
GSoC 2011 - Fedora Web Services Update

Objective
Personnel

Key Decisions
Work Plan
WS Stack Comparison

Comparison
Criteria
Community Support
Proposed WS Stack

References

Objective
Fedora has used 1.3 for SOAP support for quite some time. This is an obsolete library and better alternatives (with support for and for Axis MTOM
protocols in addition to HTTP) are available. This improvement will update Fedora to use a modern Java WS framework for SOAP and move away from
Axis 1.3. In addition, it would update Fedora's SOAP API to use MTOM where appropriate.

When finished, it should be possible to integrate this work into a future feature release of Fedora, without requiring a major release. That means that it
should not change Fedora's SOAP interface as perceived by outside applications.

Personnel

Our GSoC student is Jiri "George" Kremser, a doctoral student at Masaryk University in the Czech Republic. He'll be mentored this summer by A. Soroka
and Chris Wilper. He'll be participating in Fedora committers' conference calls and reporting on progress there, as well as on this wiki page and on the
fedora-commons-developers mailing list.

Key Decisions
So far, the following parameters/scoping decisions have been made for the work:

Scope: SOAP API only, but consider how the library choice affects the REST API.
Contract-first vs Code-first: Contract-first. This is compatible with our desire to keep the work relegated to the SOAP side, and wire-compatible
with previous versions of Fedora. To produce MTOM functionality, Jiri will extend the current WSDL, but only in ways that do not break current
clients. Naming conventions for new methods and new data types will be reviewed by the committers.
The library in use will be , configured using the new available in post 3.4 series code.Apache CXF Spring functionality

Work Plan
May 23 - 31: Analysis and framework recommendation

Jiri will report out his findings in this wiki page and in an email to the fedora-dev list before 31 May. He will compare the major contenders for the
replacement library (which right now include Metro, Apache CXF Apache Axis 2, and JBoss WS) using several criteria including but not limited to:
community support, tooling support (presence in Maven Central), ease-of-integration, MTOM support, inter al. After some period for comment, a decision
will be taken and Jiri can proceed. This work is complete. See above in Key Decisions for the results.

The following sections are now historical, because the decision to use Apache CXF (as per Jiri's recommendation) has been finalized.

WS Stack Comparison
I've picked following web service stacks as candidates:

Axis2
CXF
JBossWS
Metro (~ + +)JAW-WS RI WSIT/Tango JAXB

All the frameworks support JAX-WS specification so that it is easier to migrate from one to another. There exist two frameworks which are not mentioned in
the following text, as they do not support JAX-WS standard and the community behind those product is not as big as behind the four frameworks
mentioned above. The two frameworks:

Spring Web Services
Turmeric

Comparison

http://ws.apache.org/axis/index.html
http://www.w3.org/TR/soap12-mtom/
http://cxf.apache.org/
https://github.com/fcrepo/fcrepo/tree/master/fcrepo-installer/src/main/resources/config/spring
http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/
http://www.jboss.org/jbossws
http://metro.java.net/
http://jax-ws.java.net/
http://wsit.java.net/
http://jaxb.java.net/
http://static.springsource.org/spring-ws/sites/2.0/
https://www.ebayopensource.org/index.php/Turmeric/HomePage

In the table below, by "JBoss WS" I mean their native implementation, as they support CXF and Metro as well.

Criteria

1. customization of generating the server-side code from WSDL
2. modularity of jar files
3. presence in Maven Central
4. Spring integration
5. wsdl2java (server-side skeletons JAX-WS annotations)
6. performance (the higher, the better)
7. MTOM
8. JAXB
9. JAX-WS
10. JAX-RS

 1 2 3 4 5 6 7 8 9 10

Axis2 0 - 1 0.5 1 1 1 1 1 1

CXF 1 1 1 1 1 2 1 1 1 1

Metro 1 0 1 0.75 1 2 1 1 1 1

JBoss
WS

0 - 0 0 0* - 1 1 1 0

*only java2wsdl

The performance comparison is taken from where large responses are taken http://www.ibm.com/developerworks/webservices/library/j-jws14/index.html
into account.
The "Spring integration" comparison is based on the tutorials posted on , and , and on the sample applications here (Axis2) here (CXF) here (Metro)
attached to the a WS stack. For instance, the sample application distributed with CXF for wsdl-first approach is well documented, there is a support for
both Maven and Ant, the Spring integration is also done and the example of using MTOM is also present. Samples from Axis2 sometimes support Maven,
sometimes Ant, there is an MTOM example, however, the Spring integration and the wsdl-first examples are missing. All sample applications from the
Metro stack use Ant for building, there is an example of the wsdl-first approach and MTOM, but Spring integration showcase is missing.

Community Support

It is hard to measure this aspect, so I put here links to the issue trackers or, where it is present, the mailing lists with commits. I forgot to mention that CXF
and Axis2 are both supported by Apache Foundations and Metro by Oracle. If fcrepo is going to migrate to Java EE 6 (with Context Dependency Injection,
JAX-RS, etc.) in the future, Metro or JBoss WS stacks are better prepared to this migration, in my opinion.

CXF = ()http://mail-archives.apache.org/mod_mbox/cxf-commits/ https://issues.apache.org/jira/browse/CXF/
Metro = (), part of Java EE 6 (Oracle)http://java.net/projects/jax-ws/lists/cvs/archive http://java.net/jira/browse/JAX_WS
Axis2 = https://issues.apache.org/jira/browse/AXIS2
JBoss WS = https://issues.jboss.org/browse/JBWS
Spring WS = https://jira.springsource.org/browse/SWS

Proposed WS Stack

I propose to use the CXF and as a binding technology the JAXB. When building the project from WSDLs (Fedora-API-A.wsdl and Fedora-API-M.wsdl) and
from fedora-types.xsd, the server-side skeletons annotated with JAX-WS annotations and the datatype POJOs will be generated by wsimport tool, i.e.
contract-first approach. Let's discuss this proposal. All the frameworks which support JAX-WS provide almost the same code, the main difference is in the
infrastructure in behind, for instance deployment of WS, integration with Maven, etc. I am open to any other proposal.

References
http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/
http://metro.java.net/
http://www.jboss.org/jbossws
http://www.ibm.com/developerworks/views/webservices/libraryview.jsp?search_by=java+web+services,%20sosnoski
http://wiki.apache.org/ws/StackComparison
http://www.ibm.com/developerworks/webservices/library/j-jws14/index.html
http://www.googlefight.com/index.php?lang=en_GB&word1=cxf&word2=axis2

http://www.ibm.com/developerworks/webservices/library/j-jws14/index.html
http://axis.apache.org/axis2/java/core/docs/spring.html
https://cwiki.apache.org/CXF20DOC/writing-a-service-with-spring.html
http://jax-ws-commons.java.net/spring/
http://mail-archives.apache.org/mod_mbox/cxf-commits/
https://issues.apache.org/jira/browse/CXF/
http://java.net/projects/jax-ws/lists/cvs/archive
http://java.net/jira/browse/JAX_WS
https://issues.apache.org/jira/browse/AXIS2
https://issues.jboss.org/browse/JBWS
https://jira.springsource.org/browse/SWS
http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/
http://metro.java.net/
http://www.jboss.org/jbossws
http://www.ibm.com/developerworks/views/webservices/libraryview.jsp?search_by=java+web+services,%20sosnoski
http://wiki.apache.org/ws/StackComparison
http://www.ibm.com/developerworks/webservices/library/j-jws14/index.html
http://www.googlefight.com/index.php?lang=en_GB&word1=cxf&word2=axis2

	GSoC 2011 - Fedora Web Services Update

