
www.atmire.com

Service based API 
Restructuring the DSpace API

http://www.atmire.com


OVERVIEW

•Introduction 

•How it works 

•What it does 

•What it doesn't do 

•Implications 

•Current state



INTRODUCTION

•The DSpace API is in need of a restructure 

•No structural changes were made since the 
beginning of DSpace 

•Changes were focussed on plugins, UI, 
features, maven, … 

•But DatabaseManager, Context, Item, 
Bitstream, … classes still have a very similar 
signature compared to the earliest DSpace 
releases



INTRODUCTION

•New design: split the API into three layers 

•Service layer: This layer would be our top layer, will 
be fully public and used by the CLI, JSPUI & XMLUI, … 

•Data access layer: It contains no business logic and 
it's sole responsibility is to provide database access for 
each table (CRUD (create/retrieve/update/delete)). 
This layer is not exposed to the CLI, JSPUI & XMLUI, … 

•Database objects layer: Each object in this layer is a 
single database table. This layer is exposed to the CLI, 
JSPUI & XMLUI so it can use its getters/setters



INTRODUCTION

•New design: replace all custom database 
queries by Hibernate 

•DatabaseManager is completely dated 

•Hibernate can resolve all database specific 
quirks 

•Avoid any database queries outside the Data 
access layer



HOW IT WORKS

MetadataFieldServiceImpl

<<Interface>>
MetadataFieldService

Service layer

MetadataField

Database Object Layer

11
«Uses»

Public

Internal

«Uses»

«Uses»

<<Interface>>
MetadataFieldDAO

MetadataFieldDAOImpl

Database Access layer



HOW IT WORKS: SERVICE LAYER

•Consists entirely out of 
interfaces which will receive 
their implementation from 
spring configuration 

•Business logic block services 

•Replaces DSpace 
Manager classes 

•Contains business logic for 
other classes

MetadataFieldServiceImpl

<<Interface>>
MetadataFieldService

Service layer

11
«Uses»

Public

Internal



HOW IT WORKS: DATA ACCESS LAYER

•Database access layer is only 
accessed from service layer 

•Consists entirely out of interfaces 
which will receive their implementation 
from spring configuration 

•Database based services 

•Interact with the database 

•Business logic methods for the 
database objects 

•Hibernate is chosen JPA 
implementation, but can be replaced 
easily

MetadataFieldServiceImpl

<<Interface>>
MetadataFieldService

Service layer Database Object Layer

11
«Uses»

Public

Internal

«Uses»

«Uses»

<<Interface>>
MetadataFieldDAO

MetadataFieldDAOImpl

Database Access layer



HOW IT WORKS: DATABASE OBJECTS 
LAYER

•Each object corresponds to 
a single database table 

•No business logic 

•No database queries 

•Only getters & setters and 
JPA annotations to link the 
table & columns to the 
variables

MetadataFieldServiceImpl

<<Interface>>
MetadataFieldService

Service layer

MetadataField

Database Object Layer

11
«Uses»

Public

Internal

«Uses»

«Uses»

<<Interface>>
MetadataFieldDAO

MetadataFieldDAOImpl

Database Access layer



WHAT IT DOES

•Separation of concerns: Clear split between 
“business logic”, “database access” & “database 
representation” of an object 

•Easier API adjustments: Easier adjustments of 
DSpace api components (overwrite/add methods 
without altering existing classes) 

•Developers’ Productivity: Once you understand 
the hibernate principles, linking objects & writing 
queries requires considerably less time. No need 
to write all sql queries



WHAT IT DOES

•Modularization support: Easily replace a 
service & put another in place without altering 
any existing code 

•Effective cross database portability: No need to 
write “if postgres query X, if oracle query Y” 
anymore, hibernate takes care of all of this 

•Database access flexibility: Easy replacement of 
the database layer (if hibernate ever becomes 
obsolete, just reimplement the DAO interfaces)



WHAT IT DOES

•Improved caching mechanism: Hibernate auto 
caches queries (session based, configurable 
application wide). This will replace the caching 
in the Context 

•Performance: Hibernate offers lazy loading to 
only retrieve certain linked objects at the 
moment they are requested. This can replace 
retrieving the bundle, bitstreams, 
bitstreamformat, file extensions, … at once



WHAT IT DOESN'T DO

•Refactor state-full classes: Only stateless classes have 
been refactored into services. API classes containing 
a constructor with arguments which are required for 
the processing have not yet been turned into services. 

•Make modules from all features: It becomes much 
easier to replace certain functionality, but not 
everything has been modularized in such a manner. 

•Change the DSpace business logic: All concepts are 
unchanged, the item, bundle, bitstream, … concepts, 
the command line tools, … are all still present



IMPLICATIONS

Changes made to the DSpace API: 

•Triple layer api (for database objects): Every database object 
class representation has been split into multiple classes (this 
implies every class in DSpace using these objects will need to be 
adjusted) 

•Service class that consists of all business logic (consists of an 
interface & an a default implementation) 

•Database Access Object class that contains all our database 
access calls (consists of an interface & a default hibernate 
powered implementation) 

•Database Object class that contains all the setters & getters 
for the database object



IMPLICATIONS

•Service based managers: Each static “manager” (e.g. 
WorkflowManager, AuthorizeManager, ...) has been split into 
an interface and a default implementation, making it easier to 
make local changes & even to replace a "manager". The static 
methods have all been dropped 

•DSpace Object identifier change: All DSpace objects main 
identifier has been changed from an integer to a UUID. These 
UUID's are stored in a main DSpaceObject tabel and the objects 
implementing it will reference this table (Hibernate doesn't 
support the "type + id" references) 

•Site is now a DSpaceObject: It will now be possible to add 
metadata to the site object (but there is currently no code that 
makes use of this functionality)



IMPLICATIONS

•Bundle Bitstream linking: Since the Bundle2Bitstream table contains an 
additional column order, a new object BundleBitstream was created. 
When requesting all bitstreams from a bundle, "BundleBitstream" objects 
will be returned (containing the bitstream) 

•Context no longer contains database connection: Database connection 
is bound to a thread, at the moment the context is still passed along to 
every method (because it does contain other details). 

•Database browse removed: Hibernate does not easily support 
"dynamic" database tables, therefore only discovery based browse is 
supported 

•Intermittent context commit no longer allowed: When you commit a DB 
connection, all objects will be flushed from hibernate. The 
context.commit() method is gone, the database connection can only be 
completed



CURRENT STATE

•dspace-api module: 

•completely refactored to work with the new 
service based api 

•code compiles 

•The unit test compile, and 99% succeeds 

•There is a complete list of all class/method 
modifications for each class (this will make the 
porting a lot easier).



CURRENT STATE

Next actions: 

•6 unit tests are still failing, this is still work in progress 

•Migration script is only present for in memory DB and PostgreSQL 

•Add DSpace license to all new files 

•Cleanup some of the comments 

•Finish the XMLUI work (flowscript) 

•Adjust the OAI, SWORD, JSPUI, … to use the new DSpace api (This is 
the majority of the remaining work, few weeks of work) 

•Create tutorials on how to port/adjust/create code in the new api 

•Automate the deployment: make a local deployment as easy as other 
DSpace versions



READ MORE

•https://wiki.duraspace.org/pages/
viewpage.action?title=DSpace+Service+based
+api&spaceKey=DSPACE

https://wiki.duraspace.org/pages/viewpage.action?title=DSpace+Service+based+api&spaceKey=DSPACE


www.atmire.com

Thank you

http://www.atmire.com

