
Move to Dependency Injection Framework
Note: The JIRA issue for this work is FCREPO-648

Problem Statement
Fedora's original and classes were designed in 2002, and provided a common way for major functional components ("modules") of the Server Module
repository to be plugged in, configured, initialized, and stopped. Problems with the existing framework include:

It's homegrown. Better, more widely-understood frameworks have come along.
Unit testing is unnecessarily complicated. The base Module class depends on a Server instance being available in order to function, and the
Server base class is not easily mocked.

Requirements
Use standard, well-known frameworks/libraries to:

Resolve inter-module dependencies via dependency injection
Provide hooks to initialize/de-initialize modules when the webapp container starts and stops
Allow re-configuration and plugging in of alternative modules without re-compiling

Non-requirements
This work will NOT attempt to:

Provide a way to dynamically re-configure modules without restarting
Provide the ability to run modules in their own classloader space

These capabilities may be added in the future, possibly with the help of OSGi.

Framework Choice
After analyzing the available options, we have selected the .Spring framework, version 3

Popular frameworks that support the dependency injection pattern include , , and .Spring PicoContainer Guice

How do they compare? Several written comparing Spring and Guice, as well as . As many have pointed out, Spring and Guice articles have been all three
are more than DI frameworks. For our purposes, we considered the attributes of each that are most relevant to the problem at hand:

 Spring PicoContainer Guice

Supports start/stop lifecycle hooks
for components

Yes (interface, JSR-250 @PostConstruct/@PreDestroy annotations, spring-
specific annotation, or xml-configured)

Yes (interface or JSR-250 @PostConstruct
/@PreDestroy annotations)

 No

Supports autowiring Yes Yes Yes

Supports in-code wiring and
configuration

Yes () JavaConfig Yes Yes

Supports external wiring (outside
of code)

Yes (xml) No Not directly (but it's
) possible

Supports external config (outside
of code)

Yes (xml and/or properties) No Yes (Names.
) bindProperties

OSGi-Friendly Yes () Spring-DM Unknown Yes (Guice-
) Peaberry

JSR-330 Support Yes, 3.0+ In Progress In Progress

Jar Footprint (non-OSGi) 750kb 300kb 650kb

Spring was selected because:

It provides an out-of-box and commonly-used way to wire and configure modules ("beans"), outside of code.
It supports JSR-250 annotations for module lifecycle hooks
Its OSGi-friendliness is well-documented

Implementation Strategy/Principles
Prefer constructor injection to setter injection
Minimize coupling to DI framework

Use JSR-250 @PostConstruct/@PreDestroy lifecycle hooks when needed

http://fedora-commons.org/jira/browse/FCREPO-648
http://fedora-commons.org/documentation/3.3/javadocs/fedora/server/Server.html
http://fedora-commons.org/documentation/3.3/javadocs/fedora/server/Module.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/2.5.x/reference/index.html
http://www.picocontainer.org/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/wiki/SpringComparison
http://www.jroller.com/habuma/entry/guice_vs_spring_javaconfig_a
http://www.javalobby.org/java/forums/t103070.html
http://www.christianschenk.org/blog/comparison-between-guice-picocontainer-and-spring/
http://code.google.com/p/google-guice/issues/detail?id=62
http://static.springsource.org/spring-javaconfig/docs/1.0.0.M4/reference/html/
http://code.google.com/p/guice-xml-config/
http://code.google.com/p/guice-xml-config/
http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/name/Names.html
http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/name/Names.html
http://www.springsource.org/osgi
http://code.google.com/p/peaberry/
http://code.google.com/p/peaberry/
http://static.springsource.org/spring/docs/3.0.x/changelog.txt
http://freshmeat.net/projects/picocontainer/releases/312871
http://code.google.com/p/google-guice/wiki/JSR330

Avoid use of framework-specific interfaces, classes, and annotations
Minimize changes to existing Fedora functionality

Implementation Plan

Overview + Discussion

View presentation from March 16th, 2010 Special Topic Meeting

Phase I - Prepare

List all dependents of existing module interfaces
 Identify and remove unused modules and classes with module dependencies.

 Remove ReportServlet - FCREPO-646
 Remove ThreadMonitor - FCREPO-647

 Identify circular module dependencies (noted with on above page).

Modify existing modules to accept injected dependencies and config values

Decouple module interface impl from Module abstract class where needed
Push param validation responsibility down to each impl (not in Module)
Use constructor injection if possible. For those with circular dependencies that can't be refactored easily, provide setters.
Where existing modules look at configuration of other modules, get the configuration value from a getter in the interface, not the configuration.
Where existing modules look at global fcfg values, make those available via bean-style class, GlobalConfig.
Where existing modules look at datastore fcfg values, inject the connectionpool or config values directly.
Constructors for impls should do as much arg validation/setup as they can. If they can't do it all, it should be done in a @PostConstruct void init()
method. In either case, if validation or setup fails, an unchecked exception should be thrown, as per JSR-250.
Where de-initialization is needed, a @PreDestroy void destroy() method should be used. Errors encountered during de-initialization should be
logged by this method, and an unchecked exception should be thrown, as per JSR-250.

Modifications Needed

 Add and populate GlobalConfig

 Update org.fcrepo.server.access.DefaultAccess

 Update org.fcrepo.server.access.DynamicAccessModule

 Update org.fcrepo.server.journal.Journaler

 Update org.fcrepo.server.management.BasicPIDGenerator

 Update org.fcrepo.server.management.ManagementModule

 Update org.fcrepo.server.messaging.MessagingModule

 Update org.fcrepo.server.oai.FedoraOAIProviderModule

 Update org.fcrepo.server.resourceIndex.ResourceIndexModule

 Update org.fcrepo.server.search.FieldSearchSQLModule

 Update org.fcrepo.server.security.DefaultAuthorization

 Update org.fcrepo.server.security.DefaultBackendSecurity

 Update org.fcrepo.server.storage.ConnectionPoolManagerImpl

 Update org.fcrepo.server.storage.DefaultDOManager

 Update org.fcrepo.server.storage.DefaultExternalContentManager

Update org.fcrepo.server.storage.lowlevel.akubra.AkubraLowlevelStorageModule

http://prezi.com/dv6zx-r3acvu/
https://wiki.lyrasis.org/display/FCREPO/2010-03-16+-+Special+Topic+-+Spring
https://wiki.lyrasis.org/display/FCREPO/Module+Dependents+as+of+2010-03-05
https://fedora-commons.org/jira/browse/FCREPO-646
https://fedora-commons.org/jira/browse/FCREPO-647

 Update org.fcrepo.server.storage.lowlevel.DefaultLowlevelStorageModule

 Update org.fcrepo.server.storage.translation.DOTranslationModule

 Update org.fcrepo.server.validation.DOValidatorModule

Phase II - Swap

 Decide on DI framework: Spring 3
Convert fcfg to DI configuration and update installer to populate it instead
Trigger initialization of module singletons via DI framework in context initialization
Use injected module dependencies wherever possible, avoiding use of Module and Server at runtime

Phase III - Cleanup

Get rid of Module, Server, and subclasses
Get rid of everything else that parses/looks at fcfg

	Move to Dependency Injection Framework

