
Authentication and Authorization

Overview
Servlet Container Authentication Configuration

Container Roles
Configure Container Users and Roles

Jetty
Tomcat

Bypass Authorization
WebAC Authorization
Definitions

Access Control Lists (ACLs)
Authorizations
Agents

Examples of Authorizations
Protecting Resources
How-To Guides
More Detailed Documentation

Overview
The Fedora Authentication (AuthN) and Authorization (AuthZ) framework is designed to be flexible and extensible, to allow any organization to configure
access to suit its needs.

The following sections explain the Fedora AuthN/Z framework, and provide instructions for configuring some out-of-the-box access controls.

For clarity's sake, a distinction is made between Authentication and Authorization:

Authentication answers the question "who is the person, and how do I verify that they are who they say they are?" Fedora relies on the web
servlet container to answer this question.
Authorization answers the question, "does this person have permission to do what they want to do?". Fedora provides two different ways to
answer this question:

Bypass authorization: Anyone who has authenticated through the web application container (Tomcat, Jetty, WebSphere, etc.) has
permission to do everything – in effect all, authenticated users are superusers.
WebAC authorization: Authenticated users' access to resources is mediated by stored in the repository.WebAC Access Control Lists

Servlet Container Authentication Configuration
Fedora relies on its servlet container to provide authentication. User credentials are configured in your web application container, usually in a properties file
or XML file. This document describes how to set up Fedora and either Tomcat or Jetty to enable HTTP Basic Authentication, using simple user files.
Consult your web application server documentation for other ways to configure and manage users. Fedora can handle any user principal passed to it by
the servlet container, as provisioned by any of the container's supported authentication mechanisms.

Container Roles
Configure Container Users and Roles

Jetty
Tomcat

Container Roles

Fedora uses two container roles to determine its authorization behavior. The superuser role is . Users with this role are not subject to any fedoraAdmin
further authorization checks, and thus can perform any operations on the repository. This is comparable to the superuser role in Fedora 3, fedoraAdmin
used for Fedora 3 API-M operations. The regular user role is . Users with this role subject to authorization checks by the fedoraUser are Web Access

. The exact permissions any regular user has are determined per request by looking at the effective ACL of the requested resource, the Control system
requesting user's security principals, and the nature of the request (HTTP method, content-type, etc.).

Configure Container Users and Roles

Jetty

Create a file. This file contains entries in the format , where$JETTY_BASE/etc/jetty-users.properties username: password [, role, ...]
username is the user's login id (the principal)
password is the user's password
role is the servlet role they are assigned upon login; jetty allows you to specify any number of roles (or no role at all).

Sample file that contains three users, two of whom are regular users, and the third of whom (fedoraAdmin) is a Fedora jetty-users.properties
superuser:

https://wiki.lyrasis.org/display/FEDORA6x/Web+Access+Control
https://wiki.lyrasis.org/display/FEDORA6x/Web+Access+Control
https://wiki.lyrasis.org/display/FEDORA6x/Web+Access+Control

jetty-users.properties

testuser: password1,fedoraUser
adminuser: password2,fedoraUser
fedoraAdmin: fedoraAdmin,fedoraAdmin

Configure your Jetty login realm.
Standalone: Modify your file to configure the login realm and include the $JETTY_BASE/webapp/fcrepo.xml jetty-users.properties
file:

jetty.xml login service

<Configure class="org.eclipse.jetty.webapp.WebAppContext">

 <!-- Set this to the webapp root of your Fedora repository -->
 <Set name="contextPath">/</Set>
 <!-- Set this to the path of of fcrepo4 WAR file -->
 <Set name="war"><SystemProperty name="jetty.base" default="."/>/webapps/fcrepo.war</Set>

 <Get name="securityHandler">
 <Set name="loginService">
 <New class="org.eclipse.jetty.security.HashLoginService">
 <Set name="name">fcrepo</Set>
 <!-- Set this to the path to your jetty-users.properties file -->
 <Set name="config"><SystemProperty name="jetty.base" default="."/>/etc/jetty-users.
properties</Set>
 </New>
 </Set>
 </Get>

</Configure>

Embedded in Maven: The fcrepo-webapp Maven project includes jetty-maven-plugin. The property sets the location of jetty.users.file
the file. Run the fcrepo-webapp server with the following system property:jetty-users.properties

-Djetty.users.file=/path/to/jetty-users.properties

See the documentation for more details. Jetty Authentication

Tomcat

Create or edit your file. It has entries of the form$CATALINA_HOME/conf/tomcat-users.xml

 <user name="principal" password="password" roles="role1, role2, ..." />

where:

name is the user's login id (the principal)
password is the user's password
roles are the servlet roles they are assigned upon login; tomcat allows you to specify any number of roles (or no role at all).

Sample file that contains three users, two of whom are regular users, and the third of whom (fedoraAdmin) is a Fedora tomcat-users.xml
superuser:

tomcat-users.xml

<tomcat-users>
 <role rolename="fedoraUser" />
 <role rolename="fedoraAdmin" />
 <user name="testuser" password="password1" roles="fedoraUser" />
 <user name="adminuser" password="password2" roles="fedoraUser" />
 <user name="fedoraAdmin" password="fedoraAdmin" roles="fedoraAdmin" />
</tomcat-users>

http://www.eclipse.org/jetty/documentation/current/configuring-security-authentication.html

1.
2.

3.
4.

Configure your Tomcat login realm. Modify your file file to configure the login realm with the Fedora $CATALINA_HOME/conf/server.xml
webapp context:

server.xml

<Context>
 ...
 <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase" />
 ...
</Context>

See the documentation for more details.Tomcat Realms

Bypass Authorization
Running Fedora without authorization means that the REST API is available to any request coming from the container and lacks any finer-grained security.
This is useful when Fedora is running behind another application that connects to Fedora and implements its own security checks. This configuration is
also useful for temporary demonstrations and for running software tests that do not require security.

Disabling authorization in Fedora does not preclude the use of container authentication to secure Fedora. However, container roles are not used for any
further authorization within Fedora. All requests are treated as superusers.

To disable authorization simple set the to , using either a configuration file or argument.fcrepo.auth.enabled configuration property false -D

WebAC Authorization
Web Access Control (WebAC or WAC) is Fedora's system for authorizing requests for resources in the repository.

Definitions
Access Control Lists (ACLs)
Authorizations
Agents

Examples of Authorizations
Protecting Resources
How-To Guides
More Detailed Documentation

Definitions
From the :SOLID Web Access Control specification

Web Access Control (WAC) is a decentralized cross-domain access control system. The main concepts should be familiar to
developers, as they are similar to access control schemes used in many file systems. It's concerned with giving access to agents
(users, groups and more) to perform various kinds of operations (read, write, append, etc) on resources. WAC has several key
features:

The resources are identified by URLs, and can refer to any web documents or resources.
It is -- access control policies live in regular web documents, which can be exported/backed easily, using the declarative
same mechanism as you would for backing up the rest of your data.
Users and groups are also identified by URLs (specifically, by)WebIDs
It is -- all of its components, such as resources, agent WebIDs, and even the documents containing the cross-domain
access control policies, can potentially reside on separate domains. In other words, you can give access to a resource on
one site to users and groups hosted on another site.

WebAC enforces access control based on the Access Control List (ACL) RDF resource associated with the requested resource. In WebAC, an ACL
consists of a set of Authorizations. Each Authorization is a single rule for access, such as "users alice and bob may write to resource foo", described with a
set of RDF properties. Authorizations have the RDF type . http://www.w3.org/ns/auth/acl#Authorization

For the remainder of this document, the namespace will be abbreviated with the prefix . http://www.w3.org/ns/auth/acl# acl:

Access Control Lists (ACLs)

An ACL is an RDF document (RDFSource) that contains WebAC statements that authorize access to repository resources. Each resource may have their
own ACL, or implicitly be subject to the ACL of a parent container. The location of the acl for a given resource may be discovered via a header with Link
relation . rel=acl

https://tomcat.apache.org/tomcat-9.0-doc/realm-howto.html
https://wiki.lyrasis.org/display/FEDORA6x/Properties
https://github.com/solid/web-access-control-spec
https://github.com/solid/solid-spec#identity
http://www.w3.org/ns/auth/acl#Authorization
http://www.w3.org/ns/auth/acl

1.
2.
3.

$ curl -I http://localhost:8080/fcrepo/rest/myContainer

Date: Thu, 23 Aug 2018 14:46:46 GMT
Expires: Thu, 01 Jan 1970 00:00:00 GMT
ETag: W/"919bed096330d23b2e85c01d487758aa6bbf2dcb"
Last-Modified: Thu, 16 Aug 2018 18:49:54 GMT
Link: <http://www.w3.org/ns/ldp#Resource>;rel="type"
Link: <http://www.w3.org/ns/ldp#Container>;rel="type"
Link: <http://www.w3.org/ns/ldp#BasicContainer>;rel="type"
Link: <http://localhost:8080/fcrepo/rest/myContainer/fcr:acl>; rel="acl"
Preference-Applied: return=representation
Vary: Prefer

...

If a resource does not have an individual ACL (and therefore relies on an implicit ACL from a parent), this link header will still be present, but will return a
404. This is because the location of ACLs is solely determined by the server, much like the automatically-created LDP-RS descriptions for binary
resources. The key difference is that Fedora does not create ACLs automatically, only their location.

Therefore, to discover whether a resource has an individual ACL, a client would need to:

Perform a or against the resource,HEAD GET
Find the link header
Do a or against the ACL location, and see if returns 200 or 404.GET HEAD

To create an ACL for a resource that does not already have one, a client needs to discover the ACL location (via or), then to that location.HEAD GET PUT

Authorizations

An ACL should contain one or more authorizations. Each authorization should have a hash URI resource as its subject, and an of rdf:type http://www
:Authorization.w3.org/ns/auth/acl#

Authorization

@prefix acl: <http://www.w3.org/ns/auth/acl#>

<#auth1> a acl:Authorization .

The properties that may be used on an are:acl:Authorization

Property Meaning

acl:
accessTo

The URI of the protected resource.

acl:
accessToCl
ass

An RDF class of protected resources. (While the WebAC specification acl:accessToClass, servers are does not support required to
 according to the Fedora specification)support it

acl:agent The user (in the W3C WebAC ontology, the user is named with a URI, but Fedora's implementation supports both URI- and string-
based usernames)

acl:
agentClass

A class of agents, rather than a specific agent. Usage according to the WebAC specification is limited to (meaning foaf:Agent "everyb
), and (meaning).ody" acl:AuthenticatedAgent "any authenticated agent"

acl:
agentGroup

A group of users (defined as a resource listing its users with the property).vcard:Group vcard:hasMember

acl:
default

Signifies that an authorization for a container may be inherited by children of that container, if they do not otherwise define their own
ACLs.

acl:mode The type of access (WebAC : , , , and).defines several modes acl:Read acl:Write acl:Append acl:Control

For a more detailed explanation of Authorizations and their properties, see .WebAC Authorizations

Agents

https://github.com/solid/web-access-control-spec#aclaccesstoclass
https://fedora.info/2018/06/25/spec/#access-to-class
https://fedora.info/2018/06/25/spec/#access-to-class
https://github.com/solid/web-access-control-spec#public-access-all-agents
https://github.com/solid/web-access-control-spec#public-access-all-agents
https://github.com/solid/web-access-control-spec#authenticated-agents-anyone-logged-on
https://github.com/solid/web-access-control-spec#modes-of-access
https://wiki.lyrasis.org/display/FEDORA6x/WebAC+Authorizations

1.

2.

3.

Agents are the users of Fedora. These identify the principals (in a security sense) that have made authenticated requests to the repository. In ACL
Authorizations used by Fedora, these may be represented as strings or as URIs. The SOLID WebAC spec stipulates that agents are identified by URIs,
and suggests (but does not have any normative language requiring) that these URIs are intended to be . The Fedora specification does not WebIDs
comment on the topic of identifying agents. Nevertheless, for legacy purposes, the Fedora 5.x software allows strings or URIs to identify agents (e.g. "bob"
or). When using URIs, there is no expectation by Fedora that these URIs be resolvable, or have a <http://example.org/people/bob>
representation. It is highly recommended that you use URIs.

The mapping of a logged-on principal to a string or URI depends on the selection and configuration of a , which may provide the identity Principal Provider
of users as strings or URIs depending on its implementation. Because agents are recommended to be represented as URIs, Fedora can be configured to
automatically prefix any principals that are provided as strings with a baseURI. This is achieved by setting the system property fcrepo.auth.webac.

. For example:userAgent.baseUri

agent prefix

fcrepo.auth.webac.userAgent.baseUri=http://example.org/agent/

Continuing with this example, if a user comes in as user "dra2 , the user's identity will be converted to the URI before " http://example.org/agent/dra2
applying ACLs.

Examples of Authorizations
The user userA can Read document foo

@prefix acl: <http://www.w3.org/ns/auth/acl#>

<#auth1> a acl:Authorization ;
 acl:accessTo </fcrepo/rest/foo> ;
 acl:mode acl:Read;
 acl:agent "userA" .

Users in NewsEditor group can Write to any resource of type ex:News

@prefix acl: <http://www.w3.org/ns/auth/acl#> .
@prefix ex: <http://example.org/ns#> .

<#auth2> a acl:Authorization ;
 acl:accessToClass ex:News ;
 acl:mode acl:Read, acl:Write;
 acl:agentClass </fcrepo/rest/agents/NewsEditors> .

/agents/NewsEditors

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

<> a vcard:Group;
 vcard:hasMember "editor1", "editor2".

The user userB can Read document foo (This involves setting a system property for the servlet container, e.g. -Dfcrepo.auth.webac.
userAgent.baseUri=http://example.org/agents/)

@prefix acl: <http://www.w3.org/ns/auth/acl#>

<#auth3> a acl:Authorization ;
 acl:accessTo </fcrepo/rest/foo> ;
 acl:mode acl:Read;
 acl:agent <http://example.org/agents/userB> .

Protecting Resources

https://github.com/solid/solid-spec#identity
https://wiki.lyrasis.org/display/FEDORA6x/Principal+Providers
http://example.org/agent/dra2

Any resource in the repository may have its own ACL. The location of that (potential) ACL is given in a HTTP header with . If a resource Link rel="acl"
itself does not specify its own ACL, its parent containers are inspected, and the first specified ACL found is used as the ACL for the requested resource. If
no ACLs are found, a filesystem-based ACL will be checked, the default policy of which is to deny access to the requested resource.

The standard location for a resource's ACL is the child of that resource, but clients should not rely on this behavior and always "follow their nose" fcr:acl
by checking the header.Link

How-To Guides
Quick Start with WebAC
How to Use WebAC Groups
WebAC Example Scenarios

More Detailed Documentation
SOLID WebAC Specification
Determining the Effective Authorization Using WebAC
W3C's WebAC Ontology

https://wiki.lyrasis.org/display/FEDORA6x/Quick+Start+with+WebAC
https://wiki.lyrasis.org/display/FEDORA6x/How+to+Use+WebAC+Groups
https://wiki.lyrasis.org/display/FEDORA6x/WebAC+Example+Scenarios
https://github.com/solid/web-access-control-spec
https://wiki.lyrasis.org/display/FEDORA6x/Determining+the+Effective+Authorization+Using+WebAC
http://www.w3.org/ns/auth/acl

	Authentication and Authorization

