1 Project description
2.2 Release plan and issues
2.3 Recent changes

3 Detailed activities
3.1 REST API Endpoints

3.1.1 Repository browsing
3.1.1.1 Optional parameters
3.1.1.2 Sorting fields:
3.1.1.3 Controlling results
3.1.1.4 Response codes

3.1.2 Authentication/Authorization
3.1.3 Repository manipulation
3.1.4 Content searching
3.1.5 Statistical info
3.1.6 Relationships interface

3.1.6.1 Mandatory parameters
3.1.7 Visitors' suggestions or wishes

3.2 Integration in the system
3.3 Documentation tasks

4 How to install and test the module?
4.1 (Option 3) Install as a DSpace Module
4.2 (Option 3a) Install as a DSpace Module in a source code installation

5 Information for developers

Details

Project Title: DSpace REST API

Author: Bojan Suzic

Mentors (at GSoC): Aaron Zeckoski, Mark Diggory

Contacting author: bojan.suzic AT - using subject line gmail _DOT _com DSpace REST

SCM Location for Project: http://scm.dspace.org/svn/repo/modules/dspace-rest/

Alternative (improved) https://github.com/wijiti/dspace-rest-api

Project description

The REST approach promotes simplification and decoupling of software architecture, enabling further scalability, portability, granularity and simplified
interaction of software systems and components.
The aim of this project is to provide DSpace with REST capable API and underlying component, which will enable developers and end-users to exploit the
advantages of such approach.

Some of uses this module is intended to provide could be, for instance:

interaction between DSpace systems and/or other repositories
automation of different activities, e.g. submission of packages
integrating repositories in process workflows of other applications or systems

https://wiki.lyrasis.org/display/DSDOC4x/REST+API
https://wiki.lyrasis.org/display/DSDOC5x/REST+API
https://wiki.lyrasis.org/display/DSArchive/Review+of+Existing+Dspace+REST+API+Frameworks
https://wiki.lyrasis.org/display/DSArchive/DSpace+Futures+-+REST+API
http://scm.dspace.org/svn/repo/modules/dspace-rest/
https://github.com/wijiti/dspace-rest-api#readme

interaction with many kinds of systems or web applications, such as CMS, LMS, LCMS, VLS, AMS etc
providing of other approaches to UI, such as client based/run UI
crawling of repositories, exposing information in structural way

This project is continuation of and . In the first stage the basic support for REST for DSpace is provided, exposing many parts of GSoC 2009 GSoC 2010
DSpace functionality to the clients. Currently the module is being tested and improved in preparation for upcomign DSpace release.

Based on REST API for DSpace the new GSoC (2011) project is started. Vibhaj Rajan DSpace UI Client based on JavaScript and appropriate framework
(JQuery). More information: Client UI REST API

 Important: During Q1-Q3 of 2012 thanks to and other contributors from a great effort has been invested to continue the Hayden Young Wijiti Pty Ltd
development of REST API for DSpace. They reworked the code base, refreshed the project to be compatible with newest DSpace 1.8.1 version, fixed the
bugs and provided the integration of DSpace, REST API and Joomla CMS. There are also other numerous improvements introduced. Their contribution
can be reached via , including GitHub development site and documentation update.

Based on this update, the integration with Joomla CMS is provieded as a part of the , which has been at Saber Project implemented and demonstrated
Monash University.

Release plan and issues

It is expected to have working and tested code for DSpace 1.8 release. According to relevant discussions on DSpace developer meetings, there
is possibility to have this code released asynchronously of DSpace, as independent module. After initial release the code will be actively maintained.

Currently (mid October 2010) there are several issues opened, of them I would notice the following:

Performance issues during browsing bigger datasets. This is generally related to DSpace API. I have reported this problem and proposed solution
at . However as I am not sure whether it will be accepted and included in the upcoming release I will http://jira.dspace.org/jira/browse/DS-659
change the code and translate some functions used from DSpace API to DSpace REST API. This way some handling will be done directly at
REST API level. Consequently some additional features related to sorting/ordering will be available.
Multiple loops in listing Collections and some other entities. This issue is resolved as of end September. Additionally, option to fine-grain details
level of the output is implemented (three levels).
HTTP Basic Auth - this is easily to implement and will be done shortly
Some Authorization related issues: the authorization handling is done on the level of DSpace API. However some functions translated to REST
API are not directly available to users and thus do not provide Authorization mechanisms. In order to prevent misuse etc. this gap should be filled
at REST API level.
Not finished end-points. Working on them.
Testing. Testing. I also need cooperation of you potential users. I need repository for testing containing at least several hundreds of items.
If you can provide me with that please contact me via email.
DSpace 1.5 and older versions support - planned to be implemented at the end of initial public release.

Recent changes

June 10: XML input/digestion change, based on the input from Dhaivat Dave
June 6: Added support for logo in communities and collections (issue reported by Vibhaj Rayan and Hayden Young)
June 1: Applied Peter Dietz's patches () and pom.xml improvements discussed bellow on this page; fixed collectionhttps://gist.github.com/952058
/items display reported by Hayden Young

Detailed activities

In the following sections main activities are elaborated in detail.

REST API Endpoints

In the following section listed are supported endpoints on the application level. The items marked with dot (in C column) are in phase of
implementation, while other items are considered already working.

Please note that additional tests should be made in order to ensure proper stability of the whole application.

The sorting of the fields / output results is currently partially supported. This part of the application is implemented independently of the endpoints and will
be worked on after the most of endpoints are completed.

Naming convention for endpoints

DSpace 1.x and 2.x are treating the resources on different way. 2.x is more generalized, suggesting the use of RDF-like interrelation notations.

Repository browsing

Earlier Implementation Description - GSoC09

http://wiki.dspace.org/confluence/display/DSPACE/Google+Summer+of+Code+2009+DSpace+REST+Webapp
http://wiki.dspace.org/confluence/display/DSPACE/GSOC10+-+DSpace+REST+API
https://wiki.duraspace.org/display/GSOC/DSpace+ClientUI+built+on+RESTful+API+-+GSoC+2011
https://github.com/wijiti/dspace-rest-api#readme
https://jspace.atlassian.net/wiki/display/DSPACEAPI/DSpace+REST+API+Home
https://jspace.atlassian.net/wiki/display/DSPACEAPI/API+Documentation
http://www.wijiti.com/saber
http://saber.monash.edu/discover
http://jira.dspace.org/jira/browse/DS-659
https://gist.github.com/952058
https://wiki.lyrasis.org/display/GSOC/Earlier+Implementation+Description+-+GSoC09

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

 GET /communities Returns a list of all communities on the system
or return just top level communities.

- topLevelOnly
=true

 idOnly=false
detail=stand
ard

id
 name

countitems

The list of
communities
containing respectiv

 . e fields

Response code
details:

 - if there are 204
no communities on
the system

json
xml

200, 204, 400,
500

 GET /communitie
s/{id}

Return detailed information about id
community.

id idOnly=false
detail=stand
ard

- Fields describing
community.

json
xml

200, 400, 404,
500

 GET /communitie
s/{id}/
{element}

Return a particular data field found in the
community id

Fields supported (for): element
 - entity identifier, internal to the system id

 - entity name name
 - number of items under countItems

community
 - handle of the community (unique handle

persistent resource identifier)
 - entity type (object type in the system) type

 - collections contained in the collections
community, ordered by id

 - states user persmission on the canedit
community (editing)

 - anchestors of the community anchestor
 - subcommunities, ordered by id children

 - group administrators, administrators
ordered by id

 - recent items in the community recent
 - short description shortDescription

 - copyright text copyrightText
 - sidebar text sidebarText

 - introductory text introductoryText
 - community logo; to retrieve use returned logo

id with endpoint/bistream/receive

id idOnly=false

immediateOnl
 y=true

detail=stand
ard

id
 name

countitems

Respective field
info

json
xml

200, 204, 400,
500

 GET /collections Return a list of all collections in the system. - idOnly=false
isAuthorized

 =false
detail=stand
ard

id
 name

countitems

The list of the
collections
containing respectiv

. e fields

Response code
details:

 - if there are 204
no communities on
the system

json
xml

200, 204, 400,
500

 GET /collection
s/{id}

Return detailed information about collectionid id idOnly=false
detail=stand
ard

id
 name

countitems

Fields of the
collection entity.

json
xml

200, 204, 400,
500

 GET /collection
s/{id}/
{element}

Return a particular data field found in the
collection . id

Fields supported (for): element
 - entity identifier, internal to the system id

 - collection name name
 - collection licence licence

 - items contained in collection items
 - handle of the collection (unique handle

persistent resource identifier)
 - states user permission on the canedit

collection (edit)
 - communities collection is a communities

part of
 - number of the items in the countItems

collection
 - entity type (object type in the system) type

 - short description of the shortDescription
collection

 - introductory text for the collection introText
 - copyright text for the copyrightText

collection
 - sidebar text for the collection sidebarText

 - provenance provenance
 - information about collection's logo (to logo

retrieve use logo id in /bitstream/receive
endpoint)

id idOnly=false
immediateOnl

 y=true
#immediateon

 ly detail=sta
ndard

id
 name

countitems

Respective field info json
xml

200, 204, 400,
500

 GET /items Return a list of the items in the system - detail=stand
ard

- The list of the items
containing related

 . fields

Response code
details:

 - if there are 204
no communities on
the system

 GET /items/{id} Return detailed information about an item. id detail=stand
ard

id
 name

lastmodif
 ied

submitter

Fields of the item
entity.

json
xml

200, 204, 400,
500

 GET /items/{id}
/{element}

Return a particular data field fould in the item id

Fields supported (for): element
 - item metadata metadata

 - submitter group submitter
 - archival status of the item isArchived

 - states if the item is withdrawn isWithdrawn
 - owning collection of the owningCollection

item
 - last modified time lastModified

 - collections the item appears in collections
 - communities the item appears communities

is
 - name of the item name

 - bitstreams related to the item bitstreams
 - item handle (unique identified) handle

 - states can user edit the item canedit
 - item id id

 - element type type
 - bundles related to the itembundles

id, element detail=stand
ard

- Respective field info json
xml

200, 204, 400,
500

 GET /bitstream/
{id}

Return bitstream object - usually the library item
file.

id - - Fields of the
bitstream entity.

json, xml 200, 400, 401,
403, 404, 500

 GET /bitstream/
{id}/
{element

Return a particular data field found in bitstream
. id

Supported fields (for): element
 - mime type of file mimeType

 - bundles the bitstream is a part of bundles
 - checksum of the file checkSum

 - checksum algorithm checkSumAlgorithm
used

 - bitstream description description
 - file format description formatDescription

 - sequence id of the file sequenceId
 - size of the file size

 - source (typically filename with path source
information)

 - asset store number where the storeNumber
bitstream is stored

 - user's format userFormatDescription
description

 - bitstream name name
 - unique id of the bitstream handle

 - internal id of the bitstream id
 - type of the entity (referring to bitstream) type

Note: bitstream can be not only the content of
the item (like book pdf file etc), but also licence
file or logo of community

id, element detail=stand
ard

- Respective field info json, xml 200, 400, 401,
403, 404, 500

 GET /bitstream/
{id}
/receive

Return bitstream id - - Return bitstream binary 200, 400, 401,
403, 404, 500

 GET /groups Return a list of the groups in the system - detail=stand
ard

- The list of the
groups containing
related . fields

 if there are no 204
groups in the
system.

json,xml 200, 204, 400,
500

 GET /groups/{id} Return a group object id detail=stand
ard

- Fields of the group
entity.

json,xml 200, 204, 400,
500

 GET /groups/
{id}/
{element}

Return a particular data field found in the group
entity . id

Supported fields (for): element
 - unique id (external) handle

 - internal id of the gruop id
 - is the group empty isEmpty
 - group members (as users) members

 - group members (as groups) memberGroups
 - group name name
 - entity type (referring to group)type

id, element detail=stand
ard

- Respective field info json,xml 200, 204, 400,
500

 GET /users Return a list of the users in the system - detail=stand
ard

- The list of the users
containing related fi

 .elds

json,xml 200,204,400,5
00

 GET /users/{id} Return a user info id detail=stand
ard

- Fields of the user
entity.

json,xml 200,204,400,5
00

 GET /users/{id}
/{element}

Return a particular data field found in the user id
.

Supported fields (for): element
 - user's email email

 - first name firstName
 - full name fullName

 - handle (unique, external) handle
 - internal id of the user id

 - preferred language language
 - last name lastName

 - name name
 - network id netId

 - requires certificate to requireCertificate
login

 - is user self registered selfRegistered
 - type of the objecttype

id,element detail=stand
ard

- Respective field info json,xml 200,204,400,5
00

Note: modifier is referred only to first layer of the results. For all other layers (e.g. nested results) only ids are returned in some cases, due to idOnly
possible loops. Example: for community containing collections, on second level the response contains only ids for some elements where multiple loops
may be created (community->has_collection->has_community....). Other data is modified according to flag.idOnly

Optional parameters

Parameter Description

topLevelOnly returns only top level communities

idOnly if true return only the identifiers for the record

immediateOnly return only direct parent community

isAuthorized return only collections user has permission to work on

inArchive return archived items for respective collection

detail parameters: , or minimum standard extended
control amount of details/deepthness exposed to user; e.g. should the sub-entities contain full descriptions

Sorting fields:
Not completed!

The sorting of the fields / output results is currently partially supported. This part of the application is implemented independently of the endpoints and will
be worked on after the most of endpoints are completed.

Parameter Description Ordering supported

id sort results by entity id asc | ascending
 | desc descending

name sort results by entity name asc | ascending
 | desc descending

countitems sort results by number of items contained asc | ascending
 | desc descending

lastmodified sort results by date of last item modification asc | ascending
 | desc descending

submitterName sort results by submitter name asc | ascending
 | desc descending

submitterId sort results by submitter id asc | ascending
 | desc descending

Controlling results

Parameter Description Default Example

_start position of the first entity to return 0 (first) _start=5 to list 6th item and onwards

_page page of data to display 0 (first) _page=2, to display second page with query results

_perpage number of results to show on each page 0 (all) _perpage=10 to display 10 results per page

_limit maximum number of entities to return 0 (all) _limit=50

_sort the sort order to return entities in
should be comma separated list of field names
suffix determines ordering
suffixes: , , , _asc _ascending _desc _descending

ascending default

sort=name
_sort=name,email_desc,lastname_desc

Response codes

Code Description

200 OK

201 Created

204 No content

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method not allowed

500 Internal server error

503 Service unavailable

Authentication/Authorization

Currently only standard authentication is supported. The authentication data is provided in the request or header body.

Example:

/rest/communities.json?user=user@email.com&pass=userpassword

The same elements and are used for header based authentication.user pass

Authorization is done on underlying api level; in the case of error the proper message and error code are returned to the user.

Repository manipulation

C Verb URL Description Mandatory
parameters

Optional
parameters

Response Data Formats Response
codes

 POST /communities Action to be done under community id,
adding new content or values.

Supported actions:
createAdministrators
createCollection
createSubcommunity

id, action

-
 name

name

- Id of newly created entity,
depending on the action selected:
id of group of administrators
id of collection
id of subcommunity

json
xml

200, 400, 401,
403, 500

 PUT /communities/{id}/
{element}

Update the field of the element
community . id

Supported fields:
 - change name name

 - change short shortDescription
description

 - change copyright text copyrightText
 - change sidebar text sidebarText

 - change introductoryText
introductory text

 - add existing collection collections
 - add existing subcommunitychildren

id

 value
 value
 value
 value
 value

 cid
cid

- Response code 200, 400, 401,
403, 500

 PUT /communities/{id}
/logo

Set the logo for community id id - Response code binary 200, 400, 401,
403, 500

 DELETE /communities/{id} Delete community from the system id - Response code json
xml

200, 400, 401,
403, 500

 DELETE /communities/{id}/
{element}/{eid}

Remove attribute/value of element eid e
 from the community . lement id

Suported elements:
 collections

 children
administrators

id, eid

 cid
 cid

-

- Response code json
xml

 POST /collections Action to be done under collection , id
adding new content or values.

Supported actions:
 createAdministrators

 createSubmitters
 createTemplateItem

createWorkflowGroup

id, action

-
-
-
step

- Id ow newly created element json
xml

200, 400, 401,
403, 500

 PUT /collections/{id}/
{element}

Update field of the collection element id
.

Supported elements:
 - short description shortDescription

 - introductory text introText
 - copyright text copyrightText

 - sidebar text sidebarText
 - provenance provenance

 - collection licence licence
 - collection namename

id

 value
 value
 value
 value
 value
 value

value

- Response code json
xml

200, 400, 401,
403, 500

 DELETE /collections/{id} Delete collection from the system -
CANNOT BE DONE DIRECTLY

- - Response code json
xml

200, 400, 401,
403, 500

 DELETE /collections/{id}/
{element}/{cid}

Remove attribute/value from cid
collection id
Supported attributes:

 administrators
 item

 submitters
templateItem

id, cid - Response code json
xml

200,400,401,4
03,500

• PUT /collections/{id}
/logo

Set the logo for collection id id Response code binary 200,400,401,4
03,500

• POST /items Action to be done under item , adding id
content or value.

Supported actions:
 createBundle

createBitstream

id, action

 name
, name input

 Id of newly created element json, , xml b
inary

200,400,401,4
03,500

• PUT /items/{id}/
{element}

Update field of the item element id

Supported fields:
 isArchived

 isWithdrawn
 owningCollection

submitter

id,element - Response code json,xml 200,400,401,4
03,500

• DELETE /items/{id} Delete item from the system id - Response code json,xml 200,400,401,4
03,500

• DELETE /items/{id}/
{element}/{eid}

Delete element/attribute from the eid
item id

Supported fields for : element
 bundle

 licences

id, ,element e
id

- Response code json,xml 200,400,401,4
03,500

Content searching

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

 GET /search Return a list of all objects found by
searching criteria.
Notice: community and collection are
mutually exclusive options.

- modifiers{{query= }query
}&(community= or id

}} collection={{id
idOnly=false

id
 name

lastmodif
 ied

submitter

Item info with basic
metadata for the search
results. Additionally return
only
identifiers when idOnly=tr

 is used.ue

json
xml

200, 204, 400,
500

 GET /harve
st

Return a list of all objects that have
been created, modified or withdrawn
within specified time range.

- startdate
{enddate}}

 community
 collection

 idOnly=false
 withdrawn=false

Notice: community and
collection are mutually
exclusive options

- Contains item info including
id, name, handle,
metadata, bitstreams
according to
the defined requirements.
Additionally when
idOnly=true only identifiers
of
results are returned. If the
date is in incompatible
format, error 400 is
returned.

json
xml

200, 204, 400,
500

Statistical info

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

 GET /stats Return general
statistics.

- - - Cummulative list of statistics data for the system
currently available.

json
xml

200, 400, 500

Relationships interface
Experimental feature

This is considered as a experimental feature in the phase of being considered for compability with future versions of DSpace. Consider not important
section; the status of the feature for upcoming release yet to be determined.

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

• GET /resource/
{handle}
/relations

Return entities according
to relation and
parameters specified

handle
property

rtype
rfield

- ontains entities selected and sorted in
conformance to request parameters. For more
details see description of rtype andrfield.

json
xml

200, 204, 400,
401, 403, 500

Mandatory parameters

Parameter Description Values Example

property Return entities satisfying requested property
relation

Structural properties
ds:isPartOfSite
ds:isPartOfCommunity
ds:isPartOfCollection
ds:isPartOfItem
ds:isPartOfBundle
ds:hasCommunity
ds:hasCollection
ds:hasItem
ds:hasBundle
ds:hasBitstream
ds:hasBitstreamFormat

Communities and collections
ds:logo

Bistream format
ds:support
ds:fileExtension
ds:mimeType

Bitstream
ds:messageDigest
ds:messageDigestAlgorithm
ds:messageDigestOriginator
ds:size

Eperson
ds:language

property=ds:hasCommunity - return subcommunities of a
community
property=ds:isPartOfCommunity - return communities
current community is part of (children)
property=ds:hasCollection - return collections
belonging to community
property=ds:hasItem - return Items belonging to
community

rtype restriction on type - only entity with specifed type
(s) would be returned

ds:Bitstream
ds:Bundle
ds:Collection
ds:Community
ds:EPerson
ds:Group
ds:Item
ds:DSpaceObject
ds:Policy
ds:Site
ds:BitstreamFormat|

rtype=ds:Collection - return entities of Collection type

rfield restriction on fields - return only selected fields;
by default all fields are returned

id
name
countitems
metadata
subcommunities
ancestors
owner
other (depending on object type,
will be documented later)

rfield=id,name - return only entity id and name in response

Note: incomplete/orientative properties, for more info check [Vocabularies|http://code.google.com/p/dspace-sandbox/source/browse/#svn/modules/dspace-
rdf/tags/dspace-rdf-1.5.1/src/main/java/org/dspace/adapters/rdf/vocabularies].

Visitors' suggestions or wishes

Here the visitors and stakeholders can insert their suggestions or describe the needs for their applications in detail.

Comment: In this case it is not clear how to treat recent part of endpoint. If we stick to semantic mapping, then it should look like /resource/id
 /mapping, but recent in this case obviously do not represent a mapping, but the property.

Comment #2: Semantic mapping presented in this case should be probably hardcoded for 1.x branch, but on abstraction level which enables easy
replacement with some auto-discovery method prepared for 2.x and eventually backported to 1.x. This way we would be able to call something similar to /c

 or in order to get supported mappings (amongst other data).ommunities/id communities/id/capabilities

Suggesting new options:

Instead of changing wiki contents visitors can enter their suggestions as a comments.

1) suggested adding of the new feature related to HTTP Basic Auth. Ok, I will investigate how it could be done and Kevin S. Clarke and Tim Donhue
included here. More info comming.

Integration in the system

It is planned to consult two external subjects for cooperation and the assistance during integration process (LMS and national library internal automation
process). More information coming soon - awaiting approval of other parties.

Documentation tasks

Although provided software module exposes basic documentation automatically to the end user, in order to make it easier for other developers and users
the documentation in the following forms is additionaly to be provided:

Confluence pages, current location
integrated documentation in PDF form (manual)
short slides containing technology overview, advocacy/facts, configuration and usage guideliens and examples
code will be additionally commented

Example of usage

At the end of the current stage of this project as a bonus task (if time constraints allow) the examples of usage will be provided for several languages, the
use-cases will be presented (example of integration in other software, e.g. LMS) and optionally simple client system demonstrating UI customization will be
demonstrated (e.g. Flex or JavaFX like).

How to install and test the module?
Here I will show two ways to install and test this module.

Update: Current version includes this update (thanks Peter!). This explanation will be shortly removed.

Note: The code for the REST API from the Google Summer of Code 2010 may be out of date with the latest version of dspace. It may help to import the
latest stable version of DSpace through the REST-API pom.

To do so, modify [dspace-rest-api-source]/pom.xml

Index: pom.xml
===
--- pom.xml (revision 6356)
+++ pom.xml (working copy)
@@ -18,7 +18,7 @@
 <parent>
 <artifactId>dspace-parent</artifactId>
 <groupId>org.dspace</groupId>
- <version>1.6.0-SNAPSHOT</version><!--dspace2.version-->
+ <version>1.7.1</version><!--dspace2.version-->
 </parent>

 <repositories>
@@ -100,7 +100,7 @@
 <groupId>org.dspace</groupId>
 <artifactId>dspace-api</artifactId>
 <scope>compile</scope>
- <version>1.6.2-SNAPSHOT</version>
+ <version>1.7.1</version>
 </dependency>

 <dependency>
@@ -121,7 +121,7 @@
 <groupId>org.dspace</groupId>
 <artifactId>dspace-jspui-api</artifactId>
 <scope>compile</scope>
- <version>1.6.2-SNAPSHOT</version>
+ <version>1.7.1</version>
 <exclusions>
 <exclusion>
 <groupId>org.dspace</groupId>
@@ -133,7 +133,7 @@
 <groupId>org.dspace</groupId>
 <artifactId>dspace-api-lang</artifactId>
 <scope>compile</scope>
- <version>1.5.2.2-SNAPSHOT</version>
+ <version>1.7.1.0</version>
 </dependency>

 <!--

For both approaches you should have installed. Then proceed using and check out the code from Apache Maven Subversion http://scm.dspace.org/svn
/repo/modules/dspace-rest/trunk

1) This way assumes you are running DSpace under Tomcat. Locate (under directory you just downloaded src/main/webapp/WEB-INF/web.xml
DSpace REST API). Find variable named and alter it to point to current location of file of your DSpace instance. Navigate dspace-config dspace.cfg
to the root directory of the REST API and type . If everything goes well, in directory will be packaged mvn package target dspace-rest-[version].

. Deploy this file (changing the name to rest.war) to your current Tomcat webapp directory. The application will be available under war http://localhost:8080
 by default./rest/

2) You can run REST API under Jetty container. Proceed with the same steps as under #1. Then instead to deploy .war file to Tomcat web server, from
the root of REST API source tree issue command . This will run REST support under Jetty and the web point will be available at mvn jetty:run-war http:

 by default.//localhost:8080/dspace-rest/

(Option 3) Install as a DSpace Module

If you have an existing instance of DSpace that you are developing, you can connect the rest api module to your existing code base by adding it as a
module.

Modify [dspace-source]/dspace/pom.xml by adding the path to the checked out rest code.

http://maven.apache.org/
http://subversion.apache.org/
http://scm.dspace.org/svn/repo/modules/rest/branches/dspace-rest-gsoc10/
http://scm.dspace.org/svn/repo/modules/rest/branches/dspace-rest-gsoc10/
http://localhost:8080/rest/
http://localhost:8080/rest/
http://localhost:8080/dspace-rest/
http://localhost:8080/dspace-rest/

--- a/dspace/pom.xml
+++ b/dspace/pom.xml
@@ -505,6 +505,7 @@
 -->
 <modules>
 <module>modules</module>
+ <module>../../../dspace-rest-gsoc10</module>
 </modules>

 <build>

Once you rebuild your dspace-src code with mvn package and ant update, you will additionally need to copy the compiled .war file produced in the dspace-
rest-gsoc10 target directory to tomcat's webapps directory.

cp /path/to/dspace-rest-gsoc10/target/dspace.war /var/lib/tomcat6/webapps/rest.war

Afterwards you can restart tomcat and visit the rest api in action at: http://localhost:8080/rest

(Option 3a) Install as a DSpace Module in a source code installation

Its unlikely you will want to do this unless you are a committer or just nosey like me and like to play around with the code.

1) Create a new directory for the REST module source code - dspace-src/dspace-rest.

2) Checkout the source code from into the new directory.http://scm.dspace.org/svn/repo/modules/dspace-rest/trunk/

3) Incorporate the new module into your project by adding a new <module> element for dspace-rest to the 'all' profile in dspace-src/pom.xml.

4) Tell Maven to use your new local module by adding a new <profile> to dspace-src/dspace/pom.xml. If you don't do this the project will build okay but
won't be using your local source code for that module.

5) Create a new directory dspace-src/dspace/modules/rest.

5a) Add a sub-directory src/main/webapp and a pom.xml to the directory created in 5. (Copy the pom from any other modules/xxxx module).

6) Add a <profile> to dspace-src/dspace/modules/pom.xml.

7) Rebuild your project.

Possible problems:

 - If you have trouble starting the application, check the variable and make sure it points to the location of the file. Use dspace-config dspace.cfg
absolute addressing (see comment in src/main/webapp/WEB-INF/web.xml).

 - If you receive HTTP 500 errors with a SQL exception indication *and* you are using Oracle, make sure you have ojdbc14.jar in your CLASSPATH when
you start tomcat or jetty.

 - If you are already running another application on try instead to start Jetty container with the following line: port 8080 mvn jetty:run-war -Djetty.
 for port 9090.port=9090

Please note this is still an experimental module so there may be bugs/errors in processing. Use it at your own risk.

I would highly appreciate user input. If you have comments or feature requests or anything else you can post it on this wiki in comments section.
Additionally for the bugs/errors/issues found you can use JIRA at to report or contact me directly https://jira.duraspace.org/browse/DS/component/10190
via email (AT - using subject line .bojan.suzic gmail _DOT _com DSpace REST)

Information for developers
In this section the main sections of the software will be briefly explained in order to ease update or extension of the components.

The REST API for DSpace uses Aaron Zeckoski's and DSpace standard libraries, as dspace-api.EntityBus

There are two main packages: and . Providers are responsible for serving content/feeds to the users. org.dspace.rest.providers org.dspace.rest.entities
They usually prepare entities or particular entity and/or handle update/delete/create functions. The main class there is , which is AbstractBaseProvider
extended by other providers.

In the providers, at the constructor level created are mappings between particular endpoints (e.g. /rest/items/1/collections) and related functions in entities
(org.dspace.entities.items.getCollections). Thus, for each GET, PUT, POST or DELETE function in the entity provider's constructor defined are such
mappings between URL endpoints and functions. After the client makes specific call, the provider prepares answer and in this phase calls mapped function
and prepare results for display.

http://localhost:8080/rest
http://scm.dspace.org/svn/repo/modules/dspace-rest/trunk/
https://jira.duraspace.org/browse/DS/component/10190
http://code.google.com/p/entitybus/

So, if you want to extend currently available endpoints for already present providers and entities, it is necessary to define mapping at provider level and
prepare corresponding function at the entity level (based on the template). The system then calls this function and provides necessary arguments for its
successfully handling.

If you want to develop a new provider, it is usually necessary to create new provider class in org.dspace.rest.providers and then create related entity in org.
dspace.rest.entities. The currently available providers are good example how to do that.

	REST API

