
cancan - How to

Table of Contents

Resources
Three Places to Control Access

Defining abilities.rb
Adding access controls to the Controller
Adding access controls to a View

Distributed Ability Definitions

Resources

Video Tutorial: 2009 Original Video by the developer

Code in Github: CanCanCommunity/CanCanCan

Three Places to Control Access

abilities.rb - defines which roles/groups can perform which actions in a controller
controllers - add to apply access controls to each action in the controllerload_and_authorize_resource
views - before links and other actions, check whether the user can perform those actions for the controller (e.g. can? , <% if :update @artic

) then show the Edit button le %>

Defining abilities.rb

wiki doc

class Ability
 include CanCan::Ability

 def initialize(user)
 user ||= User.new # guest user

 if user.role? :admin
 can :manage, :all
 else
 can :read, :all
 can :create, Comment # for CommentController
 can :update, Comment do |comment|
 comment.try(:user) == user || user.role?(:moderator) # This syntax is used to allow users to only
update their own comments, unless they are the all-mighty-powerful moderator.
 end
 cannot :delete, Comment
 if user.role?(:author)
 can :create, Article # for ArticleController
 can :update, Article do |article|
 article.try(:user) == user
 end
 end
 end
 end
end

New syntax allows for abilities and classes to be defined in an array...

can [:read, :create, :update], Comment
can :read, [Comment, Article]
can [:read, :create], [Comment, Article]
can :manage, Article # allows user to perform all actions in the ArticleController

http://railscasts.com/episodes/192-authorization-with-cancan?autoplay=true
https://github.com/CanCanCommunity/cancancan/wiki/Checking-Abilities
https://github.com/CanCanCommunity/cancancan/wiki/Defining-Abilities

Adding access controls to the Controller

wiki doc

load_and_authorize_resource

comments_controller.rb possibility -- This is showing what you would put in a comments controller
that is nested under an article controller. Or you can keep them separate and they both just use
load_and_authorize_resource.
load_and_authorize_resource :nested => :article

Adding access controls to a View

wiki doc

<p>
 <% if can? :update, @article %>
 <%= link_to "Edit", edit_article_path(@article) %> |
 <% end %>
 <% if can? :destroy, @article %>
 <%= link_to "Destroy", @article, :method => :delete, :confirm => "Are you sure?" %> |
 <% end %>
 <%= link_to "Back to Articles", articles_path %>
</p>
...
<p>
 <% if can? :update, comment %>
 <%= link_to "Edit", edit_comment_path(comment) %>
 <% end %>
 <% if can? :destroy, comment %>
 | <%= link_to "Destroy", comment, :method => :delete, :confirm => "Are you sure?" %>
 <% end %>
</p>

Distributed Ability Definitions

Ex. Oligarchical saas with cancan

projecthydra-labs/hydra-grouper - reworks groups and abilities -- Not sure why they make it so complex.

https://github.com/CanCanCommunity/cancancan/wiki/Authorizing-Controller-Actions
https://github.com/CanCanCommunity/cancancan/wiki/Checking-Abilities
https://schwad.github.io/ruby/cancan/saas/2017/04/06/oligarchical-saas-with-cancan.html
https://github.com/projecthydra-labs/hydra-grouper

	cancan - How to

