
Code Testing Guide

Backend (Java / REST) Code Tests
Overview of Test Framework
Checklist for building good tests
Running Tests locally
Writing Integration Tests
Writing Unit Tests
Cleaning up test data
Changing configuration properties in tests

Frontend (Angular UI) Code Tests
Overview of Test Framework
Learning Resources
Checklist for building good tests
Running Tests locally
Writing Unit (spec) Tests
Writing Integration (e2e) Tests

Automated tests are now required

As of DSpace 7 (and above), all new code MUST come with corresponding unit or integration tests.

This guide provides an overview of how to write good unit and integration tests both for the Java (REST API) backend and the Angular (UI) frontend.
Manual testing of code is obviously still necessary

If you are looking for a guide on how to manually test Pull Requests / code, see .Testing DSpace 7 Pull Requests

Backend (Java / REST) Code Tests

Overview of Test Framework

Technologies used

JUnit 4 for writing tests
Mockito for mocking objects or responses within tests
H2 In-Memory Database for the database backend within test environment
Spring Boot Test for testing the Server Webapp / REST API, which itself uses (matchers), (for JSON parsing) and other Hamcrest JsonPath
testing tools.
GitHub Actions - This is our continuous integration (CI) system of choice. It automatically runs all code style checks & unit/integration tests for all
Pull Requests. Our configuration for GitHub Actions can be found in [src]/.github/workflows/build.yml
Coveralls - GitHub Actions runs test code coverage checks which it passes to Coveralls.io for easier display/analysis. If Coveralls finds code
coverage has decreased significantly (which means tests were not implemented for new code), it will place a warning on a Pull Request.

These three modules encompass most of the current test framework:

Parent module (pom.xml): This POM builds our testEnvironment.zip (see "generate-test-env" profile). This test environment consists of a dspace
install folder (including all configs and required subdirectories). It is unzipped and used by all other modules for testing. Modules can also
override the default test environment configurations by adding their own "/test/data/dspaceFolder"
dspace-api (Java API): This layer has some basic unit & integration tests for the Java API / DAOs. (Unfortunately, at this time, this module does
not have as many tests as it could/should)
dspace-server-webapp (Server Webapp / REST API): This layer is primarily integration tests for the REST API and other web interfaces
(SWORD, OAI-PMH, etc).

Checklist for building good tests

 must be written for any methods/classes which database access to test. We feel integration tests are more important Integration Tests require
than unit tests (and you'll see this in our codebase).

 must be written for any (public or private) methods/classes which database-level access to test. For example, a utility Unit Tests don't require
method that parses a string should have a unit test that proves the string parsing works as expected.

 to prove access permissions are working. This includes testing as (1) an Anonymous user, (2) an Include tests for different user types
Authenticated User (non-Admin), (3) an Administrator and/or Community/Collection Admin (as necessary).

 . If the code throws an exception or returns an 4xx response, then a test should prove Include tests for known error scenarios & error codes
that is working.
Bug fix PRs should to prove it is fixed. include a test that reproduces the bug For clarity, it may be useful to provide the test in a separate
commit from the bug fix.
Every test method See guidelines below for " ".must . cleanup any test data created Cleaning up test data
Use " " sparingly, and with a " " context turnOffAuthorisationSystem(). always follow-up context restoreAuthSystemState(). as

. As turning off the authorization system can affect the behavior of tests, only use these methods soon as possible (and in the same test method)
when you need to create or delete test data.
If a test needs to temporarily modify a configuration property's value (in any *.cfg file), see the guidelines below for "Changing configuration

"properties in tests

https://wiki.lyrasis.org/display/DSPACE/Testing+DSpace+7+Pull+Requests
https://junit.org/junit4/
https://site.mockito.org/
http://www.h2database.com/
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-testing
https://github.com/hamcrest/JavaHamcrest
https://github.com/jayway/JsonPath
https://github.com/DSpace/DSpace/actions?query=workflow%3ABuild
https://coveralls.io/github/DSpace/DSpace

1.

2.

Running Tests locally

See the README in our codebase: https://github.com/DSpace/DSpace/#running-tests

Writing Integration Tests

A few quick guidelines on writing DSpace Integration Tests

All integration test classes For example: "ItemRestRepositoryIT.java" or "StructBuilderIT.java"must end in "IT".
All integration test classes should extend one of the Abstract classes provided. These include:

For dspace-server-webapp, two Abstract classes exist, based on the type of integration test
org.dspace.app.rest.test.AbstractControllerIntegrationTest : This style of Integration Test is for testing any
class which is an @Controller (which is the majority of classes in the REST API / Server Webapp). This type of integration
test uses Spring's built in caching and MockMVC to speed up the integration tests. One example is the ItemRestRepositoryIT
(which tests the "/api/core/items" endpoints in the REST API).
org.dspace.app.rest.test.AbstractWebClientIntegrationTest: This style of Integration Test is for testing
classes which require a full webserver to run. As such, it will run slower, and is primarily used for non-REST API classes, such
as testing SWORD or OAI-PMH. Those each require a full webserver to be started, as they are not Spring Controllers (and are
not built on Spring Boot). One example is (which tests the dspace-oai module)OAIpmhIT

For dspace-api, all Integration Tests should extend org.dspace.AbstractIntegrationTest
As Integration Tests generate a lot of test data, all Integration tests must be sure to follow our guidelines for " " (see below).Cleaning up test data
Many example Integration Tests can be found in the dspace-server-webapp (see org.dspace.app.rest.*) and dspace-api modules. We
recommend looking at them for example code, etc.

Writing Unit Tests

A few quick guidelines on writing DSpace Unit Tests

All unit test classes For example: "ItemTest.java" or "DiscoverQueryBuilderTest"must end in "Test".
For dspace-api, all Unit Tests should extend either or . For example, see AbstractUnitTest AbstractDSpaceObjectTest ItemTest
For dspace-server-webapp, Unit Tests need not extend any class and just need to be named ending with Test. For example, see DiscoverQueryB
uilderTest
Many example Unit Tests can be found in the dspace-api, and a few in the dspace-server-webapp. We recommend looking at them for example
code, etc.

Cleaning up test data

Integration Tests necessarily have to create test data to verify the code they are testing is working properly. But, just as importantly, they must cleanup
These odd failures in any test data they create. Integration tests which do not cleanup after themselves often result in random or odd CI failures.

CI builds may occur anytime the CI environment runs tests than your local machine and test data from an earlier test directly affects the in a different order
results of a later test. Keep in mind, JUnit has no defined for tests. So, if you are seeing tests succeed on your system, but fail in CI (or order of execution
another system), then it's almost certainly because tests are running in a different order on the two systems...and one order is succeeding while another is
failing (likely cause of test data not being cleaned up in prior tests).

Here are three ways to ensure your test data is cleaned up properly in any Integration tests you create. They are roughly prioritized in terms of preference.

Use Builders for automatic cleanup: Whenever possible, use the Builder test classes (see) in "dpace-org.dspace.app.rest.builder.*
server-webapp", as these Builder classes !automatically cleanup after themselves

// Example of creating a test Item via the ItemBuilder class
// As soon as the method using this "testItem" completes, the "testItem" will be automatically deleted
// by the AbstractBuilderCleanupUtil (which is called @After every test)
context.turnOffAuthorisationSystem();
Item testItem = ItemBuilder.createItem(context, collection);
context.restoreAuthSystemState();

Cleanup after test POST or file upload: If you are testing a command (or file upload), you MUST cleanup the POSTed data by parsing the POST
ID out of the response and using a Builder class for cleanup. Our best practice is to use the following code logic. Further examples can be found
in the codebase.

https://github.com/DSpace/DSpace/#running-tests
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/rest/test/AbstractControllerIntegrationTest.java
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/MockMvc.html
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/rest/ItemRestRepositoryIT.java
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/rest/test/AbstractWebClientIntegrationTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/oai/OAIpmhIT.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/test/java/org/dspace/AbstractIntegrationTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/test/java/org/dspace/AbstractUnitTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/test/java/org/dspace/content/AbstractDSpaceObjectTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/test/java/org/dspace/content/ItemTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/rest/utils/DiscoverQueryBuilderTest.java
https://github.com/DSpace/DSpace/blob/master/dspace-server-webapp/src/test/java/org/dspace/app/rest/utils/DiscoverQueryBuilderTest.java

2.

3.

import static com.jayway.jsonpath.JsonPath.read;
import java.util.concurrent.atomic.AtomicReference;

AtomicReference<UUID> idRef = new AtomicReference<>();
try {
 // Example of a POST command to create a new Collection while logged in as the user with the given
"authToken"
 getClient(authToken).perform(post("/api/core/collections")
 ...[various params and data sent via POST]...

 // Check the POST was successful, which means we created test content & need to
clean it up!
 .andExpect(status().isCreated())

 // From the JSON response, read the "id" field, parse it as a UUID, and save to
"idRef" local variable.
 .andDo(result -> idRef.set(UUID.fromString(read(result.getResponse().
getContentAsString(), "$.id"))));
} finally {
 // Using the CollectionBuilder, delete the Collection with UUID equal to value of idRef
 CollectionBuilder.deleteCollection(idRef.get());
}

(If neither of the above are possible) "Manually" delete created data: If you are creating test data in either the "dspace-api" or "dspace-server-
webapp", you should This manual test cleanup may no longer be necessary (in v7.x and above) & should be use the Builder method (see above).
avoided wherever possible. That said, here's an example of manual cleanup:

// Create test data by temporarily turning off authorization
context.turnOffAuthorisationSystem();
WorkspaceItem workspaceItem = workspaceItemService.create(context, collection, true);
Item item = installItemService.installItem(context, workspaceItem);
context.restoreAuthSystemState();

[perform various tests]

// Delete the test Item created, again by temporarily turning off authorization
context.turnOffAuthorisationSystem();
itemService.delete(context, item);
context.restoreAuthSystemState();

Changing configuration properties in tests

The DSpace makes this very easy to do! ConfigurationService

All you have to do is call in your test to change the value to whatever value your test needs or expects, for example:setProperty

// Change the value of the "dspace.ui.url" to be "http://mydspace.edu"
// NOTE: there are no special permissions required to change values in tests. So, all you need is this one line.
configurationService.setProperty("dspace.ui.url", "http://mydspace.edu");

// Any tests after the above call will see "dspace.ui.url = http://mydspace.edu"
// NOTE: once the test method completes, our test environment will automatically reset "dspace.ui.url" back to
the default value.

NOTE: You do NOT need to reset the property value back to the default setting. After every test runs, the ConfigurationService reloads the defaults
from the and the .dspace.cfg used by our test environmentlocal.cfg

Frontend (Angular UI) Code Tests

Overview of Test Framework

As the frontend is an Angular.io application (which uses Angular CLI), we follow the best practices for . Testing This includes concentrating our effort on
 Unit tests (specs) over Integration / end-to-end (e2e) tests per .this section of the Angular testing guide

https://github.com/DSpace/DSpace/blob/master/dspace-services/src/main/java/org/dspace/servicemanager/config/DSpaceConfigurationService.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/test/data/dspaceFolder/config/local.cfg
https://angular.io/guide/testing
https://angular.io/guide/testing#use-e2e-end-to-end-to-test-more-than-a-single-unit

Technologies used

Jasmine for writing unit/spec tests and for running those testsKarma
Cypress for writing integration / end-to-end (e2e) tests
GitHub Actions - This is our continuous integration (CI) system of choice. It automatically runs all code style checks & unit/integration tests for all
Pull Requests. Our configuration for GitHub Actions can be found in [src]/.github/workflows/build.yml

Our GitHub Actions configuration also starts up a Docker-based REST API backend for running end-to-end (e2e) tests against.
Coveralls - GitHub Actions CI runs test code coverage checks which it passes to for easier display/analysis. If Coveralls finds code Coveralls.io
coverage has decreased significantly (which means tests were not implemented for new code), it will place a warning on a Pull Request.

Test exists in a few key places in the codebase:

Unit tests (or specs) can be found throughout the codebase (under) alongside the code they test. Their filenames always end with "./src/app
spec.ts". For example, the has a corresponding test file.login-page.component.ts login-page.component.spec.ts
End to End (e2e) tests are all in the folder. At this this time we have very few of these./cypress/integration

Learning Resources

https://testing-angular.com/ is an online E-Book which walks through creating Angular unit tests in Jasmine & Angular end-to-end tests in Cypress.

Checklist for building good tests

must be written for In other words, every " " file must have a Unit Tests (i.e. specs) every Angular Component or Service. *.component.ts
corresponding " " file, and every " " file must have a corresponding " " file.*.component.spec.ts *.service.ts *.service.spec.ts

 Integration (e2e) Tests are recommended for new features but not yet required.
 (if behaviors differ per user type). This includes testing as (1) an Anonymous user, (2) an Authenticated Include tests for different user types

User (non-Admin), (3) an Administrator and/or Community/Collection Admin (as necessary).
. For example, tests should validate when errors/warnings are expected to appear, and/or validate Include tests for known error scenarios

when buttons are expected to be enabled/disabled.
Bug fix PRs should to prove it is fixed. include a test that reproduces the bug For clarity, it may be useful to provide the test in a separate
commit from the bug fix.

Running Tests locally

See the README in our codebase: https://github.com/DSpace/dspace-angular/#testing

Writing Unit (spec) Tests

A few quick guidelines on writing Angular tests using :Jasmine

Specs are for all Angular Components, Services and other classes.required
All specs should be placed in the same directory as the Angular Component which they test. The filename should end in ".spec.ts". For
example, the has a corresponding test file.login-page.component.ts login-page.component.spec.ts
As much as possible/reasonable, follow the , which provides detailed example tests. Jasmine also has good Angular Testing Guide documentation

 on learning to write tests./tutorials
Always mock all providers. Doing so ensures that you're only testing your own code, so a change to the service won't break your test. It also
ensures that successive tests can't influence each other by sharing data through an service
When testing asynchronous code, verify that your expect is actually executed. The following test will always succeed, because the expect is only
executed after the function has already completed:it

it("should encounter an expect", => () {
. => timer(1000) subscribe(() {

. ; expect(true) toBe(false)
 })
})

The easiest way to fix this would be to use the callback function provides:it

it("should encounter an expect", => (done) {
. => timer(1000) subscribe(() {

. ; expect(true) toBe(false)
 ;done()
 })
})

Now the test won't complete until the callback function is called, so the test above will fail. Other ways of testing asynchronous code done()
include , and .marbles fakeAsync

A quick way to verify that your expect is actually being used is to flip it and see if that causes the test to fail.

Note that this applies to all functions in a test suite, not just . Here's a commit that fixes a number of these issues in and a few in : it beforeEach it 06
.6e6cd

https://jasmine.github.io/
https://karma-runner.github.io/
https://www.cypress.io/
https://github.com/DSpace/dspace-angular/actions?query=workflow%3ABuild
https://coveralls.io/github/DSpace/dspace-angular
http://Coveralls.io
https://testing-angular.com/
https://github.com/DSpace/dspace-angular/#testing
https://jasmine.github.io/
https://angular.io/guide/testing
https://jasmine.github.io/tutorials/your_first_suite
https://jasmine.github.io/tutorials/your_first_suite
https://www.mokkapps.de/blog/how-i-write-marble-tests-for-rxjs-observables-in-angular/#:~:text=In%20RxJS%20marble%20tests%2C%20the,first%20character%20in%20the%20string.
https://www.joshmorony.com/testing-asynchronous-code-with-fakeasync-in-angular/
https://github.com/DSpace/dspace-angular/pull/723/commits/066e6cd142b69a1be5fe9b6509ec4f06ce3ebb81
https://github.com/DSpace/dspace-angular/pull/723/commits/066e6cd142b69a1be5fe9b6509ec4f06ce3ebb81

If you are working on debugging specific tests, you can add a (e.g. instead of). However, be "focus" on those tests fdescribe describe
warned that you before the PR can be merged, as otherwise you'll see a large decrease in code coverage (i.e. all non-must remove that focus
focused tests will be ignored).
You can insert e.g. statements to see what is happening, but the browser opened by Jasmine will likely console.debug(something...)
close before you can read the output.

instead of you could try yarn test

yarn test --watch=true

OR

ng test --source-map=true --watch=true --configuration test --include PATH/TO/THE/TEST/SUITE.spec.
ts

--watch=true should make it pause so that you can inspect the console log.
https://angular.io/guide/test-debugging is a guide for debugging Angular unit tests in Karma / Jasmine.
https://testing-angular.com/ is an online E-Book which walks through creating Angular unit tests in Jasmine & Angular end-to-end tests in Cypress.

Writing Integration (e2e) Tests

A few quick guidelines on writing Angular end-to-end (e2e) tests using :Cypress

All e2e tests should be in the directory, per the Angular CLI best practices./cypress/integration/
Tests should be named similar to the component or page they test.

For example "homepage.spec.ts" obviously tests the homepage, while "header.spec.ts" may test specific aspects of the header of the
entire site.

docs.cypress.io has great guides & documentation helping you learn more about writing/debugging e2e tests in Cypress.
https://testing-angular.com/ is an online E-Book which walks through creating Angular unit tests in Jasmine & Angular end-to-end tests in Cypress.
NOTE: be aware that when e2e tests run, they require using a REST API backend & test data. Therefore in GitHub Actions CI, our tests run
against a Docker based REST API (preloaded with basic test data) defined in the docker-compose-ci.yml

https://jasmine.github.io/2.2/focused_specs.html
https://angular.io/guide/test-debugging
https://testing-angular.com/
https://www.cypress.io/
http://docs.cypress.io
https://testing-angular.com/
https://github.com/DSpace/dspace-angular/blob/main/docker/docker-compose-ci.yml

	Code Testing Guide

