Roadmap

2019-2020 Technical Roadmap

Fedora 6.0.0

The next major version of Fedora will focus on the following requirements:

1. Replace the ModeShape persistence layer with a different technology that implements the Oxford Common File Layout
2. Add a synchronous query service
3. Improve the fixity service
4. Address known performance and scale issues
5. Support migrations from earlier versions of Fedora (3.x, 4.x, and 5.x)

Further details can be found on the design page.

Fedora 6 development is expected to take place over the course of monthly code sprints throughout 2020.

Why the Oxford Common File Layout?

The OCFL provides the following benefits:

1. Parsability, both by humans and machines, to ensure content can be understood in the absence of original software
2. Robustness against errors, corruption, and migration between storage technologies
3. Versioning, so repositories can make changes to objects allowing its history to persist
4. Storage diversity, to ensure content can be stored on diverse storage infrastructures including cloud object stores
5. Completeness, so that a repository can be rebuilt from the files it stores

These benefits supplement the digital preservation features already provided by Fedora, including:

1. Fixity: Checksums can be calculated, stored and compared on demand
2. Versioning: Objects and files can be versioned and restored on demand
3. Import/Export: Objects and files can be exported on demand to facilitate their use in other elements of a digital preservation workflow
4. Audit: Preservation metadata can be generated by repository events and indexed in a triplestore for querying

The combined functionality of Fedora with OCFL persistence will better support an overall digital preservation strategy.

2017-2018 Technical Roadmap

Formalize the core Fedora services Application Programming Interface (API)

This priority is to clearly define the core services that Fedora promises as a standards-based RESTful API, accompany this API with any necessary domain-specific ontologies, and provide a compatibility test suite. Outstanding issues can be found on GitHub.

Align the current Fedora implementation with the API specification

Once the API specification is complete, the current Fedora implementation will need to be updated to fully align with the specification. This work will result in a 5.x Fedora release based on our move to semantic versioning.

Support alternate Fedora implementations

One of the goals of the API specification is to allow the community to experiment with different back-end Fedora implementations to address different use cases. We will support and encourage community members as they experiment along these lines.

2016-2017 Technical Roadmap

1. Formalize the core Fedora services Application Programming Interface (API)
This priority is to clearly define the core services that Fedora promises as a standards-based RESTful API, accompany this API with any necessary domain-specific ontologies, and provide a Technology Compatibility Kit (TCK) for each service.
The Fedora services are:

1. **Create/Read/Update/Delete on repository resources**
 - Standard: Linked Data Platform
 - Include Import and Export of RDF, and option for RDF serialization to disk

2. **Versioning**
 - Standard (partial, only retrieval): Memento

3. **Atomic Batch Operations**
 - Standard: TBD

4. **Fixity**

5. **Authorization**
 - Standard: WebAC

2. Formalize the core Fedora Service Provider Interfaces (SPIs)
Messaging SPI
 i. Defining the interface that a Fedora repository implementation should implement to publish repository events

Runtime configurability
 a. Enable the update of configuration settings at runtime, e.g. changing hostname published in repository events
 b. Enable pluggability of extension modules, e.g. adding an OAI-PMH module at runtime

Performance and Scale
 a. Establish metrics for repository limits, including:
 i. number of resources
 ii. number of bytes
 iii. See: Performance and Scalability Test Plans

 iv. type key summary assignee reporter priority status resolution created updated due

 Unable to locate Jira server for this macro. It may be due to Application Link configuration.

 b. Establish guidelines for storage options based on usage patterns

 Note: Items 1 and 2 define priorities related to “Fedora as a specification”, whereas Items 3 and 4 relate to “Fedora as an implementation”.

2015-2016 Technical Roadmap

1. Formalize the core Fedora services Application Programming Interface (API)
 This priority is to clearly define the core services that Fedora promises as a standards-based RESTful API, accompany this API with any necessary domain-specific ontologies, and provide a Technology Compatibility Kit (TCK) for each service.

 type key summary assignee reporter priority status resolution created updated due

 Unable to locate Jira server for this macro. It may be due to Application Link configuration.

 The Fedora services are:

 a. Create/Read/Update/Delete on repository resources
 i. Standard: Linked Data Platform
 ii. Include Import and Export of RDF, and option for RDF serialization to disk

 iii. type key summary assignee reporter priority status resolution created updated due

 Unable to locate Jira server for this macro. It may be due to Application Link configuration.

 b. Versioning
 i. Standard (partial, only retrieval): Memento

 ii. type key summary assignee reporter priority status resolution created updated due

 Unable to locate Jira server for this macro. It may be due to Application Link configuration.

 c. Transactions
 i. Standard: TBD

 d. Fixity
 e. Authorization
 i. Standard: WebAC

2. Formalize the core Fedora Service Provider Interfaces (SPIs)
 a. Eventing SPI
 i. Defining the interface that a Fedora repository implementation should implement to publish repository events
 3. Runtime configurability
 a. Enable the update of configuration settings at runtime, e.g. changing hostname published in repository events
 b. Enable pluggability of extension modules, e.g. adding an OAI-PMH module at runtime
 4. Performance and Scale
 a. Establish metrics for repository limits, including:
 i. number of resources
 ii. number of bytes
 iii. See: [Performance and Scalability Test Plans](http://tools.ietf.org/html/rfc3230#section-4.3.2)

 4. Performance and Scale
 a. Establish metrics for repository limits, including:
 i. number of resources
 ii. number of bytes
 iii. See: [Performance and Scalability Test Plans](http://tools.ietf.org/html/rfc3230#section-4.3.2)

 b. Establish guidelines for storage options based on usage patterns

Note: Items 1 and 2 define priorities related to “Fedora as a specification”, whereas Items 3 and 4 relate to “Fedora as a reference implementation”.

Previous Technical Roadmap Items

<table>
<thead>
<tr>
<th>Currently Supported Features</th>
<th>Design</th>
<th>Core</th>
<th>Non-core</th>
<th>4.0</th>
<th>Use Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthN/Z</td>
<td>design</td>
<td>x</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of Virginia - Repository generated-mediated derivatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yale University - Fedora managing access conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydra Authorization Use Case</td>
</tr>
<tr>
<td>Backup</td>
<td>design</td>
<td>x</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Backups / Disaster Recovery</td>
</tr>
<tr>
<td>Clustering</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistent deployment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REST-API support against master node</td>
</tr>
<tr>
<td>Content Modeling - Structural</td>
<td></td>
<td>x</td>
<td></td>
<td>✓</td>
<td>Content by label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>There is no content with the specified labels</td>
</tr>
<tr>
<td>Managed External Datastreams</td>
<td></td>
<td>x</td>
<td></td>
<td>✓</td>
<td>Ingesting large files into the repository</td>
</tr>
<tr>
<td>Store/Deliver Large Files</td>
<td>design</td>
<td>x</td>
<td></td>
<td>✓</td>
<td>Research Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingesting large files into the repository</td>
</tr>
<tr>
<td>Search</td>
<td>design</td>
<td>x</td>
<td></td>
<td>✓</td>
<td>University of Virginia - Applications can be easily built to work against fedora</td>
</tr>
</tbody>
</table>
| Transactions | x | ✔️ | • Islandora CLAW Transaction Use Case
• University of Virginia - Applications can be easily built to work against fedora Triplestore | design | x | ✔️ | • University of Virginia - Live querying of object graph
• Using the resources of the Semantic Web to describe repository contents Versioning | x | ✔️ | • Structure - Generated provenance for all added bitstreams
• Structure - Automated Retention of All changes to Items
• Structure - Manual Creation of "New Editions" of an Item
• University of North Carolina at Chapel Hill - High Volume of Concurrent Ingests Post-4.0 Priority 1 Features | Design | Core | Non-core | 4.0 | Use Cases

| 3 to 4 Upgrade | design | x | Content by label | There is no content with the specified labels

| Audit Service | design | x | • University of New South Wales - Viewing-exporting usage statistics about fedora records
• Reporting Functionality
• More Functional AUDIT Datastream Managed External Datastreams - Indexing | x |

| Asynchronous storage API | design | x | • Scalability for Asynchronous Ingest, Access and Audit
• Leverage Cloud Storage
• Repository supports Amazon Glacier, or other asynchronous storage services
• Support for Hierarchical Storage Management-like systems
• Hybrid Use Case |

| Asynchronous storage Implementation | x | • Scalability for Asynchronous Ingest, Access and Audit
• Leverage Cloud Storage
• Repository supports Amazon Glacier, or other asynchronous storage services
• Support for Hierarchical Storage Management-like systems
• Hybrid Use Case |

| LDP-Paging | x |

| Web Access Control | x |

| API Partitioning | x |

| Post-4.0 Priority 2 Features | Design | Core | Non-core | 4.0 |

| Batch Operations | x | • Hybrid Use Case (Metadata Services)
• Yale University - Fedora managing access conditions |

| CMIS | x |
Content Modeling - Services and Validation
- Use case: transform application workflow
- Art Institute of Chicago Use Case - Structural Validation
- Art Institute of Chicago Use Case - Structural Validation - Properties
- Modeling content in concert with the wider world

Disseminator-like Functionality
- University of Virginia - Repository generated-mediated derivatives
- University of Virginia - Repository-level metadata transformations-mapping
- Objects can be associated with a descriptive metadata service

Human-readable Filesystem Storage

Metrics
- University of New South Wales - Viewing-exporting usage statistics about fedora records
- Reporting Functionality
- More Functional AUDIT Datastream

Multi-tenancy
- Multi-tenancy Single Fedora Instance

OAI-PMH

ORCID Support

Policy-driven Storage
- Policy-controlled storage
- Hybrid Use Case

Relationships API

Self-healing Storage

WebDAV

Non-Functional: Performance - Clustered
- University of North Carolina at Chapel Hill - High Volume of Concurrent Ingests
- Scale for High Volume Read Access
- Repository subsystems can scale horizontally
- Mass Object Creation

<table>
<thead>
<tr>
<th>Previously Un-prioritized Features</th>
<th>Design</th>
<th>Core</th>
<th>Non-core</th>
<th>4.0</th>
<th>Use Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin UI</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>Tufts University - Reasonable curators administrative interface</td>
</tr>
</tbody>
</table>
| Content API | | ✓ | | | Yale University - Fedora managing access conditions
 | | | | | University of Virginia - Applications can be easily built to work against fedora |
| Identifiers | | ✓ | | | Hybrid Use Case (Metadata Services)
 | | | | | UUID's: Object Mobility and Merging Stores |
| Large-Scale Content | | ✓ | | | Archive of digitised newspapers |