
Tutorial 2 - Creating Fedora Objects

Fedora Tutorial #2
 Getting Started:

 Creating Fedora Objects using the
Content Model Architecture

 Fedora 3.0
July 23, 2008

Author: The Fedora Development Team

Copyright: ©2008 Fedora Commons, Inc.

Purpose: This tutorial introduces the basic development questions, design concepts and project goals of the Flexible Extensible Digital Object Repository
Architecture (Fedora).

Audience: This tutorial is intended for repository administrators or content developers who will be using the Fedora software.

Table of Contents

What is This Document and Who Should Read It?
What is Fedora and What Does It Do?
Why Should You Use Fedora?
How Should You Read This Document?
Conventions Used in This Document
Getting Started: Using Fedora for Aggregating Content

Some Basic Definitions
Example 1: Making a Document Available in Multiple Formats
Example 2: Creating a Surrogate for Distributed Content

Using Fedora to Produce Dynamic Content
Example 3: Using SDefs, SDeps and CModels

Ingesting Pre-defined SDef, SDep and CModel Objects
Creating a Fedora Digital Object with Appropriate Datastreams
Linking the Fedora Digital Object to the Content Model

Example 4 – Modifying Example 3 Using a Redirect Datastream
What's next?

Figures

Figure 1 – Fedora Repository as Mediator for Services and Content
Figure 2 – Fedora Administrator Login Screen
Figure 3 – New Object Dialog
Figure 4 – Configuring an Object
Figure 5 – DisplayDatastream
Figure 6 – Adding a New Managed Content Datastream
Figure 7 – Complete for Example 1Datastreams
Figure 8 – Example 1 and Fedora Digital Object Datastreams
Figure 9 – Adding a with Type RedirectDatastream
Figure 10 – Example 2 DisplayDatastream
Figure 11 – Example and Redirected Fedora Digital Object Datastream
Figure 12 – Abstract View: Key Fedora Components for Producing Disseminations of Content
Figure 13 – Relationships Between Data objects and / / Objects for the CModel SDef SDep Content Model Architecture
Figure 14 – Dynamic Dissemination Access
Figure 15 – Example 3 Linking a to a Fedora Digital Object Content Model
Figure 16 – Example 3 Dissemination via the Content Model Architecture
Figure 17 – Dissemination with Redirect Datastream

What is This Document and Who Should Read It?
This is an introduction for system developers and repository managers who are new to the Fedora Repository open-source content management software.
This is a hands-on tutorial. It assumes that you have already the Fedora software and are at a computer with access to a Fedora repository installed
through the while reading this tutorial.Fedora Administrator

http://sourceforge.net/projects/fedora-commons/
#

1.

2.

3.

a.
b.

4.

5.
6.
7.

You don't have to have to be a programmer to understand and use this tutorial. However, you should be familiar with the operation and structure of web
servers and web services.

This document is intended for end users of content disseminated by a Fedora repository.not

What is Fedora and What Does It Do?
Fedora is content management software that runs as a web service within an web server. Fedora provides the tools and interfaces for Apache Tomcat
creation, ingest, management, and dissemination of content stored within a repository. There are a number of features that distinguish Fedora:

It supports the creation and management of digital content objects (from this point on called a or) that can aggregate Fedora Digital Objects FDO
data from multiple sources. For example, a might be a set of images that are the individual page images of a scanned document. The FDO TIFF
data sources may be either locally managed within the Fedora software or sourced from another URL accessible network server. The data
sources may be content or metadata. You may think of these as advanced digital , especially in light of the feature described FDOs documents
next.
It supports the association of web services with the . These services typically consume the data packaged within the to produce FDOs FDOs
dynamic disseminations from them. For example, the described above with multiple page images may be associated with a service FDO TIFF
that OCRs the images that are components of the and disseminates an version of the pages. The services may be either local to the FDO HTML
machine of the respective Fedora server or sourced from another network accessible server that is addressable via a URL. In this manner,
Fedora acts as a mediation layer that coordinates local and distributed data and web services within a uniform framework. This is illustrated in
Figure 1.
It provides uniform access web-based interfaces to these , through REST requests and more powerful SOAP-based methods. These FDOs
interfaces consist of a set of built-in methods to access characteristics common to all such as key metadata and internal structure. These FDOs
include a method to introspect on an object to reveal the set of methods that constitute the extended behavior of that object. For example, a client
could use these built-in methods to "learn" about the capability of the described above to dynamically disseminate an page from a set FDO HTML
of images.TIFF
The benefits of these are two-fold:

Clients accessing Fedora Digital Objects can rely on uniform access regardless of the nature of the object.
The disseminations available from an object are independent of the internal structure of the object. For example, the client interface of
the example above in which is disseminated from a set of source pages could remain constant regardless of whether the HTML TIFF
underlying object contained images, , , or even simple static . This gives the content developer great freedom to TIFF JPEG PDF HTML
modify a repository's internals without disrupting the client and user views of the content.

It presents a uniform and powerful REST and SOAP-based management interface. All internal operations of the repository such as object creation
and management are available through these APIs, providing the hooks for integrating Fedora into a variety of environments. These makes
Fedora useful as the foundation for advanced content management applications.
It includes a comprehensive versioning framework that tracks the evolution of objects and provides access to earlier versions.
It includes a basic relationship framework for representing the links among .FDOs
It supports ingest and export of in a variety of formats. This enables interchange between Fedora and other -based applications FDOs XML XML
and facilitates archiving tasks.

A number of these features are illustrated in Figure 1.

http://www.apache.org/tomcat

1.
2.
3.

Why Should You Use Fedora?
Fedora may be the wrong choice for management of simple static web pages. There are a number of excellent tools for editing and web site HTML
creation. Fedora is more appropriate for more advanced content management tasks. These include management of content and associated metadata,
multiple versions of content, content available in multiple formats, and dynamically generated content from local and dynamic sources.

How Should You Read This Document?
This document is intended to be hands-on, with you trying the examples on a running Fedora repository. You should therefore, have already downloaded

 Fedora, and a server. You should then access the Fedora repository by running the Fedora Administrator interface, , and installed started fedora-admin
which is located in the (you can start this program from the command line if you have configured your environment FEDORA_HOME/client directory
variables properly). Upon starting up the administrator interface you will be presented with the screen shown in Figure 2. This document assumes Login
that you have not changed any of the configuration defaults for your Fedora server so the password you enter should be . If you have fedoraAdmin
changed your configuration values or are running the Fedora Administrator from a machine different from the machine on which your Fedora server is
running you will need to change the values in the screen appropriately.Login

Figure 2 – Fedora Administrator Login Screen

You should read this document in order, since later examples assume knowledge of techniques and definitions introduced earlier.

Conventions Used in This Document
The font conventions used are:

Defined terms are introduced like this.
Text in dialog boxes and windows is shown like this.
URLs, directory paths, file names, and similar items are shown like this.

All path names assume that you have set your environment variable and descend from the directory defined by that variable.FEDORA_HOME

All URLs that access the Fedora repository assume that the of the repository is .host:port localhost:8080

Getting Started: Using Fedora for Aggregating Content

http://sourceforge.net/projects/fedora-commons
http://sourceforge.net/projects/fedora-commons
#

1.

a.
b.

2.

a.

b.

c.

d.

This section describes how to create digital objects in Fedora that aggregate data from multiple sources. The examples demonstrate how to do this with
both local data and data from networked sources. This section provides the foundation for the next section, which describes how to use Fedora to create
dynamic content by exploiting web services. Make sure you understand the basic concepts here, before moving on to that next section

Some Basic Definitions

To understand content aggregation in Fedora, you need to be comfortable with two terms:

Fedora Digital Object or – This is the basic unit for information aggregation in Fedora. At a minimum a has: FDO FDO

A or – The provides the key by which the is accessed from the repository.Persistent Identifier PID PID FDO
Dublin Core – It provides a basic description of the .FDO

Datastream – A component of a that represents a data source. A may have just the basic , or any number of FDO FDO Dublin Core Datastream
additional . Each can be any -typed data or metadata, and can either be content managed locally in the Fedora Datastreams Datastream MIME
repository or by some external data source (and referenced by a URL). When you create a new in a , you assign it to one of four Datastream FDO
types, or , depending on the nature of the data that it represents. control groups

Managed Content (M): content is stored and managed within the Fedora repository's persistent storage. The content can be Datastream
any type including .MIME XML
Inline XML (X): A special case of M, restricted to well-formed . In this case, the content is stored as part of the XML Datastream XML
structure of the itself and is thus included when the it is exported (e.g., for archival purposes).FDO
Externally Referenced (E): content is external to the Fedora repository and is referenced by a URL that is recorded within Datastream
the . The content can be any type including .FDO MIME XML
Redirected Content (R): Like E, but content is delivered to the client without any mediation by Fedora; i.e., via an Datastream HTTP
redirect. You should use this type when the external content is a web page with relative links or it is streaming audio or Datastream
video. The content can be any type including .MIME XML

Decisions about what to include in a and how to configure its are basic modeling choices as you develop your repository. The examples FDO Datastreams
in this tutorial demonstrate some common models that you may find useful as you develop your application.

Example 1: Making a Document Available in Multiple Formats

It is often useful to provide access to a digital document in several formats. For example an ePrints server might provide for those who wish to HTML
render the document in a browser, for those who wish to view the document with author-determined formatting, and TeX for those who wish to access PDF
and use the document source. This example demonstrates how to construct a where each corresponds to an available format. More FDO Datastream
advanced techniques, demonstrated later in this tutorial, make it possible to achieve the same results by generating formats dynamically from a single
base format. But for now, we'll stick to simple static aggregation.

Start by selecting in the . Complete the dialog box as shown in Figure 3.File/New/Data Object Fedora Admin GUI New Object

Figure 3 – New Object Dialog

Check the box for and enter . Note that when you do not assign your own , the Fedora repository will create one for you. Use Custom PID demo:100 PID
Select the button and you should see a window like that shown in Figure 4. Observe that the of the created object (in this case) is Create PID demo:100
displayed in the title bar.

Figure 4 – Configuring an Object

Since our task here is to define the in the object, click on the tab and you will see a window like that shown in Figure 5. Note Datastreams Datastreams
that at this point there is only one in the object – the DC containing basic descriptive metadata that was automatically created by Datastream Datastream
Fedora. You can select that and select the button to see the its default contents, with the DC title and identifier fields already filled in.Datastream Edit

1.

2.

Figure 5 – DisplayDatastream

A few points to note about what you have done so far:

You will notice that the of the DC is . As explained earlier, Fedora has a number of Control Group Datastream Internal XML Metadata
control group types, of which this is one. This type is appropriate for metadata that is represented in – metadata being one XML Dublin Core
example. A can have multiple metadata , for example , , , and others.FDO Datastreams MARC LOM Dublin Core
You can directly edit the Dublin Core metadata – e.g., add new Dublin Core fields – by selecting the button and modifying the contents of Edit
the text pane. When you press , Fedora will check that the is well-formed .Save Changes… Datastream XML

You may also create Dublin Core metadata (or any other -based metadata) in an external editor and using the button to replace the XML XML Import… Dat
 with this data. When you press , Fedora will check that the is well-formed .astream Save Changes… Datastream XML

You will notice that there are optional fields on the pane for (to refine the media type meaning with a URI that more precisely Datastreams Format URI
identifies the media type) and to capture any other existing identifiers you would like to associate with a . We will not be using Alternate Ids Datastream
these in this tutorial.

It is now time to add the ePrints document formats as new . You can find content for creating the for this example in:Datastreams Datastreams

FEDORA_HOME/userdocs/tutorials/2/example1/artex.html
FEDORA_HOME/userdocs/tutorials/2/example1/artex.pdf
FEDORA_HOME/userdocs/tutorials/2/example1/artex.tex

NOTE : Tutorial files are no longer included with Fedora. You can retrieve the needed files from Fedora 3.0 at .sourceforge

To do this, select the tab on the left side of the window. We'll start with the format. To insert data into the , you New… Datastreams text/html Datastream
use the button. This presents a dialog that will allow you to import from your local file system or from a URL.Import…

Your completed should look like the dialog as shown in Figure 6 (after you have imported the content).HTML Datastream

http://fedora-commons.svn.sourceforge.net/viewvc/fedora-commons/moved-to-github/fedora/tags/release-3.0/src/doc/userdocs/tutorials/

1.
2.
3.

Figure 6 – Adding a New Managed Content Datastream

A few notes on the contents of this dialog:

The of the should be a single token. By convention, it describes the purpose of the .ID Datastream Datastream
The can be a longer, more descriptive string.Label
Note that the is . As shown in the descriptive text this type is appropriate for any type of data (Control Group Managed Content Datastream M

 type), in contrast to . Once you select this radio button, you can select from the variety of of the IME Internal XML Metadata MIME Types
managed content – in this case .text/html

You can now select the button and repeat the same process to add the and . For the , you can select Save Datastream PDF TeX Datastreams PDF MIME
Type: and import the file . For TeX, you can select Type: and import the file . In each case you application/pdf ex1.pdf MIME text/plain ex1.tex
should enter appropriate IDs and Labels.

You're done! Your window should now look something like that shown in Figure 7, showing all the you have entered in the left-Datastreams Datastreams
side tabs in the window.

Figure 7 – Complete for Example 1Datastreams

You will notice as you click through each that there is a Fedora URL, giving the unique URL to access each from the Fedora Datastream Datastream
repository. Try going to a browser and entering one of these URLs – the browser will download the and display it. These URLs can be used by Datastream
web applications and REST-based web services that access from Fedora Digital Objects. Note that if you are building SOAP-based web Datastreams
services, there are also SOAP methods (and) that provide access. You can also try getDataStream getDatastreamDissemination Datastream
entering the root URL for the entire , which is simply the common prefix of all the – e.g., http://localhost:8080/fedora/get/demo:100. FDO Datastream URLs
This accesses the header page for the , which allows you to access its Datastreams (available through the item index hyperlink) and disseminations FDO
(available through the dissemination index hyperlink).

Figure 8 illustrates the structure of the object you have created and the correspondence of REST-based access requests to the object and its components
(via API-A-LITE).

Figure 8 – Example 1 and Fedora Digital Object Datastreams

Example 2: Creating a Surrogate for Distributed Content

The previous example demonstrated how to aggregate imported content into a . There are many reasons why importing content into Fedora Digital Object
a repository might not be appropriate such as rights restrictions or the dynamic nature of the content. To accommodate these restrictions, may FDOs
contain Datastreams that reference externally managed content, and in fact may mix local and distributed data sources.

This section describes how to do this where the motivating example is the creation of a hypothetical learning object in an educational digital library, such as
the . The created in this example combines three frog images from the NSDL collection and some locally-managed text.NSDL} FDO

To get started follow the same procedure as illustrated in Figure 3, this time entering as the Label and as the custom . As in Example 2 demo:200 PID
Example 1, select the tab and then enter the information as shown in Figure 9.Datastreams

http://www.nsdl.org/

Figure 9 – Adding a with Type RedirectDatastream

You will enter the Datastream identifier of IMAGE1, a label for this Datastream, and then information about the content. The content is of type MIME image
. You should select the Control Group of Redirect, and then enter a URL that specifies the Location of the image file, specifically:/gif

http://www.frogsonice.com/froggy/images/toads.gif

A few notes on the contents of this dialog:

Pertaining to the selection of a Control Group, you have two choices if you want the Datastream to point to content that resides outside the
Fedora repository (External Referenced Content Redirect) In this case we chose Redirect . To review, the meaning of the two options for and .
mapping to external content are:

External Referenced Content is useful when you want Fedora to mediate access to the Datastream, for example when you want to hide
the source URL from the user. Fedora mediates access to these Datastreams, meaning that the content is streamed through the Fedora
server.
Redirect. makes use of a simple HTTP redirect to provide the content. This is useful when there are relative hyperlinks in the external
content, but reveals the source URL to the user.

Make sure that the type choice matches that of the content offered by the external source, in this case image/gif.MIME

In the same manner, you can now proceed to add the two other Datastreams with locations: http://www.werc.usgs.gov/fieldguide/images/hycafr.jpg and
http://www.aquariumofpacific.org/images/olc/treefrog600.jpg.

You should respectively identify these Datastreams as IMAGE2 and IMAGE3. (Note that if these sample URLs are no longer active, you can enter other
URLs pointing to images to complete this tutorial exercise.)JPEG

Finally, add another Datastream labeled MyText (containing some descriptive text about the images), with type . Assign this Datastream MIME text/html
a Control Group of Managed Content indicating that the content will be imported and stored permanently in the Fedora repository. Import the content from
the following location:

FEDORA_HOME/userdocs/tutorials/2/example2/mytext.html

The resulting Datastream window should now look like that shown in Figure 10.

Figure 10 – Example 2 DisplayDatastream

You're done! Figure 11 illustrates the role of the redirected Datastream at the time of access via the Fedora REST-based interface (API-A-LITE). You FDO
can see this by going to the profile page at: http://localhost:8080/fedora/get/demo:200FDO

You can access the Datastreams for this by viewing the item linked to from the object profile page. Then, select the link for one of the redirected FDO
Datastreams. Fedora will redirect your browser to the location of the Datastream content, without streaming the content through the Fedora repository
server.

1.

Figure 11 – Example and Redirected Fedora Digital Object Datastream

Using Fedora to Produce Dynamic Content
The examples described so far demonstrate the basic content aggregation features of Fedora. As mentioned already, the power of Fedora lies in its ability
to associate the data in a with Web services to produce dynamic disseminations. Some examples of this capability are as follows:FDO

Rather than packaging multiple formats of a document as in Example 1, it is possible to have a with one Datastream in a source format (e.g. FDO
TeX) and then associate a service with the to transform the source format into multiple output formats (e.g. and). An obvious FDO PDF HTML
advantage of this is that any changes to the source format propagate out to the derived formats. Furthermore, less content is stored and/or
duplicated in the repository.

Rather than packing multiple metadata -based metadata formats in a , it is possible to package a single base metadata format in a XML FDO FDO
(for example, fully qualified Dublin Core) and use that base format as the basis of metadata crosswalks. To do this, one could associate an XSLT
engine (e.g.) service with the that processes the base format with a transform document (packaged as a Datastream in another Saxon FDO XSL F

) to derive one or more additional formats.DO
In both cases, static and dynamic, disseminations are available via REST or SOAP requests from clients to the Fedora Access service (API-A
and API-A-LITE). The nature of the disseminated content – the format of the underlying data, where it is located, and whether it is static or
dynamically generated – is invisible from the client perspective. As a result, a repository manager can significantly alter the nature of a and FDO
the web services that it uses while maintaining the same interface vis-à-vis the client. Correspondingly, two with entirely different structure FDOs
can appear the "same" from the perspective of consuming clients.

The remainder of this section presents a series of examples demonstrating how to create that exploit Web services. The initial examples make use FDOs
of services available in the Fedora software release (they run as "local services" within the Fedora server container). Later examples demonstrate how to
construct your own custom objects with external web services. Before proceeding with the examples, this introduction summarizes the concepts and
defines the terms used in the examples. Don't worry if the concepts are not entirely clear at first. You should read them now and then refer back to them as
you work through the examples.

Figure 12 shows an abstract view of the different components of the Fedora repository architecture that are key to how Fedora produces "disseminations"
of object content.FDO

http://saxon.sourceforge.net/

1.

2.

3.

4.

1.

2.

3.

Figure 12 – Abstract View: Key Fedora Components for Producing Disseminations of Content

These layers are:

Client: Clients make requests for content disseminations through the Fedora Access service APIs (i.e., API-A-LITE and API-A). These interfaces
include operations for discovering and accessing all disseminations that are available for a particular . A can have both static and FDO FDO
dynamic disseminations, which are described below.
Fedora APIs: The Fedora repository service is exposed via a uniform set of APIs. Fedora's API-A and API-A-Lite provide operations (methods) for
accessing content. While the default mode of accessing a delivers the Datastreams (i.e., repository returns the bitstream represented FDO FDO
by the Datastream un-transformed), the () enables defining any number of services for accessing CMA Content Model Architecture custom
Datastream content. These custom services are produced when the Fedora repository service calls another Web service to transform Datastream
content. Such transformations can be thought of "virtual" views of content, since these views are created dynamically at runtime.FDO
Web Services: These are Web-accessible programs that are invoked by HTTP to produce disseminations of content. Note that the Fedora FDO
repository itself is a Web service to access the default services of . Also, Fedora can interact with other Web services to product custom FDOs
access services that transform content on-the-fly. In this tutorial we will describe how Fedora interacts with simple REST-based services to FDO
product such custom services. Custom services are produced when the Fedora repository service itself makes outbound service calls to other
Web services using simple REST-based requests. We will not discuss Fedora interacting with SOAP-based web services here.
Storage: objects are stored by the Fedora repository service. Datastreams are constituent parts of – essentially metadata about the FDOs FDOs
bytestreams. Fedora interacts with low-level storage to access to fulfill client requests for access to content. Datastreams capture the raw FDOs
content. As shown in the previous examples, Datastreams can be directly disseminated via the Fedora Access service. Also, Datastreams can
serve as input to other custom services that are produced on-the-fly when the Fedora repository service calls upon another Web service at run
time (using a raw Datastream as input).

The process of creating with dynamic content disseminations involves creating linkages between these layers. During this process you will create FDOs
and employ the following:

Service Definition (): A that is a template for client-side services, defining a set of abstract operations (methods) and their client-side SDef FDO
arguments. Association of a with a augments the basic behavior of the object with the operations defined in the template. A SDef FDO SDef SDef
may be associated with more than one , thereby augmenting all of them with the same operations.FDO
Service Deployment (): A that registers within Fedora the capability of web service(s) to perform the operations defined by a specific SDep FDO SD

. This registration includes defining service binding metadata encoded in the Web Service Description Language () and also a ef WSDL data profile
of the . The data profile defines the types of inputs that are considered compatible with the service. In particular it declares the types SDep MIME
that are needed by the respective web service to perform its task. Multiple may be registered for an individual , thereby exposing a SDeps SDef
generic client-side interface (defined by the) over multiple data and web service foundations (defined by the).SDef SDep
Content Model (): A that is used to store information which will allow Fedora to determine whether a data object, which asserts CModel FDO
conformance to a content model, is valid. The Content Model is also important for performing disseminations in Fedora, based on the Content
Model Architecture. A Data Object will indicate which Content model they represent via a special RELS-EXT relationship. The Content Model will
in turn indicate which it is associated with (also with a special RELS-EXT relationship).SDef(s)

These three kinds of special Fedora objects are stored in Fedora repositories. The set of all represents a "registry" of all the kinds of abstract SDefs
services supported by the Fedora repository. The set of all represents a "registry" of all the concrete service bindings for the abstract service SDeps
definitions supported by the Fedora repository. The set of all represent a "registry" of the different user-defined types of data objects that exist in CModels
that Fedora repository.

At the end of the day, make references to , and as the way of providing extended access points for (i.e., dynamic FDOs SDefs SDeps CModels FDOs
content disseminations.) This is done by adding special relationships between the objects that are stored in the RELS-EXT Datastreams of those objects.
Figure 13 indicates the relationships that exist between the four object types. Data objects assert that they conform to a particular Content Model using the

 relationship. Content Model objects assert they provide the services included in an using the relationship. Service Deployment hasModel SDef hasService
objects assert the services for which they provide binding information by using the relationship, as well as asserting the Content Models isDeploymentOf
for which they provide service bindings using the relationship.isContractorOf

Figure 13 – Fundamental RelationshipsContent Model Architecture

Figure 14 illustrates the interactions among Fedora and Web services in response to an access request. As indicated, a client makes a request to the
Fedora API (with a URL in this case.) The Fedora repository service then determines the content model that is associated with the for which the FDO
request is being made. Once it knows the content model, the Fedora repository can discover what and are in play for this . Once all of SDefs SDeps FDO
this information is gathered, the Fedora repository can construct a request to the appropriate web service to transform the Datastreams of the target (FDO

). The Fedora repository service invokes a REST-based request to the web service via HTTP, sending along arguments to enable the web service demo:2
to obtain the required Datastream inputs to fulfill the request. The Fedora repository mediates all invocations with the external web service. When it
receives a response from the web service it streams it back to the original calling client. In this case, the response is a transformation based on the raw
material of Datastream1 and Datastream2 in the .FDO

Figure 14 – Dynamic Dissemination Access

Example 3: Using , and SDefs SDeps CModels

This example makes use of a , and supplied with the Fedora tutorial. This will help you understand the basics of dynamic SDef SDep CModel
disseminations in Fedora under the Content Model Architecture, without writing a , or . The next example describes how to do that more SDef SDep CModel
advanced task.

The web service used in the example performs an transform using the well-known processor. This service requires two inputs, an XSL Saxon XSLT XML
source document and a transform document. In this example, both of these documents are stored as managed content in a XSL XML Fedora Digital Object
. The source is data for a poem with tags for the structural elements of the poem (stanzas and lines). The transform produces a output of XML XSL HTML
the poem that can be viewed in a browser. This example is borrowed from the web available source for .Michael Kay's excellent bookXSLT

Ingesting Pre-defined , and ObjectsSDef SDep CModel

First we will ingest a sample object into the repository.SDef

Select File/Ingest/One Object/From File… in the Fedora Administrator. This will bring up a file selection dialog box as follows:

http://saxon.sourceforge.net/
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764569090.html

Browse the file system to select the ingest file for the object whose file name is . SDef FEDORA_HOME/userdocs/tutorials/2/example3/SDef.xml
Since this ingest file is encoded as FOXML 1.1 select the FOXML 1.1 radio button as below:

This will create the with in your repository. This defines one method getContent. This generic method name is intentional – FDO PID demo:ex3SDef SDef
one could imagine this one being used as the basis for several , each of which produces "content" via a unique transformation of an underlying SDef SDeps
source. This is one of the advantages of Fedora – providing a common interface despite multiple underlying representations.

Follow the same procedure to ingest a sample object into the repository. Select the file FEDORA_HOME/userdocs/tutorials/2/example3/SDep.xml. SDep
This will create the with the . This represents a concrete implementation of the abstract service operations defined in the FDO PID demo:ex3SDep SDep S

 . The object contains metadata that specifies the following:Def demo:ex3SDef SDep

Service Contract: the indicates the of the that it is related to. This is like saying that the provides and implementation of the SDep PID SDef SDep
.SDef

Service binding metadata (i.e., in WSDL) : concrete binding for the getContent method that is defined. Specifically, the WSDL indicates that the
getContent operation binding exists at the base URL of . Note that this service is hosted at the same host and http://localhost:8080/service/saxon
port as the Fedora repository. As noted earlier, this is a local service that is packaged with Fedora.
Data input profile that indicates that the service operation getContent will take the following inputs at runtime:SDep

"xsl" with type text/xml.MIME
"source" with type text/xml.MIME

Next follow the same procedure to ingest a sample object into the repository. Select the file FEDORA_HOME/userdocs/tutorials/2/example3CModel
/CModel.xml. This will create the with the . This describes the Datastreams that should be present in data objects that FDO PID demo:ex3CModel CModel
conform to this content model, it also has a RELS-EXT hasService relationship link to the ingested previously.FDO demo:ex3SDef

Creating a with Appropriate Fedora Digital Object Datastreams

Now you need to create the new based on this , and . To get started follow the same procedure as illustrated in Figure 3, this time FDO SDef SDep CModel
entering demo:300 as the Datastream ID and Example 3 as the Label.

You now need to add the two Datastreams: the source document and the transform document. Using the same method described in Example 1, XML XSL
select the Datastreams tab and:

Add a Datastream with:

http://localhost:8080/service/saxon

1.
2.

3.

ID – source
Control Group – Managed Content
Mime type – text/xml
Label – Poem XML Source
Import location: FEDORA_HOME/userdocs/tutorials/2/example3/poem.xml

Add a Datastream with:
ID – xsl
Control Group – Managed Content
Mime type – text/xml
Label - Poem XSL Transform
Import location: FEDORA_HOME/userdocs/tutorials/2/example3/poem.xsl

Linking the to the Fedora Digital Object Content Model

In Fedora Administrator, select the Datastreams tab from the window, and then select the New RELS-EXT… tab. The resulting dialog will now allow FDO
you to create the necessary RELS-EXT relationship to allow dynamic dissemination to work. Follow these steps:

Select the Edit button, then the Add… button to create a new relationship.
In the Enter Relationship dialog that appears, in the Predicate: drop-down dialog, select the entry fedora-model:hasModel and in the Object: text
entry box, enter the string info:fedora/demo:ex3CModel, and then press the OK button.
hould then see the newly created relationship in the table at the bottom of the New RELS-EXT… window. Press the Save Datastream button to
save this newly created Datastream.

The resulting Object window should look like that illustrated in Figure 15.

Figure 15 – Example 3 Linking a to a Fedora Digital Object Content Model

1.
2.
3.
4.
5.

1.

You're done! Figure 16 illustrates the role of this and dissemination service in response to a client request. You can go to the header page at FDO FDO
http://localhost:8080/fedora/get/demo:300 and select the View Dissemination Index link. Your newly added dynamic dissemination should now appear,
alongside the primitive behaviors for the object. To see the results of this dynamic dissemination, you can either select the Run button for getContent in the
Method Index display or simply enter the URL directly.http://localhost:8080/fedora/get/demo:300/demo:ex3SDef/getContent

Figure 16 – Example 3 dissemination via the Content Model Architecture

Example 4 – Modifying Example 3 Using a Redirect Datastream

Example 3 packages the transform Datastream in the same as the source Datastream. However, in many cases you will have XSL FDO XML XSL
transform code that you want to share across several sources. This section modifies Example 3 to enable this sharing.XML

This is done by packaging the transform code in a of its own. Then every that needs to make use of the transform code can use the XSL FDO FDO XSL
Fedora REST URL to access that Datastream. This is done by defining a redirect Datastream using the REST URL as the redirect target. Then, the same
disseminator design used in Example 3 can be reused. This is known as , whereby the dissemination of one is used by dissemination chaining FDO
another.

The steps to do this are quite simple and use techniques introduced thus far:

Create a new (the) assigning the . Create one Datastream in addition to the DC with ID XSL. As before, this FDO XSL FDO PID demo:400
Datastream should be configured as:

ID – xsl
Control Group – Managed Content
Mime type – text/xml
Label - Poem XSL Transform
Import location: FEDORA_HOME/userdocs/tutorials/2/example3/poem.xsl

Create another (the "dissemination service") assigning the .FDO FDO PID demo:500
Create two new Datastreams

One configured as follows (the same as the Source Datastream in Example 3):
ID – source
Control Group – Managed Content
MIME type – text/xml
Label - Poem XML Source
Import location: FEDORA_HOME/userdocs/tutorials/2/example3/poem.xml

Now create the Datastream that will redirect to the in demo:400 as follows:XSL

1.
2.
3.
4.
5.
6.

ID – xsl
Control Group – Redirect
Mime Type – text/xml
Label - Poem XSL Transform
location: http://localhost:8080/fedora/get/demo:400/XSL
• On the New RELS-EXT… tab add the same hasContentModel relationship to demo:ex3CModel as you did in example 3.

You're done! The should now behave exactly the same as the in Example 3. Figure 17 refines Figure 16 (with some demo:500 FDO demo:300 FDO
labeling removed for clarity) with the new redirect configuration.

Figure 17 - Dissemination with Redirect Datastream

What's next?
You should now understand the basic mechanisms through which , and interact with Data objects to provide a richer dynamic view SDefs SDeps CModels
of the data stored in those objects. The next tutorial (Tutorial 3 – Not yet available) steps you through the process of using the admin client to create a SDef
, a , and a from scratch and a that will function with the control objects to provide customized services similar to those described SDep CModel Data Object
in the last example of this tutorial. To explore the other features of Fedora, refer to the . You can also join the Fedora Repository Documentation Fedora-

 to ask questions and learn from the experience of other Fedora users.users mailing list

http://localhost:8080/fedora/get/demo:400/XSL
#
http://sourceforge.net/mailarchive/forum.php?forum_name=fedora-commons-users
http://sourceforge.net/mailarchive/forum.php?forum_name=fedora-commons-users

	Tutorial 2 - Creating Fedora Objects

