
Installer Prototype
"Easy" Installer for DSpace

1 Primary Goals of this work
2 Initial Usage Details

2.1 Where is Code Available At?
2.2 How do I build the installer?
2.3 How do I run the installer?

3 Initial Implementation Details
3.1 How does the Installer work? How is it built/implemented?
3.2 Overview of dspace-install-api

4 Why embedding Maven into Installer won't work

Primary Goals of this work
Prototype Only

This work is an initial prototype. It should not be considered stable until formally released as a part of DSpace

Main Goals:

To create an easier installation/upgrade process, which does not require familiarity with Maven or Ant.
NOTE: However, it should still be possible for developers to build DSpace from source code using current Maven and/or Ant tools

Installer should not require recompiling code, or pulling down anything via Maven. Installer should be able to be complete successfully with no
internet connection whatsoever (i.e. the installer will need to have all third party dependencies & DSpace code within it)
Installer should guide users by asking questions which will fill out the basic settings in dspace.cfg file.

Basic settings include the installation location and all database configuration settings

Potential features requiring further investigation:

Can the installer also be used to perform an "upgrade" of DSpace?
Obviously, it would be able to automatically update their customizations. But, could potentially help users to more easily upgrade to not
the latest 'out-of-the-box' version of DSpace (and copy their customizations to a backup location, where the user can reapply them as
needed once upgrade is complete).
Can the installer help users upgrade their DSpace database? (This would require the installer to know what version user is currently
running, and then call the necessary SQL upgrade scripts in proper order.)

Initial Usage Details

Where is Code Available At?

The code is available from SVN prototype branch at: http://scm.dspace.org/svn/repo/sandbox/installer-prototype/

This code includes a customized version of the normal 'dspace' Assembly module from Trunk (1.8.0-SNAPSHOT).only

How do I build the installer?

After downloading the code, run the following from directory:[installer-prototype]/dspace/

mvn package -Pdspace-installer

May need to first build Trunk

Currently, to keep the 'installer-prototype' SVN copy very minimal, I have copied over an entire version of Trunk. The 'installer-prototype' only includes not
the 'dspace' Assembly directory. So, if you run into Maven build errors, you may first need to build Trunk, in order to ensure your local Maven repository (~/

) has a copy of all 1.8.0-SNAPSHOT dependencies..m2/

How do I run the installer?

After the build completes, you'll see a JAR installer created at [installer-prototype]/dspace/target/dspace-installer-1.8.0-SNAPSHOT.
jar

You can execute this Installer by running the following from the directory:[installer-prototype]/dspace/target/

java -jar dspace-installer-1.8.0-SNAPSHOT.jar

After you run the installer, it will ask a series of questions around where you wish to install a copy of DSpace.

http://scm.dspace.org/svn/repo/sandbox/installer-prototype/

1.

2.
3.

Currently only works for DSpace Install process

Currently, the Installer only works fully for a clean (fresh) install of DSpace. It is not fully functional in terms of updating or upgrading DSpace (some parts
may work, but some may still be buggy).

Initial Implementation Details

How does the Installer work? How is it built/implemented?

The initial Installer is packaged using . One-Jar essentially provides us with an easy way to create an executable JAR file.One-Jar
When a user runs the JAR file, the One-JAR 'Boot' class is automatically called
The One-JAR 'Boot' class automatically calls whatever is located at within the installer.jar file. In our case, /main/main.jar /main/main.jar
calls the new dspace-install-api.jar file (see for details)[installer-prototype]/dspace/src/assemble/installer-assembly.xml
The dspace-install-api.jar is what actually performs the installation

This JAR actually embeds Apache Ant within it, and also contains a custom Ant script () which creates the installer-build.xml
DSpace installation directory similar to how it is created in past versions of DSpace. More notes on this below.

NOTE: The 'dspace-installer.jar' actually includes a full copy of all third party dependencies (JARs) as well as a copy of the DSpace install
directory. See the for details.[installer-prototype]/dspace/src/assemble/installer-assembly.xml

Overview of dspace-install-api

The heart of this Installer is the new module. This module currently only includes a few new files:/dspace/dspace-install-api/

org.dspace.install.Installer - This is the main executable Installer class. Currently, it essentially just uses the Apache Ant API to call a
custom Installer 'installer-build.xml' file (which is based off the default DSpace [installer-prototype]/dspace/src/main/config

 file). NOTE: Even though this installer uses the Ant API, Ant is required to be installed on the local system. The Ant API is /build.xml not
included within the Installer itself.
/src/main/resources/installer-build.xml - This is the Ant Build file which actually tells Ant what it needs to do to actually perform the
Install process.

Why embedding Maven into Installer won't work

This section is just a note on implementation details that have unfortunately ended in failure.

Initially, I thought: "If I can embed Ant in the installer to actually create the [dspace] installation directory, why not go one step further and embed Maven,
so that the Installer.jar just auto-builds DSpace for you via Maven". The main reason for potentially embedding Maven was to allow for a smaller Installer.
jar overall (less duplication of JAR dependencies, for each of the various DSpace WARs), and to allow Maven to do what it does best (namely managing
dependencies).

Unfortunately, that is not as simple as it may sound. To properly embed Maven into the Installer.jar, you'd need to do the following:

Embed a complete copy of an offline Maven Repository into the Installer.jar (this would ensure Maven didn't need to go and download all
dependencies for you – which obviously slows down the installation process, and wouldn't be much of an improvement over the current DSpace
build process)
Embed a copy of Maven into Installer.jar
Ensure that when Installer.jar is run, it kicks off embedded Maven, points it at the embedded offline Maven Repository and then builds & installs
DSpace.

Although #2 and #3 above seem to be possible, there seems to be no easy way to do #1 (embedding a copy of an offline maven repo). Unfortunately,
Maven does not come with a plugin which can successfully create an entire offline repository, and ensure all dependencies are written there. A few more
notes on this:

There is a ' ' which comes with a 'dependency:go-offline' option.dependency plugin
Unfortunately, this 'go-offline' option fails to download all which are dependencies of the build process. (Or at least, from my basic maven plugins
testing it seems to have difficulty with this in multi-module maven projects, like DSpace)
In addition, this 'go-offline' mode cannot be pointed at a custom repository location (so you cannot specify the location of the offline repository).
Instead, it will always use your local Maven repository defined in your 'settings.xml' file.
The only way to take Maven seems to be what is detailed in this blog post. Unfortunately, it's not an easy process to script, so completely offline
it's not really plausible to use for the building of our Installer. It's possible this may be easier in the future, but it's just not good enough yet.

http://stubbisms.wordpress.com/2008/08/28/maven-is-to-ant-as-a-nail-gun-is-to-hammer-and-nails-you-need-to-move-on/
This thread details more frustrations around trying to use the 'go-offline' option: http://maven.40175.n5.nabble.com/Creating-repository-for-offline-
building-with-dependency-go-offline-fails-td125614.html

The Conclusion: At least at this point in time, embedding Maven into an Installer is not really a plausible solution. We'll need to find a better way of avoiding
an ever growing Installer.jar file (which is already rather large as some basic dependencies, e.g. dspace-api.jar, are duplicated 7 times in that one Installer.
jar, once for each of the six webapps and once in [dspace]/lib).

http://one-jar.sourceforge.net/
http://maven.apache.org/plugins/maven-dependency-plugin
http://stubbisms.wordpress.com/2008/08/28/maven-is-to-ant-as-a-nail-gun-is-to-hammer-and-nails-you-need-to-move-on/
http://maven.40175.n5.nabble.com/Creating-repository-for-offline-building-with-dependency-go-offline-fails-td125614.html
http://maven.40175.n5.nabble.com/Creating-repository-for-offline-building-with-dependency-go-offline-fails-td125614.html

	Installer Prototype

