
Code Contribution Guidelines
Contributing Code to DSpace Software

Contribution Quick Checklist
Overview of Code Approval Process – How to get your Code into DSpace!

0. Share Early, Share Often!
1. Make your code available (in GitHub) and create a ticket in our Issue Tracker
2. Code Review Process
3. Reworking Code (if necessary) & Next Steps
4. Acceptance!

Code Contribution Standards
Contribution Checklist
Licensing of Contributions
Database schema changes
Patching multiple branches
Documentation Contributions

This page provides specific guidelines on how to contribute your code to DSpace, and details how the code review/acceptance process works.
Developers - See also the for hints/tips on using popular IDEs to develop with DSpace.Developer Guidelines and Tools

Contribution Quick Checklist

This page has a lot of great information on it. But, if you just need the high level overview, here it is. NOTE: the checkboxes below are here for "decorative"
purposes, and aren't really intended to be used. If you'd like, and you find it helpful, you may print this page and then check off each step as you proceed
with your contribution. Happy coding, and please ask for help if you find you need it!

 in the (describe your contribution, how to use it, and perhaps some use cases). This helps ensure your Create a ticket DSpace Issue Tracker
upcoming work is "known" to other developers, and we can let you know if someone else is working on something similar.

(only required for DSpace 7.x or above)Make sure your code adheres to our Code Style Guide
 (only required for DSpace 7.x or above)Write unit/integration tests per our Code Testing Guide

. Please submit a GitHub Pull Request (see), which references your newly created Submit your code via GitHub GitHub's "About Pull Requests"
ticket by number.

If your code involves changes to the v7 REST API, please also include a Pull Request which documents the endpoint(s) REST Contract
that require changes.
Ideally submit your code or ideas before it turns into a massive project. Larger code changes take a very long time to early on
understand, review and test. Starting the discussion early (or breaking the changes up into several smaller changes) can make it much
easier to get your code accepted.

. Does it follow our ? Does it need Documentation? If you are using any third party tools/APIs, do Review your own code Contribution Checklist
they all have an acceptable Open Source License (see)? The Committers will also be reviewing these aspects of your Licensing of Contributions
code, but if you can catch these gaps or issues up front it can speed up the process of correcting them.

. If the Committers ask questions or make suggestions for changes, please try to be responsive. The Committers are all Respond to feedback
volunteers and are trying to help as best we can, but the process moves more quickly if you can try to be responsive as well.

. If suggestions for changes are made, if you can rework the code, it speeds up the process. If you Help rework/update code as needed
submitted your code as a Pull Request, you can just quickly add changes/updates to the branch linked to from your Pull Request.

. If there is a long delay in the Committers responding, or if you aren't sure of the status of your contribution, please ask. We'd be Ask questions
glad to explain whether the delay is just because we are all busy, or if there's something else we are waiting on.

 As the next DSpace release approaches, the Committers will announce a "Contribution Deadline" for the Pay attention to release deadlines.
upcoming release (usually these are found in Developer meeting notes). In order to keep releases on-time, the Committers must set a date after
which they can no longer accept new feature contributions. Although you may add code contributions year round, they will only be considered for
a specific release if they are contributed before that release's contribution deadline.

Overview of Code Approval Process – How to get your Code into DSpace!

0. Share Early, Share Often!

The overriding mantra is share early, share often. Here are a few things to consider you begin working on your code:before

For Larger Initiatives/Codebases: If you are building out a much larger project, we highly recommend notifying the community of the work early
 This has several on via an email to (or via one of the weekly or in #dev on).dspace-devel@googlegroups.com Developer Meetings Slack

benefits:
Ensures you achieve your goals in a way that is consistent with the DSpace architecture and plans of the rest of the community.
Minimizes the chances of a scenario where you have invested a large amount of time and effort into a body of code that does not fit in
with the DSpace architecture or the consensus of the community.
This can help find collaborators or get early feedback.

Develop incrementally; try and implement and contribute a basic form of your feature as soon as possible, rather than aiming to implement a
complete and 'polished' solution. This will help ensure you're on the right track with regards to the rest of the DSpace community and platform.
The sooner your code is part of the core code base, the less time you will have to spend 'chasing' the main code base, i.e. keeping your changes
up-to-date with that core code base.
Obtain the DSpace code using . This will make code contribution much easier, as we require a GitHub Pull Request for contributions.GitHub
Read (this page), and to ensure you are following DSpace conventions. This Code Contribution Guidelines Code Style Guide Code Testing Guide
will ensure your code is more likely to be immediately accepted as part of out-of-the-box DSpace.

https://wiki.lyrasis.org/display/DSPACE/Developer+Guidelines+and+Tools
https://github.com/DSpace/DSpace/issues
https://wiki.lyrasis.org/display/DSPACE/Code+Style+Guide
https://wiki.lyrasis.org/display/DSPACE/Code+Testing+Guide
https://github.com/DSpace/DSpace/
https://help.github.com/articles/about-pull-requests/
https://github.com/DSpace/RestContract/
https://wiki.duraspace.org/display/DSPACE/Code+Contribution+Guidelines#CodeContributionGuidelines-ContributionChecklist
https://wiki.duraspace.org/display/DSPACE/Code+Contribution+Guidelines#CodeContributionGuidelines-LicensingofContributions
mailto:dspace-devel@googlegroups.com
https://wiki.lyrasis.org/display/DSPACE/Developer+Meetings
https://wiki.lyrasis.org/display/DSPACE/Slack
https://github.com/DSpace/DSpace
https://wiki.lyrasis.org/display/DSPACE/Code+Style+Guide
https://wiki.lyrasis.org/display/DSPACE/Code+Testing+Guide

Ensure that any third-party tools/libraries that you plan to utilize are released under compatible open source licenses. See the Licensing of
 section below.Contributions

1. Make your code available (in GitHub) and create a ticket in our Issue Tracker

Start by creating a new ticket in our . This ensures that the DSpace Developers are notified of your contribution, and acts as a place for us to GitHub Issues
comment on the work or make suggestions for improvements.

Once your code is ready, you must make your code available to other DSpace Developers for review. The easiest way for us to review your code is by
putting your code into a . GitHub Pull Request

For DSpace, we follow . This means you should our DSpace GitHub repository, adding GitHub's "Fork and Pull model" of collaborative development fork
your changes to a branch in your forked repository, and then . In your Pull request, link back to your created issue by create a pull request from your fork
saying that the PR "Fixes #issue-id" (e.g. "Fixes #12345") as this will .link your PR with the issue ticket

Code Standards

Code contributions that meet certain standards are much more likely to be accepted immediately. For a list of our current standards, please read through
the section below.Code Contribution Standards
Keep in Mind the "Feature Contribution Deadline" for the Next Release

When the next release of DSpace is getting close, the Committers will set a "Feature Contribution Deadline" date, after which no new feature submissions
will be accepted for that release. The reason for this is that the Committers need time to review & stabilize the current code before the next release can be
completed. Make sure to check the page for details on when the next "Feature Contribution Deadline" is. Please note that bug fixes Next Release Status
are still accepted after the "Code Contribution Deadline", as they will help to stabilize the upcoming release.

2. Code Review Process

Once the code is made available in a Pull Request, we will work to find it reviewers/testers. By default, every Pull Request requires two separate at least
reviewers (or testers), ideally from two different institutions. Some small PRs (usually 200 lines or less) might be flagged as "1 Approval", meaning only
one person needs to review that work. During review/testing, other developers may contact you via GitHub to discuss any feedback they have, and
whether or not there would need to be some general changes before we could accept it. Some patches/features are readily accepted (because they are
stable and look good), others may require more work (if there are concerns or issues that others notice).

Code Review Timeframe

The timeframe of a code review will vary, based on how much time the core developers have. Smaller changes may be reviewed within days, while larger
changes/features may take many weeks to do a full review. All Developers/Committers are volunteers and only have a small amount of time to provide to
the project in a given week. We will make every effort to get back to you with feedback within a few weeks. But, if you haven't heard anything, feel free to
ask!
What are we reviewing for?

When we review your code, we are mostly ensuring it generally follows our . However, there are a few other things we Code Contribution Standards
generally check for:

The code is well commented (e.g. has JavaDocs or TypeDocs)
The code follows our ()Code Style Guide required for DSpace 7.x and above
The code provides Unit and/or Integration Tests (see) Code Testing Guide (required for DSpace 7.x and above)
The code is stable and has no stability or security concerns
The code is properly using existing APIs, etc.
The code is not too specific to one institution's local policies or workflows. (I.e. we will review the code to ensure it looks to be generally useful to
most institutions, or configurable enough such that others can change it to match their own local policies/workflows)
Any third-party tools/libraries used by your code have compatible open source licenses. See Licensing of Contributions

3. Reworking Code (if necessary) & Next Steps

After the code review & feedback, interested developers/Committers may help you to rework the code (if needed). They'll also provide you with next steps
on getting the code into DSpace. If it can be accepted immediately, it will be. If not, we'll try to help figure out the best route forward.

How you can help speed up the process

As our developers/Committers are all volunteers, they don't always have the time to rework code changes for you. If you want your code change accepted
in a timely manner, please offer to make the changes yourself (otherwise your patch suggestion may wait in a "holding queue" until someone has enough
time to work on any necessary fixes).
Communicate, Communicate, Communicate

If you are unsure of next steps, please let us know by adding a comment to your issue/PR in GitHub. Communication is absolutely necessary to ensure
that we can help you rework anything that needs reworking. If we don't hear from you, we'll assume you are hard at work. So, if you've run into issues,
please let us know! If, locally, you don't have the time or expertise to do the rework that is necessary, also let us know. We can try to locate a community
developer to help out, and/or ask both the Committers Team and the if they know of any interested developers with DSpace Community Advisory Team
time to spare.

4. Acceptance!

Once your code is accepted, it will be released in the next version of DSpace software! Your name will appear in the Release Notes as a contributor to that
release!

https://github.com/DSpace/DSpace/issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://wiki.lyrasis.org/display/DSPACE/Next+Release+Status
https://wiki.lyrasis.org/display/DSPACE/Code+Style+Guide
https://wiki.lyrasis.org/display/DSPACE/Code+Testing+Guide
https://wiki.lyrasis.org/display/cmtygp/DSpace+Community+Advisory+Team

1.
2.

a.
3.
4.

5.

6.

7.

8.

9.

10.
a.

11.

12.
13.

Code Contribution Standards

Code contributions that meet the following standards are much more likely to be accepted. If you don't understand any of these standards, please contact
us – we'll be glad to explain or help.

Contribution Checklist

When you contribute to DSpace, please be sure that your submission adheres to the points in this checklist. The DSpace Committers need you to do this
to keep quality of the DSpace code high and their work manageable.

Any changes be compliant with the supported version of Java (e.g. for DSpace 7, Java 11 compliance is required)must
Your code adhere to our Java . Most major IDEs can easily import our Checkstyle configurations to ensure alignment with must Code Style Guide
this code style.

Your code should be well commented with Javadoc (required for all classes, public methods and larger private/protected methods).
Your code provide unit/integration tests for new features, bug fixes or improvements per our .must Code Testing Guide
If your contribution adds REST API endpoints or changes existing endpoint(s) behavior, you submit a corresponding Pull must REST Contract
Request which documents the require changes.
If your contribution adds new third-party tools or libraries, they must adhere to licensing requirements to be included. Refer to the Licensing of

 belowContributions
User interface changes must use i18n keys to allow for easy translation to other languages (see the DSpace 7 Translation - Internationalization

 guide). At a minimum, please provide English text so that others may translate it.(i18n) - Localization (l10n)
User interface changes should align with our documentation. Primarily, this is a requirement for User Interface Design Principles & Accessibility W

 Conformance Level of "Double-A". 3C WCAG 2.1
Your code must come with Documentation. Minimally, technical documentation must be part of the system docs – see Documentation

 below. Ideally, we'd also like User/Usage Documentation.Contributions
Ideally, new features should be configurable (i.e. generalized so as to not be specific to one institution's needs/use cases). Any new
configurations should have sane defaults which can be overridden (as needed) in a site's local.cfg file.
Add appropriate/useful logging to your code (ERROR, WARN, INFO, DEBUG, etc).

Provide informative log statements and/or the entire Throwable exception. For example, "log.error('My custom error message', e)" is
more useful than "log.error(e.getMessage(), e)"

Where reasonable, retain feature/functionality backwards compatibility. This does NOT mean you have to create PRs for older versions of
DSpace. But, it does mean that you do your best to keep in mind the behavior of features in older DSpace releases, and attempt to keep similar
behaviors where reasonable. If there are questions/concerns about this, let us know. There are always exceptions.
No database schema changes unless absolutely necessary to support a new feature. See below.Database schema changes
If your code makes changes to the database schema content, and you are patching more than one branch (for example, dspace-6_x and or
master), see below.Patching multiple branches

If there are questions/concerns about any of these guidelines, let us know on the . We are willing to make exceptions in some areas, if 'dspace-devel' list
exceptions are necessary.

Attempt to Follow all Guidelines

Omission of one or more of these items is likely to result in the a request for further work. See the above, for more Overview of Code Approval Process
information.

Licensing of Contributions

Any third-party libraries (e.g. JARs / Maven Dependencies) required to compile or run DSpace must be included. The license of any required jar
 It must not prevent any commercial use of DSpace, nor have any impact on the rest of the code by its /dependency MUST be compatible with BSD.

inclusion. It is not acceptable to require additional downloads of JARs/dependencies to make DSpace compile or function.

Non-Java third-party web frameworks or tools (e.g. XSLT, CSS, Images) should follow these same licensing guidelines.

Examples of acceptable licenses:

Apache License 2.0
BSD
Common Development and Distribution License (CDDL)
Common Public License (CPL)
GNU Library or "Lesser" General Public License (LGPL)
MIT / X11 License
Mozilla Public License
Additional examples may be found in our file in the source code. This file lists the licenses of all third-party libraries LICENSES_THIRD_PARTY
used by DSpace.

Examples of unacceptable licenses:

GNU General Public License (GPL)
GNU Affero General Public License (AGPL)
European Union Public Licence (EUPL)

Similar to GPL, this license is and may require usage of the same license for redistribution or derivatives. "share alike" / "strong copyleft"
For more information, see the (specifically the questions "What about compatibility issues?" and "Are there limitations to the EUPL FAQ
use of the software?")

Any license which requires "same license" (i.e. strong copyleft) as detailed at http://choosealicense.com/licenses/
Any license which limits commercial use/redistribution of binary code

Why is GPL (and similar) unacceptable?

https://wiki.lyrasis.org/display/DSPACE/Code+Style+Guide
https://wiki.lyrasis.org/display/DSPACE/Code+Testing+Guide
https://github.com/DSpace/RestContract/
https://wiki.lyrasis.org/pages/viewpage.action?pageId=117735441
https://wiki.lyrasis.org/pages/viewpage.action?pageId=117735441
https://wiki.lyrasis.org/pages/viewpage.action?pageId=313851976
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://lists.sourceforge.net/lists/listinfo/dspace-devel
http://opensource.org/licenses/apache2.0
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/CDDL-1.0
http://www.opensource.org/licenses/cpl1.0
http://www.opensource.org/licenses/lgpl-license.php
http://www.opensource.org/licenses/MIT
http://www.opensource.org/licenses/MPL-2.0
https://github.com/DSpace/DSpace/blob/master/LICENSES_THIRD_PARTY
http://www.opensource.org/licenses/gpl-license.php
http://opensource.org/licenses/AGPL-3.0
http://opensource.org/licenses/EUPL-1.1
https://joinup.ec.europa.eu/blog/weak-weaker-or-strong-copyleft
http://joinup.ec.europa.eu/software/page/eupl/how-use-eupl
http://choosealicense.com/licenses/

DuraSpace feels it is important for commercial entities and service providers to be able to customize the entire codebase and redistribute/repackage/sell it
in a binary form. GPL licenses prevent this, as noted in the following FAQ questions:

Can I release a modified version of a GPL-covered program in binary form only?
If I distribute GPL'd software for a fee, am I required to also make it available to the public without a charge?

In addition, the Apache Software Foundation has a good explanation of why they are also forced to avoid GPL-based (copyleft) licenses because of its one-
:way compatibility with Apache License 2.0

"This licensing incompatibility applies only when some Apache project software becomes a derivative work of some GPLv3 software, because then
the Apache software would have to be distributed under GPLv3.

We avoid GPLv3 software because merely linking to it is considered by the GPLv3 authors to create a derivative work. We want to honor their
license. Unless GPLv3 licensors relax this interpretation of their own license regarding linking, our licensing philosophies are fundamentally
incompatible. This is an identical issue for both GPLv2 and GPLv3."

While DSpace is released under BSD licensing, the same issues exist between BSD licenses and GPL-based licenses.

JDBC drivers for databases are an exception since:

They must correspond to the database version and not the DSpace version.
They are not required for DSpace to compile and run; a variety of databases, including open source databases, may be used.

Database schema changes

Database schema changes will be done only on major revisions to the source; this is when the version number takes the form x.0 (e.g. 2.0). When making
patches which cause schema changes, it is necessary to update all of the relevant SQL/migration files with your sequences, tables, views etc.

For Database migrations/management, we use FlywayDB
The migration scripts are available in the source code under the dspace-api org.dspace.storage.rdbms.sqlmigration
package: https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/resources/org/dspace/storage/rdbms/sqlmigration
Each new migration script should be named " ", where is the DSpace V[version]_[date]__[description].sql [version]
version supporting this change, is the date of the change, and includes the associated ticket number and brief [date] [description]
description of the migration. For example: "V5.0_2014.09.26__DS-1582_Metadata_For_All_Objects.sql".

 Whenever possible, please modifying migration scripts from a prior DSpace release. Flyway does not compare modified NOTE: avoid
scripts against the current database structure, so it will not modify tables based on modifications to existing migration scripts. Therefore,
modifications to existing scripts may result in some (or all) DSpace users having to run those database changes during their manually
next upgrade.

Instead, where possible, consider creating a migration script (in SQL or Java) that will run just the script you are before (or after)
looking to modify.

If your database migration adds new sequences, then you should also be sure to update the update-sequences script at:
[dspace-src]/dspace/etc/[db-type]/update-sequences.sql
At this time, this updated-sequences script is maintained outside of the database migrations as it is useful to run manually after large
restorations, etc.

Patching multiple branches

When you patch the same issue in multiple branches, database changes require special attention. This advice applies to both schema changes and
content changes.

FlywayDB migrations are . You should depend on changes that you made in the earliest affected branch to be available in later cumulative
branches, and only do further migrations in later branches if additional changes are needed.
When patching a branch earlier than 5_x, you will need to provide an SQL script or a tool to be run manually. 5_x and later patches should still
depend on these manual updates, and you should document the need to run them before allowing automatic migrations to run.
If the schema was already changed between branches, and those changes affect the same tables that you are updating, depend also on the
existing upgrade process to make those changes for you. For example: if you make database changes to table T in branch X, and the upgrade
from X to Y changes the schema for T, you don't need to rewrite your changes for branch Y because the upgrade already took care of that
difference.

Documentation Contributions

All new features require documentation before they will be accepted. You may send us code before documentation is completed, but we will be
unable to accept that code into DSpace until it is properly documented. Bug fixes may not require documentation, unless they somehow make a
modification which changes how DSpace functions.

All documentation is built in a special section of the Wiki at . Therefore, the best way to send us Documentation is to actually create DSpace Documentation
a new page(s) in this DSpace Wiki. You should link these Wiki page(s) to your issue in our . We'll move them over into the official DSpace Issue Tracker DS

 area once you code has been accepted.pace Documentation

http://duraspace.org/about/policies/open-source-licensing-policy
http://duraspace.org/about/policies/open-source-licensing-policy
http://www.gnu.org/licenses/gpl-faq.html#ModifiedJustBinary
http://www.gnu.org/licenses/gpl-faq.html#DoesTheGPLRequireAvailabilityToPublic
https://www.apache.org/licenses/GPL-compatibility.html
https://www.apache.org/licenses/GPL-compatibility.html
http://flywaydb.org/
https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/resources/org/dspace/storage/rdbms/sqlmigration
https://wiki.lyrasis.org/display/DSDOC/All+Documentation
https://github.com/DSpace/DSpace/issues
https://wiki.lyrasis.org/display/DSDOC/All+Documentation
https://wiki.lyrasis.org/display/DSDOC/All+Documentation

	Code Contribution Guidelines

