
Curation Tasks

1 Writing your own tasks
2 Task Output and Reporting

2.1 Status Code
2.2 Result String
2.3 Reporting Stream
2.4 Accessing task output in calling code

3 Task Properties
4 Task Annotations
5 Scripted Tasks

5.1 Interface
5.1.1 performDso() vs. performId()

This documentation provides a guide for how to programmatically create Curation Tasks. For more information configuring Curation Tasks, see the Curatio
 section of the documentation n System

Writing your own tasks

A task is just a java class that can contain arbitrary code, but it must have 2 properties:

First, it must provide a no argument constructor, so it can be loaded by the PluginManager. Thus, all tasks are 'named' plugins, with the taskname being
the plugin name.

Second, it must implement the interface org.dspace.curate.CurationTask

The interface is almost a "tagging" interface, and only requires a few very high-level methods be implemented. The most significant is:CurationTask

int perform(DSpaceObject dso);

The return value should be a code describing one of 4 conditions:

0 : SUCCESS the task completed successfully
1 : FAIL the task failed (it is up to the task to decide what 'counts' as failure - an example might be that the virus scan finds an infected file)
2 : SKIPPED the task could not be performed on the object, perhaps because it was not applicable
-1 : ERROR the task could not be completed due to an error

If a task extends the class, that is the only method it needs to define.AbstractCurationTask

Task Output and Reporting

Few assumptions are made by CS about what the 'outcome' of a task may be (if any) - it. could e.g. produce a report to a temporary file, it could modify
DSpace content silently, etc. But the CS runtime does provide a few pieces of information whenever a task is performed:

Status Code

This is returned to CS by any of a task's methods. The complete list of values, defined in , is:perform Curator

value symbol meaning

-3 CURATE_NOTASK CS could not find the requested task

-2 CURATE_UNSET task did not return a status code because it has not yet run

-1 CURATE_ERROR task could not be performed

0 CURATE_SUCCESS task performed successfully

1 CURATE_FAIL task performed, but failed

2 CURATE_SKIP task not performed due to object not being eligible

In the administrative UI, this code is translated into the word or phrase configured by the property (discussed in) for ui.statusmessages Curation System
display.

Result String

https://wiki.lyrasis.org/display/DSDOC7x/Curation+System
https://wiki.lyrasis.org/display/DSDOC7x/Curation+System
https://wiki.lyrasis.org/display/DSDOC7x/Curation+System

The task may set a string indicating details of the outcome:

curator.setResult("Item " + item.getID() + " was painted " + color);

CS does not interpret or assign result strings; the task does it. A task may choose not to assign a result, but the "best practice" for tasks is to assign one
whenever possible. Code which invokes may use the result string for display or any other purpose.Curator.getResult()

Reporting Stream

For very fine-grained information, a task may write to a stream. Unlike the result string, there is no limit to the amount of data that may be pushed reporting
to this stream.

curator.report("Lorem ipsum dolor sit amet,\n");
curator.report("consectetur adipiscing elit,\n");
curator.report("sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.\n");

Accessing task output in calling code

The status code, reporting stream, and the result string are accessed (or set) by methods on the Curator object:

Curator curator = new Curator();
curator.setReporter(new OutputStreamWriter(System.out));
curator.addTask("vscan").curate(coll);
int status = curator.getStatus("vscan");
String result = curator.getResult("vscan");

Task Properties

Task code may configure itself using ConfigurationService in the normal manner, or by the use of "task properties". See Curation System - Task Properties
for discussion of the issues for which task properties were invented. Any code which extends AbstractCurationTask has access to its configured task
properties.

The entire "API" for task properties is:

public String taskProperty(String name);
public int taskIntProperty(String name, int defaultValue);
public long taskLongProperty(String name, long defaultValue);
public boolean taskBooleanProperty(String name, boolean default);

Task Annotations

CS looks for, and will use, certain java annotations in the task Class definition that can help it invoke tasks more intelligently. An example may explain
best. Since tasks operate on DSOs that can either be simple (Items) or containers (Collections, and Communities), there is a fundamental problem or
ambiguity in how a task is invoked: if the DSO is a collection, should the CS invoke the task on each member of the collection, or does the task "know"
how to do that itself? The decision is made by looking for the @Distributive annotation: if present, CS assumes that the task will manage the details,
otherwise CS will walk the collection, and invoke the task on each member. The java class would be defined:

@Distributive
public class MyTask implements CurationTask

A related issue concerns how non-distributive tasks report their status and results: the status will normally reflect only the last invocation of the task in the
container, so important outcomes could be lost. If a task declares itself @Suspendable, however, the CS will cease processing when it encounters a FAIL
status. When used in the UI, for example, this would mean that if our virus scan is running over a collection, it would stop and return status (and result) to
the scene on the first infected item it encounters. You can even tune @Supendable tasks more precisely by annotating what invocations you want to
suspend on. For example:

@Suspendable(invoked=Curator.Invoked.INTERACTIVE)
public class MyTask implements CurationTask

would mean that the task would suspend if invoked in the UI, but would run to completion if run on the command-line.

https://wiki.lyrasis.org/display/DSDOC7x/Curation+System

Only a few annotation types have been defined so far, but as the number of tasks grow, we can look for common behavior that can be signaled by
annotation. For example, there is a @Mutative type: that tells CS that the task may alter (mutate) the object it is working on.

Scripted Tasks

DSpace 1.8 introduced limited (and somewhat experimental) support for deploying and running tasks written in languages other than Java. Since version
6, Java has provided a standard way (API) to invoke so-called scripting or dynamic language code that runs on the java virtual machine (JVM). Scripted
tasks are those written in a language accessible from this API. See for information on configuring and running scripted Curation System - Scripted Tasks
tasks.

Interface

Scripted tasks must implement a slightly different interface than the interface used for Java tasks. The appropriate interface for scripting CurationTask
tasks is and has the following methods:ScriptedTask

public void init(Curator curator, String taskId) throws IOException;
public int performDso(DSpaceObject dso) throws IOException;
public int performId(Context ctx, String id) throws IOException;

The difference is that has separate methods for DSO and identifier. The reason for that is that some scripting languages (e.g. ScriptedTask perform
Ruby) don't support method overloading.

performDso() vs. performId()

You may have noticed that the interface has both and methods, but only performDso is ever called when ScriptedTask performDso() performId()
curator is launched from command line.

There are a class of use-cases in which we want to construct or create new DSOs (DSpaceObject) given an identifier in a task. In these cases, there may
be no live DSO to pass to the task.
You actually get curation system to call if you queue a task then process the queue - when reading the queue all CLI has is the handle can performId()
to pass to the task.

https://wiki.lyrasis.org/display/DSDOC7x/Curation+System
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/CurationTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java

	Curation Tasks

