
1.

2.

1.

2.

3.

4.

Thoughts on Version Numbering
During Developer Meetings on and , we decided that the next DSpace Release in Fall 2012 will be called 3.02011-11-09 2011-11-16

Thoughts on Version Numbering
This page is a "placeholder" for all suggestions around renumbering our DSpace releases. Our current version numbering convention is documented in our

 at Release Procedure DSpace Numbering Convention

Thoughts on Version Numbering
Overview - Why is this even being discussed?
The Case for Date Based Version Numbers
Date Base Release Versioning with separate individual addon version numbering.
Please add your own proposals on version numbering here....

Overview - Why is this even being discussed?

In recent and past , the topic always comes up: "I'd like to suggest we change our DSpace version numbering from the 1.x.x (e.g. Developer Meetings
1.6.0, 1.6.1, 1.7.0, etc.) numbering we currently use." (See , for more info on our current version numbering convention)DSpace Numbering Convention

Usually this comes out of a few perceived issues with our current numbering sequence (whether or not these are just misperceptions, or are actual issues
is up for constant debate):

All the "baggage" around the idea of DSpace 2.0, and wanting to avoid that in the future. The version "2.0" has been mentioned off and on for 5+
years as the "next, amazing version of DSpace". Therefore "DSpace 2.0" is sometimes perceived to have a lot of expectations around it
(especially in terms of what features it must have to be considered "2.0").
The potential misperception that "1.x" versioning sounds like DSpace may not be as mature or stable as it really is. Obviously DSpace has been
around since 2002, and has over 1000 institutions using it worldwide (which speak to the maturity and stability of the system). But, some may feel
higher numbered releases sound as though they are more mature.

The Case for Date Based Version Numbers

So what do we mean by a date based version number? It's when the date of release forms part of the product identification - like Windows 95, or Windows
98. Or, more usefully in our case, Ubuntu's numbering scheme where the major number is the year, and the minor number the month. Which gave us:
10.04 (released April 2010), 10.10 (released Oct 2010) and the forthcoming 11.04 (to be released April 2010). For DSpace, it would make the next release
11.10.

Why should we adopt this scheme? Aside from the reasons given above (which are applicable to all alternative schemes), there are advantages to date
based versioning:

It's a logical change - ie. you can see that the change is numbering scheme is clearly meant to reflect something specific, and not just an arbitrary
chosen value.
Promotes the view of DSpace as an evolving platform (as opposed to the revolutionary / evolutionary cycles of standard major / minor release
numbers)
It's clear how old your version of DSpace is without looking it up. In 2020, I'll be able to immediately tell you when DSpace 11.10 was released.
How quickly can you answer that question for DSpace 1.4.1?
Reinforces the process of time-based releases, and favours a predictable schedule for subsequent (major) releases

The last point does also provide one possible disadvantage - if we ever wanted to back away from time-based releases, a date based version number
would be impossible to pre-announce before it's clear when the release would take place (but we could always use codenames for development
announcements).

Date Base Release Versioning with separate individual addon version numbering.

This would augment the above strategy with the ability to version individual modules (dspace-api, dspace-stats, dspace-discovery) with thier own version
numbering (1.8.1, 2.0.0, N.N.N). There are further details on this here Asynchronous Release

The basic principle would be that the directory would become the project that was versioned with the dated number (11.10) This may dspace/trunk/dspace
or may not ever reach a point of being placed into the Maven repository, as it is used as the assembly point for the application. (On a tangent, actually
creating artifacts for the configuration sources (config,etc,solr) would enable us to start to create Maven archetypes for starting a DSpace build rather than
downloading source releases)

Likewise, would go away and we would rely on dependencyManagement to be handled in the such that the dspace-parent dspace/trunk/dspace/pom.xml
build/deployment has direct control over it at assembly time.. Using instead of parent allows us to release indivudal releases of dspace-api, dspace-pom
dspace-xmlui, dspace-stats, etc When we then have the ability to release these separately, maintenance releases can simply be resolving the latest
version of a maven artifact from the repository (via dependencyManagenet in the) rather than having to actually upgrade the dspacedspace/pom.xml
/modules/*/pom.xml files to newer versions of the dependencies.

https://wiki.lyrasis.org/display/DSPACE/DevMtg+2011-11-09
https://wiki.lyrasis.org/display/DSPACE/DevMtg+2011-11-16
https://wiki.lyrasis.org/display/DSPACE/Release+Procedure
https://wiki.lyrasis.org/display/DSPACE/Release+Procedure#ReleaseProcedure-ReleaseNumberingConvention
https://wiki.lyrasis.org/display/DSPACE/Developer+Meetings
https://wiki.lyrasis.org/display/DSPACE/Release+Procedure#ReleaseProcedure-ReleaseNumberingConvention
https://wiki.lyrasis.org/display/DSPACE/Asynchronous+Release
http://scm.dspace.org/svn/repo/dspace/trunk/dspace/
http://scm.dspace.org/svn/repo/dspace/trunk/pom.xml
http://scm.dspace.org/svn/repo/dspace/trunk/dspace/pom.xml
http://scm.dspace.org/svn/repo/modules/dspace-pom/trunk/pom.xml
http://scm.dspace.org/svn/repo/dspace/trunk/dspace/pom.xml

This actually turns our maintenance release process into more of an "update" to your currently configured build rather than a merging of sources. As long
as customizations are maintained in and all that is required to update your release is incrementing the version number in your dspacedspace/modules
/pom.xml dependencyManagement, then minor updates can be released much more frequently than 2-3 time a year, for instance, all the recent fixes on
the dspace-1.7.x branch could have been release incrementally and actually be in effect on the DSpace 1.7 release already. This is why I think this will be
such a powerful approach.

Please add your own proposals on version numbering here....

This seems to me like an ideal candidate for convergence with other members of the duraspace community. Differing to a wider policy both stops the
conversation and is says a lot about the our future plans for the project as a whole. (stuart yeates)

http://scm.dspace.org/svn/repo/dspace/trunk/dspace/modules/

	Thoughts on Version Numbering

