
DSpace 2.0 Pluggable Storage
Pluggable Storage
Considerable thought, discussion, design, prototyping, etc has focused on what a DSpace+2.0 asset store should look like. In particular, whether and how
such an asset store should model archival information packages (AIPs) in a more substantial manner than in the current architecture. This model is
conceived as a DSpace asset store API/interface. Of course one big advantage of such an interface is the ease of writing implementations for different
storage systems (file-based, grid, etc) and plugging them into DSpace. However, it should be noted that this benefit redounds to just having an interface,
not having an AIP-aware one in particular.

Modeling an AIP asset store is very important (and hard), and it has proven difficult to achieve consensus - and this has led to holding the benefits of
pluggable storage for DSpace hostage to agreement on an AIP model. The work this page describes attempts to circumvent this problem by refactoring
the existing asset storage system to drive a very thin API wedge between the storage manager and the actual storage back-end. It conspicuously does not
attempt to model an AIP, only the low-level storage primitives. If successful, it should make it far easier than it is today in DSpace to attach different
storage solutions. It should also feed the AIP asset store design process by providing insights into the powers and limits of different storage systems.

I call this API a to emphasize that it is not an AIP model, and have provided a refactored that utilizes this interface, BitStore BitstreamStorageManager
rather than the direct calls it had into the file-store or SRB store. In addition, I have provided 3 implementations of the interface:

DSBitStore - this is simply the current DSpace file system store.
SRBBitStore - the existing SRB store.
S3BitStore - an asset store using Amazon's Simple Storage Service. NB: this is a commerical (not free) service

Another advantage of this approach is modularity: we will no longer have to include all the code and required libraries for (e.g.) Storage Resource Broker
unless we actually want to use it. These storage modules also present some new use-cases for the Add-on mechanism work, since they are optional
modules, but not separate applications.

Detailed notes on using each store will follow. Note that this is prototype code, production quality. Feedback welcome, including other possible store not
implementations (e.g. a RBDMS store). (See the Discussion page for some thoughts on an RDBMS implementation.)

Installation and Configuration
Download the interface and refactored storage manager, and cleanup:

BitStore.java
BitstreamStorageManager.java
Cleanup.java
Add all files to the DSpace source tree at

org/dspace/storage/bitstore

. The storage manager and cleanup will replace the existing source files.

Create a new source directory

org/dspace/storage/bitstore/impl

for BitStore implementations.

Download the implementation or implementations you want to use, and place into above directory:
DSBitStore.java
SRBBitStore.java
S3BitStore.java

Install bitstore dependencies:
DSBitStore has none
SRBBitStore requires jargon.jar and a broker instance. The former is part of the standard DSpace distribution, so no further requirements
S3BitStore requires the java library (and its dependencies) available atjets3t

http://jets3t.s3.amazonaws.com/index.html

Place all required jars in

dspace/lib

Configure bitstores for use in DSpace:
each 'assetstore' number in

dspace.cfg

https://wiki.lyrasis.org/download/attachments/19006173/BitStore.java?version=2&modificationDate=1290142555309&api=v2
https://wiki.lyrasis.org/download/attachments/19006173/BitstreamStorageManager.java?version=3&modificationDate=1290142589795&api=v2
https://wiki.lyrasis.org/download/attachments/19006173/Cleanup.java?version=3&modificationDate=1290142621735&api=v2
https://wiki.lyrasis.org/download/attachments/19006173/DSBitStore.java?version=1&modificationDate=1290142678418&api=v2
https://wiki.lyrasis.org/download/attachments/19006173/SRBBitStore.java?version=1&modificationDate=1290142704556&api=v2
https://wiki.lyrasis.org/download/attachments/19006173/S3BitStore.java?version=1&modificationDate=1290142749017&api=v2

can be assigned to an instance of a bitstore as follows:

assetstore.<n>=<prefix>:<config>
bitstore.<prefix>.class=<fqcn>

where inputs are:
'n' is the store number, from 0 to any number, sequentially.
'prefix' identifies a bitstore - e.g. 'ds' (dspace native), 'srb', 's3', etc. You can define any prefix you like.
'fqcn' is a fully qualified class name of the bitstore implementation. For example,

org.dspace.storage.bitstore.impl.DSBitStore

'config' is the configuration string passed to the bitsore at initialization.
For the DSBitStore, it is just the asset store directory, i.e. what was in

assetstore.dir=

in current

dspace.cfg

For S3 and SRB bitstores, it is the path name of the configuration file, e.g.:

$\{dspace.dir\}/config/s3.properties

Configure bitstores internally:
DSBitStore requires no configuration
SRBBitStore should have a config file with all the values currently in

dspace.cfg

S3BitStore should have a config file with the properties:
access.key=
secret.key=

both values are obtained when you establish an account with S3

</html>

	DSpace 2.0 Pluggable Storage

