2021-09-09 DSpace 7 Working Group Meeting

Date
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Current Work

© Project Board

© New Feature development process for 7.1
O Issue Triage process for 7.1

© On Hold Topics

®* Notes

Date

09 Sep 2021 from 14:00-15:00 UTC

Location: https://lyrasis.zoom.us/my/dspace (Meeting ID: 502 527 3040). Passcode: dspace

® More connection options available at DSpace Meeting Room

7.1 Release Plan

Tqutive Release Schedule:

® Thursday, September 23 (PR Create Date): every PR wanting to get into 7.1 should be created. Any created by this date are "guaranteed" in 7.1.
Anything after may not be included in 7.1.

Ongoing/Weekly tasks:

Sept 23 - Oct 14 (PR Final Reviews): code reviews & PR updates

Thursday, Oct 14 (PR Merge Date): every PR getting into 7.1 must be merged.

Monday, Oct 25: Internal/Early release goal. If possible, we'd like to release 7.1 in late Oct.
Monday, Nov 1: Public Release Deadline. 7.1 must be announced/released by this date.

® Tackle/Claim issues on 7.1 board (starting with "high priority")
® Review/test all PRs assigned to you for review/testing: https://github.com/pulls/review-requested (Prioritize reviews of "high priority" PRs first)

Agenda

® (30 mins) General Discussion Topics
1. Features expected for 7.1?

a.
b.
c.
d.

e.

Item Versioning (4Science)

Embargo entire Item (including metadata) (4Science)

Collection harvested from an OAI-PMH endpoint (Atmire)

Request a Copy (Mark Wood) — may require Ul changes?

Anything else in the works? Should we consider porting features from DSpace-CRIS to DSpace?

2. What should happen when you Version an Entity? (Related to https://github.com/DSpace/RestContract/pull/171)

a.

b.

Obviously, the new version must keep the same Entity type.
Does the new version keep relationships to other Entities? Do Relationships get duplicated to the new Version? Or perhaps
are Relationships somehow auto-updated to point at the latest version of an Entity?

3. How do we deal with "breaking changes" to REST API endpoints between 7.0 and 7.1? (A "breaking change" is one that would require
clients to modify their code/behavior in order to use a specific endpoint.)

a.

b.

C.

For removal/breaking changes, deprecate first, then make change in next major release (e.g. 7.0->8.0)? (This is likely the
approach we should take after 7.x is complete.)

For removal/breaking changes, deprecate for one minor release (e.g. 7.0->7.1), then make change in next minor release (e.g.
7.2 may contain breaking changes compared to the 7.0 REST API, as long as they were first deprecated in 7.1). (This is the
compromise approach we discussed specific for 7.x since 7.x is a unique set of releases, as we are allowing new features in
every 7.x release)

Do we allow breaking changes at any time & start a CHANGES. nd file in our Rest Contract to document significant API changes
between 7.x releases? (This approach had concerns about discouraging others from building things on our REST API)

4. (Other Topics?)
® (30 mins) Planning for next week
© Review the Backlog Board - Are there any tickets here stuck in the "Triage" column? We'd like to keep this column as small as possible.
© Review the 7.1 Project Board - Assign tickets to developers & assign PRs to reviewers.
® Paid (by DSpace project) developers must keep in mind priority. If new "high" or "medium" priority tickets come in, developers

should move effort off of "low" priority tasks.

" Volunteer developers are allowed to work on tickets regardless of priority, but ideally will review code in priority order.
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Current Work

Project Board
DSpace 7.1 Project Board: https://github.com/orgs/DSpace/projects/6

To quickly find PRs assigned to you for review, visit https://github.com/pulls/review-requested (This is also available in the GitHub header under "Pull
Requests Review Requests")

New Feature development process for 7.1

® For brand new Ul features, at a minimum, the Ul ticket should contain a description of how the feature will be implemented
o If the Ul feature involves entirely new User Interface interactions or components, we recommend mockups or links to examples
elsewhere on the web. (If it's useful, you can create a Wiki page and use the Balsamiq wireframes plugin in our wiki)
© Feature design should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for
TWO WEEKS, or until consensus is achieved (whichever comes first). After that, silence is assumed to be consent to move forward
with development as designed. (The team may decide to extend this two week deadline on a case by case basis, but only before the
two week period has passed. After two weeks, the design will move forward as-is.)
© This does mean that if a Ul feature is later found to have design/usability flaws, those flaws will need to be noted in a bug ticket (to
ensure we don't repeat them in other features) and fixed in follow-up work.
® For brand new REST features (i.e. new endpoints or major changes to endpoints), at a minimum we need a REST Contract prior to
development.
© REST Contract should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for
TWO WEEKS, or until consensus is achieved (whichever comes first). After that, silence is assumed to be consent to move forward
with development. (The team may decide to extend this two week deadline on a case by case basis, but only before the two week period
has passed. After two weeks, the design will move forward as-is.)
© This does mean that some REST features may need future improvement if the initial design is found to later have RESTful design
flaws. Such flaws will need to be noted in a bug ticket (to ensure we don't repeat them in other features) and fixed in follow-up work.

Issue Triage process for 7.1

® OQverview of our Triage process:

1. Initial Analysis: Tim Donohue will do a quick analysis of all issue tickets coming into our Backlog Board (this is where newly reported
issues will automatically appear).

2. Prioritization/Assignment: If the ticket should be considered for 7.1, Tim Donohue will categorize/label it (high/medium/low priority) and
immediately assign to a developer to further analysis. Assignment will be based on who worked on that feature in the past.

a. "high priority" label = A feature is badly broken or missing/not working. These tickets must be implemented first, as ideally they
must be resolved prior to 7.1. (Keep in mind however that priorities may change as the 7.1 release date approaches. So, it is
possible that a "high priority" ticket may be rescheduled if it is a new feature that cannot fit into 7.1 timelines.)

b. "medium priority" label = A feature is difficult to use, but mostly works.. These tickets should be resolved prior to 7.1 (but the 7.1
release will not be delayed to fix these issues).

c. "low priority" label = A feature has usability issues or other smaller inconveniences or a non-required feature is not working as
expected. These tickets are simply "nice to have" in 7.1. We'll attempt to fix them as time allows, but no guarantees are made.

3. Detailed Analysis: Developers should immediately analyze assigned tickets and respond back within 1-2 days. The developer is
expected to respond to Tim Donohue with the following:

a. Is the bug reproducible? (If the developer did not understand the bug report they may respond saying they need more
information to proceed.)

b. Does the developer agree with the initial prioritization (high/medium/low), or do they recommend another priority?

c. Does the bug appear to be on the frontend/Ul or backend/REST API?

d. Does the developer have an idea of how difficult it would be to fix? Either a rough estimate, or feel free to create an immediate
PR (if the bug is tiny & you have time to do so).

e. Are you (or your team) interested in being assigned this work?

4. Final Analysis: Tim Donohue will look at the feedback from the developer, fix ticket labels & move it to the appropriate work Board. If it is
moved to the 7.1 Project Board, then the ticket may be immediately assigned back to the developer (if they expressed an interest) to
begin working on it.

a. If the ticket needs more info, Tim Donohue will send it back to the reporter and/or attempt to reproduce the bug himself. Once
more info is provided, it may be sent back to the developer for a new "Detailed Analysis".

On Hold Topics

® Will we need subminor Release Numbering for 7.x?
1. Should we potentially have subminor (e.g. 7.0.1) releases to fix major bugs or security issues? Or would those need to wait for the next
minor (e.g. 7.1) release?
2. Considering regular, scheduled releases instead of feature-based releases?
a. Every quarter (3 months) release a new 7.x. Features will be implemented in priority order, but not necessarily guaranteed for
a specific release.
® Discussing Release Support now that 7.0 is out..
1. The DSpace Software Support Policy notes that we support the "most recent three (3) major releases” (where a major release is defined
by the changing of the first number, e.g. 6.x 7.x). This would mean that 5.x, 6.x and 7.x are all supported at this time.
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2. Should we propose to Committers / Governance a change of policy to the "most recent two (2) major releases"? This would mean that
we move to only supporting 6.x and 7.x.
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