
DuraCloud REST API
DuraCloud REST API methods:

Notes
DuraStore

Get Stores
Get Spaces
Get Space
Get Space Properties
Create Space
Delete Space
Get Space ACLs
Set Space ACLs
Get Content
Get Content Properties
Store Content
Copy Content
Set Content Properties
Delete Content
Get Audit Log
Get Manifest
Generate Manifest
Get Storage Reports by Space
Get Storage Reports by Store
Get Storage Reports for all Spaces in a Store (in a single day)
Get Bit Integrity Report
Get Bit Integrity Report Properties
Get Tasks
Perform Task
Tasks

Amazon S3 Storage Provider
Amazon Glacier Storage Provider
Snapshot Storage Provider

Notes
Each of the methods below has specific security requirements. See for more informationDuraCloud Security
Examples calling the API defined below with the Unix utility "curl" can be found here

DuraStore

Purpose: DuraStore is the application through which DuraCloud manages storage. The DuraStore REST API provides access to storage by mediating the
underlying storage provider APIs to allow access to multiple cloud storage options through a single API.

Store REST Methods

Get Stores

Purpose: Provides a listing of available storage providers accounts (without credentials)
Request: GET https://host:port/durastore/stores
Parameters: None
Response Code: 200 (on success)
Response Body: XML similar to:

<storageProviderAccounts>
 <storageAcct isPrimary='1'>
 <id>1</id>
 <storageProviderType>AMAZON_S3</storageProviderType>
 </storageAcct>
 <storageAcct isPrimary="0">
 <id>2</id>
 <storageProviderType>RACKSPACE</storageProviderType>
 </storageAcct>
</storageProviderAccounts>

Note: The value of the isPrimary attribute is 1 for true and 0 for false

https://wiki.lyrasis.org/display/DURACLOUDDEV/DuraCloud+Security
https://wiki.lyrasis.org/display/DURACLOUDDEV/REST+API+Examples+Using+curl

Space REST Methods

Get Spaces

Purpose: Provides a listing of all of the spaces that a customer has created
Request: GET ? (storeID)https://host:port/durastore/spaces
Response Code: 200 (on success)
Response Body: XML similar to:

<spaces>
 <space id="space1" />
 <space id="space2" />
</spaces>

Get Space

Purpose: Provides a listing of the contents of a space along with space properties
Request: GET ? (storeID) (prefix) (maxResults) (marker)https://host:port/durastore/spaceID

storeID (optional) - ID of the content storage provider to query (default is primary store)
prefix (optional) - Only retrieve content ids with this prefix (default is all content ids)
maxResults (optional) - The maximum number of content IDs to return in the list (default is 1000)

: the maximum allowable value for maxResults is 1000. Any larger value will be reduced to 1000.note
marker (optional) - The content ID marking the last item in the previous set (default is the first set of ids)

Response Code:
200 (on success)
404 (if the the given space does not exist)

Response Body: XML similar to:

<space id="space1">
 <item>Image 1</item>
 <item>Image 2</item>
</space>

Response Headers: All available space properties, example:

x-dura-meta-space-count: 65
x-dura-meta-space-created: 2016-04-14T01:40:47

Get Space Properties

Purpose: Provides all space properties
Request: HEAD ? (storeID)https://host:port/durastore/spaceID
Response Code:

200 (on success)
404 (if the the given space does not exist)

Response Headers: Same as for Get space (above)

Create Space

Purpose: Creates a new space
Request: PUT ? (storeID)https://host:port/durastore/spaceID

Response Code:

201 (on success)
400 (if the content ID is invalid)

Response Headers: Location of the new space (i.e. the URL used to create the space), example:

Location: https://myhost:8080/durastore/space1

Delete Space

Purpose: Deletes a space
Request: DELETE ? (storeID)https://host:port/durastore/spaceID
Response Code:

200 (on success)
404 (if the the given space does not exist)

Response Body: "Space $spaceID deleted successfully" (on success)

Get Space ACLs

Purpose: Provides all space ACLs, with values of 'r' (read) and 'w' (read/write)
Request: HEAD ? (storeID)https://host:port/durastore/acl/spaceID
Response Code:

200 (on success)
404 (if the the given space does not exist)

Response Headers: All available space ACLs, example:

x-dura-meta-acl-user0: WRITE
x-dura-meta-acl-user1: WRITE
x-dura-meta-acl-group-curators: READ

Set Space ACLs

Purpose: Updates the ACLs associated with a space
Request: POST ? (storeID)https://host:port/durastore/acl/spaceID
Request Headers: For 'user' ACLs the header prefix must be 'x-dura-meta-acl-' and for 'groups' the header prefix must be 'x-dura-meta-acl-
group-'. Allowable values for ACL headers are: 'READ' and 'WRITE'.
Example:

x-dura-meta-acl-user0: WRITE
x-dura-meta-acl-user1: WRITE
x-dura-meta-acl-group-curators: READ

Response Code:
200 (on success)
404 (if the the given space does not exist)

Response Body: "Space $spaceID ACLs updated successfully" (on success)

Content REST Methods

Get Content

Purpose: Retrieves a piece of content along with its properties
Request: GET ? (storeID) (attachment)https://host:port/durastore/spaceID/contentID

if attachment param value is true, a Content-Disposition header is included with the response
Response Code: 200 (on success)
Response Body: The content stream
Response Headers: All available content properties, example:

Content-Type: text/plain
Content-Length: 5732
Content-MD5: 3456709234785097473839202
ETag: 3456709234785097473839202
x-dura-meta-content-name: Testing Content
x-dura-meta-content-owner: JSmith

Get Content Properties

Purpose: Retrieves the properties of a piece of content without the content itself
Request: HEAD ? (storeID)https://host:port/durastore/spaceID/contentID
Response Code: 200 (on success)
Response Headers: Same as Get content (above)

Store Content

Purpose: Adds a piece of content to the store
Request: PUT ? (storeID)https://host:port/durastore/spaceID/contentID
Request Body: Content to be added

https://hostport
https://hostport

Request Headers: Properties about the content, example:

Content-Type: text/plain
Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
x-dura-meta-content-name: Testing Content
x-dura-meta-content-owner: JSmith

Response Code:
201 (on success)
400 (if the content ID is invalid)
404 (if the the given space does not exist)
409 (if the provided checksum did not match the stored content checksum)
500 (on error)

Response Headers:
MD5 checksum of stored content
ETag of stored content
Location of the new content (i.e. the URL used to create the content), example:

Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
ETag: 4cd56e137a93a1accb43c5d32f4afffb
Location: https://myhost:8080/durastore/space1/content1

Usage Notes
When the optional Content-MD5 header is included, the final checksum of the stored file is compared against the MD5 value included
in the header to ensure that the file was stored correctly. If the header is not included, an MD5 checksum is computed as the file is
transferred to storage, and that value is used in the final comparison.
All properties to be set must be included as a request header with the prefix "x-dura-meta-". Any header using the "x-dura-meta-"
prefix will be stored as a content property, with a few exceptions, which are used for specific other purposes:

Headers used as part of the Copy Content request

x-dura-meta-copy-source
x-dura-meta-copy-source-store

Headers used to provide details about a space

x-dura-meta-space-count
x-dura-meta-space-created

Headers used as part of the Set Space ACLs call (the * is replaced by the user or group name)

x-dura-meta-acl-*
x-dura-meta-acl-group-*

Headers used internal to DuraCloud

x-dura-meta-content-mimetype (set Content-Type header instead)
x-dura-meta-content-size (automatically written as Content-Length header)
x-dura-meta-content-checksum (automatically written as Content-MD5 header)
x-dura-meta-content-modified (automatically written as Last-Modified header)

Headers used by the DuraCloud SyncTool to automatically capture file details

x-dura-meta-creator
x-dura-meta-content-file-created
x-dura-meta-content-file-modified
x-dura-meta-content-file-last-accessed
x-dura-meta-content-file-path

Use only US-ASCII characters for property names and values
There is a 2 KB total size limit on all content properties (this includes both auto-generated and user contributed properties.)
The "x-dura-meta-" prefix is case-sensitive (make sure your clients do not automatically change case.)

Copy Content

Purpose: Copies a piece of content from a source space to a destination space within a given store
Request: PUT ? (storeID)https://host:port/durastore/spaceID/contentID
Request Body: must not exist
Request Headers: Copy source, example:

x-dura-meta-copy-source: space-id/content-id

Optional Request Headers: Copy source store, example:

x-dura-meta-copy-source-store: storeId

Response Code: 201 (on success)
Response Headers:

MD5 checksum of stored content
ETag of stored content
Location of the new content (i.e. the URL used to create the content), example:

Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
ETag: 4cd56e137a93a1accb43c5d32f4afffb
Location: https://myhost:8080/durastore/space1/content1

Usage Notes
The properties associated with the source content item are copied to the destination content item.
The source and destination spaces may be the same.
Including the optional header indicates that the copy action should retrieve the source file from a space in the specified storage
provider. This allows for copying a file from one storage provider to another.

Set Content Properties

Purpose: Updates the properties associated with a piece of content. You must include ALL properties you would like associated with the Note:
given content item in this call. Any properties that exist before this call but are not included in the call itself will be removed. This is to allow for
both adding and removing properties.
Request: POST ? (storeID)https://host:port/durastore/spaceID/contentID
Request Headers: Same as Store content (above)
Response Code: 200 (on success)
Response Body: "Content $contentID updated successfully"

Delete Content

Purpose: Removes a piece of content from the store
Request: DELETE ? (storeID)https://host:port/durastore/spaceID/contentID
Response Code: 200 (on success)
Response Body: "Content $contentID deleted successfully"

Audit Log REST Methods

Get Audit Log

Purpose: Returns the latest audit for a given store and space
Request: GET audit/{spaceId} ? (storeID)https://host:port/durastore/

spaceID - ID of the space for which the audit log will be retrieved
storeID (optional) - ID of the content storage provider to query (default is primary store)

Response Code: 200 (on success), 404 if audit logs were not found.
Response Body: TSV in chronological order with the following fields.

ACCOUNT STORE_ID SPACE_ID CONTENT_ID CONTENT_MD5
CONTENT_SIZE CONTENT_MIMETYPE CONTENT_PROPERTIES SPACE_ACLS
SOURCE_SPACE_ID SOURCE_CONTENT_ID TIMESTAMP ACTION USERNAME
mysubdomain 51 myspace image-01.jpg
b1978f9fc4fe9448e05b83bbe6b98109 81214 image/jpeg {"content-mimetype" : "image
/jpeg"} {} 2014-09-10T15:54:42.042 ADD_CONTENT root

https://hostport

Manifest REST Methods

Get Manifest

Purpose: Returns the manifest for a given space and storeId
Request: GET manifest/{spaceId} ? (storeID) (format)https://host:port/durastore/

spaceID - ID of the space for which the manifest will be retrieved
storeID (optional) - ID of the content storage provider to query (default is primary store)
format (optional) - TSV or BAGIT (default is TSV)

Response Code: 200 (on success), 404 if manifest was not found.
Response Body: TSV in chronological order with the following fields.

TSV results

space-id content-id MD5
auditlogs localhost/51/auditlogs/localhost_51_auditlogs-2014-09-10-15-56-07.tsv
6992f8e57dafb17335f766aa2acf5942
auditlogs localhost/51/photos/localhost_51_photos-2014-09-10-15-55-01.tsv
820e786633fb495db447dc5d5cf0b2bd

Generate Manifest

Purpose: Asynchronously generates a gzipped manifest for a given space and storeId. This approach may be preferable if you wish to obtain a
manifest for a larger space. We recommend considering this option for spaces that are larger than 100K items.
Request: POST manifest/{spaceId} ? (storeID) (format)https://host:port/durastore/

spaceID - ID of the space for which the manifest will be generated
storeID (optional) - ID of the content storage provider to query (default is primary store)
format (optional) - TSV or BAGIT (default is TSV)

Response Code: 202 (on success), 404 if manifest was not found.
Response Body: We are processing your manifest generation request. To retrieve your file, please poll the URI in the Location header of this
response
Response Headers:

TSV results

Location: <URI-of-generated-manifest>

Storage Report REST Methods

Get Storage Reports by Space

https://hostport/
https://hostport/

Purpose: Returns storage report summaries for a space. Report values are averaged based on the grouping internal (if groupBy=month, all
data points within each month are averaged to provide an aggregate result).
Request: GET /space/{spaceId} ? (storeID) (start) (end) (groupBy)https://host:port/durastore/report

spaceID - ID of the space for which the storage report will be retrieved
storeID (optional) - ID of the content storage provider to query (default is primary store)
start (optional) - Timestamp in epoch milliseconds which defines the starting point for results.
Any data points which are prior to this value are not included.
end (optional) - Timestamp in epoch milliseconds which defines the end point for results. Any data
points which are after this value are not included.

usage note: To ensure that all expected data points are included, set the end timestamp to
the very end of the final interval (e.g. 23:59:59 on the last day of the week/month)

groupBy (optional) - Grouping interval which allows for averaged results for days, weeks, and
months. Valid values are: "day", "week", and "month" (default is day)

Response Code: 200 (on success)
Response Body: JSON array of storage report details

JSON results

[
 {"timestamp":1312588800000,"accountId":"<account-id>","spaceId":"<space-id>","storeId":"<store-id>","
byteCount":1000,"objectCount":10},
 {"timestamp":1315008000000,"accountId":"<account-id>","spaceId":"<space-id>","storeId":"<store-id>","
byteCount":1000,"objectCount":10},
 {"timestamp":1315526400000,"accountId":"<account-id>","spaceId":"<space-id>","storeId":"<store-id>","
byteCount":1000,"objectCount":10}
]

Get Storage Reports by Store

Purpose: Returns storage report summaries for all content in a storage provider. Report values are averaged based on the grouping internal (if
groupBy=month, all data points within each month are averaged to provide an aggregate result).
Request: GET /store ? (storeID) (start) (end) (groupBy)https://host:port/durastore/report

storeID (optional) - ID of the content storage provider to query (default is primary store)
start (optional) - Timestamp in epoch milliseconds which defines the starting point for results.
Any data points which are prior to this value are not included.
end (optional) - Timestamp in epoch milliseconds which defines the end point for results. Any data
points which are after this value are not included.

usage note: To ensure that all expected data points are included, set the end timestamp to
the very end of the final interval (e.g. 23:59:59 on the last day of the week/month)

groupBy (optional) - Grouping interval which allows for averaged results for days, weeks, and
months. Valid values are: "day", "week", and "month" (default is day)

Response Code: 200 (on success)
Response Body: JSON array of storage report details

JSON results

[
 {"timestamp":1312588800000,"accountId":"<account-id>","storeId":"<store-id>","byteCount":1000,"
objectCount":10},
 {"timestamp":1315008000000,"accountId":"<account-id>","storeId":"<store-id>","byteCount":1000,"
objectCount":10},
 {"timestamp":1315526400000,"accountId":"<account-id>","storeId":"<store-id>","byteCount":1000,"
objectCount":10}
]

Get Storage Reports for all Spaces in a Store (in a single day)

Purpose: Returns storage report summaries for all spaces in a storage provider on a single day.
Request: GET https://host:port/durastore/report/store/{date} ? (storeID)

date - Timestamp in epoch milliseconds which specifies the requested day
storeID (optional) - ID of the content storage provider to query (default is primary store)

Response Code: 200 (on success)
Response Body: JSON array of storage report details

JSON results

[
 {"timestamp":1312588800000,"accountId":"<account-id>","spaceId":"<space-id-1>","storeId":"<store-
id>","byteCount":1000,"objectCount":10},
 {"timestamp":1315008000000,"accountId":"<account-id>","spaceId":"<space-id-2>","storeId":"<store-
id>","byteCount":1000,"objectCount":10},
 {"timestamp":1315526400000,"accountId":"<account-id>","spaceId":"<space-id-3>","storeId":"<store-
id>","byteCount":1000,"objectCount":10}
]

Bit Integrity REST Methods

Get Bit Integrity Report

Purpose: Retrieves the latest bit integrity report for a given space and store
Request: GET bit-integrity/{spaceId} ? (storeID)https://host:port/durastore/

Optional parameter 'storeID': if not set, primary storage provider is used.
Response Code: 200 (on success), 404 if space doesn't exist, 204 if no report is available for that space.
Response Headers:

Bit-Integrity-Report-Completion-Date: yyyy-MM-ddTHH:mm:ss
Bit-Integrity-Report-Result: (SUCCESS or FAILURE)

Response Body: TSV with the following fields.

TSV results

date-checked account store-id store-type space-id content-id
result content-checksum provider-checksum manifest-checksum details

Get Bit Integrity Report Properties

Purpose: Retrieves details about the latest bit integrity report for a given space and store, but not the report itself
Request: HEAD bit-integrity/{spaceId} ? (storeID)https://host:port/durastore/

Optional parameter 'storeID': if not set, primary storage provider is used.
Response Code: 200 (on success), 404 if space doesn't exist, 204 if no report is available for that space.
Response Headers: same as for Get Bit Integrity Report (above)

Task REST Methods

Tasks are used to perform storage provider actions which cannot be performed in a generic manner across multiple providers.

Get Tasks

Purpose: Provides a listing of all of the supported tasks for a given provider. Note that if no storeID parameter is included, the task listing is
provided for the primary storage provider.
Request: GET ? (storeID)https://host:port/durastore/task
Response Code: 200 (on success)
Response Body: XML similar to:

<list>
 <string>task1</string>
 <string>task2</string>
</list>

Perform Task

https://hostport/
https://hostport/

Purpose: Performs a particular task. Note that most tasks can be performed by only one storage provider type.
Request: POST ? (storeID)https://host:port/durastore/task/taskName
Request Body: Parameters for task. Each task will expect parameters in a specific format, see task listing for more details.
Response Code: 200 (on success)
Response Body: Response value for task, format varies by task.

Tasks

Amazon S3 Storage Provider

taskName Name Description Request Body Response
Body

enable-
streaming

Enable
Streamin
g task

Enables RTMP streaming for all files within a DuraCloud space through the use of Amazon's
Cloudfront streaming capability. This task may take up to 15 minutes to complete.

When this call completes, two new properties will have been added to the set of properties for the
specified space:

streaming-host - this is the RTMP host value, which can be used to generate URLs for open
streams
streaming-type - will either be OPEN or SECURE, depending on the value of the secure
parameter provided when streaming was enabled

{
 "spaceId" : "",
 "secure" : ""
}

spaceId - Name of the space for which
streaming is to be enabled

secure - true or false, should
streaming be secured

{

"result
" : "",

"stream
ingHost
" : ""
}

result - Text
indicating the
results of the
task

streamingHost -
the host name
of the streaming
endpoint

disable-
streaming

Disable
Streamin
g task

Disables streaming by removing the ability for Cloudfront to access files within a space. This does
not remove the streaming distribution, only disables its use, so enabling streaming on the same
space again can be performed much more quickly. Some content in the space may continue to be
available for streaming up to 24 hours after streaming has been disabled.

{
 "spaceId" : ""
}

spaceId - Name of the space for which
streaming is to be disabled

{

"result
" : ""
}

result - Text
indicating the
results of the
task

delete-
streaming

Delete
Streamin
g task

Removes a streaming distribution created by the enable-streaming task. This task should be
performed after performing the disable-streaming task. This task may take up to 15 minutes to
complete, after which no content in the space will be available for streaming.

{
 "spaceId" : ""
}

spaceId - Name of the space for which
streaming is to be deleted

{

"result
" : ""
}

result - Text
indicating the
results of the
task

get-url Get URL
task

Retrieves a URL for a media file that is streamed through Cloudfront via an open distribution
{
 "spaceId" : "",
 "contentId" : "",
 "resourcePrefix"
: ""
}

spaceId - Name of the space in which
the streamed content is stored

contentId - Name of the content item
to be streamed

resourcePrefix - A prefix on the
content item which may be required
by the streaming viewer. (e.g. an mp4
file may need a prefix of "mp4:")
(optional)

{

"stream
Url" :
""
}

streamUrl - The
URL to be used
for streaming
the requested
content

get-signed-url Get
Signed
URL task

Retrieves a signed URL for a media file that is streamed through Cloudfront via a secure
distribution {

 "spaceId" : "",
 "contentId" : "",
 "minutesToExpire"
: "",
 "ipAddress" : ""
 "resourcePrefix"
: ""
}

spaceId - Name of the space in which
the streamed content is stored

contentId - Name of the content item
to be streamed

minutesToExpire - Number of minutes
until the generated URL expires and
the stream can no longer be played
(optional, default is 480)

ipAddress - IP address range where
requests to stream must originate, in
CIDR notation (e.g. 1.2.3.4/32)
(optional)

resourcePrefix - A prefix on the
content item which may be required
by the streaming viewer. (e.g. an mp4
file may need a prefix of "mp4:")
(optional)

{

"signed
Url" :
""
}

signedUrl - The
URL to be used
for streaming
the requested
content

set-storage-
policy

Set
Storage
Policy

Sets the S3 bucket lifecycle policies associated with a given space. This task is restricted to
DuraCloud service administrators. {

 "spaceId" : "",
 "storageClass" :
"",

"daysToTransition"
: 0
}

spaceId - Name of the space for which
the storage policy should be set

storageClass - One of "STANDARD_IA
", "REDUCED_REDUNDANCY", or
"GLACIER"

daysToTransition - Number of days
content should remain at standard
storage before being transitioned to
the new storage class

{

"result
" : ""
}

result - Text
indicating the
results of the
task

noop Test task Provides a simple way to test the calling of tasks None "Success"

Amazon Glacier Storage Provider

taskName Name Description Request Body Response Body

restore-
content

Restore
Content
task

Provides the capability to request that specific content items stored in
Glacier be retrieved. Content items which are retrieved are made
available 3-5 hours after this request is made, and remains available
for 2 weeks.

Name of the space
and the content item
in the form: spaceID
/contentID

Text indicating that a restore action has
been initiated (or that a restore is
already in progress, in the case of
duplicate requests.)

Snapshot Storage Provider

taskName Name Description Request Body Response
Body

create-
snapshot

Create
Snapshot
task

Creates a snapshot by collecting details of the snapshot and passing the request down to a
bridge application which makes a copy of the contents of the space. {

"spaceId"
: "",

"descripti
on" : "",

"userEmail
" : ""
}

{

"snapshot
Id" : "",

"status"
: ""
}

get-snapshot Get
Snapshot
task

Retrieves the status and details of a snapshot action
{

"snapshotI
d" : ""
}

{

"snapshot
Id" : "",

"snapshot
Date" :
"",

"status"
: "",

"sourceHo
st" : "",

"sourceSp
aceId" :
"",

"sourceSt
oreId" :
"",

"descript
ion" :
"",

"contentI
temCount"
: "",

"totalSiz
eInBytes"
: ""

"alternat
eIds" :
 [""
, ""]
}

cleanup-
snapshot

Clean Up
Snapshot
task

Handles the removal of content items in a space after a snapshot has taken place
{

"spaceId"
: ""
}

{

"contentE
xpiration
Days" :
""
}

complete-
snapshot

Complete
Snapshot
task

Completes the snapshot process
{

"spaceId"
: ""
}

{

"result"
: ""
}

complete-
cancel-
snapshot

Complete
the
cancellati
on of a
snapshot

Handles the removal of any space properties, .collection-snapshot.properties file, and snapshot
related user permissions. It should be called by the bridge after it has finished its cancellation
process.

{

"spaceId"
: ""
}

{

"result"
: "text
descripti
on of
result"
}

restart-
snapshot

Restart
Snapshot
task

Restarts the snapshot process if a failure occurred while transferring from DuraCloud to the
bridge. {

"snapshotI
d" : ""
}

{

"snapshot
Id" : "",

"status"
: ""
}

get-
snapshots

Get List
of
Snapshot
s task

Retrieves a listing of all snapshots which have been created None
{

"snapshot
s" : [
 {

"snapshot
Id" :
"",

"descript
ion" :
"",

"status"
: ""
 },
 ...,
 ...
]
}

get-
snapshot-
contents

Get List
of
Snapshot
Contents
task

Retrieves a listing of the contents of a particular snapshot
{

"snapshotI
d" : "",

"pageNumbe
r" : 0,

"pageSize"
: 1000,

"prefix"
: ""
}

{

"totalCou
nt" : 0,

"contentI
tems" :
 [{

"contentI
d" : "",

"contentP
roperties
" :
 {

"" : ""
 }
 }]
}

get-
snapshot-
history

Get
Snapshot
History
task

Retrieves a listing of events which have occurred in the history of a particular snapshot
{

"snapshotI
d" : "",

"pageNumbe
r" : 0,

"pageSize"
: 0
}

{

"totalCou
nt" : 0,

"historyI
tems" :
 [{

"history"
: "",

"historyD
ate" : 0
 }]
}

request-
restore-
snapshot

Request
a
snapshot
restore

Sends a restore request to an duracloud admin level user. This call can be made by user with
access to the snapshot in question. Action on the part of the admin receiving the request is
required to initiate a restore. The value of the user email address parameter will be used for
notification purposes once the restore begins.

{

"snapshotI
d" : "",

"userEmail
" : ""
}

{

"descript
ion" : ""
}

restore-
snapshot

Restore
Snapshot
task

Initiates the restoration of a snapshot to a DuraCloud space. This call requires admin access.
{

"snapshotI
d" : "",

"userEmail
" : ""
}

{

"spaceId"
: "",

"restoreI
d" : "",

"status"
: ""
}

complete-
restore

Complete
Restore
task

Completes the restoration action by setting up an expiration policy for restored content
{

"spaceId"
:
"",

"daysToExp
ire" : 1
}

{

"result"
: ""
}

get-restore Get
Snapshot
Restore
task

Retrieves the status and details of a restore action. Note that you must specify either the
snapshotId or the restoreId, but not both. Specifying the snapshotId will return the most recent
restoration matching that snapshotId. Specifying the restoreId you will get back the restoration
matching that ID (as you would expect).

{

"snapshotI
d" : "",

"restoreId
" : ""
}

{

"restoreI
d" : "",

"snapshot
Id" : "",

"status"
: "",

"startDat
e" : "",

"endDate"
: "",

"statusTe
xt" : "",

"destinat
ionHost"
: "",

"destinat
ionPort"
: "",

"destinat
ionStoreI
d" : "",

"destinat
ionSpaceI
d" : ""
}

	DuraCloud REST API

