VIVO 1.10.x Documentation

VIVO 1.10.x Documentation

Exported on 04/22/2018



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Table of Contents

1.1

1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3

1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.1.5
1.3.2
1.3.21
1.3.2.2
1.3.3

14
141

1.4.2

1421
1.4.2.2
1.4.3

1.43.1
1.4.3.2
1.4.3.3
1.43.4
1.4.3.5

2.1

INEFOAUCTION <.ttt 19
WHRAE IS VIVOT? ..ttt ettt ettt ettt sae et s bt et e s st et e s st e b e sneenbeene 19
RELEASE NOLES ... ettt ettt sttt et s e be et e be et e sbeesesaeens 19
VEISION 1.10.0 cueeuteieeiietenteeteste ettt et e et s et s bt et e b e bt et e sb e et e sbe s st e s e ebeeateeseemtesbesae e s e beeneenseeneensesseensesennaensenne 20
WWHAt'S NBW .ttt ettt e h ettt et ea e bbb et e st e st e bt s bt et et et ent e st e b e b e s et e st eneebesbe st enseaes 20
CONTIIDULONS ettt b bttt b bt s b st et et et e bt e b e b et e b et e st eseebesbe st eneenes 23
RESOIVEA ISSUBS ...ttt ettt et et a e bt s b et et e et e bt eb e b e b et enteseebeebese et ent et enesaesbesensens 24
FUNCLIONAL OVEIVIEW ...ttt ettt ettt e b st sbe st saeens 27
ONINE ACCESS ettt ettt ettt ettt h ettt et et e st sb e b e b et et e st es e e bt s b e eb et et e at e st e bt b e b e b entesteneebesae st eneenee 27
LINKEA OPEN DAL@...uiitieiiiieieieeieetesteet et e et et este st et esteetesse et e ste s e e sesseessessesssasesssesseseessensesseessesseassensansannsanns 27
BUILE-TN SEAICH ..ttt b ettt et b bt e b et e bt e be e b st et et et enesbesbesennens 27
NAVIZATION 1ttt ettt b et st et e s b e st e b e s bt et e b e s ae e b e s bt e b e b e e st et e eseensesmeemnensessaensene 27
Optimisations fOr GOOZIE INAEXING ...cvvveuirieiirieiiieieeieete ettt ettt be et et e e sbe e ste e saenens 27
SUPPOIt FOr MOAEIN BrOWSEIS ...vcveeveetiieieniesteitetestesteteteseesestestestessessesaesaesessessessessessessssessessessassessesessessessensenes 27
GettiNg DAta iNtO VIVO ..ottt ettt ettt ettt et s b st b e s bt et e b e saeebesaeemnennens 28
MANUAL DAL ENTIY.iiitieieiecieteeeet ettt et et et s et e st e et e s e et e s te e e e s e s s e essessasseasesssessessaessansessaensesseessesansaansenns 28
AULOMATEA DAtA ENTIY cuviiiciecieeieee ettt e et e st et e e et e s te e st e stesseessesseessessaeseessesseessenseessensanns 28
ACCESS CONEIOL. ittt ettt ettt eh bbbttt e bt s bt st et et e st e ae e bt b e b et entestebeebe st et et entenesbesbebennent 28
SYStEM REGUITEMENTS . ...iiiiiieittccteeee ettt e e sbe e s saa e e s beesssaeesbaessanaennns 28

Hardware Recommendations Minimum Specification Recommended Specification Software
Requirements Operating System Java 8 Maven 3.0.3 or later Configuring a Proxy MySQL / MariaDB 5.5 or

later (or any other supported by Jena SDB) TOMCat 7 OF [Ater ...c.ccveveeeeeerisieieieeeeee e 28
Hardware RECOMMENAALIONS ..ottt ettt ettt b bttt e b e b b se et et et e sbesbenbennene 28
MiNIMUM SPECITICATION ..cvietietictiieieeee ettt ettt et e s et e se et e be b e s esaesaebesbessessessesaessesansensensans 29
Recommended SPECITICAtION ....cuiiiiceeeeeeeeceeee ettt ettt saeba et esbe st e b esaesaeseesessessennans 29
SOfEWAIE REGQUITEIMENTS ....viuiiiieeieeietieiee ettt te et et et eseste st et e s e s esaesaebessesbessessessessesessassassansessesessessessensanes 29
OPEIAtING SYSTEM ettt b et b e s a et e s bt et e b e e b et e s st et e s b e s st e b e bt entenbesaeeneesaeensennens 29
JAVA 8 et bbbt bbbt e b s e bt e b e bt st e s be e saeeeae s 29
MAVEN 3.0.3 O LAEOI ettt h s bttt et e h e bbb et et e bbb st et et et e nesae st et etene 29
MySQL / MariaDB 5.5 or later (or any other supported by JENa SDB) ......ccccvverievieieieeeeseciereeee e 30
TOMICAL 7 OF LAEON ettt ettt a e st s b st et et et e st e b b e b et et e st ebesbe st e s eaes 30
INSEALlING VIVO .ttt ettt 32
Installing from DiStribDULION ...c.ceieiiieieieeeeeeeee ettt 32



2.1.1
2.1.2
2.1.3
2.2
221
2.2.2
2.2.3
2231

2.3
2.3.1
2.3.2
2.3.3
2.3.3.1
2.3.3.2
2.3.3.3
2.3.34
2.3.35

2.4

3.1
3.11
3.1.2
3.1.21
3.1.2.2
3.1.2.3
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.4
3.15
3.1.6
3.1.7
3.1.8

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

OVEIVIEW c..vviiiiiieitt ettt a et e b et s b et sa e bbb bbbt eb et sa et sae e saenens 32
Preparing the INStallation SETHINGS .....couevverieiiiiii ettt sttt s 32
INSTALLINE VIV .ttt sttt et b bbb et e b et s b sb et et et e e s b sbenenene 33
INSLAlliNg fromM GITHUD .eoeeeeieeeeeeeee ettt sae e 33
Preparing the REPOSITOMES . ...cc.iouiiiiririertetetete ettt ettt s b bbbttt b e bttt e sae b snenene 33
Preparing the INStallation SETHINGS ...c.couevvivieiiiie ettt sttt s 34
INSTALLINE VIV .ttt ettt et b bbbt b et besa et e et e e sbesbenenene 34
DEfAULE INSEAILET ..ttt bttt bbb 34
Completing the INSTAllation........ooiiiiiiiriee s 36
Configure the Database SCHEMA ..ottt ettt ettt saebens 36
CoNFIGUIE the HOME DIFECEOIY.c.ccueuirieuirieieriet ettt ettt ettt sttt ettt st et b et sttt et st e saesestenens 36
CoNfigUre and SEArt TOMCAt . oveirieirieerie ettt ettt ettt sttt ettt e b bbbttt e st et saesesaenens 37
SEEJVM PAramMELEIS ..ottt ettt sttt e st st e bt e bt e sab e st e s be e s bt e s abeeabe e bt e sabesabesabeenanenaees 37
SO SECUINIEY LIMIES .veutetieieiere ettt ettt e b e s et e b e e st et e saeesbesbesssensesseensensesseensesseensansens 37
SEEURI ENCOAING.c.einiitiiiiiieietetet ettt ettt b ettt b e s bbb e et e be bt b e b et et et e seebesbe e e e enes 37
Take care when creating Context €LEMENTS .....c..ociiiririiiiee ettt 38
STAMTING TOMCAT .ttt b ettt et s b e st ettt b e bt b e b et et et seebesbe e e s enes 38
Verify YOUr INStallation.....couecieeeeieeiesecteeeeece ettt et a e e 38
UPErading VIVO ....c.uooiuiieieiieeiteseeeie sttt ste e sae e sesesaessaeesaaesaaesseesaaessnasans 40
Upgrading from 1.9.X 10 1.10.X c.cevueevuerreeierieeiieseeiteseeesseseesseseesseseessesssessesseessesssessesssessenns 40
UL I OO 40
U] T 1 0 OO 41
UpPErading The TriPLE STOTE ..ottt eb ettt bttt besne e 41
Upgrading Local Java Code USING JENQ....cc.couiviririririeieteteieeiestestetete et sv ettt ettt sb e ettt sae s snenene 43
A Note on Other DependenCy ChanEES.....c..couiiiiririerierietete sttt ettt st ettt sbe b s snene 43
UL CRANEES ettt ettt b ettt et sb et ettt e bt e bt b et et e st e bt e b e e b e sb et et et eue s b e b e nnennent 44
JQUETY 1,124 oottt sttt et st et et e sae e b e s b e et e b e e s e e st e saess e e se s st esbe b eessentesaeensesaeensensensaensesessnensesseensensens 44
JQUETY PLUGINS .ttt b ettt ettt et e bt e bbbt e e e st e st e b sae e ntens 44
DY TSP 44
ORCID AP ettt ettt sttt et b b bttt b e bt s b st et et et e bt e bt b e b et et e st e bt e b sb et et eaes 45
LiSt VIEW CONFIGUIALIONS w..vuiieiiieiiiei ettt ettt ettt bttt b et b e bt be st ee 46
VOCADULAIY SEIVICES ...tiniiiiiieitetetereete sttt ettt et e s st b e st et e s te s st e sae s st enbesseessensesseessesseensensesssensenns 47
SEIVIET 3.0 UPEIade...cu ettt ettt b bttt st ettt et b bbbt et be b et eaes 47
JAVA DEPENAENCIES ..vtiuieieeiieieeit ettt et ettt e ste st e besae e besbe e st esbesaeessesaesssensessaensessesssensesssensansasssensensaensenses 47



3.1.8.1
3.1.8.2
3.1.8.3
3.1.84
3.1.85
3.2
3.21
3.2.2
3.2.3

4.1
4.2

4.3

43.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

4.4

5.1

5.2

521
5.2.2
523
5.3

531
5.3.2
5.3.3
534

5.4

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

HEEPCHENT 1ottt ettt ettt s e et e s b e s e e b e sbe et e b e ssaesbesssesbessaessensessaensesseensensassnensense 47
O SGi DEPENUENCIES. ...cuvieieierieeieriesteterteeterte st estes e estessesseestessesstessesseessensesssensesseessessesssensenseensensesseessesseessenses 47
JSON PArSEIS ..ottt bbb bbb e s 48
REPLACEA DEPENUENCIES ....eeieiieiieteieeteiestete ettt ettt e ae st e beste et e sbe st e besssesbessaessensessnessessesnsensasssensenss 48
REMOVEA DEPENUENCIES ...evievieeiiiierteeiterte sttt et st set et e s e et e sbe st e b e st e etessesssessesssensessaessensessaensessesnsensassnensenss 48
BUILAING VIVO IN 3 HIEIS.cuiiiiiieieiieeteeteetteit ettt st et steeste e sas e st e ssbesssaesaaesssessaessnenns 48
DEVELOPIMENT ..ttt ettt et st et e s ae st e b e s et et e s te e st e s b e s st e b esse e st e b e s st e be e st enbebeestenteeaaentesaeenbebaesnentenn 49
DEPIOYIMENT ..ttt ettt ettt sttt e s ae st e b e s et et e s ae e st e s b e sss e b essee st e be s st e be e st e s beebeententeesaentesaeenbenbaernentenn 49
PrOJECT LEMPLATE .ottt ettt ettt b e st e et e st e st e besae e besbe e st et e esa e tesaeenbenbeennentena 50
EXPLOMING VIVO ..ttt ste et saeesveesaa e saa e s ae e aa e snasans 51
OVEIVIEW ..ttt sttt sttt s bt bt e st st e s b e e be e ssaesbe e bt e sseesabesaneesneennnens 51
LOZEING IN TO VIVO ..ttt ettt sttt st s st s b e st e e sba e s sbeesneessnseesnnnes 51
SAMPLE DATA ittt ettt et ettt s b st e bt e s st e st e e baesaaenarees 51
OVEIVIEW ...eiiiiiiieitet ettt a et e b et e b et sa et bbb bbbt sb et sa et saesesnenens 52
Preparing YOUT VIVO ....c.co ittt ettt sa ettt st sb bbbttt be st st et et e s b b nenene 52
Loading the SAMPLE DAta c..ccveveieieiiiieieet ettt ettt b et ettt sa ettt et s be b sn et 53
EXPLOMING the INTEITACE ...ttt ettt ettt be e bt 55
EXPLOMNG ThE DA .ttt sttt sttt et s b e sa et ettt sbe b st 55
RESETEING YOUN DAtaD@SE ...eeviniiieieiieee ettt sttt ettt ettt s sneneae 55
Restoring VIVO to First TIMe STate c..uiiviiiiieeeieeeeeteeeece et 56
Preparing for ProdUcCtion..........ooueeiiiiieniecicccceceeceeve e 58
OVEIVIEW ..ttt sttt sttt s e st b e st st e s b e e seessae s b e e bt e sseesanesaneesneennnens 58
MiniMUM CONFIGUIAtION...c.iiiiieieieeiececeree ettt st re e e be e e e be e s e seeensasaeens 58
EM@IL it 58
N A ESPACE ... ettt sttt e e et s bt e sttt s e bt e s ab e e s e ab e e a bt e s bb e e s ba e e e b b e s e b e e e e bt e s eabtesenaeesanaeeenne 58
Additional CONFIGUIALION c...evieuiieiiiet ettt ettt ettt b et ee 59
Create, Assign, and Use an Institutional Internal Class ......ccccceeveevierieenieniiensienneeneenene 59
OVEIVIEW ...cuiviiieiieittee ettt a et e b et s b et sa et bbb bbbt sa et sa et saesesnenens 59
Create an Institutional INterNal Class .........ccoviiiiiiiiiiniiii e 59
Assign your INstitutional INterNal CLass .......cc.coveirirerieriictee ettt 61
Use your INStitutional INTErNAl ClassS.....uviriirieriiienierteieseetese ettt ste st st besbe e te st ssaesaesaeessensassnensenes 62
AdAING USEI ACCOUNTES ..cuvveiiiiriiieieiieesteete sttt e steeste e st e st e sbessseesatessaessseenssesssesnsaessaanss 62
USING VIVO ottt ettt s st e s sare e s saa e e s s ana e s s nte e s s nnaesssnaesssnnas 63



6.1
6.2
6.3

6.4
6.4.1
6.4.2

6.5

6.6

6.6.1
6.6.2
6.6.3
6.6.4

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.1.3
7.1.2
7.1.2.1
7.1.2.2
7.2
7.2.1
7.2.2
7.3
7.3.1
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.44.1
7.4.5
7.4.5.1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

NAVIGATING VIVO ..ttt ettt ettt s ae e s siae e s s e st e e ssa e s sbeesneessnseesnnnes 63
EdItiNg YOUT Profile (*) woevueeieeeeieseeieseetesee ettt s et ae s ae e a e e s e sa e ensesaeens 63
USING SEAICI (%) ittt sttt 63
Using the Capability Map ..ottt sttt sbe e e saae e 63
OVEIVIEW ...cutiiiiiictitet ettt a et d bbbt bbbt b bbbt e b et eb et sae st saesesnenens 63
A ToUr Of the Capability MAP ..cicccieieieisiesieieieeetstee sttt ste sttt se s be b e e e e eseesassesbassesseseesassessensensans 64
USING VISUQLIZATIONS (*) wevveureiieieieieietetetet ettt ettt ettt ettt et et a et ss e s e 69
VIVO fOr Data ANALYSES .euvieueeieeiieierieesiestesieetesie sttt e steete s e e sae s e e saa s e estassaesaassnesseensansanns 69
BACKEIOUN ...ttt ettt et b bbb et e b et b e sb et et et et sbesbe b nene 69
Getting RECLANGIES OF DAtA....veuirieirieiieiciet ettt ettt sttt ettt b et bttt et esentenens 69
GEttiNg Graphs Of DAtA ..c.eueeieveirieirieirieertet ettt ettt ettt sttt b st b et ebe b et et st et ste st st esentenens 70
REFEIEINCES ...ttt ettt sttt st b ettt n e 70
Managing Data in YOUT VIVO ...c...uiiiiieiiriieeereecereeceiree e esiree e e 71
IMPOrting Data tO VIVO .....uiiiiiieeieieteeeiteesteeete ettt sttt sire s sre e s sae e sae e s sanaesannes 71
Using the Convert CSV t0 RDF iNZEST 001 ..cuuiiiiriiriiiiictcieie ettt ettt 71
Mapping Ontologies to Other ONTOLOZIES ....cc.ccueiriiriiririeiciee ettt 71
EXQMPLE WOTKFIOW .tvviiiiieiieiisiesete ettt ettt st sttt e st e b e b et esaesaesassessessansesaesessassansansans 72
APPENiX Al SPARQL QUEIIES.c.viuteiertieierierteniesitetesteetestesseessessesssessesseessessesssessesssessessesssensesaessessesssessesssensenss 79
Data types for String and [aNGUAEE ....ccveuiriieirireeieete ettt ettt 81
LITEral ValUES ...ttt bbb 82
RECOMMENAALTIONS. ....oiiiiiiiiiict bbbt 82
EXporting Data from VIVO .......cceeieieectereeeestete sttt sttt eesae e sa e esaesaaeaesaeans 83
EXPOITING ALLDATA ..ttt ettt ettt et b bt ettt besb ettt eae s bbb nene 83
EXPOItiNG SELECTEA DAta ..cveeviiiieieiiiieieeteee ettt ettt ettt sa ettt sa e b bt 83
Managing Person [dENtifiers... ittt re e st e s e seeesesaeans 83
N0 €SOO 84
Managing Organization HIerarChy ........cccooierieriiiniienieniccicctcse e s 84
OVEIVIEW ...cuiviiieiieittee ettt a et e b et s b et sa et bbb bbbt sa et sa et saesesnenens 85
PNASP AT, PAITOf" ..ttt ettt ettt sttt et r e et e et e et et e st e Rt e R e eae et e s e st eneeneeseetenaeseneen 85
YOUr OrganizationNal DAta ......co.coveoeeiririerieteeietri ettt sttt ettt ettt sb et sb b benent 85
MAKINE THIPLES ettt ettt ettt st eb b b et et e b e bt s b st et et et eaesbesbenennene 86
NOteS regarding the TriPLES.......cu ettt sttt s sn e 87
Managing the Triples iN VIVO .......cuo ettt sttt ettt b e st sttt besne it 87
A ThE tFIPLES TO VIVO .ottt sttt ettt sttt s st e st sae st e sae s st enbesseensensesseensesseensensesssensenes 87



7.4.5.2
7.4.6

7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
1.7

7.8
7.8.1
7.8.2
7.8.2.1
7.8.2.2

8.1

8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.2.2.3
8.2.2.4
8.2.2.5
8.2.3
8.2.3.1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Updating Your THPLES IN VIVO ...c.coiiiiiieieeeteteet ettt ettt ettt b e et ettt s besne s 89
SOME ClOSING ODSEIVATIONS. ...ttt sttt sttt be e e s 89
Managing Data PaCKages......couiiiiiniiriiiieeteeteeeet ettt ettt et s e st s saeesaa e 89
OVEIVIEW c..eiiiiiiittet ettt a et b et s h et sa et bbb bbbt eb et saenesaesesaenens 89
Add @ dAta PACKAZE ettt ettt ettt bbbt 90
UPdate @ data PACKAEZE .. cou ittt ettt sttt ettt sa ettt s b bt 90
Delete @ data PACKAZE .coueev ittt ettt 90
AVAILaDLE DAta PACKAZES. ....eovetiieteiieiieiertetetete ettt sttt ettt ettt s be sttt sbe b benent 90
SPARQL QUEIIES «eeeeeeeeeeieteeeeeeeeeteteeeteeeteeeeeeeeeeeeee e et eeeeeeeteeeeeteeesesssssssssssssssssssssssssssssssssssrsrsrenes 91
OVEIVIEW ...cetiiiiiieitttt ettt a e bbbt s b et sa et bbb bbb bbb eb et sa et saesesnenens 91
RUNNING SPARQL QUETIES ...ttt ettt sa et ettt st sb bbbttt besa et et et emesaesbenennens 91
USING SPARQL fOF FEPOITING c..veveviieiiieiiieietet ettt ettt ettt sttt bttt st bbb b ee 92
USiNg SPARQL 0 ClE@N data..c..cveiiuiiiiirieieieieeei ettt ettt s sttt sneneae 93
DESCRIBE QUETIES .vveuveeiteierieeiesitetenteetestesteessessesssensesssessessesssessesssensessesnsensesssensessssssensesssensessasssessesssensassaensense 93
ASK QUETIES «.vvveeeteeeeeteeeeeetee ettt ettt et e erteeeeteeeesae e eesaeeeessaeesseeseesseesesaseerseseessseessseesseseessesensaseeasseeensseeensseeesesenns 95
AdditioNal SPARQL RESOUICES....uiiivvieetreieteeeeiteeeerteeeereeeeireeeeseeessereesseeeessseeesssseessesesssssenssseesssseesssessnsssesssesesns 95
How to remove data from a specific Eraph ....cccocueeviiiriececeeceeee e 95
Removing Entities from VIVO........cooieiiieeectece ettt ste e saeeaeseesnesae e 95
GENEral MEtROd ...ttt 96
EXQMIPLES ettt ettt ettt ettt et b e sttt e st e b e et e b e e bt et e b e s Rt e be e Rt e bebeententeesa e tesaeensebeennentenn 96
REMOVE PUDLICAtIONS DY 1Y PO cutiiiitiiteieteeee ettt sttt ettt e st ssa e aesaeessensaesnensenns 96
ReMOVE Other ENTITIES ...oviiiiiiiciicictc ettt 98
Extending and LOCAliziNg VIVO .....cccuevuieiienieeieeecctecieeeesee st 99
OVEIVIEW ..ttt sttt st s bt s b e st e st e s be e seessae s b e e bt e eseesabesaneesneesnnens 99
INEErNAtioNAlIZAtION ..cuiiieiee et 99
VIVO LANGUAEZE SUPPOIT..cuviriiiiiriiiiiiiiteiesiteteste sttt ettt st st sbe st b et sa e st sbesbe st sa s bt b e sbessnesnesnees 100
Adding a [anguage to YOUT VIVO SIte ......couivuirieriiiriieiirieietetete ettt ettt ettt ettt s sae e 101
Adding [aNGUAEZE FIlES 1O VIVO...cuuuiiiiiieieieieieierteete ettt ettt ettt ettt b st enes 101
Translating VIVO intO YOUT laNGUAEE «...coueeuiriirieieiiirieet ettt ettt et s 101
TRELOCALE et 101
THE LANGUAEE FIlES ettt sttt b et ettt ettt st e bt e bt eb et et et ebeneeteneas 101
How can | contribute my language files to the VIVO commUNity? ....cccvvveivieirinenieenineisieisieceieeneeeeenes 104
Adding language support to your local ModifiCations.........cceveeririerinieinieirie et 104
Language in the data MOElL........cuoiiiiiriii ettt sttt 104



8.2.3.2
8.2.3.3
8.2.3.4
8.2.3.5
8.2.3.6
8.2.4

8.24.1
8.2.5

8.2.5.1
8.2.5.2
8.2.6

8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.3
8.3.3.1
8.3.3.2
8.3.4
8.34.1
8.3.4.2
8.3.4.3
8.3.4.4
8.3.4.5
8.3.4.6
8.3.5
8.3.5.1
8.3.5.2
8.3.6
8.3.6.1
8.3.6.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Language SUPPOItiN VIVO PAZES ..ccveueruiririerieieiritetestesteteteite sttt et ss bbb sae sttt et ebe s s e 105
Language in Freemarker Page temMPlates.......ccv ittt 108
LaNGUAEE IN JAVA COUR ...ttt ettt sttt ettt sb ettt e be b b nee 109
LANGUAEE IN JSPS ..ttt ettt bbbt et b bbbttt b e sb et et e bbb b aee 110
Language in JAVASCIIPL filES...cuiriiuiiiiieeie ettt ettt ettt et enn 110
TOOIS YOU CAN USE..uuiiiiuiiriieieniieiteniestestesttetesteestesseseeesesseessensesseessessesssensesssensensesssensesssensesseensensesssensesseensensens 110
TLBNMCINECKET ..ttt ettt b bbbt b e b et ettt st a ettt et be b naene 110
VIVO €N ESPAROL cuvteutiiieiieieiiteiesieeteriest ettt et st te st st e st e sta st e saesssesbesssensesseeseensesaeensassesssensassesnsensesseensensens 111
FQUE ESVIVOT .ttt ettt ettt ettt eete et e beebe e b e beess e seeasesbesbsess e saessesseeseessesseessenseessessessserseseeasensesaens 111
ECOMO INSEALAIT ..ttt ettt et e et be e e e beeasebesbeess e baessesseeseessesseessensaessersesseerseseessensensaens 114
VIVO IN MANAATIN ¢ttt sttt st ettt et b bbbt et besa et et et et s b sbese e 122
CUStOMIZING the INTEIfACE i 123
INEFOUCTION ettt bbbttt s b ettt et b b b ettt b e bt st et et et et ebeebebe e 123
MaKIiNg ChanGES t0 VIVO ..ottt ettt ettt sb ettt e be b b ee 123
VIVO is already CUSTOMIZEA ...cvivuiiiiiieieiesiteteste sttt ettt sttt et et et e saeesesbe s st e b esseensesaesssensenaeen 123
AddiNg YOUr OWN CUSTOMIZATIONS ....eiuiriiriitiieieeeitetetestet ettt sttt sttt sttt et sae s e 124
WOTKING IN ThE GUI ..cnieiiieie ettt sttt sttt b bttt be e neen 124
RDF fIlES 11ttt ettt ettt ettt eb bbbt e b et e bt b e st b e s bbb e bt e bt e bbb en b e st en et e bt enen 124
Changes t0 the SOUICE fIlES.....uiiiriiiriiirieiiie ettt ettt sttt 124
TOOL SUMIMAIY wetiiietieiieieeitetesieet e st st et e st et esbe et esaesseesbesseessensesseestessesssessasssensenseessensesssensesssensensesssensesseensensenn 124
REQUITEA SKIIS 1.ttt sttt ettt et s e s e e b s bt et e st e ese e aesaeesaesseensensessaensensesssensansenn 124
T EOOLS 1.ttt ettt bbbttt b ettt a bbbt e et et be e nten 125
HOME PAZE CUSTOMIZATIONS c..cuviiiiiieiiiieiertetetet ettt ettt bbbttt st sb ettt et be b b ee 127
INEFOUCTION ittt ettt sttt et b bt e st et e bbb sb et et et e st ebesbene e 127
The page-home.ftl TEMPLALE FIl....ccuv ittt sttt 127
The RESEAICH SECLION .ttt ettt st sttt et b e bttt besaeeen 128
The FaCUILY SECTION.c..titieiietetetere ettt sttt et ettt s st e b e st e b e s be e st e saesssenbesssensesseessensesssensenseen 129
The DePartMENtS SECTION .....iviiierirteteetet ettt sttt ettt st et e sae st e s be et e b esseestesaesssenbesssensensesssensesseensensens 129
The GEOGraphiC FOCUS MAP ..cuiiiiiiieiiiieiieient ettt ettt sttt sttt ettt b e b sttt be s neen 130
Menu and PAge MANAZEMENT .....ccuiiiiriirtiteietet ettt ettt s ettt et b bbbt et be e b sb et et et e st ebeesebenee 136
OVEIVIBW ..ttt sttt et b bt ettt s b e s bt et et e a e e bt bt b et et e st e bt e b e sb et et et e st sb e e b e b et et eseesesbesnens 136
WHRATTO A0 ittt ettt b bbbt bbbt b e bbbt et et be e neen 137
ANNOAtioNS 0N the ONTOLOZY .c..eviuiiuiiiiiiiriet ettt sttt s 138
EdIT PrOPEITY SIOUPS ..ottt ettt ettt ettt ettt s a e sttt et b bttt et besb et et e e eneebesbebenee 138
Edit the appearanCe Of PrOPEITIES ....cvivivirerieieeeteesere ettt e e b s e e e e sesbeste b e st eseesaesassassanes 141



8.3.6.3
8.3.6.4
8.3.6.5
8.3.7

8.3.7.1
8.3.7.2
8.3.8

8.3.8.1

8.3.8.2
8.3.8.3
8.3.8.4
8.3.9
8.3.9.1
8.3.9.2
8.3.9.3
8.3.10
8.3.10.1
8.3.10.2
8.3.10.3
8.3.10.4
8.3.10.5
8.3.11
8.3.11.1
8.3.11.2
8.3.11.3
8.3.11.4
8.3.12
8.3.12.1
8.3.12.2
8.3.12.3
8.3.12.4
8.3.12.5
8.3.12.6
8.3.13
8.3.13.1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Create and edit faUX PrOPEITIES ..ccivvirieieieertisteietetee sttt ettt ste et et e e e e e ebe st esbesseseesessessessesseseeseesassensens 143
EQIT ClaSS SIOUPS .eueeieieiiiet ettt bttt sttt et b e b e ettt e besb et et e e et e bt sb b nee 148
Edit the appearanCe Of ClaSSES.....uuiiiiiririeieieeetetsert ettt st et be st e e eseesesbe st esseseeseesessansenes 151
Class-specific templates for Profile PAgeS......o ettt 154
OVEIVIBW .ttt ettt sttt ettt b bttt e bt bt et et e st sb b e b et et e st e bt e b e sb et et et e st sae et e b et et eseesesbesaens 155
HOW T0 G0 It ettt bttt sttt et s b bbbt b e bt sb et et e b et e bt sbe b e 156
Excluding Classes from the SEAICH .......c.ccuviririeirieirie ettt ettt esen 159
Overview Steps to create a new search exclusion Example on the contents of an RDF file to define

EXCIUSTONS 1.ttt b et ettt e b e s bttt ea e eb b b et et e st e bt e bt sb et et et e st s bt b et et et e st ebeebennent 159
OVEIVIBW ..ttt sttt ettt b bbbttt e bt bt et et e st eb b e b et et e st e bt e b e sb et et et en e sae et e b e b e st eseebesbesaens 159
Steps to create @ NEW SEArCh EXCIUSION ...c..ivuiriiriirieieeeterte sttt sttt st eaesae s s essesanessansnens 159
Example on the contents of an RDF file to define eXClUSIONS .....ccvvivveieieenieieeeeee e 159
Custom List VIeW CONFIGUIAtIONS ...coveuerieeiiiieirtetseetrteesteeste ettt sttt sttt ettt sttt st 159
INEFOUCTION ettt bbbttt sttt et s b b b ettt b e b sb et et e e e st ebesbene e 160
List View Configuration GUIEIINES ......c.erieuiririeirieirie ettt sttt esn 160
LISt VIEW EXQMIPLE 1.ttt ettt sttt ettt et st st e b e st et e st e esa e aesaeestessaensensessaensensessnensensenn 164
Creating Short VIeWs Of INAIVIAUALS ...c.coueuiriiuiirecererere ettt 167
OVEIVIBW ..ttt sttt ettt b bt ettt e bt s bt et et e heeb b e b et et ea e e bt e b e sb et et et e st sa e et e b et et eneesenbesaens 168
DIEEAILS ¢ttt bbbt sttt e h e e bt bbbt b e bt s bbb et et b e b b nee 168
SOME EXAMPLES .eentiiieteeitete sttt ettt ste st et e st et e s bt st esaesaeesbesbeessenbasseeseessesssessasssensassaessensesssensesseensansanns 171
TrOUBDLESNOOTING. ...ttt sttt st sttt et b bbb e et be e neen 179
NOTES .ttt bbb b s b b e s e bbb e esaaesan s 180
Creating @ CUSTOM themIE ... ettt sttt snen 181
OVEIVIBW ..ttt sttt ettt b b et ettt s bt bt e et e aesb bbb et et e st e bt e besb et et et e st sae et e b et e st eneenesbesaens 181
The Structure of PABES IN VIVO ..ottt ettt ettt ettt sttt sttt b et bttt stenen 183
SOME SIZNIICANT LEMPLATES .....euieeiiieeiet ettt ettt ettt sttt 184
MAKING CHANEES ...ttt ettt et b bbbt b sb et e e et e b eb b nee 185
Creating CUSLOM ENTIY FOIMIS...c.iiiiirieiie ettt sttt sttt et be e 186
OVEIVIBW ..ttt sttt ettt b bt ettt e bt s bt et et e a e e bt b e b et et e st e bt e besb et et et e st sbeeb e b et e st eseesesbesaens 187
AN EXAMPLE ettt ettt ettt sttt e st e e st e st et e s bt e st et et e et e s he e s e e b e e Rt et et e e Rt e besae et e be e st et e eaeentenaeeseebenaeen 187
HOW IS Tt CrEATEAT ...ttt ettt ettt sb et et e et e bbb e 188
ACCESSING VIVO DAta MOAEIS ...ttt ettt ettt ettt s be e 188
Implementing custom forms USING N3 €ditiNG ....c.ccvvveirieirieiriree ettt 196
Servlet LifecyCle ManagemMENT ..ottt ettt sttt ettt sttt et 198
Enhancing Freemarker templates with DataGetters ........cceiriririerieninininecceee e 201
OVEIVIBW ..ttt sttt ettt b bttt e bt s bt et et e a e eb bt b et et e st e bt e b e sb et et et emesb e e b e b et e st eneesenbesaens 201



8.3.13.2
8.3.13.3
8.3.13.4
8.3.13.5
8.3.14

8.3.14.1
8.3.14.2
8.3.15

8.3.15.1
8.3.15.2
8.3.15.3
8.3.154
8.3.16

8.3.16.1
8.3.16.2
8.3.16.3
8.3.17

8.3.17.1
8.3.17.2
8.3.17.3
8.3.17.4
8.3.18

8.3.18.1
8.3.18.2
8.3.18.3

8.4
8.4.1
8.4.1.1
8.4.2

8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

AN EXAMPLE ettt ettt ettt st e et e st e st et e s b e e st et e st e et e sh e e s e e b e e R e et e b e e Rt et e eae et e he e st et e eae e tenaeeseenbenaeen 201
Creating the DAtaGetter.....cu ittt sttt et st b e et be b snen 201
MOIfYING the tEMPLALE .cvuiieiiiet ettt ettt b ettt bbbt enen 202
SUIMIMATY catteiteeteettest et s bt e st e e e st e s bt e s atesabe s b e esstesate s bt e s st esstesaseesseeestesabe e be e st esasesasee st esstesaseessaenseesaseenseeseens 203
Enriching profile pages using SPARQL query DataGetters ........ccoverireeirieirieinieienieeieieteieteiestssenessenesenes 204
INEFOAUCTION .ttt b bbbt b et b e bs 204
The STEPS aNd aN EXAMPLE c.eovuiiieiiiieieeceteeetee sttt s et st e s b e st besbe et e sae s s esbesssensesseessensesssensensens 204
Multiple profile types for fOaf:PerSON ...ttt sttt sa b benes 209
INEFOAUCTION ottt b et b bbbt s et bs 209
THE Profile PAGE TYPES c.everieuiieieirtetrtet ettt ettt sttt ettt sttt et b ettt st et st e st e b st ebe s ebe s et et ebenesteneas 209
Implementing MUltiple Profile PAZES .....covevireririeirieiiieeteeist ettt ettt esn 211
Using the Standard View Without Implementing Multiple Profile Pages ........cccovvervenivenineninieenieeenen 213
USING OPENSOCIAl GAAGELS ..ottt ettt ettt b ettt sb ettt e be b b ee 213
OVEIVIEW ...ttt b et bt bt a e s bbbt s b et sb e s a s be e 213
AddING AAGETS TO VIV ...ttt sttt sttt ettt sttt et s a s ee 215
GETEING STAMTEM ..ttt ettt sb ettt et sb e bbbt et e b besaene 215
HOW VIVO Creates @ PAZE c..ooueeiiriiiiiiiiieteieetete ettt sttt a e st st sbe st ne s 215
T NOMIE PAZE. ettt ettt s b ettt e b e bbbt b b bttt be et en 216
A PIOFIE PAZE ettt ettt b e b st h bbbt e h et b et a et e st ene b enen 218
THE POPLE PAGE. ettt ettt sttt sttt b b bttt be e ten 223
A DACK-ENA PAGE.c. ettt sttt bbb st a ettt a e e 225
TIPS fOr INTErfACE DEVEIOPETS ..cviviveeeeiietieietetetetee ettt et stestesse st et e e e seesa st e sesseseeseesessassassensesseseesessensn 226
USE the DEVELOPEr PANELuuuiuiiiiriiiiiiieieeiereeteste sttt ettt ettt be st st e st e aesaessaesbesssensessaessensessnensensenn 227
Iterate your code More QUICKLY ...c.covciviiiiiiiiiiiiiciiciccc s 228
Reveal What VIVO iS OING ...couciviiiiiiiiiiiiiiicicctet ettt 228
Deploying additional ontologies With VIVO ........ccccoceviriininiinininneneceeeceeeeeeee 229
FILEEIAPIS .ttt sttt sb ettt et b b ee 229
EX@MIPLE ettt st h ettt h et s h e et e b e Rt et e bt e Re et e e he e Rt e he e st en b e ete et enteeaeenaenreen 230
NAMESPACE PreEfiXES...uiuieiieiietiitirieieieiee sttt ettt ete st et et et e st e sesse st e sesseseese st assassesseseeseeseasessansessessesessessensanes 230
Enable an external authentication SYySteM........cociiriiiiiriiiniece e 231
How User Accounts are Associated With Profile Pages........cccoververirieinieinieinicceeseteieteetseeeseeeeenes 231
A user account may have an exterNalAUTNId .........coviviiiininiiccee et saees 231
runtime.properties may contain a value for selfEditing.idMatchingProperty .......cccccvevveevrennennenenn. 232
The profile page may match the externalAuthld on the USer accoUNt .........ccvevirieivieenieenineneerene 232
Using a Tomcat Realm for external authentication ..........coeeveerireiinieiniee s 232



8.5.2.1
8.5.2.2

8.6
8.6.1
8.6.1.1
8.6.1.2
8.6.1.3
8.6.1.4
8.6.2
8.6.2.1
8.6.2.2
8.6.2.3
8.6.2.4
8.6.3
8.6.3.1
8.6.3.2
8.6.3.3
8.6.4
8.6.4.1
8.6.4.2
8.7
8.7.1
8.7.2
8.7.3
8.8
8.8.1
8.8.2
8.8.3
8.8.4

9.1

9.2
9.2.1
9.2.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Background Testing BaCKgroUNd..........cccivuiiriiiniiiniiiiiiciicnrcetre et 232
TOSEINE ettt a bbbt b et sa et 233
AUTNOTIZATION. ..ttt ettt st sttt saeeae s 234
Writing a controller for @ SECUrEd PAZE ....c.cvveuerieuiririiirieirierie ettt sttt ettt ettt 234
(O] aTe1= o £ O OO SO OO PO OSSR P PRSP OUPPRPPRORPPRTP 234
REQUESEEA ACLIONS «.entiiieieeiteiereet ettt et sttt et e et e st e et e ste st e be s st enbenseesaessesseessessasssensanseensensesssensensenn 235
THE MOSE COMMON CASE....oiiviiiiiitiiitcitcte ettt a et b et b et sae st 236
A MOTE COMPLEX EXAMPLE 1eeiiiiiriieieieetetesttet ettt se et et e st et e ste st e be s st esbesbeeseessesaeessessesssensesseensensesssensensens 237
Creating a VIVO authorization poliCy - @an @XampPle ..ottt 238
OVEIVIEW ...uiiiiiitciitce ettt st s b et b et s a et a e et b et s b et sa e be e 238
THE EXAMIPLE ettt st st e st e et st e et e sae st e b e e st e s b e bt e st e s ae e st e b e e st et e nbeententesreeaenaeen 238
SELUP WHEN VIVO STAMTS.c..tiiiriieieiieieieseeste sttt ettt et st et e st s b et e ssaestessesssessesssensassaessessesssensesseensansanns 243
A MOre COMPLICAEA EXAMPLE...iuiiiiieeteieeeee ettt sttt ettt e tesaeesbesbe e st e besseessesaesssensenseen 244
A more elaborate authorization POLICY ....iviiiiririiiereeeece ettt sae e e saesaees 244
The REQUESTEAACTION ..c.eiitieiiieeterte ettt st s et s et et e sae st e s be et e s b esseesbesaesssesbesssensesseessensesseensensens 245
THE CONTIOILET ettt b et b et sa et 246
TRE POLICY wetentiiteiesieetetee ettt ettt et aesae e b e s b e e st et e sae et e sae s st e be e st enbesseestenaesssensasssensanseessensesseensenseen 248
The IdentifierBundle - who is requesting authorization? ........cccoeeviiriienncnnce e 250
The challenge of identity and @ULhOFIZAtION ........coviuiviiiiiirieiiee e 250
The IdentifierBundle tO the rESCUE ..ottt ettt 250
Linking to EXternal VoCabularies........ouiiirieiiienienieeececstesiece et 252
OVEIVIEW ...uiiiiciitciitc ettt st s b et b et st a e et b et bt sb e s a e be e 252
VIVO RDF statements referencing external CONCEPLS......c.evveueririeririeririeirieireete ettt 253
Adding a new external vocabulary Service to VIVO ......ccccueieieirenienieieinineteeeteteese ettt 254
Search Engine Optimization (SEO)......ccciviirierieiienieieseeieeeesreeee e eeeseeeaeseesssesseesaeseeens 254
OVEIVIEW ...cuteiiiiicicie ettt st s b e bbb et b et b et b sa e s s be e 254
CITAtION METATAES ... eveveeeeeiietet sttt ettt st b ettt b e sb et et e et s bbb e b et e st ebesbesaens 254
SIEEMIAP wetteteeteierteet ettt sttt e et ste et e ste s st e b e s be e st e b e e st e aesae et e b e e st et e e R e e Rt e e he e Rt e be e et e st e etee st e saeestebesaeensarans 254
Additional SEO CONSIAEIAtIONS .....coveuiiiiiiiiiiiiiiicinteict ettt 255
System AdMINIStration .......cccveeccieiiie e esre e eare e 256
BACKEIOUNG ...ttt sttt ettt e s e e st e be e bt e s e e ssbeennas 256
Creating and Managing USer ACCOUNTES ......evviirierierrieeitesiesieeie et e st sre e esaaesnesseeeas 256
OVEIVIEW ...cuteiiiiicicie ettt st s b e bbb et b et b et b sa e s s be e 256
AUTNENTICATION ..viiiiiiiiiicic bbb b et b e 257

- 10



9.2.21
9.2.2.2
9.2.2.3
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.7.1
9.2.7.2
9.2.7.3

9.3

9.4
9.4.1
9.4.2

9.5
9.5.1
9.5.2
9.5.3
9.5.3.1
9.5.3.2
9.5.4
9.54.1
9.5.5
9.5.5.1
9.5.6

9.6
9.6.1
9.6.2
9.6.3
9.6.3.1
9.6.3.2
9.6.3.3
9.6.4
9.6.4.1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

INEErNAl AUTNENTICATION ..ottt ettt sttt sb e ee 257
EXErNal AUTRENTICATION ...coviiititce ettt ettt sttt sb e 257
EXEEINAL-ONIY ACCOUNTES weovtiriieierieeieieeit ettt st et e ettt et e s e st e be s st estesbeesaeaesaeessesseensensessaensensesseensensenn 257
WHhat iS @ USEI ACCOUNT? ...uiiiiiieietetetei ettt ettt sttt s st ettt e b b b ettt e b saeneen 257
USEI ROLES ..ttt b e bbb bbbt bbb bs 257
PrOTILE PAES... ettt ettt ettt b et bbbttt b e bbb bbbt h et bbb n et e st e bt enen 258
The ROOT USEI ACCOUNT ...uiiiiitctetetetei ettt ettt bttt sttt e b b b et et et e b saeneen 258
MANAZING USEI ACCOUNTS ...veuvitiuiiiteiieiietest ettt ettt ettt ettt st ettt et sb bbbttt e besa et et et e st ebesbe b e 259
NOIMALWOTKELOW .ottt ettt ettt bbbt b e bbbt b e st b e st enen 259
WOTrKFLOW WIthOUL EM@IL...ciiuiriiiiiiiiirieiriciriei ettt ettt sttt sttt ettt sttt 259
EXErNal AUTRENTICAtION ...coviiiieece ettt sttt ee 259
BaCKUP @NA RESTOIE....eiiiiiiiiiitetecect ettt ettt e s b et e bt e s e s sbeenas 259
INferences and INAEXING ......coeeiiriiiiiiieieeeeiee ettt sae e sae e ae s e e saeenes 260
RECOMPULE INFEIENCES ...viitietitiieieteeeestes ettt ettt te st et ese et e b e be s eseeseeseesesaassenseseesessessensenes 260
Re-building the SEArCh INAEX....c.cuiiriiireee et sttt 260
The Site AdMINIStration PAGe......cooveeiiiiiieiiieeeecete ettt 260
SIEE ADMINISTIATION 1.ttt ettt bt ettt sa et b e b et e st e b sbesnene 261
DATA INPUT ettt ettt st e et e et e e et e s e bt e s ab e e s bt e e e ab e e e ab e e e bt e e e bee s nbeesenaeeean 261
ONTOLOZY EAITON ..ttt ettt ettt sttt et sb ettt e st s bbb e e et e st ebesbesaens 262
Class MANAZEMENT.c..couiiiieiiteie ettt ettt sttt ettt sb bbbt ea et e b sb et et et e st s bt et b et et e st ebesbesaens 262
Property ManagemeEnt.. ...ttt 262
SitE CONFIGUIATION c.tietteietee ettt ettt ettt b et b ettt st et bt be e ne 263
St INFOIMATION L.ttt ettt sttt ettt b ettt st et be e b e 263
AAVANCEA TOOIS .ttt bbbttt ettt et et eb bbb e e e st e bt b e sa et et et et sbesaebenee 263
INEEST TOOLS ..ttt ettt sttt bbbt e bbbttt besb b aee 264
SIEE MAINTENANCE ..ttt sttt et s b bbbttt e b e sb et et et e st sa et eb e b et e st ebesbesaens 264
THE VIVO LOZ fIlE ettt ettt et e e sbe e e e sreesaassnens 265
What does a log MesSSage l0OK LIKE?.......c.eiriiiiei ettt ettt s 265
What is the right level for @ log MESSAZE7 ...ttt ettt ettt 266
SEttiNg the OULPUT LEVELS ...ttt 266
PrOAUCTION SEELINGS....eiiiiiititetet ettt sttt et b bbbttt besa et e et e bbb e 266
DEVELIOPET SETLINES .ttt ettt ettt sttt et b bbb ettt e besb et et et e st e besbe b e 266
Changing levels While VIVO IS TUNNING ....coutiviriiriieieienectete sttt ettt ettt saen 267
Customizing the l0ggiNg CONfIGUIAtION ..ccuiuiiiiiirieirierere ettt 267
Overview The default configuration Writing some messages to a special log More information............... 267

-11



9.6.4.2
9.6.4.3
9.6.4.4
9.6.4.5
9.6.5

9.6.5.1
9.6.5.2
9.6.5.3
9.6.5.4
9.6.5.5

9.7
9.7.1
9.7.2
9.7.2.1
9.7.2.2
9.7.3

9.8
9.8.1
9.8.1.1
9.8.1.2
9.8.1.3
9.8.14
9.8.2
9.8.2.1
9.8.2.2
9.8.2.3
9.8.2.4
9.8.3
9.8.3.1

9.8.3.2
9.8.4
9.8.5
9.8.5.1
9.8.5.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

OVEIVIBW ..ttt sttt ettt b bttt e bbb et et e aesb b e b et et e st e beebesb et et et ea e saeeb e b et et eneenesbesaens 267
The default CONFIGUIATION ....c.iviiiiieecerte ettt ettt sttt ettt ettt st 267
Writing some messages t0 @ SPECIALLOG .cveveveiiiiirit ettt s 268
MOTE INFOIMALION 1.ttt ettt ettt et bbb bbbt e st e b et et et b ese s enensenen 269
Writing EXCEPLIONS £0 The LOZ..c.viiiiiiiieiieieeetctete ettt ettt ettt s 269
Not the Right Way Declaring a Logger Bad, Better, Good WhOOPS ....cccceririnenenieniniiinencicieieeeeeeee 269
NOEThE RIGNTWAY ettt ettt ettt be sttt e be b b nee 270
DECLANINE @ LOZEEN .ttt ettt st ettt et b bbbttt e bt s bbb e e e st ebesbe b e 270
Bad, BEELEI, GOOU. ...uviiiiieiiieeeeee ettt ettt ce e e ete e e eaa e e eaaeeeaeeeesaseeessseensseeesseesseseeteseesnreensseeens 270
WHhOOPS .ttt ettt st bttt b b s bt ettt s h e bbbt a e bbbttt be e neen 271
Activating the ORCID iNteZration .....cccuccueeieririeriniereeieseeteeee ettt 272
OVEIVIBW ..ttt sttt ettt b bt ettt s bbbt e e e aeeb b e b et et ea e e bt e besb et et et e st sbe et e b et e st eneesenbesaens 272
When applying for Cred@ntials ........ccvecirieirieirte ettt ettt ettt ettt st 273
INFOIMINE TN USEIS ..ttt ettt ettt b bbbt b et b et be st b e s b enensenn 273
ConNeCting to YOUT @PPLICATION. ...ccuiitiiiirtiet ettt sttt et be b snen 274
CONFIGUITNEZ VIVO .ttt sttt sttt s b ettt sttt ettt b et st et st et e bt ebe e ne 275
PerfOrmManCe TUNING ..c..ovevieieietee ettt ettt ettt et et ettt sttt benaesbesaenee 277
SDB - MYSQL TUNINEZ ettt ettt et ettt st et ettt b bbbt et besb et et e e e st sae et b e s et eseenenbesnens 277
Version RECOMMENAATION ..c..eviiiieieiieiertet ettt sttt ettt b bttt st sae st et et s be b s e 277
MYSQL DB ENGINE ..utiuiiieiiititetetetete ettt b bttt ettt ettt e be bbb ettt b e e b sb et et et e st ebesbebenee 277
MYSQL BUFEIS wvitiieieieiietistestest ettt s e st ettt e et e e te st et ese e s e e sessa st e sesseseesa et e sassasseseeseeseasessansessesseseesensansenes 277
TEMPOTANY TADLES .ottt sttt et et s et e sae st e s b e s st e s b esseestesaesssesbesssensenseensensesssensensenn 277
AdditioNal PErfOrmMante TiPS...ieireieieriririerieiereetetesessessesteseeeesessessessessesessessessessessessesessessessensessessesessansenes 278
WHhat iS PEITOIMANCET c..cuiiieeetieteetee ettt ettt ettt s b e s bt et e st e seebe st e s s esseseeseesaesasessenseneesaesensensan 278
What kind of performance is normal? How do | know if | have a problem?.......c.cccoovevevinenenenicceeenenennn 278
Tools for Measuring PEIrfOrMAaNNCE .....occi ettt sttt et b ettt et 279
Tuning for iMpProved PErfOrMAaNnCE ......ccv vttt ettt sttt b ettt st 279
MySQL tuning, and troubleSROOTING ......cc.eouiiiiiiiiiie ettt 281
Tuning MySQL Writing the MySQL transaction log Setting the MySQL query cache size Tracing back from

SQL to SPARQL Regenerating MySQL indexes TCMalloc and MySQL.......ccccceeerievieniinninenenieneieeeenennene 281
TUNING MYSQL ottt ettt ettt b ettt b b s b e et e et s bt s b e b et et e bt e bt b e b et et et eneebesaeneen 281
Use HTTP caching to improve PerformManCe.......u e ireerieerieierieieieeeteietteses ettt senen 283
HTTP CAChE AWAIENESS () cuveieteiereieeeieeteeeteeette et et eete e eteerteeete e st e ebsebeesseeeaasesbeeebeessasesteenbesesseesesenseeesseeseeennes 284
OVEIVIBW ..ttt ettt sttt ettt b bttt e b e s bt et et e aeeb e b e b et et e st e bt e besb et et et e st sae b e b et e st eseenesbesaens 284
HOW t0 enable CAChe @War@NESS......cc.ciuiriiriiieieitt ettt sttt 284

- 12



9.8.5.3
9.8.5.4
9.8.5.5

9.9
9.9.1
9.9.2

9.10
9.10.1

9.11

9.12

9.12.1
9.12.2
9.12.3

9.13
9.13.1
9.13.2
9.13.3
9.13.4
9.134.1
9.13.4.2
9.13.4.3
9.13.4.4
9.13.4.5

9.14

9.14.1
9.14.2
9.14.3
9.14.4
9.14.5
9.14.6
9.14.7
9.15

9.15.1
9.15.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

What pages can be CaChed? ..o 285
What do the caching headers 00K lIKE? ........ccooveiviiiiiiiiiiiii e 285
HOW t0 CONFIGUIE YOUF CACRE.....uiiiiiiicicc ettt 285
Virtual Maching TemMPLates.....uociiiieiiiiieeeeeeteteete ettt es 285
DOCKET ...ttt b bbbt b et bbbt 285
R4 = L OO 285
MOVING YOUT VIVO INSTANCE c...eviiiiiieiteeiteeteeeteeiteete ettt ssare e s ne e s saneesane 285
STEP-DY-STEP GUITE ottt ettt sttt et sttt et be b sne 286
Regaining access to the root aCCOUNT........ccccviviiiiiiiiiiniiiicccccceeccne 286
ALEMETIICS SUPPOIT . .iiiieiiiterteeteee ettt ettt e sae e st e be e beesaaessbesba e saesssesasess 287
OVEIVIEW ...cuviiiiiiiete ettt st b et b et s a et a e e bbbt sb et sb e s a e 287
DISPLAY wevterteeiteriesttetert ettt st et ste et et e bttt e et s h e et e b e e Rt et e e b e et e s he e Rt e b e Rt e st et e e Rt e aeshe e Rt e b e ensenbeeteententeesaensenreen 288
CONFIGUIATION .ttt sttt b et e bttt et st b et b et bt et et st e e st et ebe e ebe e ne 288
TroOUBDLESNOOTING. ... iiiiiiiteteee st re s et et s b e ae e saaesana s 288
Having problems with your VIVO inStallation? ........c.coeoiieiiininineceeeneeceteeeese et 288
Can't find @any INAIVIAUALS? ..veeuiriiieieieiceeerteste ettt et et eebe st et et e e eseesesbesseseesaeseesassansens 289
MAILNOT WOTKINE? ..ttt sttt et b bbbttt et s bt et e e et e b sb b nee 289
TrOUDLESNOOTING TIPS.c.tiiiieiiriieteteteteteer ettt ettt ettt ettt s b e s bbbt e bbb bt e et e e ebesaeneen 289
Warning screen at startup Rebuilding the Search Index How to Serve Linked Data Long URLS................ 289
Warning SCre@N @t STAITUD ...couieveeieieieieer ettt sttt sttt et b et et saeeen 289
RebUIldINg the SEArCH INAEX ....cuviiiiiieee ettt sttt 290
HOW t0 Serve LINKed Data ......ccovveiviiiiiiiiiiiiiieieitcti ettt b et 290
LONGURLS Lt s b e e 291
High AVAIlability ..ceecveeeeieieeiee ettt st 292
OVEIVIEW ...viiitiiictitct ettt s b et b et s a et a e et b et bt sb et sa e a e 292
SESSION MANAZEMENT ..cuiitiiiiiiriert ettt ettt ettt sttt et e b bbbt s et s b sb et et et e st s b e et e b et et eseebesbesaens 292
CACNINEG ettt ettt sttt bbbttt b e bttt a e s a e bbbt n e besbenaen 292
SO bbbt b et 292
HOME QIFECEONY ettt ettt ettt e sa et este st e besse e st e seestessesseesseseensensensaensensesssensensenn 292
CONEENT ETIPLE STOME.uiiuiieiieieeieeteteet ettt ettt et e st e st e b e s e et e b e e s e estessesssesbesasensesseessessesssensesseensansanns 293
CONfIGUIAtioN trIPLE SEOIE vttt sttt sttt be e 293
Replicating Ontology Changes ACross INSTANCES ......cccevvevervierenieeninnienteeeeesieeeeseeeaee 293
PUIPOSE. ettt st s et s bt st e e b e et e et e s e bt e s ab e e s bt e e e a bt e e b e e e be e e e beesenbeesenaeeean 293
PrOCEAUIE ..ttt bbb b bbb bbb bs 293

-13



9.15.3
10
10.1

10.2
10.2.1
10.2.2

10.3

10.3.1
10.3.2
10.3.3

10.4

10.4.1
10.4.2
10.4.3
10.4.4

10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.4.1
10.5.4.2
10.5.5
10.5.5.1
10.5.5.2
10.5.5.3
10.5.5.4
10.5.6
10.5.7
10.5.7.1
10.5.7.2
10.5.7.3
10.5.7.4
10.5.7.5

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

BeSE PraCliCe. .ottt 294
RETEIENCE. . ittt ettt et s e be s ens 295
OVEIVIEW ..ttt ettt sttt et s e st b e s e e st e s b e e bt e s e e s ne e bt e sneessnesmnesanes 295
CoNfigUuration REFEIENCE...c.uii ittt et ae e 295
OVEIVIEW ...uiiiiciitciitc ettt st s b et b et st a e et b et bt sb e s a e be e 295
VIVO RUNEIME PrOPEITIES .eiieiiieieeiierieetetesttete st st et et e sae st e ste st esbesssesbessesseessesaeensessesssensessesnsensesseensensens 295
DireCtories aNd FIlES .....cc.coiiiiiierieieeteecteeeetee ettt ettt 302
OVEIVIEW ...ttt s b et b et s a s e bbbt b et bt sa e e b e 303
HIZH LEVEL DIF@CTOTIES ..ttt ettt sttt et s b ettt et sb et et e et e bbb e 303
DIFECLONY SEIUCTUIE ettt bbbt b et b e s e bs 303
Graph REFEIENCE .ttt et b e st e b e e e beesnesaeenes 305
OVEIVIEW ...cuiiiiiieciitc ettt b et b et bt a e e bbbt bt s b et sa e bbb e 305
Listing the graphs USEA DY VIVO .....c.eoiiiiiieieete ettt ettt sttt 306
The graphs USEA DY VIVO ..ottt ettt sttt ettt s 306
NOTES .t a e b e ae s 310
ONtOLOZY REFEIENCE ..ottt et e s b et be e aeens 310
OVEIVIEW ...viiitiiictitct ettt s b et b et s a et a e et b et bt sb et sa e a e 310
REfErENCE MAtEITALS ...evvvciiiiicc ettt ettt 310
[SSUE TTACKINE ..ttt ettt b bttt ettt ettt e bt s bt b e b et et et e bt e b sb et et et e st ebesbenenee 311
SOUICE ONLOLOZIES FOr VIVO ...ttt sttt sttt sttt sttt sttt sttt be e 311
BACKEIOUN ...ttt sttt e s b bbbt b e bt sb et et e b et e bbb ee 311
Ontologies Integrated into the Integrated Semantic Framework.......c..coeeeerenenieniinnenenesceceeeeseeene 311
VIVO ClLASSES ...viiiniiiniitiniitciint ettt bbb bbbt bbb bbbt b bbbt s nis 312
Overview Finding the Classes in your VIVO VIVO ClasSeS....c.ccurtrirrerrerienteininienieteteeeeseesseseseeseeseesessennens 312
OVEIVIEW ...ttt bbbt bt bt a e bbbt s b et sb e s a e be e 312
FINAINg the Classes iN YOUT VIVO .....uiuiiiriiiiiietetnteetetetete ettt ettt ettt sttt 312
VIVO ClLASSES ...viiiiiiiniitininieintettett ettt bbbt b et b bbbt b bbb s nes 312
Ontology Overview : ObJECt PrOPErti€s ........coevuerieirireriiieieieit sttt sttt saene 313
ONTOLOZY DIAZIAIMS .ttt ettt ettt ettt st st ettt et sb bbb et ea et s b sb et et et e st sae et e b e sn et eseenesbesaens 314
Organization MOGEL......cueueiiiierieeetet ettt ettt sb ettt et s a et b ettt e be b snen 315
CONCEPEMOAEL ettt ettt ettt e st e b e s b e et e b e e s e estessesssessesasensessaestesaesssensesseensansanns 316
DateTimeValue and DateTimelnterval Models...........cccoueiviiiniiininiiiiniiiniiicicecc s 318
JOUMNALMOAEL ..ttt bbbttt 320
PErSON MOTEL.c..uiuiiiiiiiiiiiicitct bbb bbbt 321

- 14



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.6  TEACKHING MOTEL ...ttt ettt bbbttt et sb ettt et b b s b a et et besaesaeneen 323
10.5.7.7 PUDBLICATION MOAEL ettt sttt et bttt sae e een 324
10.5.7.8  GranNT MOAEL...ucuuiiiiiieiiieieeeeee ettt b ettt et sa ettt et b e b b ettt besaesaeneen 325
10.5.7.9 Education and TraiNing MO ......c.coeeuiririiiiiiiiiineneeet ettt sttt st 331
10.5.7.10 AdVISING MOGEL ..ttt ettt sb ettt et et b b b e et besbesaeneen 333
10.5.7. 11 AWAIA MOAEL .ttt ettt ettt et s a ettt et e b bt e st et e st e b saesaeneen 335
10.5.7.12 MEMDBEISNIP MOAEL c..veuviriiiniiiiiiieieeieestete sttt ettt ettt et et e e saesaeestesbesnsenbessaessessesssessesssensensanns 336
10.5.7.13 ONtology Diagram LEZENG....cc.cou ittt ettt sttt ettt sae s 337
10.5.7.14 Credential MOGEL ..ottt sttt et s b et sae e een 337
10.5.8  RiCh @XPOrt SPARQL QUETIES ..ccuviuieeieiiriieiesieetesieetestesteetesaesieessesseesesseeseessessesssessesssensessasssensesssessesseesensanss 338
10.5.8.1 Rich export SPARQL QUETIES: AQAIESS..c..ccviririenieeieienieeteniestesieseestestesssesaesaeesessesssensessesssessesssessesseessensanns 338
10.5.8.2 Rich export SPARQL QUETIES: AQVISING ..c..coveriiiriririinieteieteitettet sttt ettt ettt b et saesaeneen 339
10.5.8.3 Rich export SPARQL QUEIES: AWAIT ....ccveiiririerieeiieienieeteniestesieseestestesssesaesaesssessesssensessesssessesssessesseessensanns 342
10.5.8.4 Rich export SPARQL qUEries: Credential ......ccccveceeierienieienesteieseetesie et sae e eae e st b esseeeesaesaesaesseesensanns 343
10.5.8.5 Rich export SPARQL queries: EdUCational TrainiNg....c.ccceeueirirerenietiieteenestetetee ettt 345
10.5.8.6 Rich export SPARQL QUETIES: FUNAING ..c..eoviiiuiiiiirientetcieietet ettt sttt ettt 347
10.5.8.7 Rich export SPARQL queries: MeMBDEIrSHIP ...ciiiriieiiiiieienesteesee ettt sttt et sae s e e sae s e sesaeens 348
10.5.8.8 Rich export SPARQL QUEIES: QULIEACK ...cuvivuiriiieeiieieieetere ettt sttt et e s et e stesaesae s e essananns 348
10.5.8.9 Rich export SPARQL QUEIIES: PatENT....iciiiiririeniieieieneetene st esie st ste e et esaesaeese s e st essessaessessesssessesseensensanns 348
10.5.8.10 Rich export SPARQL QUETIES: POSITION ....ceviriirieriiriieienieeieniestesieseetesteeeesaesaeessessesssensessaessessesssessesseessensanns 350
10.5.8.11 Rich export SPARQL qUETIES: PreSENtation ....ccceeierierieiienierierieneetenieeeestesieessesiessessesseessessesssessesseessensenns 352
10.5.8.12 Rich export SPARQL queries: PUDLICATION......cccuirieieiereeienesteesceeeet ettt sa e seesesaeens 353
10.5.8.13 Rich export SPARQL qUETIES: TERACKTINE....ccueiuiiriiirierteteiete ettt 358
10.5.9  VIVO-ISF deploymMentin VIVO .....cceeciirierierieneiienieetetesieertesiesieesiesseessessesssessessesssessesssensessasssessessssssesssensensanss 358
10.5.9.1 ISF Development SOUICE ISF N VIVO ....ccuiiiririienerieieneetenieseesteseetesteeseesaesaeessessesssensessesssessesssessesssessessanss 358
10.5.9.2 ISF DEVEIOPMENT SOUICE ..cuvirviiuietieiieiereetesieetessesttesesseeaessesssessesseessensesssessessesssessesssensessesssessesssessesseessensanss 359
10.5.9.3  ISF N VIVO ittt ettt ettt ettt st sttt et ae bbb bt e b et s b et st et stese st eb et ebentebentsbenesseneas 359
10.6  Freemarker Template Variables and Dir€CtiVes ........cocevvuervieniieniienieenienieeieenieeseeseees 359
10.7  AFCRITECIUIE ottt st sttt s b e s ba e s st e s b e sbaesaaessnesasass 360
LO.7. 1 OVEIVIEW ittt ettt ettt b et b ettt et s bt s bt e b et e st e bt b e b et et e st e st e bt s bt b et et eat e st e bt be b et enee st enesbesaenten 360
L0.7.2  VIFO ittt ettt ettt ettt b et bt b et s bt st e st st e ue b b et bt e bt e h et b e ae et e bt e b et e bt et et et et eteneas 360
10.7.3  VIVO ittt ettt sttt ettt e b et b et bt sttt he bbb bbbt et eae et ebe bbb ebe s et et et et eteneas 360
10.7.4  COMPONENTVIBW .eutiiiiiiiiienienietesteetestesteestesteestessesseesesaeesaessesssessesseessensesssessessesssessesssensessesssensesssesseseessensenss 361
10.7.5  AdAItioNal RESOUICES ......euiiiiiieieteiteeeet ettt ettt et sb ettt et b b bt et e st b sbesaeneen 363
L0.7.6  VIEFO ettt ettt ettt ettt b et b et bt s bt st st st e ae et bt e bt e bt e b et b eae et ebe et bt e bt e be s ebe e eaeneas 363

-15



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

L1077 VIVO QNG VT cutitiiiiieieieeieeteteet e t e tee e t e t e t e t e t e e s e sttt ettt b bttt e b e s a et et e b et e st e b e b et et et e st ebesaesaeneen 363
10.7.8  SOftware ArChiteCtUIE OVEIVIEW .....cccoueirieirieiirieiceetetetet ettt sttt ettt sttt st st b et bttt sbe e saeneas 364
O 20 - | = TP 365
L0.7.8.2  LOGICuuiuteuieteuieiietenient ettt sttt ettt b ettt et et h e s bttt et e st e b b bt et e R Rt e h e e h et ettt s bbb et et st st saenaenten 366
10.7.8.3  PrES@NTATION c.uetititeteieeet ettt ettt sttt ettt b bbbttt e b e s h et et ettt b b b ettt besae e nten 367
L0.7.8.4  SECUITY cueeuterieeuieieettetesteet et st et e st et e testeestesaeestesbes st essesaeestesaesstessesaeessanseeseensesaesssessesasensenseessensesssensesseensensanss 368
10.7.9  VIVO DAta MOAELS ...ttt sttt ettt bbbttt ettt ettt e b b b et et et besbesaeneen 368
L10.7.9.1  CONCEPES cutieuteeteeitterit et ettt et et et e et e st e e bt e sa b e s at e s be e st e s st e s bt e st e s st e sab e e s e e st e s abe e b e e eaeeente s be e heeeaeesaseebaeneenn 369
10.7.9.2 ThE DAta MOEIS...c.veueeuiiiiiirieteetete ettt ettt ettt et sa ettt e b bt e st se et ebesbesbeneen 372
10.7.9.3  INCreasing COMPLEXILY ..ceueruirrirterieieteiieieetert ettt sttt s ettt et sb et b ettt e b e b e sb e e et e st ebesbesaeneen 373
10.7.9.4 The MOAEIACCESS ClaSS....couerviieieieieiietee ettt sttt ettt ettt et s b ettt et b b sb e et et e b sbesaeneen 375
10.7.9.5 INITIAaliZING The MOGELS ....omieieie ettt bbbt sae s 375
10.7.10  VIVO and the Solr SEarch @NZINE (¥) cuveireirieirieeieiesiest ettt ettt sttt sttt be sttt saene s 378
10.7.10.1 WHAT IS SOLIT ettt sttt b ettt et sh ettt e et b b e b et et e st ebesaesaeneen 379
10.7.10.2 HOW dOES VIV USE SOLIT? ...ttt sttt ettt ettt st sa ettt ettt s b ettt besaesaeneen 379
10.7.10.3 How is Solr created and CONFIGUIEAT ....couiiriiuirieiieeteretse sttt sttt sttt st 382
10.7.10.4 ThE SEAICH INAEX 1.ttt b ettt et s a et ettt et b e b b e et stesesaesaeneen 382
10.7.10.5 HOW d0@S VIVO CONTACT SOII? ..eiiiiiiiiie ettt ettt ettt ettt ees 384
B B R 10 0 F= Y oSy (0] = =TT P PPN 384
10.7.11.1 Access images after changing the default NamMESPACE ....o.ccivveirieirieiicee e 385
10.7.11.2 How are Images represented in the MOEI? ...ttt 386
10.8  URL REFEIENCE ittt ettt st e st e e e be e e e sa e e e saeenes 392
L0.8. 1 OVEIVIEW .ottt ettt ettt ettt et s a e sttt e e e st e bt b e b et et e st e ae e bt sh et et et eat e st e bt be st et e st e st e st suesaenten 392
10.8.2  SIEEMAP.XMLutiriiiiiriieieieiterte ettt sttt st et e et e b e s te et e sae s st e s besbe e st enseeaeessesaeensebeeasenbesseentenaessteaeereensenteens 392
10.8:3  SEAICNINGEX.c.uitititeteieet ettt ettt b bbbttt et s h bttt et b b bttt b e sae e nten 392
10.8.4  RECOMPULEINTEIENCES. ....eeirtieviieieteieteee ettt et steste st e se e e e esestesbessesteseeseesessessessenseseeseesansessensesseseesessensansan 392
10.8.5  FEVISTONINTO .ottt ettt ettt sttt sttt b bbbt b ettt st b et b et bbb e et e e tene e 392
10.8.6  frEEMArKEISAMPLES . .c.veuieeieeieiieieieteteeete ettt et s e st et et et e e e s e et e sbe st eseesseseesessessesseneeseeseesassessansesseseeseasensansan 393
F0.8.7  VIVOSOIT ettt st s b ettt et b bbbt et st e bt s bt et et et e st b e b b et et st bt saesaenten 393
10.9 VIVO APIS. ettt ettt e ee ettt e e e e s e s are e e e e s s e s aataaaeessssssassaaaaeesssssssasaeaeessesssssseeaessanns 393
10.9.1  Linked Open Data - reqUEStS anNd rESPONSES .....ccuivuieriererierierteteneetesteeeessesaeesessesssensesseessessessessesseessensanss 394
10.9. 1.1 OVEIVIEW ..utiiiitititeteteit ettt ettt b et b ettt et s bt s bt e b et e st e bt b e b et et e st e st e bt s b e b et et eat e st e bt b et et eneestesesaesaenten 394
10.9.1.2 Requesting Linked Open Data from VIVO ......c.coceeieuerirenirieinieerieesteiest ettt sttt st s et ese st b et saenens 395
10.9.1.3 What isincluded in the rESPONSET.....cuiiiiiirieieeetetert ettt et sae s e s be et e b e ssa et e saesssesaessaensansans 397
10.9.1.4 RESLIICTING PrOPEITIES ..ccuevititiieteteitetee ettt ettt et b bbbttt e s e s bbbt et e st e bt besb e e et e st ebesbesaeneen 401

- 16



10.9.1.5
10.9.2

10.9.2.1
10.9.2.2
10.9.2.3
10.9.3

10.9.3.1
10.9.3.2
10.9.3.3
10.9.34
10.9.3.5
10.9.4

10.94.1
10.9.4.2
10.9.4.3
10.9.4.4
10.9.5

10.9.5.1
10.9.5.2
10.9.5.3
10.9.5.4
10.9.5.5
10.9.5.6

10.10
11

11.1
11.1.1
11.1.2
11.1.2.1
11.1.2.2
11.1.3
11.1.3.1
11.1.3.2
11.1.3.3
11.1.4

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

ErTOr NANALING weoeeeeee ettt sttt et b bbbttt sb ettt e be b b ee 403
LISTRDF AP .ttt ettt ettt ettt st s a ettt e bt s b b et et et e st e bt e bt sb et et et emeebeebenenee 403
OVEIVIEW ...uiiiiiiicctet ettt s b et bt bt a e et s b et bt sa e e a b e 403
Ky 01Tl ] {ToF 4[] PO USRS 404
EXQMIPLES ettt sttt st b ettt et s h e et e b e h e et et e Re e teehe e st e aeensen b e eteensenteeneensenaeen 405
SPARQL QUENY APttt ettt b et a e st sb e st b e bt e aesae st e sbesueenentene 406
PUIPOSE. ettt sttt b e st e e bt e e b b e et e s e bt s ab e e s bb e e e b e e e b e e e bt e e e bae s naeesenneeean 406
USE CASES...niiiiiicicit bbb e b s e a s b s 407
Ky 01Tl ] 1 ToF 4[] PO TR U RO ROPRSORSRRRRRRRO 407
EXQMIPLES ettt sttt st b ettt h et s he e Rt e b e e h e e Rt et e e ae et e ehe et e he e st en b e eteententeestenaeereen 409
Enabling the SPARQL QUETY AP....cuiiiirieieieietet ettt ettt sttt s sa ettt be e ee 411
SPARQL UPAALE AP ..ttt ettt bbbttt ettt et sbe st b et et st e b besaen 411
PUIPOSE. ettt sttt sttt ettt e et e e b b e et e s e bt e s a bt e s bt e e e a e e e ab e e e bt e e e bae s nbeesenneeean 412
USE CASES ..ttt bbb e bR a s sa b 412
Ry 01Tl ] {ToF 4[] PO PO 412
EXQMIPLES ettt sttt st b ettt h et s he e Rt e b e e h e e Rt et e e ae et e ehe et e he e st en b e eteententeestenaeereen 414
SEANCN INAEXING SEIVICE ettt sttt ettt ettt sb et et e et sa et b et e e e st ebesbesnens 416
PUIPOSE. ettt st st s bt st e e bt e e b b e et e s e bt e s a bt e s bb e e e a e e e ab e e e bt e e e bee s nbeesenreeean 417
USE CASES...niiiiiicici e R b s b bR h e b 417
INAEXING AN REASONINEG ..covitiiiiiitiieieiest ettt ettt st ettt et s b bbbttt besbe et e et e b sbe b e 417
Ky 01Tl ] {ToF 4[] PO RR U SRRSORRRRRRR 418
EXQMIPLES ettt ettt st b ettt et s a e et e e e bt et et e eRe e teehe e st e he e st e s b e eteententeeneensenaeen 419
SECUMNEZ TN AP .ttt b bbbttt b e s bbb e e e st s bbb e b et e st ebesbesaens 419
RESOUICE LINKS .eveieiieiiieeeiteeeteeeitee et ette e s te e e steeeeaeessteeeeseesesaeeensaesesseesssesnsseesssesnnseennns 419
About This DOCUMENTATION ....eiviriiiieiieieieeeeteeee et 421
Maintaining release-specific info on the Wiki........cccooveeveniniininsisceceeeeeeeeee 421
GOALS bbbt 421
TWO tYPES OF WIKi PGS ..ttt ettt ettt ettt sttt b et b et b et ettt et steneas 421
REIEASE-SPECITIC PAZES .utrveuirteiirietitetet ettt ettt ettt b ettt ettt et bbb e bbbt b et b et b e st ene b st enen 421
RElEASE-NEULIAL PAZES ..evevitetetetete ettt ettt ettt et s b bbbttt sb ettt et e besb b ee 422
APPIOACK Lttt ettt s et e st st s bt e st et et e et s h e e Rt e b e e Rt et e bt e Rt e teeae et e heeste b e nae e tenaeeseenbenaeen 422
VIVO (main wiki, also known as the project wiki, also known as the community wiki) ......ccooveevevercenenenn. 422
VIVO Release specific wikis, also known as the documentation .........cccceceeveeerenierieieeceneneneseeeeeeseeseenns 422
Minimal documentation in the Git FEPOSITONY ..uiviiiirieiiiereeiere ettt et s a s saeen 422
BEIWEEN FELEASES ...ttt bbb 422

- 17



11.2

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO documentation Style SUIde......couiiiiriiiiieieiceece ettt 422
PAEE SIZES ..ttt sttt e h e e bbbttt b e bt bt et e et beeb b nee 423
Start with @ Table Of CONTENTS....c.ccoivviiiiiiiccc ettt 423
USE ALl NEAAING LEVELS ...ttt sttt ettt s 423
COAE bbb st 423
Linking Within the dOCUMENT c..c..iiiiiiere ettt sttt ee 424

End with a Children Display macro

- 18



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

1 Introduction

+ Release Notes (see page 19)
« Functional Overview (see page 27)
« System Requirements (see page 28)

1.1 Whatis VIVO?

VIVO [ Pronunciation: /vizvau/ or vee-voh] is member-supported, open source software and an ontology for
representing scholarship. VIVO supports recording, editing, searching, browsing, and visualizing scholarly
activity. VIVO encourages showcasing the scholarly record, research discovery, expert finding, network analysis,
and assessment of research impact. VIVO is easily extended to support additional domains of scholarly activity.

When installed and populated with researcher interests, activities, and accomplishments by an institution, VIVO
enables the discovery of research and scholarship across disciplines at that institution and beyond. VIVO supports
browsing and a search function which returns faceted results for rapid retrieval of desired information. Contentin a
VIVO installation may be maintained manually, brought into VIVO in automated ways from local systems of record,
such as HR, grants, course, and faculty activity databases, or from database providers such as publication
aggregators and funding agencies.

1.2 Release Notes

« Version 1.10.0 (see page 20)

+ What's New (see page 20)
« Bootstrap Theme - "Tenderfoot" (see page 20)
» Branding and Theming Improvements (see page 20)
« Multi-Lingual Improvements (see page 21)
« Linked Data Fragments (see page 21)
o ORCID API v2 (see page 21)
 Direct2Experts Endpoint (see page 21)
» RDF 1.1 support (see page 21)
» Dependency Convergence and Vulnerability Elimination (see page 22)
» Vocabulary Services (see page 22)
« Reasoning Improvements (see page 22)
« List View Query Improvements (see page 22)
« Performance Improvements (see page 22)
+ Servlet 3.0 (see page 23)
e Java 9 (see page 23)
« Additional Error Checking During Builds (see page 23)
» Testing Framework (see page 23)

« Contributors (see page 23)

+ Resolved Issues (see page 24)
+ Bug (see page 24)
» Story (see page 24)
* New Feature (see page 24)
o Task (see page 25)
» Improvement (see page 25)
« Documentation (see page 26)

Introduction - 19



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

1.2.1 Version 1.10.0

& Please review the upgrade notes carefully

Itis important that you reload the data in your triple store, as well as consider the impact that the
dependency changes may have on your customisations and integrations.

There are no ontology changes, and data produced by 1.10.0 is compatible with 1.6 - 1.9 (and vice versa). It
is not required to upgrade to this release prior to subsequent releases. Please see Upgrading VIVO (see page
40) for more details.

1.2.1.1 What's New

Bootstrap Theme - "Tenderfoot"

Home  People  Organizations  Research  Events  Capability Map m

Wialcone o V0

All ®| Searchform Search

g

AT | e 1

e o i R
\VNOJS alresearch-focused disco

RELRCLIN Academic Articles . Czech, Benjamin » Department of Materials Science

e Matallirmr

Tenderfoot is a new, responsive theme for VIVO. Based on the work by Symplectic, it uses Bootstrap 3 to provide a
view that scales better to different sizes of devices.

Branding and Theming Improvements

It is no longer necessary to modify or create a new theme if all you want to do is apply some local CSS and/or
message customisations to your installation. By applying local customisations on top of a theme, it allows for the

Introduction - 20



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

possibility to swap compatible themes whilst retaining your site definitions, and easier upgrades in the future,
where you don't need to merge changes to templates in a theme.

For theme developers, the remaining JSP pages now render their body and are wrapped by the Freemarker page
structure, so you don't need to maintain a separate JSP page structure, and ensure that the structure matches that
in Freemarker. This allows more flexibility in the theme structure, without adversely affecting the JSP pages.

Multi-Lingual Improvements

The message lookups have been extended, so that application wide VIVO messages are distinct from Theme
messages (and distinct from Vitro messages). It also allows for an additional "local" messages bundle, which
overrides the theme, VIVO and Vitro layers.

Language packs can now be added to VIVO through the dependency mechanism, although you will still need to edit
your runtime.properties to enable the languages in your Ul.

Linked Data Fragments

Linked Data Fragments presents a lightweight means of obtaining triples from a linked data application as a web
service, with very low overhead, and high reliability (it only pattern matches for triples, there are no arbitrary
complex queries, so individual requests can not have a high impact on the server).

ORCiD API v2

This release includes an updated ORCID integration that can use the ORCiD v2 API. Note that ORCiD are planning to
shut down the v1.x APl endpoints.

Note that the configuration options have been changed, and you will need to update your runtime.properties.

The only options that are required now are:

orcid.clientId = 0000-0000-0000-000X
orcid.clientPassword = 0000-0000-0000
orcid.webappBaseUrl = http://localhost:8080/vivo

orcid.externalIdCommonName = VIVO Cornell Identifier
orcid.apiVersion = 2.0

orcid.api = sandbox

orcid.apiVersion is simply the version value (e.g. 1.2, 2.0), and orcid.api is just "release" (for the production API), and
"sandbox" for the sandbox.

Direct2Experts Endpoint

For any sites wishing to participate in the Direct2Experts federated site - http://direct2experts.org/ - VIVO now
includes the necessary endpoints. Please see the Direct2Experts websites for more information on how to
participate.

RDF 1.1 support

VIVO has now been updated to use Jena 3, which brings full RDF 1.1 support. As a result, internally all literals are
treated as having a datatype - those with a language tag are rdf:langString, and any other are xsd:string, and the
triple stores need to be reloaded to ensure that they have consistent internal representations. Only applications
that directly open the triple stores using Jena libraries, or have SPARQL that explicitly references datatypes will be
affected. Please see the upgrade notes for how to perform the migration and evaluate any impact.

Introduction - 21


http://direct2experts.org/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

In particular, if you are using VIVO Harvester, you will need to use a VIVO Harvester 2.x version.

Dependency Convergence and Vulnerability Elimination

Along with Jena 3 and Bootstrap, all the dependencies have been reevaluated and upgraded to ensure
convergence.

In the back end, multiple conflicting versions of dependencies have been eliminated (e.g. httpclient, OSGi bundles),
and all code now works with consistent versions of dependencies. Multiple JSON parsers have been removed, and
all code now uses only Jackson.

Dependencies with known vulnerabilities, as determined by the Maven dependency-check plugin have been
upgraded where a newer version exists.

In all, 38 dependencies have been removed, although 22 have been added due to unbundling the OSGi
dependencies. Only 11 dependencies retrain the same version as VIVO 1.9.

In the front end, jQuery has been updated to support Bootstrap. D3.js has been upgraded to v4. All jQuery plugins
have been updated to work with the updated jQuery.

One javascript library used to format the index page has been removed due to being GPL licensed, and replaced
with an MIT licensed equivalent.

Beyond simple theming changes (e.g. logos, colours, text), local customisations may need to be upgraded for the
dependency changes.

Vocabulary Services
AGROVOC has been updated to use a new API.

UMLS has been transitioned to the NIH service. In order to use this, you need to obtain an application key from NIH
(free registration).

Reasoning Improvements

If SameAs reasoning is enabled (by default, this is disabled), the reasoner will now generate the correct
vitro:mostSpecificType.

List View Query Improvements

List view configuration files can now include <precise-subquery></precisde-subquery> elements. Due to the way
SDB works, OPTIONAL clauses are slow because they are evaluated independently, and then joined with the rest of
the query restrictions. <precise-subquery> allows you to duplicate the external restrictions that the clause will be
joined with. This results in much more efficient SQL queries.

By including the restrictons inside a <precise-subquery> element, we can eliminate the CONSTRUCT that would
otherwise be used, making it easier to maintain the SELECT query.

For triple stores other than SDB, the <precise-subquery> element is filtered out, as it is often unnecessary to include
these extra restrictions, and in some cases may hurt performance. However, the filtering can always be enabled or
disabled globally via the runtime.properties.

Performance Improvements
Search results render faster if they contain Person results. Indexing time has also been improved.

Updating data via the Ul is faster.

Introduction - 22



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Graph URIs are now cached for triple stores using a Jena implementation - this is a significant difference for TDB
triple stores.

Full handling of TDB type conversions, preventing isomorphic test failures that result in reloading filegraph on
restart.

Servlet 3.0

VIVO already required the use of a Servlet 3.0 compatible version of Tomcat. The web.xml has now been upgraded
to take advantage of the servlet 3.0 spec, which allows developers to use annotations for servlet configuration. If
you have a customisation that adds a new servlet, you can enable it without modifying the web.xml file.

Java9

The Maven projects and code have had updates to work with the latest Java JDK 9. Note that Java 9 is a very recent
release, and has not been extensively tested with VIVO. Also, Java 9 removes support for endorsed dirs, so you need
to use a compatible version of Tomcat.

Additional Error Checking During Builds

The Maven projects now integrate Google's Error Prone - http://errorprone.info/ - tool into the compilation to
detect serious errors in the Java code. Any customisations and contributions will now automatically be checked,
preventing many serious errors from entering the code base.

Testing Framework

The Selenium IDE tests have been updated to use specific named selectors, rather than positions. Additional
attributes (domain and range for faux properties) have been added to the Ul to allow for this.

This allows the tests to be run against both the old (wilma) and new (tenderfoot) themes, and will make the tests
more robust in the event of future ontology changes.

Note that Selenium IDE no longer works with the current versions of Firefox. Whilst we can currently run the test
suite using a Java project and WebDriver, we will need to consider how these tests can be maintained in the future.

1.2.1.2 Contributors

Sabih Ali, Digital Science

Jim Blake, Cornell

Mike Conlon, University of Florida

Kitio Fofack, Université du Québec a Montréal
Benjamin Gross, UNAVCO / Clarivate Analytics
Huda Khan, Cornell

Ted Lawless, Clarivate Analytics / Brown University
Jacob Levernier, University of Pennsylvania
Jose Luis Martin, UC3M

Christian Hauschke, TIB Hannover

Steve McKay, Plum Analytics

Introduction - 23


http://errorprone.info/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Simon Porter, Digital Science

Graham Triggs, Duraspace / TIB Hannover

Tatiana Walther, TIB Hannover

Stefan Wolff, TU Dresden

Rebecca Younes, Cornell

1.2.1.3 Resolved Issues

Bug

Story

[VIVO-855'] - RDF export not working correctly

[VIVO-1060?] - Add DumpRestoreController to Vitro web.xml

[VIVO-13103] - pom.xml implies that VIVO develop branch can still run under Java 1.7

[VIVO-1311%] - Remove or replace the UMLS concept source

[VIVO-1324°] - Security vulnerabilties in 1.9.x release

[VIVO-1342°] - Ampersands (and possibly other characters?) not escaped in GraphML export of collaborator
network graph

[VIVO-13947] - AboxRecomputer does not generate correct mostSpecificType for equivalent classes
[VIVO-1404%] - Some SPARQL queries trigger Chrome XSS Auditor

[VIVO-1435%] - Compliance with ORCID style guidelines

[VIVO-146119] - Assertions are ascribed to Vcard, but terms are not in the Vcard ontology

[VIVO-14511!] - Making Capability Map i18n Compliant

New Feature

« [VIVO-12522] - Incorporate Cornell's DataDistributor APl into core Vitro.
« [VIVO-1312%%] - Implement Linked Data Fragments
« [VIVO-1335%] - Create Bootstrap Theme

1 https://jira.duraspace.org/browse/VIVO-855

2 https://jira.duraspace.org/browse/VIVO-1060
3 https://jira.duraspace.org/browse/VIVO-1310
4 https://jira.duraspace.org/browse/VIVO-1311
5 https://jira.duraspace.org/browse/VIVO-1324
6 https://jira.duraspace.org/browse/VIVO-1342
7 https://jira.duraspace.org/browse/VIVO-1394
8 https://jira.duraspace.org/browse/VIVO-1404
9 https://jira.duraspace.org/browse/VIVO-1435
10 https://jira.duraspace.org/browse/VIVO-1461
11 https://jira.duraspace.org/browse/VIVO-1451
12 https://jira.duraspace.org/browse/VIVO-1252
13 https://jira.duraspace.org/browse/VIVO-1312
14 https://jira.duraspace.org/browse/VIVO-1335

Introduction - 24


https://jira.duraspace.org/browse/VIVO-855
https://jira.duraspace.org/browse/VIVO-855
https://jira.duraspace.org/browse/VIVO-1060
https://jira.duraspace.org/browse/VIVO-1060
https://jira.duraspace.org/browse/VIVO-1310
https://jira.duraspace.org/browse/VIVO-1310
https://jira.duraspace.org/browse/VIVO-1311
https://jira.duraspace.org/browse/VIVO-1311
https://jira.duraspace.org/browse/VIVO-1324
https://jira.duraspace.org/browse/VIVO-1324
https://jira.duraspace.org/browse/VIVO-1342
https://jira.duraspace.org/browse/VIVO-1342
https://jira.duraspace.org/browse/VIVO-1394
https://jira.duraspace.org/browse/VIVO-1394
https://jira.duraspace.org/browse/VIVO-1404
https://jira.duraspace.org/browse/VIVO-1404
https://jira.duraspace.org/browse/VIVO-1435
https://jira.duraspace.org/browse/VIVO-1435
https://jira.duraspace.org/browse/VIVO-1461
https://jira.duraspace.org/browse/VIVO-1461
https://jira.duraspace.org/browse/VIVO-1451
https://jira.duraspace.org/browse/VIVO-1451
https://jira.duraspace.org/browse/VIVO-1252
https://jira.duraspace.org/browse/VIVO-1252
https://jira.duraspace.org/browse/VIVO-1312
https://jira.duraspace.org/browse/VIVO-1312
https://jira.duraspace.org/browse/VIVO-1335
https://jira.duraspace.org/browse/VIVO-1335

Task

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« [VIVO-812%°] - Automate the process of adjusting documentation to the release
« [VIVO-1316%] - Place external lookup base architecture in Vitro layer

- Remove duplicate code, based on improvements in ConfigurationBeanlLoader
- Add functionality to the edu.cornell. mannlib.vitro.webapp.utils.sparql package

- Inject JSP content to Freemarker, instead of having secondary layout
- Update DOI URL Schema to follow recomendations from Crossref

- Language values (all.properties) should not be part of theme

- Reduce the number of JSON libraries in the dependencies

- In the ORCID client code, use Jackson library to handle JSON data
- Remove dependency on sourceforge.net3 JSON parser.

- Add smoke test to ensure that there are no XSD:Strings in SDB

Improvement
« [VIVO-1063'"] - Update included jQuery library
« [VIVO-12468] - Improve the ConfigurationBeanLoader
o [VIVO-1247%9
« [VIVO-1248%%]
« [VIVO-1260%1] - Make http.createCacheHeaders true by default
« [VIVO-1270%%] - Update Jena to latest release
. [VIVO-1272%3
. [VIVO-1273%4
« [VIVO-1290%°] - Improve Multi-Lingual Support
« [VIVO-12942%]
« [VIVO-13072"] - Remove dom4j from the project
« [VIVO-1309%8] - Update DWR to more recent version
. [VIVO-1317%9]
. [VIVO-1318%]
. [VIVO-1319%Y]
« [VIVO-1367%% - AGROVOC external service not working
« [VIVO-1375% - Upgrade to Servlet 3.0 spec and annotations
. [VIVO-1376%]
« [VIVO-13813%] - Upgrade Solr to 4.10.4
« [VIVO-13823"] - Update JFact dependency
« [VIVO-1383%%] - Update pooling libraries
« [VIVO-1384%] - Use commons-lang3 throughout

15 https://jira.duraspace.org/browse/VIVO-812
16 https://jira.duraspace.org/browse/VIVO-1316
17 https://jira.duraspace.org/browse/VIVO-1063
18 https://jira.duraspace.org/browse/VIVO-1246
19 https://jira.duraspace.org/browse/VIVO-1247
20 https://jira.duraspace.org/browse/VIVO-1248
21 https://jira.duraspace.org/browse/VIVO-1260
22 https://jira.duraspace.org/browse/VIVO-1270
23 https://jira.duraspace.org/browse/VIVO-1272
24 https://jira.duraspace.org/browse/VIVO-1273
25 https://jira.duraspace.org/browse/VIVO-1290
26 https://jira.duraspace.org/browse/VIVO-1294
27 https://jira.duraspace.org/browse/VIVO-1307
28 https://jira.duraspace.org/browse/VIVO-1309
29 https://jira.duraspace.org/browse/VIVO-1317
30 https://jira.duraspace.org/browse/VIVO-1318
31 https://jira.duraspace.org/browse/VIVO-1319
32 http://sourceforge.net

33 https://jira.duraspace.org/browse/VIVO-1367
34 https://jira.duraspace.org/browse/VIVO-1375
35 https://jira.duraspace.org/browse/VIVO-1376
36 https://jira.duraspace.org/browse/VIVO-1381
37 https://jira.duraspace.org/browse/VIVO-1382
38 https://jira.duraspace.org/browse/VIVO-1383
39 https://jira.duraspace.org/browse/VIVO-1384

Introduction - 25


https://jira.duraspace.org/browse/VIVO-812
https://jira.duraspace.org/browse/VIVO-812
https://jira.duraspace.org/browse/VIVO-1316
https://jira.duraspace.org/browse/VIVO-1316
https://jira.duraspace.org/browse/VIVO-1063
https://jira.duraspace.org/browse/VIVO-1063
https://jira.duraspace.org/browse/VIVO-1246
https://jira.duraspace.org/browse/VIVO-1246
https://jira.duraspace.org/browse/VIVO-1247
https://jira.duraspace.org/browse/VIVO-1247
https://jira.duraspace.org/browse/VIVO-1248
https://jira.duraspace.org/browse/VIVO-1248
https://jira.duraspace.org/browse/VIVO-1260
https://jira.duraspace.org/browse/VIVO-1260
https://jira.duraspace.org/browse/VIVO-1270
https://jira.duraspace.org/browse/VIVO-1270
https://jira.duraspace.org/browse/VIVO-1272
https://jira.duraspace.org/browse/VIVO-1272
https://jira.duraspace.org/browse/VIVO-1273
https://jira.duraspace.org/browse/VIVO-1273
https://jira.duraspace.org/browse/VIVO-1290
https://jira.duraspace.org/browse/VIVO-1290
https://jira.duraspace.org/browse/VIVO-1294
https://jira.duraspace.org/browse/VIVO-1294
https://jira.duraspace.org/browse/VIVO-1307
https://jira.duraspace.org/browse/VIVO-1307
https://jira.duraspace.org/browse/VIVO-1309
https://jira.duraspace.org/browse/VIVO-1309
https://jira.duraspace.org/browse/VIVO-1317
https://jira.duraspace.org/browse/VIVO-1317
https://jira.duraspace.org/browse/VIVO-1318
https://jira.duraspace.org/browse/VIVO-1318
https://jira.duraspace.org/browse/VIVO-1319
https://jira.duraspace.org/browse/VIVO-1319
http://sourceforge.net
http://sourceforge.net
https://jira.duraspace.org/browse/VIVO-1367
https://jira.duraspace.org/browse/VIVO-1367
https://jira.duraspace.org/browse/VIVO-1375
https://jira.duraspace.org/browse/VIVO-1375
https://jira.duraspace.org/browse/VIVO-1376
https://jira.duraspace.org/browse/VIVO-1376
https://jira.duraspace.org/browse/VIVO-1381
https://jira.duraspace.org/browse/VIVO-1381
https://jira.duraspace.org/browse/VIVO-1382
https://jira.duraspace.org/browse/VIVO-1382
https://jira.duraspace.org/browse/VIVO-1383
https://jira.duraspace.org/browse/VIVO-1383
https://jira.duraspace.org/browse/VIVO-1384
https://jira.duraspace.org/browse/VIVO-1384

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO-1385%] - Replace unmaintained CSV parser with commons-csv

VIVO-1386*'] - Make consistent use of HttpClient 4.5, remove conflicting dependencies

VIVO-1387%?] - Update all dependencies with known vulnerabilities to latest versions

VIVO-1393*] - Replace isotope jQuery plugin

VIVO-1397*] - Improve performance and reliability of search indexing

VIVO-1400*] - Have optional "precise subquery" elements in list views for triple stores that perform better
with more selective queries

— e — —

[VIVO-1403*] - Improve update performance

[VIVO-1405*"] - Defeat browser cacheing for new versions of JavaScript and CSS files.
[VIVO-1406*®] - Visualisations in a multi-lingual release

[VIVO-1410%] - Release the next version of VIVO and Vitro

[VIVO-1438°] - Some text on Forms are made of different strings associated following english syntax
[VIVO-1447°'] - Organize the ontology files. Produce a vivo.owl

[VIVO-1448°?] - Move password encryption from MD5 to a salted hash

[VIVO-1458%3] - Update to Jena 3.6

[VIVO-1463°%] - Update ontologies.owl

[VIVO-1464°°] - Identify and separate candidate ontologies for removal

[VIVO-1470%®] - Improve cross-platform support in build

Documentation

VIVO-31°"] - Improve documentation of Google Analytics

VIVO-34%8] - Make it easy to do "next", "previous" and "up" links in a Confluence page
VIVO-242%] - Establish Wiki versioning process

VIVO-813%] - Improve document details

VIVO-917%1] - Create a confluence macro to show sections numbers for multi-page documents
VIVO-1274%2] - Improve documentation process for next release

VIVO-1334%3] - Create a recommendation for the use of string and langString

[
[
[
[
[
[
[
[VIVO-1351%4] - Write "TPF Endpoint" for Tech doc

40 https://jira.duraspace.org/browse/VIVO-1385
41 https://jira.duraspace.org/browse/VIVO-1386
42 https://jira.duraspace.org/browse/VIVO-1387
43 https://jira.duraspace.org/browse/VIVO-1393
44 https://jira.duraspace.org/browse/VIVO-1397
45 https://jira.duraspace.org/browse/VIVO-1400
46 https://jira.duraspace.org/browse/VIVO-1403
47 https://jira.duraspace.org/browse/VIVO-1405
48 https://jira.duraspace.org/browse/VIVO-1406
49 https://jira.duraspace.org/browse/VIVO-1410
50 https://jira.duraspace.org/browse/VIVO-1438
51 https://jira.duraspace.org/browse/VIVO-1447
52 https://jira.duraspace.org/browse/VIVO-1448
53 https://jira.duraspace.org/browse/VIVO-1458
54 https://jira.duraspace.org/browse/VIVO-1463
55 https://jira.duraspace.org/browse/VIVO-1464
56 https://jira.duraspace.org/browse/VIVO-1470
57 https://jira.duraspace.org/browse/VIVO-31
58 https://jira.duraspace.org/browse/VIVO-34
59 https://jira.duraspace.org/browse/VIVO-242
60 https://jira.duraspace.org/browse/VIVO-813
61 https://jira.duraspace.org/browse/VIVO-917
62 https://jira.duraspace.org/browse/VIVO-1274
63 https://jira.duraspace.org/browse/VIVO-1334
64 https://jira.duraspace.org/browse/VIVO-1351

Introduction - 26


https://jira.duraspace.org/browse/VIVO-1385
https://jira.duraspace.org/browse/VIVO-1385
https://jira.duraspace.org/browse/VIVO-1386
https://jira.duraspace.org/browse/VIVO-1386
https://jira.duraspace.org/browse/VIVO-1387
https://jira.duraspace.org/browse/VIVO-1387
https://jira.duraspace.org/browse/VIVO-1393
https://jira.duraspace.org/browse/VIVO-1393
https://jira.duraspace.org/browse/VIVO-1397
https://jira.duraspace.org/browse/VIVO-1397
https://jira.duraspace.org/browse/VIVO-1400
https://jira.duraspace.org/browse/VIVO-1400
https://jira.duraspace.org/browse/VIVO-1403
https://jira.duraspace.org/browse/VIVO-1403
https://jira.duraspace.org/browse/VIVO-1405
https://jira.duraspace.org/browse/VIVO-1405
https://jira.duraspace.org/browse/VIVO-1406
https://jira.duraspace.org/browse/VIVO-1406
https://jira.duraspace.org/browse/VIVO-1410
https://jira.duraspace.org/browse/VIVO-1410
https://jira.duraspace.org/browse/VIVO-1438
https://jira.duraspace.org/browse/VIVO-1438
https://jira.duraspace.org/browse/VIVO-1447
https://jira.duraspace.org/browse/VIVO-1447
https://jira.duraspace.org/browse/VIVO-1448
https://jira.duraspace.org/browse/VIVO-1448
https://jira.duraspace.org/browse/VIVO-1458
https://jira.duraspace.org/browse/VIVO-1458
https://jira.duraspace.org/browse/VIVO-1463
https://jira.duraspace.org/browse/VIVO-1463
https://jira.duraspace.org/browse/VIVO-1464
https://jira.duraspace.org/browse/VIVO-1464
https://jira.duraspace.org/browse/VIVO-1470
https://jira.duraspace.org/browse/VIVO-1470
https://jira.duraspace.org/browse/VIVO-31
https://jira.duraspace.org/browse/VIVO-31
https://jira.duraspace.org/browse/VIVO-34
https://jira.duraspace.org/browse/VIVO-34
https://jira.duraspace.org/browse/VIVO-242
https://jira.duraspace.org/browse/VIVO-242
https://jira.duraspace.org/browse/VIVO-813
https://jira.duraspace.org/browse/VIVO-813
https://jira.duraspace.org/browse/VIVO-917
https://jira.duraspace.org/browse/VIVO-917
https://jira.duraspace.org/browse/VIVO-1274
https://jira.duraspace.org/browse/VIVO-1274
https://jira.duraspace.org/browse/VIVO-1334
https://jira.duraspace.org/browse/VIVO-1334
https://jira.duraspace.org/browse/VIVO-1351
https://jira.duraspace.org/browse/VIVO-1351

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

1.3 Functional Overview

« Online Access (see page 27)
 Linked Open Data (see page 27)
« Built-in Search (see page 27)
« Navigation (see page 27)
Optimisations for Google Indexing (see page 27)
« Support for Modern Browsers (see page 27)
« Getting Data into VIVO (see page 28)
« Manual Data Entry (see page 28)
« Automated Data Entry (see page 28)
o Access Control (see page 28)

1.3.1 Online Access

VIVO provides an online portal to showcase the academics, their work, and their professional relationships.

1.3.1.1 Linked Open Data

Allinformation within a VIVO system is represented natively in the RDF data model - everything is expressed as
subject - predicate - object statements. These statements are written to a triple store, and are made available as
RDF documents for each resource, in a number of serialisation formats.

1.3.1.2 Built-in Search

All content is indexed using Solr - a popular open source search platform built on Lucence.

1.3.1.3 Navigation

VIVO provides simple navigation through menus which lead to lists of various types of entities - people,
organizations, research. An Index provides access to lists of all types of entities. The Capability Map provides a
graphical method for finding people by concepts.

1.3.1.4 Optimisations for Google Indexing

VIVO embeds structured data - hcards and schema.org - into profile pages to better support Google indexing. It also
creates a sitemap.xml for all of the profiles in the system, and includes a link to this sitemap in the robots.txt.

It is encouraged that you should register your VIVO instance in Google Webmaster Tools and submit the
sitemap.xml for better visibility of how Google is indexing your content.

1.3.1.5 Support for Modern Browsers

VIVO creates standard HTML and CSS that can be used in all modern browsers. Visualisations are mostly built using
D3 - a standard JavaScript library - which allows them to be viewed even on mobile devices.

Introduction - 27



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

1.3.2 Getting Data into VIVO

1.3.2.1 Manual Data Entry

All screens in VIVO can provide for data entry, for users logged in with sufficient access. There are numerous roles
that VIVO provides - from administrators that can edit any of the data in the system, to self editor privileges for
users so that they can edit their own profile and related information.

1.3.2.2 Automated Data Entry

Itis possible to add data to VIVO using automated tools. VIVO provides a SPARQL update endpoint, which can be
used by external tools to manipulate the data, or the VIVO Harvester provides a means to acquire and transform
data, and load it directly into the triple store.

1.3.3 Access Control

VIVO has internal storage for user accounts, and can authenticate based on a password (stored as a hash), or via an
external authentication mechanism, such as Shibboleth. For externally authenticated users, an internal user
account is still required, and is matched based on the external ID.

1.4 System Requirements

14.1

« Hardware Recommendations

« Minimum Specification

+ Recommended Specification
« Software Requirements

» Operating System

« Java8

« Maven 3.0.3 or later

+ Configuring a Proxy

MySQL / MariaDB 5.5 or later (or any other supported by Jena SDB)
Tomcat 7 or later

1.4.2 Hardware Recommendations

You can install and run VIVO on most modern PC, laptop, or server hardware. Whilst the application layer needs a
reasonable amount of memory, the majority of the workload is placed on the storage layers, which as a semantic
web application means the triple store. As VIVO aims to be agnostic to the triple store, the precise requirements will
depend on your choice of triple store. However, the default configuration is to use Jena SDB backed by MySQL - in
this setup, it is recommended that you have very high 10 bandwidth for the file system used by MySQL, and
significant memory for caching layers of the database engine.

Introduction - 28



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

1.4.2.1 Minimum Specification
2 core x64 processor, 2GB RAM, 100GB HDD

1.4.2.2 Recommended Specification
4 core x64 processor, 16GB RAM, 500GB SSD

Note: I/0 performance for MySQL is critical to the responsiveness of the application. The fastest SSD you can specify
will help, as will having direct (e.g. not virtualised) access to it.

1.4.3 Software Requirements

1.4.3.1 Operating System

VIVO is largely agnostic to the OS that it is running on - as a Java application, it is dependent on having a Java
Virtual Machine and a Tomcat servlet container. It should be possible to install and run VIVO on any OS where you
are able to provide all of the other software requirements.

However, most sites will run their installations on a Linux server, and you may find that it is easier to follow the
installation instructions on a Linux / UNIX variant. Notably, if you are running Windows, you may need to stop
running processes (e.g. Tomcat) in order to complete some of the instructions, due to file locking semantics on
Windows.

1.4.3.2 Java 8

The minimum requirement is Java 8. Both OpenJDK and Oracle JVMs are compatible. Other JVMs that meet the
JDK 8 specification may work, but have not been tested.

Note that you need to have the full Java Development Kit installed in order for Tomcat to operate correctly - the
runtime alone is not sufficient.

() Warning
Java 9 has not been tested at time of writing.

1.4.3.3 Maven 3.0.3 or later

The installation mechanism uses Maven to package and deploy the VIVO application and other necessary files.
Additionally, the development environment also uses Maven to compile the and package the code.

The minimum version of Maven required is 3.0.3, although it is better to use a more recent version of the 3.x
releases where possible.

Introduction - 29



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Maven can be downloaded from the following location: http://maven.apache.org/download.html, although you
may use a version supplied by your operating system / package manager, providing it meets the minimum
requirements.

Configuring a Proxy

You can configure a proxy to use for some or all of your HTTP requests in Maven. The username and password are
only required if your proxy requires basic authentication (note that later releases may support storing your
passwords in a secured keystore, in the mean time, please ensure your settings.xmlfile (usually S{user.home}/.m2/
settings.xml) is secured with permissions appropriate for your operating system).

Example:
<settings>

<proxies>
<proxy>
<active>true</active>
<protocol>http</protocol>
<host>proxy.somewhere.com</host>
<port>8080</port>
<username>proxyuser</username>
<password>somepassword</password>
<nonProxyHosts>www.google.com|*.somewhere.com</nonProxyHosts>
</proxy>
</proxies>

</settings>

1.4.3.4 MySQL / MariaDB 5.5 or later (or any other supported by Jena SDB)

Jena SDB requires an SQL database to operate. By default, VIVO relies on MySQL - or the open source fork MariaDB,
which is provided by most Linux distributions in place of MySQL.

Once installed, you only need to create a user and schema - see Installing VIVO (see page 32). VIVO will create the
necessary tables and load the default data on startup.

Alternative databases: Jena SDB supports other databases - including PostgreSQL and Oracle. If you wish to use a
different database, you will need to add the appropriate Java libraries to the application, and configure

the VitroConnection.DataSource.” settings in runtime.properties so that Jena knows what database it is operating
with.

1.4.3.5 Tomcat 7 or later

VIVO is a web application, which requires a servlet engine to host. It has been tested with Tomcat 7 and Tomcat 8.
The applications make use of Tomcat context.xml configuration files - if you wish to use an alternative servlet
engine, you will need to make the appropriate adjustments.

You may use Tomcat as supplied by your operating system / package manager providing is meets the minimum
requirements, or you can download it from: http://tomcat.apache.org/download-80.cgi

Introduction - 30


http://maven.apache.org/download.html
http://tomcat.apache.org/download-80.cgi

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Tomcat User: When running, Tomcat is usually launched under an unprivileged user account. As VIVO needs to be
able to read and write to the home directory, you must ensure that permissions are set on the home directory
correctly. This is most easily achieved by assigning ownership to the user that Tomcat is running as.

Introduction - 31



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2 Installing VIVO

« Installing from Distribution (see page 32)
o Overview (see page 32)
« Preparing the Installation Settings (see page 32)
« Installing VIVO (see page 33)
« Installing from GitHub (see page 33)
« Preparing the Repositories (see page 33)
« Preparing the Installation Settings (see page 34)
« Installing VIVO (see page 34)
« Completing the Installation (see page 36)
» Configure the Database Schema (see page 36)
« Configure the Home Directory (see page 36)
» Configure and Start Tomcat (see page 37)
« Verify Your Installation (see page 38)

2.1 Installing from Distribution

2.1.1 Overview

Download the 1.9.x distribution release from the VIVO repository on ®>GitHub. The standard distribution consists of
the projects required to create a home directory for VIVO, and to copy the web application and search index. All the
compiled code and dependencies are resolved from the Maven central repository at the time you run Maven.

The standard distribution is laid out as follows:

vivo-2.0.0/

pom.xml

example-settings.xml

home/
pom.xml
src

solr/
pom.xml
src

webapp/
pom.xml
src

2.1.2 Preparing the Installation Settings
In order to fully install VIVO, you need to create a settings file that provides some essential information:
app-name

vivo-dir

65 https://github.com/vivo-project/VIVO/releases/tag/rel-1.9.2

Installing VIVO - 32


https://github.com/vivo-project/VIVO/releases/tag/rel-1.9.2
https://github.com/vivo-project/VIVO/releases/tag/rel-1.9.2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

tomcat-dir

This file needs to be created following the Maven Settings Reference®®. A template file already exists within the VIVO
standard distribution, called "example-settings.xml". You may copy this file (it can be called anything you like), and
edit the contents to fit your requirements / system configuration.

2.1.3 Installing VIVO

Once you have an appropriate settings file (these instructions will assume that you are using example-settings.xml -
replace this with your actual file), you simply need to run Maven, specifying the install goal and your settings file.

$ cd VIVO

VIVO$ mvn install -s example-settings.xml
[INFO] Scanning for projects...

[INFO]
[INFO] Reactor Build Order:
[INFO]

[INFO] Vitro

[INFO] Vitro Dependencies
[INFO] Vitro API

[INFO] VIVO

[INFO] VIVO API

[INFO] Vitro Web App

[INFO] VIVO Web App

[INFO] Vitro Home

[INFO] VIVO Home

[INFO] Vitro Solr App

[INFO] VIVO Installer

[INFO] VIVO Prepare Home
[INFO] VIVO Prepare Solr App
[INFO] VIVO Prepare Web App
[INFO]

The VIVO home directory will now be created and the VIVO application installed to Tomcat.

In order to run VIVO, please read the section below "Completing the Installation (see page 36)".

2.2 Installing from GitHub

2.2.1 Preparing the Repositories

In order to install the development code from GitHub, you need to clone both the Vitro and VIVO repositories from
the vivo-project organization. These clones should be in sibling directories called "Vitro" and "VIVO" respectively:

66 https://maven.apache.org/settings.html

Installing VIVO - 33


https://maven.apache.org/settings.html
https://maven.apache.org/settings.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

$ git clone https://github.com/vivo-project/Vitro.git Vitro -b maint-rel-1.9
$ git clone https://github.com/vivo-project/VIVO.git VIVO -b maint-rel-1.9

$ 1s -1

drwxr-xr-x user group 1 Dec 12:00 Vitro

drwxr-xr-x user group 1 Dec 12:00 VIVO

& If you do not place the Vitro code in a sibling directory called "Vitro", then you will have to supply the
"vitro-core" property to Maven - e.g. mvn package -Dvitro-core=~/Vitro

It is expected that the Maven project numbers are kept in sync between the Vitro / VIVO projects, however,
depending on when you update / sync your repositories, you may need to adjust the project version
numbers for the build to work.

2.2.2 Preparing the Installation Settings

In order to fully install VIVO, you need to create a settings file that provides some essential information:
app-name

vivo-dir

tomcat-dir

This file needs to be created following the Maven Settings Reference®’. A template file already exists in the
"installer" directory within the VIVO project, called "example-settings.xml". You may copy this file (it can be called
anything you like), and edit the contents to fit your requirements / system configuration.

2.2.3 Installing VIVO

2.2.3.1 Default Installer

Once you have an appropriate settings file (these instructions will assume that you are using installer/example-
settings.xml - replace this with your actual file), you simply need to run Maven, specifying the install goal and your
settings file.

$ cd VIVO

VIVOS mvn install -s installer/example-settings.xml
[INFO] Scanning for projects...

[INFO]
[INFO] Reactor Build Order:
[INFO]

[INFO] Vitro

[INFO] Vitro Dependencies
[INFO] Vitro API

[INFO] VIVO

[INFO] VIVO API

67 https://maven.apache.org/settings.html

Installing VIVO - 34


https://maven.apache.org/settings.html
https://maven.apache.org/settings.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

[INFO] Vitro Web App

[INFO] VIVO Web App

[INFO] Vitro Home

[INFO] VIVO Home

[INFO] Vitro Solr App

[INFO] VIVO Installer

[INFO] VIVO Prepare Home
[INFO] VIVO Prepare Solr App
[INFO] VIVO Prepare Web App
[INFO]

The VIVO home directory will now be created and the VIVO application installed to Tomcat.

In order to run VIVO, please read the section below "Completing the Installation (see page 36)".

Custom Installer

If you want to use the source code / GitHub clone with your own customizations, you can exclude the supplied
installer project, and use your own customized installer project instead. To do so, you need to supply the
location of your custom installer project as the "vivo-installer-dir" property. This can be done on the command
line or in the settings.xml. If you are supplying a relative path, it should be relative to the location of the VIVO/
pom.xml.

$ cd VIVO

VIVO$ mvn install -s installer/example-settings.xml -Dvivo-installer-dir=../myedu-vivo
[INFO] Scanning for projects...
[INFO] —mmmmmm e e e e e e e e
[INFO] Reactor Build Order:

[INFO]

[INFO] Vitro

[INFO] Vitro Dependencies

[INFO] Vitro API

[INFO] VIVO

[INFO] VIVO API

[INFO] Vitro Web App

[INFO] VIVO Web App

[INFO] Vitro Home

[INFO] VIVO Home

[INFO] Vitro Solr App

[INFO] Custom VIVO Installer

[INFO] Custom VIVO Prepare Home
[INFO] Custom VIVO Prepare Solr App
[INFO] Custom VIVO Prepare Web App
[INFO]

The VIVO home directory will now be created and the VIVO application installed to Tomcat, including any
customizations that are defined in your local installer project.

Installing VIVO - 35



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2.3 Completing the Installation

2.3.1 Configure the Database Schema

The default configuration of VIVO is to use MySQL as a backing store for Jena SDB. Whilst VIVO / Jena will create the
necessary tables for the triple store, a database (schema) and authentication details need to have been created
first. To do so, log in to MySQL as a superuser (e.g. root)

$ mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection 1id 1is 2

Server version: 5.7.9 MySQL Community Server (GPL)

Copyright (c) 2000, 2015, Oracle and/or 1its affiliates. All rights reserved.
Oracle 1is a registered trademark of Oracle Corporation and/or 1its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE vitrodb CHARACTER SET utf8;
mysql> GRANT ALL ON vitrodb.* TO 'vitrodbUsername'@'localhost' IDENTIFIED BY 'vitrodbPassword';

2.3.2 Configure the Home Directory

There are two configuration files that are required to be in the home directory. By default, the installer does not
create them so that they are not overwritten when you redeploy the application. Instead, example files are created
in the home directory, which can be copied and used as the basis for your installation.

$ cd /usr/local/vivo/home

/usr/local/vivo/home$ cp config/example.runtime.properties runtime.properties
Jusr/local/vivo/home$ cd config

/usr/local/vivo/home/config$ cp example.applicationSetup.n3 applicationSetup.n3

& Minimum Configuration Required

In order for your installation to work, you will need to edit runtime.properties and ensure that the
VitroConnection properties are correct for your database engine. They should look something like this.

VitroConnection.DataSource.url = jdbc:mysql://localhost/vitrodb
VitroConnection.DataSource.username = vitrodbUsername

VitroConnection.DataSource.password = vitrodbPassword

Installing VIVO - 36



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2.3.3 Configure and Start Tomcat

2.3.3.1 Set JVM parameters

VIVO copies small sections of your RDF database into memory in order to serve Web requests quickly (the in-
memory copy and the underlying database are kept in synch as edits are performed).

VIVO may require more memory than allocated to Tomcat by default. With most installations of Tomcat, the
setenv.sh or setenv.bat file in Tomcat's bin directory is a convenient place to set the memory parameters. /f this file
does not exist in Tomcat's bin directory, you can create it.

For example:

export CATALINA_OPTS="-Xms512m -Xmx512m -XX:MaxPermSize=128m"

This tells Tomcat to allocate an initial heap of 512 megabytes, a maximum heap of 512 megabytes, and a PermGen
space of 128 megs. Larger values may be required, especially for production installations in large enterprises. In
general, VIVO runs more quickly if given more memory.

If an OutOfMemoryError occurs during VIVO execution, increase the heap parameters and restart Tomcat.

2.3.3.2 Set security limits

VIVO is a multithreaded web application that may require more threads than are permitted under your operating
system's installation's default configuration. Ensure that your installation can support the required number of
threads for your application. For a Linux production environment you may wish to make the following edits to /etc/
security/limits.conf, replacing apache and tomcat with the appropriate user or group name for your setup:

apache hard nproc 400
tomcat hard nproc 1500

2.3.3.3 Set URI encoding

In order for VIVO to correctly handle international characters, you must configure Tomcat to conform to the URI
standard by accepting percent-encoded UTF-8.

Edit Tomcat's conf/server.xml and add the following attribute to each of the Connector elements:
URIEncoding="UTF-8".

Installing VIVO - 37



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<Server...>
<Service...>

<Connector ... URIEncoding="UTF-8" />

</Connector>
</Service>

</Server>

Some versions of Tomcat already include this attribute as the default.

2.3.3.4 Take care when creating Context elements

Each of the webapps in the VIVO distribution (VIVO and Solr) includes a "context fragment" file, containing some of
the deployment information for that webapp.

Tomcat allows you to override these context fragments by adding Context elements to server.xml. If you decide to
do this, be sure that your new Context element includes the necessary deployment parameters from the overridden
context fragment.

2.3.3.5 Starting Tomcat

If everything has been completed successfully, then you should simply be able to start Tomcat at this point, and
VIVO will be available. If you are using a Tomcat supplied by your operating system / package manager, then use
your normal means for starting the application server.

Otherwise, start Tomcat by running the startup script - e.g.

$ /usr/local/tomcat/bin/startup.sh

2.4 Verify Your Installation

If you have completed the previous steps, you have good indications that the installation was successful.

« When you Start tomcat, you see that Tomcat recognizes the webapp, and that the webapp is able to present
the initial page.

« The startup status will indicate if the basic configuration of the system was successful. If there were any
serious errors, you will see the status screen and will not be allowed to continue with VIVO. If there are
warnings, you will see the status screen when you first access VIVO, but after that you may use VIVO without
hinderance. In this case, you can review the startup status from siteAdmin -> Startup status.

« Login asroot. Your root username is vivo_root@yourdomainname . The first time root password is
rootPassword. You will be asked to change it.

Here is a simple test to see whether the ontology files were loaded:

+ Click on the "Index" link on the upper right, below the logo. You should see a "locations" section, with links
for "Country" and "Geographic Location." The index is built in a background thread, so on your first login

Installing VIVO - 38



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

you may see an empty index instead. Refresh the page periodically to see whether the index will be
populated. This may take some time: with VIVO installed on a modest laptop computer, loading the
ontology files and building the index took more than 5 minutes from the time that Tomcat was started.
Click on the "Country" link. You should see an alphabetical list of the countries of the world.

Here is a test to see whether your system is configured to serve linked data:

Point your browser to the home page of your website and click the "Log in" link near the upper right corner.
Log in with the rootUser.emailAddress you set in runtime.properties. If this is your first time logging in, you
will be prompted to change the password.

After you have successfully logged in, click "site admin" in the upper right corner. In the drop down under
"Data Input" select "Faculty Member(core)" and click the "Add individual of this class" button.

Enter the name "test individual" under the field "Individual Name," scroll to the bottom, and click "Create
New Record." You will be taken to the "Individual Control Panel." Make note of the value of the field "URI" -
it will be used in the next step.

Open a new web browser or browser tab to the page http://lodview.it/. Enter the URI of the individual you
created in the previous step and click "go."

In the resulting page search for the URI of the "test individual." The page should display information for the
individual, including an rdfs:label and rdf:type. This indicates that you are successfully serving linked RDF
data. If the service returns an error you are not successfully serving linked data.

Finally, test the search index.

Type the word "Australia” into the search box, and click on the Search button.You should see a page of
results, with links to countries that border Australia, individuals that include Australia, and to Australia itself.
To trigger a rebuild of the search index, you can log in as a site administrator and go to Site Admin ->
Rebuild search index.

Installing VIVO - 39


http://lodview.it/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3 Upgrading VIVO

» Upgrading from 1.9.x to 1.10.x (see page 40)

Java 8 (see page 40)
Jena 3.X (see page 41)
« Upgrading The Triple Store (see page 41)
« Upgrading Local Java Code using Jena (see page 43)
+ A Note on Other Dependency Changes (see page 43)
Ul Changes (see page 44)
* jQuery 1.12.4 (see page 44)
 jQuery plugins (see page 44)
e D3 V4 (see page 44)
ORCIiD API (see page 45)
List View Configurations (see page 46)
Vocabulary Services (see page 47)
Servlet 3.0 Upgrade (see page 47)
Java Dependencies (see page 47)
« HttpClient (see page 47)
« OSGi Dependencies (see page 47)
« JSON Parsers (see page 48)
« Replaced Dependencies (see page 48)
« Removed Dependencies (see page 48)

3.1 Upgrading from 1.9.x to 1.10.x

& Due to the dependency updates in VIVO 1.10.x, it is important that you read the instructions here carefully,
and plan your upgrade accordingly. You will need to consider:

1) The time it will take to upgrade the triple store (can not be performed against a running system)

2) SPARQL queries need to be checked for any explicit use of string datatypes

3) Any applications directly accessing the SDB triple store need to be upgraded to use Jena 3 libraries.

= This includes VIVO Harvester - if you use this, you must upgrade your Harvester to 2.x at the same

time as VIVO. You must not use Harvester 1.x with VIVO 2.x, or Harvester 2.x with VIVO 1.x.

() Ifyou are planning an upgrade from anything prior to 1.9.x, please ensure that you read upgrade
instructions relating to previous releases. If your version of VIVO is prior to 1.8.x, you will have some
ontology changes to consider.

3.1.1 Java 8

With the upgrade to Jena 3.x, it is required that Java 8 is used. The Maven projects have been upgraded to state a
dependency on version 8, and Maven will not run without it.

If you have previously been using Java 7, you will need to install Java 8. As usual, it needs to be a full JDK to support

Tomcat.

Upgrading VIVO - 40



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Java 9 has now been released, but has not been tested with VIVO. However, it does build and appear to run
on Java 9. Note that to do so, you need to have a compatible version of Tomcat, as endorsed directory
support has been removed.

3.1.2 Jena 3.x

As the core framework used throughout VIVO, as well as the implementation for the default triple stores, this is the
most significant part of the upgrade (although, if you have extensive Javascript customisations in your front end,
that side may take more time).

3.1.2.1 Upgrading The Triple Store

@ This needs to be done by everybody upgrading from a previous version, using the (default) Jena triple
stores. It is necessary due to the changes in handling untyped literals in RDF 1.1. If you fail to perform the
upgrade, or you mix Jena libraries

If you are using an alternative triple store implementation (e.g. Virtuoso, Stardog), then you do not need to
reload that triple store. But please remember that VIVO uses two triple stores - content and configuration -
and if you are only using an alternative content triple store, you will still need to upgrade the configuration
store.

\

Upgrading the triple store(s) (there are two - content and configuration) involves dumping the contents of your
stores, and then reloading them. Whilst it is possible to do this using command line tools that are part of the Jena
projects, VIVO has created and distributes tools that work with your VIVO configurations to make the process easier.

In order to upgrade your triple store, use the following steps (replace <your-settings.xml> and <vivo_home> with
the appropriate values for your system:

1. Stop Tomcat - itis vital that Tomcat / VIVO, and any other applications that may access the triple stores, are
not running during this process.

2. Run "mvn clean install -s <your-settings.xm!>" in your VIVO 1.10.0 development area to update your web
application and home directory
This will install the tools into your <vivo_home=>/bin directory. Alternatively, you can download
jena2tools.jar®® and jena3tools.jar® from this page.

3. Exportyour existing triple stores:

68 https://wiki.duraspace.org/download/attachments/96995727/jena2tools.jar?
api=v2&modificationDate=1522787186384&version=1

69 https://wiki.duraspace.org/download/attachments/96995727/jena3tools.jar?
api=v2&modificationDate=1522787186255&version=1

Upgrading VIVO - 41



https://wiki.duraspace.org/download/attachments/96995727/jena2tools.jar?api=v2&modificationDate=1522787186384&version=1
https://wiki.duraspace.org/download/attachments/96995727/jena2tools.jar?api=v2&modificationDate=1522787186384&version=1
https://wiki.duraspace.org/download/attachments/96995727/jena3tools.jar?api=v2&modificationDate=1522787186255&version=1
https://wiki.duraspace.org/download/attachments/96995727/jena3tools.jar?api=v2&modificationDate=1522787186255&version=1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

@ « To export successfully, you need to ensure no other programs are accessing your triple
stores.
« Your file system must have the space available and be capable of storing files large
enough to contain your entire triple store serialisation.

To export your triples store, use the jena2tools utility provided with VIVO 1.10.0, in <vivo home dir>/bin,
specifying the export command, as shown below.

java -jar jena2tools.jar -d <vivo home dir> -e

Arguments:

-d - the location of the Vitro/VIVO home directory

-e - run in export mode
On execution, the program will read your configuration files, find your Vitro or VIVO configuration within the
vivo/vitro home directory, and get the necessary information to connect to your configuration triple store
(usually <vivo home dir>/tdbModels), and your content triple store (usually in SDB). If your triple store(s) are
not SDB or TDB backed, then it will simply skip them.
jena2tools will then extract the contents of the available triple stores, and dump them to <vivo home dir>/
dumps in TriG format.
. Check that the export has completed - you should have a <vivo_home>/dumps directory, that contains the
files "configuration.trig" and "content.trig".

. Empty your triple stores ready for reloading:

Content Triple Store:

Drop all tables in your SDB database as named in your runtime.properties. You may drop your database and
recreate it as empty, just as you would for creating a new VIVO install. jena3tools must find an empty
database (no tables) as named in your runtime.properties and will recreate your SDB triple store as tables in
the named database using the triples produced by jena2tools and stored in <vivo home dir>/dumps/
content.trig

In MySQL, DROP TABLE Nodes; DROP TABLE Quads; DROP TABLE Triples; DROP TABLE Prefixes;

- OR - DROP DATABASE <vivodb>; CREATE DATABASE <vivodb> CHARACTER SET utf8mb4; GRANT ALL ON
<vivodb>.* TO '<user>'@'localhost";

- OR - if using a TDB content triple store: rm -rf <vivo_home>/tdbContentModels

Configuration Triple Store:

Delete all files in <vivo home dir>/tdbModels. Jena3tools will rebuild your configuration tdbModels based
on the content created by jena2tools and stored in <vivo home dir>/dumps/configuration.trig

rm -rf <vivo_home>/tdbModels

. Reload the data

Having exported your Jena 2 triple stores, you can reload them using jena3tools, also available with VIVO
1.10.0, specifying the import command.

java -jar jena3tools.jar -d <vivo home dir> -i

Arguments:
-d - the location of the Vitro/VIVO home directory

Upgrading VIVO - 42



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

-i - run in import mode
On execution, the program will find your Vitro or VIVO configuration within the home directory, as well as the
dumps that you have created with jena2tools. It will import them into the SDB and TDB triple stores, based
on the configuration of your Vitro/VIVO instance.
jena3tools will be present in <vivo home dir>/bin when you install the 1.10.0 beta. Alternatively, it can be
downloaded from GitHub'.

- Note that this can take a while. A rough guide is to expect about 600 triples per second to reload. (Roughly
1 hour per 2 million triples).

7. Restart Tomcat

- Note that there are a couple of spelling mistakes that have been corrected in the filegraphs. As a result, you
should expect that VIVO will reinference and re-index the data when you start it up for the first time.

3.1.2.2 Upgrading Local Java Code using Jena

If you have local customisations or additional applications that make use of the Jena libraries, you will need to
upgrade these to work with Jena 3. Mostly this is simply a case of renaming any packages in imports for Jena
classes:

import com.hp.hpl.jena.*
becomes
import org.apache.jena.”

However, some classes have been moved, or removed, and some interfaces have additional methods. So in rare
cases you may find that you need to make a few small changes beyond this.

3.1.2.3 ANote on Other Dependency Changes

To remove the possibility of incompatible classes being loaded, and to remove known vulnerabilities from the code
base, most of the Java dependencies in VIVO have been removed, updated or replaced.

For the most part, this will have minimal impact on local customisations.

Some libraries - such as commons-lang3 - have new package names, but mostly compatible classes, and usually
just require the imports to be adjusted.

The CSV libary was outdated and unmaintainted, and has been replaced with commons-csv.

There were originally 5 JSON libaries (Jackson, Gson, Glassfish, Sourceforge.net and Json.org parsers). All code is
now using Jackson, and the other parsers have been removed.

38 dependencies have been removed from the standard distribution. If you have any customisations that make use
of them, that should work, but you will need to add the dependencies to your own projects.

22 dependencies will appear to have been added, but these are mostly from unbundling the owlapi OSGi
dependency, and these - along with other conflicting classes - had been packaged as part of the bundle.

Whilst every effort has been made to eliminate known vulnerabilities, the Maven dependency-check plugin still
reports 13 vulnerabilities across 8 libraries - for which these are currently the latest releases.

70 https://github.com/vivo-project/jenatools

Upgrading VIVO - 43


https://github.com/vivo-project/jenatools
https://github.com/vivo-project/jenatools

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

In total, 11 out of an original 113 dependencies are still at the same version as the previous release.

3.1.3 Ul Changes

3.1.3.1jQuery 1.12.4

Bootstrap based themes require a newer version of jQuery than was shipped with VIVO. In order for all of the
functionality aross the Ul to work, and to minimise the amount of duplication in the Ul, it was necessary to upgrade
all of the pages and plugins that used jQuery, so that the same upgraded version works across all of the pages and
themes.

This release does require some migration of javascript that makes use of it. There is a script - jquery-migrate.js that
helps with this, providing extra backwards compatibility, and logging warnings to the console whenever an old
method is used.

All of the existing code that was relying on the migrate script has been updated, so that it is no longer needed.

To aid transition, VIVO still ships with the jquery-migrate.js script, allowing most existing code to work. You should
monitor the Javascript console, and apply updates if you see any logged messages in your customisations - future
versions of VIVO will remove this migration script in order to upgrade to later versions.

3.1.3.2jQuery plugins

In order to support the upgrade to jQuery 1.12.4, and remove any backward compatibility messages from the
Javascript console, the following plugins have been upgraded:

jQuery Ul
jCrop
qTip
DataTable

In addition, the following plugins have been replaced with equivalents for compatibility and/or licensing issues:

old New Notes
mb.FlipText Jangle Used for rotating text on the graphs (e.g. temporal graph)
isotope wookmark  Used to render the three columns on the index page
3.1.3.3
D3 v4

This is another major upgrade that has architectural changes to improve modularity and make writing
visualizations easier, as well as a selection of new features.

Where D3 was being included by VIVO (e.g. on the profile page, in co-authorship networks, etc.), these now include
D3 v4, and the visualizations have been upgraded to use D3 v4.

The only visualization that has NOT been upgraded to D3 v4, is the Capability Map - as a full page visualization, that
page is still including it's own D3 v3.

Upgrading VIVO - 44



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

When upgraading, you have a few choices:

1) If you have a full page custom visualization, you can continue to specify whatever libraries and versions that you
want to use, although if you are referencing the "shared" D3, you will need to adjust this to include your own D3
that is the version you require.

2) If you are embedding the visualization on a page that may have other visualizations, you should either:
a) Upgrade your custom visualization to use D3 v4.
b) Render your visualization into an iframe, so that you can specify your own javascript dependencies.

By making this change now, we are getting on to a maintained version of D3 (v3 has not had any releases for 18
months), and it prepares us for using D3.express’* in the future, for more dynamic visualization building.

3.1.4 ORCiD API

It has been announced that ORCiD are looking to shut down their v1.x endpoints by the end of 2017. During
development to support the new v2 api, it was recognised that the way the settings are currently configured should
be simplified. As a result, in order for the ORCiD integration to work in VIVO 1.10, you will need to update your
runtime.properties - regardless of which version of the api that you want to use.

The new settings look like this:

orcid.clientId = 0000-0000-0000-000X
orcid.clientPassword = 0000-0000-0000
orcid.webappBaseUrl = http://localhost:8080/vivo

orcid.externalIdCommonName = VIVO Cornell Identifier

orcid.apiVersion = 2.0

orcid.api = sandbox

Setting Values Notes
orcid.clientld <your client id> The client ID that you obtained from ORCiD for APl access
orcid.clientPassword <your password> The password the you obtained from ORCiD for API access
orcid.webappBaseUrl <your VIVO The URL for your VIVO site

website>

orcid.externalldCommo  <site description> The text that you want to appear in ORCiD for links back to

nName VIVO profiles

orcid.apiVersion 2.0 (or1.2) The version of the API to use. It is recommended that you use
2.0.

orcid.api release or sandbox  Use sandbox for development, release for production.

71 https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0

Upgrading VIVO - 45


https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3.1.5 List View Configurations

To produce complex views of data associated with properties (e.g. a person's publication list), VIVO allows the
association of externalized SPARQL queries, and associated Freemarker template links.

The configuration for this are the files called "listViewConfig-*" in the <webapp>/configs/ directory.

Due to the performance of OPTIONAL clauses for some triple stores, in VIVO 1.x the configuration files usually
consist of a SELECT query (to retrieve the data for the associated Freemarker template), and one or more
CONSTRUCTSs (using UNIONSs) to create a smaller model that the SELECT query would then be performed against.

This creates additional buffering of an intermediate model, the overhead of performing multiple queries, and
makes the configurations harder to write and maintain.

For triple stores with poor OPTIONAL performance, this is a result of the OPTIONAL clause returning large amounts
of data that is then joined to the rest of the query.

This can be avoided by making the OPTIONAL clauses contain the restrictions that they will be joined to, in addition
to them appearing outside for the join.

As this is not necessary for all triple stores, an element <precise-subquery> has been introduced, so that these
additional statements can be filtered out for triple stores where they aren't required.

So,

SELECT ?menultem
?linkText
HERE {
?subject ?property ?menultem .
OPTIONAL {
?menultem display:linkText ?linkText .

can be rewritten as

SELECT ?menultem
?linkText
HERE {
?subject ?property ?menultem .
OPTIONAL {
<precise-subquery>?subject ?property ?menultem .</precise-subquery>
?menultem display:linkText ?1linkText .

When all OPTIONAL clauses are rewritten like this, the <query-construct>
elements can be removed, for approximately 10% performance improvement, and a
larger reduction 1in Java processing overhead. This allows the web server to
scale to handle more requests.

Upgrading VIVO - 46



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

If you have customized listViewConfig-*.xml files, you do not need to rewrite them for VIVO 1.10 - they will work
unmodified. However, you will have a small performance improvement, and more readable, maintainable queries,
if you choose to modify them to take advantage of the new features.

3.1.6 Vocabulary Services
<< Upgraded web services >>

<< Registering for a UMLS key >>

3.1.7 Servlet 3.0 Upgrade

The web.xml that ships with VIVO has been updated to use 3.0 semantics (the required version of Tomcat already
supported 3.0).

If you have customisations that introduce new servlets, then you can still add the configuration to web.xml, or you
can modify the servlet to use @WebServlet annotations.

If you are replacing a servlet, then you will need to map the existing servlet to an unused url, and map the new
servlet by adding configuration for these servlets to web.xml.

Alternatively, if you want to disable a servlet, then you can set the web.xml back to 2.5 spec, and add all of the
servlet configuration explicitly to the web.xml.

3.1.8 Java Dependencies

3.1.8.1 HttpClient

Due to OSGi bundling of some of the core dependencies, VIVO had been shipping three different versions of
HttpClient, all of which were incompatible with each other, and sometimes generated errors depending on which
code paths got executed first.

VIVO 1.10 brings convergence around HttpClient 4.5.3, removing the problems caused previously. If you have any
customisations that depend on HttpClient (or the fluent api - fluent-hc), please ensure that you are using the
versions that are already indlueded with VIVO. This may require some minor adjustments to your client code to
make it compatible.

3.1.8.2 OSGi Dependencies

The OWLAPI previously included with VIVO was an OSGi bundle, and included the classes of a number of libraries
(such as HttpClient above). This causes classloading conflicts. In VIVO 1.10, we are depending directly on the
libraries that were being bundled, rather than the bundle in it's entirety.

In addition, Jena has OSGi dependencies for HttpClient, leading to more duplicate classes. These have been
explicitly excluded - see dependencies/pom.xml’ for how this is done.

72 https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml

Upgrading VIVO - 47


https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml
https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3.1.8.3 JSON Parsers

Four JSON parsers - GSON (com.google.gson), Glassfish (javax.json.Json, Sourceforge.net (net.sf.json) and
JSON.org (org.json) have been removed, to simplify the code base, reduce vulnerabilities and improve
performance.

All JSON parsing in VIVO is now handled through Jackson.

If you have local customisations that use a different JSON parser, you can add the dependency to your projects,
although it is recommended that migrating to Jackson is preferable for long term maintenance.

3.1.8.4 Replaced Dependencies

The CSV parser has been replaced with commons-csv.

3.1.8.5 Removed Dependencies

The following dependencies have been removed from VIVO. If you have customisations that require any of them,
you will need to add them as dependencies in your own projects.

agrovocws-3.0.jar, asm-3.1.jar, aterm-java-1.8.2.jar, axis-1.3.jar, axis-jaxrpc-1.3.jar, axis-saaj-1.3.jar, bcmail-
jdk14-1.38.jar, bcprov-jdk14-1.38.jar, bctsp-jdk14-1.38.jar, c3p0-0.9.2-pre4.jar, cglib-2.2.jarcommons-
beanutils-1.7.0.jar, commons-discovery-0.2.jar, cos-05Nov2002.jar, csv-1.0.jar, cxf-xjc-runtime-2.6.2.jar, cxf-xjc-
ts-2.6.2.jar, dom4j-1.6.1.jar, ezmorph-1.0.4.jar, gson-2.5.jar, jai_codec-1.1.3.jar, jai_core-1.1.3 jar,
JavaEWAH-0.8.6.jar, javax.json-api-1.0.jar, jjtraveler-0.6.jar, jsonld-java-jena-0.2.jar, json-lib-2.2.2-jdk15.jar, lucene-
analyzers-common-5.3.1.jar, lucene-core-5.3.1.jar, lucene-memory-5.3.1.jar, lucene-queries-5.3.1.jar, lucene-
queryparser-5.3.1.jar, lucene-sandbox-5.3.1.jar, mail-1.4.jar, mchange-commons-java-0.2.2.jar, shared-
objects-1.4.9.jar, sparqltag-1.0.jar, stax-api-1.0-2.jar, wsdl4j-1.5.1.jar

3.2 Building VIVO in 3 tiers

@ Draft

This page is being updated for 1.10 and Maven. Check back for more.

« Development (see page 49)
« Deployment (see page 49)
« Project template (see page 50)

Add a third layer to the VIVO distribution, to keep all of your modifications in one place.

Upgrading VIVO - 48



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The three tiered build is very simple. In a standard two tier build VIVO replaces anything that is in Vitro as it adds its
own special files to the mix. In a three tier we replace anything in Vitro or VIVO with the files that we want to add or
modify for our version of VIVO. This allows us to point at newer VIVO versions without modifying the files within.

The method in this document has been copied from the EarthCollab work at: https://github.com/NCAR/2014-
EarthCube-BuildingBlocks-EnablingCollaboration-14402930-vivo-source

The files that differ from a regular VIVO build (other than the ones you are adding and changing) are the build.xml
and build.properties file.

There are two standard ways to setup VIVO, for development or deployment.

3.2.1 Development

With development, you want to look at your VIVO against the VIVO and Vitro sources. This means getting the source
for each project from the git repository.

« https://github.com/vivo-project/Vitro
« https://github.com/vivo-project/VIVO

Your deploy.properties then points at the individual repositories. When you build it pulls the three repositories
together and sends them as a single package to Tomcat.

nihvivo.dir vitro.core.dir

3.2.2 Deployment

In deployment you have just your third tier and the released source for VIVO. In that released source is the vitro
code that goes with the latest release of VIVO. Your deploy.properties for a deployment build will need to point to
the internal vitro-core folder for the vitro code.

Upgrading VIVO - 49


https://github.com/NCAR/2014-EarthCube-BuildingBlocks-EnablingCollaboration-14402930-vivo-source
https://github.com/NCAR/2014-EarthCube-BuildingBlocks-EnablingCollaboration-14402930-vivo-source
https://github.com/vivo-project/Vitro
https://github.com/vivo-project/VIVO

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3.2.3 Project template

If you would like to get started with the three tired build process, there is a project template on Github that

includes the necessary build.xml, build.properties and directory structure. This template uses Git submodules™ to
pullin VIVO and Vitro from the main vivo-project repository.

73 https://github.com/lawlesst/vivo-project-template
74 http://git-scm.com/book/en/Git-Tools-Submodules

Upgrading VIVO - 50


https://github.com/lawlesst/vivo-project-template
https://github.com/lawlesst/vivo-project-template
http://git-scm.com/book/en/Git-Tools-Submodules
http://git-scm.com/book/en/Git-Tools-Submodules

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

4 Exploring VIVO

» Logging in to VIVO (see page 51)
« Sample Data (see page 51)
« Restoring VIVO to First Time State (see page 56)

4.1 Overview

As a first time VIVO user, you should take some time to familiarize yourself with the interface, learn how VIVO stores
data, consider options for configuring VIVO, and learn how to create user accounts in VIVO.

When VIVO starts up the very first time, it will notice that its data store is empty, and will proceed to load data from
firsttime directories. Data in these directories include the ontologies to be used by VIVO. These data are loaded
exactly once. VIVO will then proceed to load data in the everytime and filegraph directories. Anytime VIVO is
started after the first time, it will check for data in the everytime and filegraph directories and compare that
data with the data in its data store and update the data store as necessary.

In this section we provide an exercise regarding sample data. You can load the sample data into your VIVO, explore
the interface, and learn how the sample data is stored. When you are finished with the sample data, you can
restore your VIVO to its "firsttime" state. From there you can review the configuration options, choose options best
suited for your VIVO, and then create user accounts. You will then be ready to begin loading your data into your
VIVO, providing your institution with data for finding experts and representing their scholarship.

4.2 Logging in to VIVO

To log into VIVO using the web browser, navigate to your institution’s instance of VIVO.

+ Click the "Login" link near the upper right corner.
« Enter your username (usually email or external authentication ID) and your password (see note below)
+ Click the “Log in” button and you will be redirected to the Home page.

Note: /fyou have not yet created any user accounts in VIVO, you can log in as the root user that you set up in the
configuration file (rootUser.emailAddress in runtime.properties). If this is your first time logging in, the password
will be "rootPassword". You will be required to set a new password to complete the login process.

4.3 Sample Data

@ In Draft

This page is being written. Please do not use the content of this page until this banner is removed.

o Overview (see page 52)

» Preparing Your VIVO (see page 52)

« Loading the Sample Data (see page 53)
+ Exploring the Interface (see page 55)

+ Exploring the Data (see page 55)

+ Resetting Your Database (see page 55)

Exploring VIVO - 51



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

4.3.1 Overview

VIVO has many features and can display many kinds of data related to the scholarship of the individuals at your
institution. VIVO provides sample data which can demonstrate the features of VIVO, and help familiarize you with
the formats VIVO uses to store its data. The sample data includes a fictional university, fictional departments,
fictional faculty members and collaborators, fictional publications and grants, memberships and other elements of
scholarship common in VIVO. The sample data does not include an example of every type of thing that can be
stored in VIVO, nor does it contain many faculty. Itis intended to demonstrate the most common elements of VIVO.

4.3.2 Preparing Your VIVO

To use the sample data, and follow the examples here regarding the sample data, you will want your VIVO to
contain only the sample data. Do not add the sample data to your data. VIVO uses data from a database you
specify. We will create a database for the sample data, and tell VIVO to use that database when loading and using
the sample data. At the end of this page, we will tell VIVO to use the database that you used when you installed
VIVO. In this way, your data, and the sample data will always be separate.

In the steps that follow, we assume that you have installed VIVO according to the installation instructions, and that
MySQL and Tomcat are running. If this is not the case, please complete the installation and test it, before
attempting to use the instructions here.

To create a database for the sample data, and tell VIVO to use it, follow the steps below:

1. Record the name of the database you used to install VIVO. In the installation instructions, this is referred to
as vitrodb, but you may have named it something else. After you have finished with the sample data, you
will follow steps to reset VIVO to use this database.

2. Create a new database in MySQL

Create sample database

$ mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection 1id 1is 2

Server version: 5.7.9 MySQL Community Server (GPL)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
Oracle 1is a registered trademark of Oracle Corporation and/or 1its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE sampledb CHARACTER SET utf8;
mysql> GRANT ALL ON sampledb.* TO 'vitrodbUsername'@'localhost' IDENTIFIED BY 'vitrodbPassword';

3. Editthe runtime.properties file to tell VIVO the name of the database it should use. In this case
sampledb.
4. Restart Tomcat

On completing these steps, your VIVO will be using an "empty" database. You may need to wait for VIVO to start the
first time, as VIVO automatically loads data from files distributed with VIVO. You may ned to refresh your browser.
You may need to wait will VIVO indexes the first time data. It may take several minutes for VIVO to restart, load the
first time data, and index it. When VIVO has completed its work, and you have refreshed your browser, your home
page should look like:

Exploring VIVO - 52



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Welcome to VIVO

Log in
VIVO is a research-focused discovery tool that enables )
collaboration among scientists across all disciplines. Email
Browse or search information on people, departments, courses, a
grants, and publications.
Password
@
Search VIVO
limit search > [V Search
Research Faculty Departments
No research content found. No faculty members found. No academic departments found.
Statistics
Locations
©2017 VIVO Project | Terms of Use | Powered by VIVO About | Support

You are are now ready to load the sample data.

4.3.3 Loading the Sample Data

To load the sample data, follow the steps below.

1. LogintoyourVIVO as a site admin
2. Goto to Site Admin / Add/Remove RDF Data

Exploring VIVO - 53



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3. Enter the address of the sample data, https://raw.githubusercontent.com/vivo-project/sample-data/
master/sample-data.n3, select "add instance data," and set the file type to "N3." See below

Add or Remove RDF Data

Enter Web-accessible URL of document containing RDF to add or remove:

https://raw.githubusercontent.com/vivo-project/sample-data/master/sample-data.n3

Or upload a file from your computer:

Choose File  No file chosen

©add instance data (supports large data files)
Hadd mixed RDF (instances and/or ontology)
“remove mixed RDF (instances and/or ontology)

N3 E

~ create classgroups automatically
4, Check to make sure you have the form filled out properly: 1) the URL for the sample data has been entered

as shown; 2) "add instance" is selected; 3) "N3" is selected as the file type. Press Submit.
5. After a brief upload, you will see

V | VO nare « discover

Home People Organizations Research Events

RDF upload successful.

Exploring VIVO - 54


https://raw.githubusercontent.com/vivo-project/sample-data/master/sample-data.n3
https://raw.githubusercontent.com/vivo-project/sample-data/master/sample-data.n3

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

6. Navigate to your home page. You should see

Research Faculty Departments

n Academic Articles Peters, Jasper | > History
Professor and Associate Dean .
> Chemistry
R .
Bogart, Andrew English
- Chapters Associate Professor » Physics

Grants Roberts, Patricia
Professor and Chair
View all ...
Powell, Suzanne Katrinsky
Assistant Professor

View all ...

7/ 4 15 16 @323

People Events Organizations Research Locations

7. That'sit! Let's start exploring.

4.3.4 Exploring the Interface

4.3.5 Exploring the Data

4.3.6 Resetting Your Database

View all ...

When you are finished exploring the sample data, you will want to reset VIVO to use the database you used when
installing VIVO. You recorded the name of this database when following the steps above in Preparing Your

Database. To reset your database, follow the steps below:

1. Shutdown Tomcat

2. edit runtime.properties and change the name of the database from the name of the sample database to the

name of the database you used to install VIVO.
3. Start Tomcat

Now VIVO will be using the database you used when installing VIVO. If you would like to use the sample data again,

just repeat these steps, naming the sample data database as the one you would like to use.

Exploring VIVO - 55



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

4.4 Restoring VIVO to First Time State

When Installing VIVO (see page 32), you created a MySQL database to hold the data and edited the
runtime.properties file to tell VIVO the path to the data base and the username and password for root access to
the database. To restore VIVO to first time state, simply drop the MySQL database, recreate it and restart Tomcat.

See below.

$ mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection 1id 1is 2

Server version: 5.7.9 MySQL Community Server (GPL)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
Oracle 1is a registered trademark of Oracle Corporation and/or 1its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> DROP DATABASE vitrodb;
mysql> CREATE DATABASE vitrodb CHARACTER SET utf8;
mysql> GRANT ALL ON vitrodb.* TO 'vitrodbUsername'@'localhost' IDENTIFIED BY 'vitrodbPassword';

Now restart Tomcat. VIVO will detect an empty data store, and proceed to load it from the
firsttime, everytime and filegraph directories. Tomcat will start, but search indices may take additional
time to complete. When reindexing is complete, refresh your browser to see your VIVO returned to first time state.

Your first time VIVO home should appear as shown below.

Exploring VIVO - 56



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

v I VO share « discover

Home People Organizations Research Events Capability Map

Welcome to VIVO

Log in
VIVO is a research-focused discovery tool that enables )
collaboration among scientists across all disciplines. Email
Browse or search information on people, departments, courses, vivo_root@mydomain.edu il
grants, and publications.
Password
Search VIVO

No research content found. No faculty members found. No academic departments found.

Statistics

323

Locations

©2016 VIVO Project | Terms of Use | Powered by VIVO About | Support

Exploring VIVO - 57



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

5 Preparing for Production

» Minimum Configuration (see page 58)
« Create, Assign, and Use an Institutional Internal Class (see page 59)
« Adding User Accounts (see page 62)

5.1 Overview

One you have an initial VIVO running, loaded sample data, and explored the interface, you should be ready to make
some choices about your production VIVO.

In this section, we will see the choices that need to be made before launching a production VIVO site. Choices will
lead to restarting VIVO to confirm things are working as expected, and clearing out data that was created during
testing.

5.2 Minimum Configuration

o Email (see page 58)
» Namespace (see page 58)
+ Additional Configuration (see page 59)

5.2.1 Email

VIVO should be configured to send email using an smtp service of your choice. VIVO sends email from its contact
form. Email also sends email to users when changes are made to their accounts. Modify the two line below in
runtime.properties, then restart Tomcat.

Email parameters in runtime.properties

Email parameters which VIVO can use to send mail. If these are left empty,
the "Contact Us" form will be disabled and users will not be notified of

changes to their accounts.

H*+ O H H H K

email.smtpHost = smtp.mydomain.edu

email.replyTo = vivoAdminemydomain.edu

5.2.2

Namespace
The namespace parameter is the single most important parameter in your VIVO configuration. Itis used in every
triple created by VIVO. It should match the domain name of your VIVO production site. So, if your VIVO production

site will be reached on the Internet with a web address of http://vivo.mydomain.edu the Vitro.defaultNamepsace
parameter is runtime.properties should be set as shown below.

Preparing for Production - 58


http://vivo.mydomain.edu

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Namespace parameter in runtime.properties

This namespace will be used when generating URIs for objects created in the
editor. In order to serve linked data, the default namespace must be composed
as follows (optional elements in parentheses):

scheme + server_name (+ port) (+ servlet_context) + "/individual/"

For example, Cornell's default namespace is:

http://vivo.cornell.edu/individual/

H OH O H OH O H K K H K H

Vitro.defaultNamespace = http://vivo.mydomain.edu/individual/

5.2.3 Additional Configuration

For additional configuration parameters see Configuration Reference (see page 295)

5.3 Create, Assign, and Use an Institutional Internal Class

o Overview (see page 59)

« Create an Institutional Internal Class (see page 59)

« Assign your Institutional Internal Class (see page 61)
« Use your Institutional Internal Class (see page 62)

5.3.1 Overview

VIVO supports the concept of an Institutional Internal Class, a class that you can create and assign to your people,
and other entities, to indicate that they are part of your institution. Using an Institutional Internal Class, you can
limit VIVO's displays of entities to those in your institution.

5.3.2 Create an Institutional Internal Class
Create a local ontology if you do not already have one. If you have one, add a class to your existing local ontology.
Goto Site Admin> Ontology list > Add new ontology

Add your new ontology (see the example below)

Preparing for Production - 59



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ontology Editing Form

Creating New Record (" Required Fields)

Ontology name

VIVO Local Extensions

Namespace URI* (must begin with http:// or https://)
http://my.domain.edu/ontology/viocal#

Namespace prefix

vlocal

Gt ow ecora I roset [ conce |

Ontology name: Whatever you want. The name you give will appear in the list of VIVO ontologies.

Namespace: Must be your domain name as specified in your runtime.properties, followed by "/
ontology/" followed by a name of your choice, followed by the '#' sign.

Namespace prefix: a short word. This word will appear in the prefix list in your SPARQL windows and will
be used by you in any SPARQL queries referring to your local ontology.

Submit Changes
Add a new class to your local ontology

Goto 'Hierarchy of Classes Defined in This Namespace’ > Add New Class

Add your new class (see the example below)

Preparing for Production - 60



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Class Editing Form

Creating New Record ¢ Required Fields)

Class label Class group
My Institutional Class none v
. o N for menu pages, search results and the
by convention use initial capital letters; spaces OK index page

Ontology Internal name* (RDF local name)

My ontology extensions

o«

MyEntity

must be valid XML without spaces; by
convention use camel case with an initial
capital

Short definition to display publicly
People associated with my institution
Example for ontology editors
People associated with my institution, including employees, students, and for

Description for ontology editors

Used to filter display on index pages. Must be selected as institutional internal class. Our local
Steering Committee defines policy regarding who will be assigned the institutional internal class.

Display level Update level
editor and above 52 curator and above 52
Publish level

all users, including public ¥

Display rank when collating property by subclass Custom entry form

Class label: Text, describes the class. This will be visible on the VIVO interface.

Class Group: People. This allows the class to be used to restrict the display of people to those people
who have the institutional class you are defining.

Ontology: Select your previously created local ontology from the drop down menu

Internal Name: This word will be used in your SPARQL queries, along with the local ontology prefix to
refer to your local class. In this example, the complete reference in SPARQL would be vlocal:MyEntity.

Short definition to display publically: Use language your users will understand
Example for ontology editors: More detail. Can be very technical.

Description for ontology editors: Will appear in the ontology editor. Remind future ontology editors of
the purpose of the class and how one will know what entities should be in the class.

Display level: Set to editor and above from the drop down
Update level: Set to curator and Above from the drop down
Publish level: All usersincluding public

Once you are satisfied with the values, press Create New Record

5.3.3 Assign your Institutional Internal Class
Method 1: (Manual)

Go to the person in the Ul

Click Edit Individual

Preparing for Production - 61



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Click Add Type

Select your Institutional Internal Class from the drop down

Method 2: (Bulk)

Create a set of RDF, one triple per person you would like to have in the institutional class. Each triple will look
like

<personuri> rdf:type vlocal:MyEntity
Go to Site Admin -> Add/remove RDF Data and add your triples

5.3.4 Use your Institutional Internal Class

Define institutional internal class

Go to Site Admin > Institutional internal class

Select your new class from the dropdown menu

To restrict display to only those people in your institution,

Go to Site Admin > Page Management > People

Click the plus sign to expand the ‘Browse Class Group’ box
Check ‘Only display people within my institution'

Click "Save this Content'

5.4 Adding User Accounts

The root user and users with the role Site Admin are allowed to create user accounts. To create a user, one has to
follow these steps:

o=

6.

Enter the 'Site Administration'.

Choose 'User Accounts' from the menu 'Site Configuration'.

Click on 'Add new account'

Mandatory fields to enter are 'Email Address', 'First name', and 'Last name"'.

Choose a role for the respective user. More information about the role management can be found in the
'System Administration' section of this documentation on the page 'Creating and Managing User Accounts'.
Click 'Add new account'

In normal operation, an email will be sent to the address entered notifying that an account has been created. It will
include instructions for activating the account and creating a password.

For more information on user accounts, see Creating and Managing User Accounts (see page 256)

Preparing for Production - 62



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

6 Using VIVO

» Navigating VIVO (see page 63)

« Editing Your Profile (*) (see page 63)

« Using Search (*) (see page 63)

+ Using the Capability Map (see page 63)
« Using Visualizations (*) (see page 69)

« VIVO for Data Analysts (see page 69)

VIVO [Pronunciation: /vi:vau/ or vee-voh] is member-supported, open source software, and an ontology for
representing scholarship. VIVO supports recording, editing, searching, browsing and visualizing scholarly

activity. VIVO encourages research discovery, expert finding, network analysis and assessment of research impact.
VIVO is easily extended to support additional domains of scholarly activity.

Here we will describe the basic features of VIVO and how you can use them. Many VIVO sites customize VIVO to add
local features, enriching the description of the scholarship of their institution. Here we describe only the common
features of VIVO. You may wish to ask your local VIVO providers for documentation describing the VIVO at your
institution.

The examples to follow use an uncustomized VIVO. Your VIVO may look different.

6.1 Navigating VIVO

VIVO is navigated and browsed using a primary menu located along the upper portion of the website. By default,
VIVO has five items in the primary menu; Home, People, Organizations, Research, and Events. Your VIVO may have
been configured with additional menu items.

Beginning at the Home menu, notice the contents of each menu. Each menu contains a list of VIVO Individuals
associated to particular "classes". Each menu shows the count of individuals in parentheses next to the superclass
and subclass names. In addition, the "Index" link on the upper right corner displays a list of “VIVO individuals” by
class and the associated count in parentheses.

? Unknown Attachment

6.2 Editing Your Profile (*)
6.3 Using Search (*)

6.4 Using the Capability Map

o Overview (see page 63)
« ATour of the Capability Map (see page 64)

6.4.1 Overview

The VIVO Capability Map provides a visual means for finding people working in particular areas and for navigating
through concepts and people. Using the capability map, one might find people to invite to a workshop, colleagues

Using VIVO - 63



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

for a grant application, members of a dissertation committee, or experts for a technical advisory group. The map is
very easy to use.

The capability map was originally developed by a team at the University of Melbourne for their VIVO, Find an
expert”™. The concept was developed for OpenVIVO™ and introduced to VIVO in version 1.9.0.

The capability map uses D3.js”’, a visualization tool used by the NY Times and others to provide modern graphics
that are interactive, and responsive - that is, work on any device in any modern browser from a phone to a desktop
computer.

In the examples that follow, we will use OpenVIVO. If your local VIVO is at version 1.9.0 or higher, it will have the
capability map as described here.

6.4.2 A Tour of the Capability Map

Think of a research area that interests you. Perhaps you study ontologies and want to find other people who are
interested in ontology. Click on the Capability Map link in the menu bar on the VIVO home page (see below). You do
not need to be logged on. If you are using your local VIVO and you do not see the capability map link on the home
page, please contact your local VIVO support for more information.

Index  Login

OpenVIVO

Home People Organizations Research Events Capability Map

OpenVIVO Create a Profile / Log in

OpenVIVO is a demonstration of a VIVO anyone can join. OpenVIVO is available to anyone who

has a registered ORCiD identifier.

Log in via ORCiD

Browse or search information on research, people, and
organizations.

Search OpenVIVO

Research People Organizations

You will see the Capability Map page. Everything you do with the Capability Map will be done from this page. There
are directions on the page. You'll want to read them all. Scroll down the page to see the rest of the directions.

75 https://findanexpert.unimelb.edu.au/
76 http://openvivo.org
77 http://d3js.org

Using VIVO - 64


https://findanexpert.unimelb.edu.au/
https://findanexpert.unimelb.edu.au/
https://findanexpert.unimelb.edu.au/
http://openvivo.org
http://openvivo.org
http://d3js.org
http://d3js.org

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

OpenVIVO =

Home People Organizations Research Events Capability Map

Capability Map

Build a ‘first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

Welcome to the Capability Mapping tool. This tool visualises how researchers Search terms Info
relate to other researchers via search terms.
Current search terms

Getting Started

This panel displays a list of the search terms

Enter a research area into the search field above and press 'Search'. The currently on the graph. Search for something to
resulting diagram displays the search term, rendered in orange, connected to begin.

the blue group of researchers that are active in that area. Enter another search

term to see how researchers from both searches relate. Keep adding search

terms to build a capability map.

Tip: you can expand a broad search term into smaller concepts by clicking
‘search and expand’.

Type ontology into the text box and press Search. You should see something similar to below. OpenVIVO is a VIVO
anyone can join. As a result, the data in OpenVIVO at the time you are following these examples may be different
from the data at the time the examples were captured for this document.

Build a “first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

rch term: Infc
pause | hide group labels Search terms °

Current search terms
Delete selected

ontology

ontology

Capabilty  size indicates resarchers in field
Edge colorindicates people connected
Gioup  color indicates degree

@ 2inks  label shows people in group

@ 3inks

@ :4inks

Doesn't look like much, but we're just getting started. we have a very simple "graph" - a network diagram. The
diagram has a legend in the lower right. There are three kinds of things on the graph: 1) terms or capabilities
(orange squares); 2) groups of people (purple circles), and 3) edges (grey lines). Terms or capabilities are also called
"research areas" or "research interests". They are concepts that are associated with individuals through works
such as publications, grants, datasets and presentations, and through self-identification. People with VIVO profiles
can select their research areas of interest using the profile editing features of VIVO. Each orange square represents
a concept, and each is labeled. The purple dots represent groups of people. People are in the group if they have the
research interests that connect to the group. In the figure above, there is just one concept - ontology - and just one
group - the group of people with ontology as a research interest. Note the number of people in the group is shown

Using VIVO - 65



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

(4). If there is just one person, the person's name will be shown. The edge indicates that the people in the group are
"connected" to the term.

Click on the group of people. The right hand area indicates the people who are in the group. You can click on any
of them to go to their VIVO page.

Build a ‘first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

pause hide group labels SCEh EiD Info

® Group: ontology

Remove group

University of Florida: 1

Digital Science (United Kingdom): 1
Northwestern University: 1

Cornell University: 1

Michael Conlon, VIVO Project
Director, Duraspace and Emeritus

Faculty Member, University of
Florida [X]

ntol
ontology University of Florida

Graham Triggs, VIVO Technical
Lead [X]

Digital Science (United Kingdom)

Violeta llik, [X] 1‘\
¥\
Northwestern University —

Muhammad Javed, Ontology
Engineer/Project Tech Lead for
Scholars@Cornell, Cornell

Let's add to the network. Click on Search and Expand. We now see the concepts of each of the four original people,
with people associated with those concepts, connected in a graph showing common interests. Some people have
many interests, some have just a few. Note that concepts are always connected to groups of people who have that
concept has a research interest.

Build a ‘first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

earch terms Infi
pause | hide group labels E °

Current search terms

Delete selected
6

ontology
£ Artificial intelligence
Instit MOTEFHspbSiesAge and retpigualevstome Artificial intelligence

. Ontology--Research
Information storage and retrieval systems--Libraries

_SPARQL (Computer program language)
rtneial msigence i SPARQL (Computer program language)
Linked data Institutional repositories
Ontology-Research Javed 4 Semantic Web
o .
ontology . Open source software
Glinical trials--Design . Statistics
i i Semantic Web Dat: ti
Medical statistics " 'sQL (Gomputer programilanguage) ata curation
Conlon e
Triggs Application software--Development
Knowledge representation (Information theory)--Data processing
2 SPARQL (Computer program language)

Clinical trials—Data processing SQL (Computer program language)
Experimental design-Study and teaching,

2SS Appllcation sor8YA{(COURYEIRGam language) Capabiity size indicates resarchers in field

Edge color indicates people connected
Group color indicates degree

@ 2inks  label shows people in group

@ zinks

@ :zinks

Click on the group of people near the center of the map, between linked data and semantic web. You should see a
display similar to the one below. The group is highlighted along with the concepts common to the group (linked
data and semantic web). Not that the right hand display shows the group as being defined as those people who are
interested in both linked data and semantic web.

Using VIVO - 66



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Build a ‘first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

. Search terms Info
pause | hide group labels

.Group: Semantic Web, Linked data
Remove group
University of Colorado Boulder: 1
Thomson Reuters (United States): 1
In"i‘llll\tarmatlen Storage and retrieval systems ( )

(BmaFrpoSitsnss | Y8 DY Northwestern University: 1
VU University Amsterdam: 1

.
Information storage and retrieval systems-Libyaries
Artificial intelligence, N "
o Thea Lindquist, [X]
Linked data
Ontology--Research - J2ved University of Colorado Boulder
.
ol .
erelesy Ted Lawless, [X]
Clinical trials—-Design | ®,
Medical statistics M Semantic Web 'sal: Gomputenprogramiianguage) Thomson Reuters (United States)
Conlon .
| iggs’ i
Knowledge representation (Information theory)--Data processing e 1 Kristi Holmes. [X]
[ 2 SPARQL (Computer program language)

Clinical trials--Data processing }

Northwestern University

Application sot@&(COTRULenRIGgram language)

Experimental design--Study and teaching
Statistics.

Tobias Kuhn, [X

VU University Amsterdam

The map is a little cluttered with the names of the people who are in groups with one member. Click hide group
labels. You see a map similar to the one below.

Build a “first pass’ capability map by typing in a search term that could be said to represent a broad research capability.

Search terms Info
pause | | show group labels |

.Group: Semantic Web, Linked data

Remove group

University of Colorado Boulder: 1
Thomson Reuters (United States): 1

Instidnformation storage and retrieval systems

Fosiiongs fn I L Northwestern University: 1
! - VU University Amsterdam: 1
o
Information storage and retrieval systems--Libraries
‘Artificial intelligence,_, ] )
. Thea Lindquist, [X]
Linked data #
Ontology-Research 1 University of Colorado Boulder -
o
tology .
enteloay Ted Lawless, [X]
Clincal trals-Dosign .
Medical statistics Semantic Webi 'saL (Eomputer programilanguage) Thomson Reuters (United States)
.
Kristi Holmes, [X]
] 'SPARQL (C¢ iter I
Ciinical trile-Data processing. | QL (Computer program language)
Northwestern University

Experimental design-Study and teaching)

atstes  p pplication so B (COTRYLSRIagTam language) _
Tobias Kuhn, [X]

VU University Amsterdam

Double click on ontology. Two things happen. The map zooms in one ontology, and the ontology termis
highlighted. One of the groups connected to ontology is highlighted.

Using VIVO - 67



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Build a ‘tirst pass’ capability map by typing in a search term that could be said to represent a broad research capability.

_Information storage and retﬂeval systems
Institutional repositories ata curation pause

[ )
1ation storage and retrieval systems--Libraries
Artificial intelligence, e
Linked data
logy--Research
. [ J ®
ontologyg'| o
Clinical trials--Design / \ o

Medical statistics G2mantic Wab

theory)--Data processing

SPARQL (Computer progran

Clinical trials--Data processing

Experimental design--Study and teaching;

Statistics s pplication sofWA{CORRMISIRERgram language)

Search terms Info

Term: ontology

Cornell University: 1

Digital Science (United Kingdom): 1
Northwestern University: 1
University of Florida: 1

Remove capability | Expand

@ Group: ontology, Artificial
intelligence, Ontology--Research
Remove group

Cornell University: 1

Muhammad Javed, Ontology “
Engineer/Project Tech Lead for

SQL (ComputespPLOgLaM| scojars@Corell, Cornell

University [X]
Cornell University

.Group: ontology, Application
software--Development, SPARQL
(Computer program language),
Semantic Web, Open source
software, SQL (Computer program

suppose we wish to reduce the number of terms that have been generated by expanding the graph - some of these
are closely related to ontology, while others may be less so. Terms aon on the graph because someone who has
ontology an an interest has one of these terms as an additional interest. Click on SQL (Computer Program
Language), then in the right hand panel, click on "Search Terms" This lists all the terms currently in the graph.

. i pause

Meslisr?iLitichata processing Data cuiauon
theory)--Data processing °

. [}
:udy and teaching
ontology.
= [ ] Linked data
Statistics °
. . . Semantic Web ", ®
Clinical trials--Design !
[ ]

S‘QL (Computer program language)

Application software--Development

Open source software
SPARQL (Computer program language)
Java (Computer program language)

Search terms Info

Current search terms
Delete selected
SPARQL (Computer program language]

Institutional repositories

Semantic Web

") Open source software

Statistics

") Data curation

ontology

Application software--Development
SQL (Computer program lanquage
java (Computer program lanquage
7 Linked data

Capabilty ~ size indicates resarchers in field
Edge color indicates people connected
Group  colorindicates degree

@ 2inks  label shows people in group

@ 3inks

@ :2inks

Select five of the terms as shown and press "Delete Selected" The pruned graph is shown below. We seem more
clearly the group of people interested in linked data and the semantic web.

Using VIVO - 68



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

i o s Ry ARy iR e G Sl re S A U S JeA S § RSO e U D s ey

ontology Cutoff: 10 m Search and Expand. m
pause hide group labels Sy i Info
.Group: Semantic Web, Linked data
Remove group
University of Colorado Boulder: 2
Thomson Reuters (United States): 1
Informatiofi storage and retrieval systems--Libraries Northwestern University] 1
Information storage and retrieval systems VU University Amsterdam: 1
Data curation Ghent University: 1
° Thea Lindquist, [X]
Open source software
University of Colorado Boulder
Linked data
. ontology Ted Lawless, [X E
Application software--Development 1., .., eyters (United States) s
Semantic Web Kristi Holmes, [X
ion theory)-Data i ° &
Northwestern University
Clinical trials--Data processing ) "
. oy |
Medical statistics Tobias Kuhn, [X] ‘ﬁ. -2
Experimental design--Study and teaching W
P 9 einica triale2Design VU University Amsterdam s

Ruben Verborgh, Postdoctoral
Researcher in Semantic Hypermedia

X1

We can search and expand at any time to add groups and terms related to those on the graph. And if we want to
start over, we can press Reset.

Using the Capability Map we can find groups of people interest in common research areas, and we can discover
which research areas are often held in common across researchers.

6.5 Using Visualizations (*)

6.6 VIVO for Data Analysts

+ Background (see page 69)

+ Getting Rectangles of Data (see page 69)
+ Getting Graphs of Data (see page 70)

« References (see page 70)

6.6.1 Background

VIVO represents data as triples. All data is represented and stored in the form subject, predicate, object. All entities
are identified by URI. If you are unfamiliar with this method for data representation, see the references. A typical
VIVO for a large research institution could have well over 10 million triples. Understanding which triples are needed
for an analysis can be challenging. The VIVO community is here to help. Questions regarding data and data
extraction using the techniques below can be posted to one of the VIVO Google Groups.

6.6.2 Getting Rectangles of Data

To get rectangles of data, use SPARQL queries. SPARQL is a simple query language designed for use with triple
stores. A collection of SPARQL queries used to answer real-world questions is available here: SPARQL Queries (see
page 91)

Using VIVO - 69



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

6.6.3 Getting Graphs of Data

The entire triple store can be unloaded for use in a local triple store, and for local query. This is recommended for
sites wishing to make repeated analyst queries of the data. Community-editions of a triple stores are available with
cost. Stardog is a popular, stable, and free triple store that can be used for this purpose. See http://stardog.com

To unload the triple store to a set of triples, use jena3tools, available here: https://github.com/vivo-project/
jenatools

6.6.4 References

1. Borner, Conlon, Corson-Rikert, and Ding (eds) VIVO: A Semantic Approach to Scholarly Networking and
Discovery, Morgan-Claypool Publioshers, 2012. 160 pages.

2. Allemang, and Hendler. Semantic Web for the Working Ontologist, second edition. Morgan-Kaufmann
Publishers, 2011. 354 pages.

3. DuCharme. Learning SPARQL: Querying and Updating with SPARQL 1.1. O'Reilly, 2011. 235 pages.

Using VIVO - 70


http://stardog.com
https://github.com/vivo-project/jenatools
https://github.com/vivo-project/jenatools

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7 Managing Data in Your VIVO

« Importing Data to VIVO (see page 71)

» Exporting Data from VIVO (see page 83)

» Managing Person Identifiers (see page 83)

+ Managing Organization Hierarchy (see page 84)

« Managing Data Packages (see page 89)

« SPARQL Queries (see page 91)

+ How to remove data from a specific graph (see page 95)
» Removing Entities from VIVO (see page 95)

7.1 Importing Data to VIVO

« Using the Convert CSV to RDF ingest tool (see page 71)
+ Data types for string and language (see page 81)

7.1.1 Using the Convert CSV to RDF ingest tool

& This guide describes just one (rather primitive) way to ingest data into VIVO. See https://
wiki.duraspace.org/x/MYUQAg for a detailed discussion of data ingest.

Introduction

This guide will walk through the use of the 'Convert CSV to RDF' tool, a semi-automated method of converting
comma separated or tab separated text files into RDF that can be displayed in VIVO. These files should include one
row of data per record (e.g., a person or publication) and represent the fields or properties associated with each
record in separate columns within the row, much as the values appear in a spreadsheet. The most common pattern
of loading CSV files involves one CSV file per type of data to be loaded. Note, the current ingest tools involve
working through a number of steps from original source data files to the appearance of new data in VIVO. The
process requires some understanding of semantic web data modeling and some training.

Access the tool by navigating to the Site Administration section, clicking Ingest tools, then Convert CSV to RDF.

7.1.1.1 Mapping Ontologies to other Ontologies

When VIVO's ingest tools read in a CSV file, the data read from the file will be stored in the VIVO database as an extra
"model," or secondary database managed by the Jena semantic web libraries underlying VIVO.

The next step is to link imported data sets using information stored with the source data. If an object not previously
in VIVO has been found, a new record (individual) must be created in VIVO using the CONSTRUCT form of query in
the SPARQL query language for RDF.

The query looks at the list of imported data and inserts statements creating a new individual wherever no match to
an existing individual is found. The query of imported data is expressed using the ontology of the import; the
CONSTRUCT statements use the class and property names of VIVO ontology. This accomplishes the mapping
between the source ontology and the VIVO ontology.

Managing Data in Your VIVO - 71


https://wiki.duraspace.org/x/MYUQAg
https://wiki.duraspace.org/x/MYUQAg

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

When populating VIVO for the first time, all the data from a dataset can be added from the imported Jena model to
VIVO by a CONSTRUCT query that again translates from the RDF in the imported model to the RDF in VIVO. When a
dataset has already been mapped to data and there's a likelihood that the new data being imported may already
exist in VIVO, the process becomes more complicated due to the need to match each prospective import against
existing data.

7.1.1.2 Example workflow

The first time through an ingest process is a slow process of evaluating the source data, deciding what cleanup will
be needed, and working through each step. The following example details each step in the process and how the
VIVO software supports that step. As the process expands to include requirements to match against existing data,
additional steps must be introduced to test for matches and perform different actions, usually as successive steps
identified through different queries.

For this example, a sample set of data for people, their positions, and the organizations at which their positions
reside has been provided at http://sourceforge.net/projects/vivo/files/Data%20Ingest/. The guide gives instructions
on how to ingest the data, map the data to the VIVO/ISF ontology, and load the data into an RDF format. Upon
completion linked data in VIVO will include people to positions and the positions to organizations.

Process:

1. Prepare CSVfile

Create workspace models for ingesting and constructing data

Pull CSV file into RDF

Confirm data property URIs and RDF structure

Convert temporary RDF into VIVO/ISF ontology using SPARQL CONSTRUCT
Load data to the current web model

ouhswN

Step 1. Prepare CSVfile

CSV template files can be downloaded here (or from the Source Forge links included):

« organization.csv’® (or http://sourceforge.net/projects/vivo/files/Data%20Ingest/organization.csv/
download)

« position.csv’™ (or http://sourceforge.net/projects/vivo/files/Data%20Ingest/position.csv/download)

« people.csv® (or http://sourceforge.net/projects/vivo/files/Data%20Ingest/people.csv/download)

For the purposes of this walkthrough, you can leave the csv files as is if you wish.

Note: You can optionally create a local ontology and class specifically for the 'person_ID" and 'org_ID' fields
included in the example CSV files. See the 'Add New Data Properties' section of the Ontology Editors Guide
here: https://wiki.duraspace.org/x/2AQGAg.

Step 2: Create Workspace Models

Highlighted in red are the three Ingest Menu options we will be using for this demonstration.

78 https://wiki.duraspace.org/download/attachments/96995768/organization.csv?
api=v2&modificationDate=1522787187840&version=1

79 https://wiki.duraspace.org/download/attachments/96995768/position.csv?
api=v2&modificationDate=1522787187845&version=1

80 https://wiki.duraspace.org/download/attachments/96995768/people.csv?
api=v2&modificationDate=1522787187846&version=1

Managing Data in Your VIVO - 72


http://sourceforge.net/projects/vivo/files/Data%20Ingest/
https://wiki.duraspace.org/download/attachments/96995768/organization.csv?api=v2&modificationDate=1522787187840&version=1
https://wiki.duraspace.org/download/attachments/96995768/organization.csv?api=v2&modificationDate=1522787187840&version=1
http://sourceforge.net/projects/vivo/files/Data%20Ingest/organization.csv/download
http://sourceforge.net/projects/vivo/files/Data%20Ingest/organization.csv/download
https://wiki.duraspace.org/download/attachments/96995768/position.csv?api=v2&modificationDate=1522787187845&version=1
https://wiki.duraspace.org/download/attachments/96995768/position.csv?api=v2&modificationDate=1522787187845&version=1
http://sourceforge.net/projects/vivo/files/Data%20Ingest/position.csv/download
https://wiki.duraspace.org/download/attachments/96995768/people.csv?api=v2&modificationDate=1522787187846&version=1
https://wiki.duraspace.org/download/attachments/96995768/people.csv?api=v2&modificationDate=1522787187846&version=1
http://sourceforge.net/projects/vivo/files/Data%20Ingest/people.csv/download
http://sourceforge.net/projects/vivo/files/Data%20Ingest/people.csv/download
https://wiki.duraspace.org/x/2AQGAg

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ingest Menu

Manage Jena Models

ubtract One Model from Another

Convert CSV to RDF

Convert XML to RDF

Execute SPARQL CONSTRUCT

Generate TBox

Name Blank Nodes

Smush Resources

Merge Resources

Change Namespace of Resources

Process Property Value Strings

Split Property Value Strings into Multiple Property Values

Execute Workflow

Dump or Restore the knowledge base

We will create two temporary data models titled 'csv-ingest' and 'csv-construct' to keep our work separate from the
main VIVO models.

1. Select "Ingest Tools" from the Advanced Tools Menu

2. Select "Manage Jena Models"

3. Click the "Create Model" button then type in a name for your model, 'csv-ingest'.
4, Repeat step 3 and name the model 'csv-construct'

You should now see your new models on the main 'Manage Jena Models' page.

Managing Data in Your VIVO - 73



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ingest Menu > Available Jena Models

Main Store Models | Configuration Models
Create Model

Currently showing Main Store models

http:/ /vitro.mannlib.cornell.edu/a/graph/csv-construct

load ROF data output model clear statements remaove

attach snapshot to ontology | detach snapshot from ontology | generate permanent URls

http:/ /vitro.mannlib.cornell.edu/a/graph/csv-ingest

load ROF data output model clear statements FEMove

attach snapshot to ontology | detach snapshot from entology | generate permanent URIs

Step 3: Pull CSV File into RDF

Now click 'Convert CSV to RDF' on the Ingest Menu. Begin by supplying a URL for your CSV file, or by uploading the
file directly from your computer. Start with people.csv. Complete the fields in the form (explanation follows graphic
below).

Managing Data in Your VIVO - 74



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ingest Menu > Convert CSV to RDF

© comma separated O tab separated

CSV file URL (e.g. "file:///")
Or upload a file from your computer:
Choose File = Mo file chosen

This tool will automatically generate a mini ontology to represent the data in the CSV file. A property will be
produced for each column in the spreadsheet, based on the text in the header for that column.

In what namespace should these properties be created?

Namespace in which to generate properties

Each row in the spreadsheet will produce a resource. Each of these resources will be a member of a class in the
namespace selected above.

What should the local name of this class be? This is normally a word or two in "camel case" starting with an
uppercase letter. (For example, if the spreadsheet represents a list of faculty members, you might enter
"FacultyMember" on the next line.)

Class Local Name for Resources

ar

http://vitro.mannlib.cornell.edu/a/graph/csv-ingest

Model in which to save the converted spreadsheet data

| http://vitro.mannlib.cornell.edu/a/graph/csv-ingest v

Model in which to save the automatically-generated ontology

The data in the CSV file will initially be represented using blank nodes (RDF resources without URIs). You will
choose how to assign URIs to these resources in the next step.

Namespace for Classes and Properties ('in what namespace should these properties be created?'

This namespace can be temporary since we will later map the tool's output to the VIVO/ISF ontology. For example,
you can use

Managing Data in Your VIVO - 75



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

http://localhost/vivo/

Class Name

The class name is also a temporary value for this example. This value does not follow the created entity since you
will shift the properties from the format they come in into the ontologies format. For this example, the suggested
class names are “ws_ppl”, “ws_org”, and “ws_post”.

Destination Models

The data and ontology model option dropdown menus should list the model to ingest into. This is where we select
one of those 'workspace' models we created earlier, "csv-ingest" for example.

After clicking convert we can check our RDF conversion through two methods, the first method being the quickest.

1. From the Ingest Menu, select the 'Manage Jena Models' and then select the ingest model's 'output model.'
This is something you can open with WordPad and see the created triples for your CSV file.

2. Also from the Manage Jena Model we can attach the ingest model to the current webapp. Then we can go
back to the Site Admin, select Class Hierarchy link, select 'All Classes' and navigate to the Class Name you
created (individual, for example).

Click 'Next Step.' Here you will create the URI for your new individuals.
Select URI prefix

It is most convenient if this matches the URL for your VIVO instance plus '/individual/', e.g. http://
vivo.university.edu/individual/.

URI suffix
This can be a random number or a created based on a pattern plus the value from your CSV file.

Now, click 'Convert CSV.' The CSV data should now be converted into temporary RDF and inserted into the 'csv-
ingest' model.

You can now repeat step 3 for both organizations.csv and positions.csv before continuing to assure positions will be
attached to both people and organizations, or for simplicity, you can ignore organizations and positions for now.

Step 4: Confirm data property URIs and RDF structure

The CSV to RDF tool converts the CSV into temporary RDF that we can query using SPARQL. This temporary RDF
cannot be displayed in VIVO. We will transform the RDF into the VIVO/ISF ontology format in the next step. First,
take a look at the temporary RDF we have created.

Ingested Data URIs

Confirm the data property URI's that were created for each of the columns in your csv file by navigating back to the
'Manage Jena Models' page and clicking 'output model' below csv-ingest. A description of the format is described in
the figure below. The predicates are the properties we need for our SPARQL Query. If you used the 'http://localhost/
vivo/' (see page 71) format used above, it should look similar to this:

Managing Data in Your VIVO - 76


http://vivo.university.edu/individual/
http://vivo.university.edu/individual/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http:/fvivo.university.edu/individual/Z2674B03>
a <http://localhost/vivosfws_ppl> ;
<http://localhost/vivo/ws_ppl_email=
"KatherynR@univ.edu" ;
=http://localhost/vivo/ws_ppl_Tax=
"QR3.777.30960" ;
<http://localhost/vivo/ws_ppl_Tirst>
"Ruben" ;
<http://localhost/vivo/ws_ppl_last>
"Katheryn" ;
<http://localhost/vivo/ws_ppl_middle=
"Holt" ;
<http://localhost/vivo/ws_ppl_name=
"Katheryn, Ruben Holt" ;
=http://localhost/vivo/ws_ppl_person_ID=
"2217"
<http://localhost/vivo/ws_ppl_phone=
"O63.555.7578" ;
<http://localhost/vivo/ws_ppl_title>
"Assistant Professor" .

Data property
predicates

We will use these data property predicates (e.g. <http://localhost/vivo/ws_ppl_email>) in the 'WHERE' part of the

next step.

Step 5: Convert temporary RDF into VIVO/ISF ontology using SPARQL CONSTRUCT

Now, we must query and CONSTRUCT new RDF that is mapped to the VIVO/ISF ontology. Diagrams to help visualize
the VIVO/ISF ontology model are available on the wiki at https://wiki.duraspace.org/x/ycCdB. Some helpful links to
information on SPARQL queries can be found at https://wiki.duraspace.org/x/lwUGAg. Basically, we will query the
database for the triples in Step 4 to pull out the resource URIs and store them in variables (e.g. http://
vivo.university.edu/individual/2674803 — ?person) in the WHERE part of the query. We then CONSTRUCT new
triples that are in the proper VIVO/ISF format using those variables for the resource URIs (e.g. ?person) and data

values (e.g. ?fullname).

Return to the ingest menu and click 'Execute SPARQL CONSTRUCT'
Example SPARQL query for people.csv:

Managing Data in Your VIVO - 77


https://wiki.duraspace.org/x/ycCdB
https://wiki.duraspace.org/x/lwUGAg
http://vivo.university.edu/individual/2674803
http://vivo.university.edu/individual/2674803

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

CONSTRUCT {

?person <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://vivoweb.org/ontology/
core#fFacultyMember> .
?person <http://www.w3.0rg/2000/01/rdf-schema#label> ?fullname..

?person <http://purl.obolibrary.org/obo/ARG_2000028> ?vcard .

?vcard <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/ns#Individual> .
?vcard <http://www.w3.0rg/2006/vcard/ns#hasName> ?vcard_name.

?vcard_name <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/
ns#Name> .

?vcard_name <http://www.w3.0rg/2006/vcard/ns#givenName> ?first .
?vcard_name <http://vivoweb.org/ontology/core#middleName> ?middle .
?vcard_name <http://www.w3.0rg/2006/vcard/ns#familyName> ?last .

?vcard <http://www.w3.0rg/2006/vcard/ns#hasEmail> ?vcard_email .

?vcard_email <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/
ns#Email> .

?vcard_email <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/
ns#Work> .

?vcard_email <http://www.w3.0rg/2006/vcard/ns#email> ?email .

}
WHERE {

?person <http://localhost/vivo/ws_ppl_name®!> ?fullname .

OPTIONAL { ?person <http://localhost/vivo/ws_ppl_first®2> ?first . }
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_middle®3> ?middle . }
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_last®>?last .}
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_email®> ?2email . }
?person <http://localhost/vivo/ws_ppl_person_ID8> ?hrid .
BIND(URI(CONCAT(STR( ?person ), "_vcard")) AS ?vcard) .
BIND(URI(CONCAT(STR( ?person ), "_vcardname")) AS ?vcard_name) .
BIND(URI(CONCAT(STR( ?person ), "_vcardemail")) AS ?vcard_email ) .

+ Select Source Model (‘csv-ingest’)

« Select Destination Model (‘csv-construct’)

«+ Select "Execute CONSTRUCT"

« Upon completion, the system will report ‘n statements CONSTRUCTed’.

Note, the BIND statements in the query allow us to create unique URIs for the associated vCard objects required in
VIVO v1.6+.

81 http://vivo.coop-plus.eu/ws_ppl_name

82 http://vivo.coop-plus.eu/ws_ppl_first

83 http://vivo.coop-plus.eu/ws_ppl_middle

84 http://vivo.coop-plus.eu/ws_ppl_last

85 http://vivo.coop-plus.eu/ws_ppl_email

86 http://vivo.coop-plus.eu/ws_ppl_person_ID

Managing Data in Your VIVO - 78


http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://vivoweb.org/ontology/core#FacultyMember
http://vivoweb.org/ontology/core#FacultyMember
http://www.w3.org/2000/01/rdf-schema#label
http://purl.obolibrary.org/obo/ARG_2000028
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Individual
http://www.w3.org/2006/vcard/ns#hasName
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Name
http://www.w3.org/2006/vcard/ns#Name
http://www.w3.org/2006/vcard/ns#givenName
http://vivoweb.org/ontology/core#middleName
http://www.w3.org/2006/vcard/ns#familyName
http://www.w3.org/2006/vcard/ns#hasEmail
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Email
http://www.w3.org/2006/vcard/ns#Email
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Work
http://www.w3.org/2006/vcard/ns#Work
http://www.w3.org/2006/vcard/ns#email
http://vivo.coop-plus.eu/ws_ppl_name
http://vivo.coop-plus.eu/ws_ppl_name
http://vivo.coop-plus.eu/ws_ppl_first
http://vivo.coop-plus.eu/ws_ppl_first
http://vivo.coop-plus.eu/ws_ppl_middle
http://vivo.coop-plus.eu/ws_ppl_middle
http://vivo.coop-plus.eu/ws_ppl_last
http://vivo.coop-plus.eu/ws_ppl_last
http://vivo.coop-plus.eu/ws_ppl_email
http://vivo.coop-plus.eu/ws_ppl_email
http://vivo.coop-plus.eu/ws_ppl_person_ID
http://vivo.coop-plus.eu/ws_ppl_person_ID

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Step 6: Load to Webapp

The live webapp that is indexed does not allow for models to just be attached. Attaching models works well for
seeing what we have constructed or ingested or smushed, but those models are lost when Tomcat refreshes.

The final step is to output the final model and add it into the current model

1.

PN~ WN

From the Ingest Menu, select "Manage Jena Models"

Click "output model" below 'csv-construct'

Save the resulting file

Navigate back to the Site Administration page

Select Add/Remove RDF

Browse to the file previously saved

Select N3 as import format*

Confirmation should state ‘Added RDF from file people_rdf. Added 415 statements.’

The output engine uses N3, not RDF/XML. This is important to note when adding the ‘output mode’ RDF data
into the webapp. RDF/XML is the default setting for the drop down list as most ontologies are written in RDF/
XML.

The ingested data should now display in both the index and the search results. It is part of the main webapp and
will be retained upon a Tomcat restart. The founding steps of data ingest have been completed. Repeat steps 4 and
5 for organizations and people using the SPARQL queries supplied in the appendix below.

7.1.1.3 Appendix A: SPARQL Queries

People Construct:

CONSTRUCT {

?person <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://vivoweb.org/ontology/
core#fFacultyMember>.
?person <http://www.w3.0rg/2000/01/rdf-schema#label> ?fullname .

?person <http://purl.obolibrary.org/obo/ARG_2000028> ?vcard .

?vcard <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/ns#Individual> .
?vcard <http://www.w3.0rg/2006/vcard/ns#hasName> ?vcard_name.

?vcard_name <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.0rg/2006/vcard/
ns#Name>.

?vcard_name <http://www.w3.0rg/2006/vcard/ns#givenName> ?first .
?vcard_name <http://vivoweb.org/ontology/core#middleName> ?middle .
?vcard_name <http://www.w3.0rg/2006/vcard/ns#familyName> ?last .

?vcard <http://www.w3.0rg/2006/vcard/ns#hasEmail> ?vcard_email .

?vcard_email <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2006/vcard/
ns#Email> .

?vcard_email <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2006/vcard/
ns#Work> .

Managing Data in Your VIVO - 79


http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://vivoweb.org/ontology/core#FacultyMember
http://vivoweb.org/ontology/core#FacultyMember
http://www.w3.org/2000/01/rdf-schema#label
http://purl.obolibrary.org/obo/ARG_2000028
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Individual
http://www.w3.org/2006/vcard/ns#hasName
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Name
http://www.w3.org/2006/vcard/ns#Name
http://www.w3.org/2006/vcard/ns#givenName
http://vivoweb.org/ontology/core#middleName
http://www.w3.org/2006/vcard/ns#familyName
http://www.w3.org/2006/vcard/ns#hasEmail
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Email
http://www.w3.org/2006/vcard/ns#Email
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2006/vcard/ns#Work
http://www.w3.org/2006/vcard/ns#Work

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?vcard_email <http://www.w3.0rg/2006/vcard/ns#email> 2email .

}
WHERE {

?person <http://localhost/vivo/ws_ppl_name®’> ?fullname .

OPTIONAL { ?person <http://localhost/vivo/ws_ppl_first®®> first . }
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_middle®> ?middle . }
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_last?®> ?last . }
OPTIONAL { ?person <http://localhost/vivo/ws_ppl_email®*> 2email . }
?person <http://localhost/vivo/ws_ppl_person_ID%> ?hrid .
BIND(URI(CONCAT(STR( ?person ), "_vcard")) AS ?vcard ) .
BIND(URI(CONCAT(STR( ?person ), "_vcardname")) AS ?vcard_name) .
BIND(URI(CONCAT(STR( ?person ), "_vcardemail")) AS ?vcard_email ) .

}

Organization Construct:

CONSTRUCT {

?org <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> ?type_uri .
?org <http://localhost/vivo/ontology/vivo-local#orgID?3> 2deptID .
?org <http://www.w3.0rg/2000/01/rdf-schematlabel> ?name.

}

WHERE {

?org <http://localhost/vivo/ws_org_org_ID%*> 2deptID .
?org <http://localhost/vivo/ws_org_org_name®>?name.
?org <http://localhost/vivo/ws_org_org_vivo_uri®®> 2type .
BIND(URI(?type) as ?type_uri)

}

Basic Position to People & Organization Construct:

Note: The example query does not account for start dates

87 http://vivo.coop-plus.eu/ws_ppl_name

88 http://vivo.coop-plus.eu/ws_ppl_first

89 http://vivo.coop-plus.eu/ws_ppl_middle

90 http://vivo.coop-plus.eu/ws_ppl_last

91 http://vivo.coop-plus.eu/ws_ppl_email

92 http://vivo.coop-plus.eu/ws_ppl_person_ID

93 http://vivo.coop-plus.eu/ontology/vivo-local#orgID
94 http://vivo.coop-plus.eu/ws_org_org_ID

95 http://vivo.coop-plus.eu/ws_org_org_name

96 http://vivo.coop-plus.eu/ws_org_org_vivo_uri

Managing Data in Your VIVO - 80


http://www.w3.org/2006/vcard/ns#email
http://vivo.coop-plus.eu/ws_ppl_name
http://vivo.coop-plus.eu/ws_ppl_name
http://vivo.coop-plus.eu/ws_ppl_first
http://vivo.coop-plus.eu/ws_ppl_first
http://vivo.coop-plus.eu/ws_ppl_middle
http://vivo.coop-plus.eu/ws_ppl_middle
http://vivo.coop-plus.eu/ws_ppl_last
http://vivo.coop-plus.eu/ws_ppl_last
http://vivo.coop-plus.eu/ws_ppl_email
http://vivo.coop-plus.eu/ws_ppl_email
http://vivo.coop-plus.eu/ws_ppl_person_ID
http://vivo.coop-plus.eu/ws_ppl_person_ID
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://vivo.coop-plus.eu/ontology/vivo-local#orgID
http://vivo.coop-plus.eu/ontology/vivo-local#orgID
http://www.w3.org/2000/01/rdf-schema#label
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_org_org_name
http://vivo.coop-plus.eu/ws_org_org_name
http://vivo.coop-plus.eu/ws_org_org_vivo_uri
http://vivo.coop-plus.eu/ws_org_org_vivo_uri

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

CONSTRUCT {

?position <http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type> <http://vivoweb.org/ontology/
core#fFacultyPosition>.

?position <http://www.w3.0rg/2000/01/rdf-schema#label> ?poslabel .

?position <http://vivoweb.org/ontology/coretrelates> ?org .

?position <http://vivoweb.org/ontology/coretrelates> ?person .

}
WHERE {

lorg <http://localhost/vivo/ws_org_org_lD97> ?deptID.

lorg <http://localhost/vivo/ws_org_org_name98> 7name.

?position <http://localhost/vivo/ws_post_department_ID%> ?postOrgID .
?org <http://localhost/vivo/ws_org_org 1D ?orglD .
FILTER((?postOrgID)=(?orgID))

?position <http://localhost/vivo/ws_post_department_ID¥1> 2orgID .
?position <http://localhost/vivo/ws_post_person_ID¥%%> ?posthrid .
?position <http://localhost/vivo/ws_post_job_title> ?poslabel .
?person <http://localhost/vivo/ws_ppl_person_ID13> ?perhrid .
FILTER((?posthrid)=(?perhrid))

}

7.1.2 Data types for string and language

& VIVO 1.10 implements RDF 1.1 and Jena 3. These changes impact the datatypes for strings and the use of
the lang tag to indicate the language of the string. Please read these recommendations carefully.
Jena2tools and Jena3tools will convert from previous representations to the representations
recommended here.

97 http://vivo.coop-plus.eu/ws_org_org_ID

98 http://vivo.coop-plus.eu/ws_org_org_name

99 http://vivo.coop-plus.eu/ws_post_department_ID
100 http://vivo.coop-plus.eu/ws_org_org_ID

101 http://vivo.coop-plus.eu/ws_post_department_ID
102 http://vivo.coop-plus.eu/ws_post_person_ID

103 http://vivo.coop-plus.eu/ws_ppl_person_ID

Managing Data in Your VIVO - 81


http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://vivoweb.org/ontology/core#FacultyPosition
http://vivoweb.org/ontology/core#FacultyPosition
http://www.w3.org/2000/01/rdf-schema#label
http://vivoweb.org/ontology/core#relates
http://vivoweb.org/ontology/core#relates
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_org_org_name
http://vivo.coop-plus.eu/ws_org_org_name
http://vivo.coop-plus.eu/ws_post_department_ID
http://vivo.coop-plus.eu/ws_post_department_ID
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_org_org_ID
http://vivo.coop-plus.eu/ws_post_department_ID
http://vivo.coop-plus.eu/ws_post_department_ID
http://vivo.coop-plus.eu/ws_post_person_ID
http://vivo.coop-plus.eu/ws_post_person_ID
http://vivo.coop-plus.eu/ws_ppl_person_ID
http://vivo.coop-plus.eu/ws_ppl_person_ID

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7.1.2.1 Literal Values

Jena 3 improves Jena's RDF 1.1 compatibility. Specifically, literal values are always stored internally with
datatypes. "Untyped" string literals are the same as the identical value typed as xsd:string. See the following
document for more information

https://jena.apache.org/documentation/migrate_jena2_jena3.html
For VIVO, this means that the two triples:

<subj> <pred> "value"
<subj> <pred> "value"*Axsd:string

will be treated as the same triple and only stored once in your triple store. As a result, when using the procedure
described below to upgrade your triple store from an earlier version of VIVO, you may find that the number of
triples in your triple store after the upgrade is lower than the number before the upgrade.

Any code, tools, parsers, utilities, or queries that expect to differentiate between these two triples will produce
results different than produced previously - RDF 1.1 no longer distinguishes between these two triples. In
particular, queries that limit results based on the xsd:string datatype will likely produce larger result sets, as
previously untyped triples are now typed as xsd:string internally.

Another way of saying this - any triple loaded into VIVO or Vitro that does not have a type will be typed as xsd:string
internally.

Exports from VIVO and Vitro will never include the xsd:string datatype. Literal values that do not have explicit types
are always assumed to be xsd:string.

As a result, we recommend that input process for VIVO do not include xsd:string datatypes on literals. While they
may be correct, and will result in the literal value being typed as xsd:string internally, export processes will not
include the xsd:string on output.

In RDF 1.0, a type could not be asserted with a language identifier. In RDF 1.1, a type can be asserted with a
language identifier. Untyped input with language identifiers were left as untyped internally in RDF 1.0. In RDF 1.1,
untyped input with language identifiers are assumed to have type rdf:langString. Exports from VIVO for triples with
language tags will never include the rdf:langString datatype. Literal values with language tags are always assumed
to be rdf:langString.

As a result, we recommend that input process for VIVO do not include datatypes on triples with language types.
While asserting rdf:langString is correct, and will result in the literal value being typed as rdf:langString internally,
export processes will not include the rdf:langString on output.

Code, tools, parsers, utilities based on RDF 1.0 should not be used with Vitro and VIVO 1.10.x All code, tools,
parsers, and utilities must support RDF 1.1.

On start-up of version 1.10.x, the triple store is checked to insure that it has been upgraded. If untyped literals are
found in the triple store, an error message will appear in the browser and the application will not start. The test
applies only to the content store. Itis possible that your content store could pass this test, but your configuration
triple store remains incompatible with Jena 3 and RDF 1.1. In such a case, your application may become unstable.

7.1.2.2 Recommendations

1. String literals should be untyped in RDF input to VIVO. Use "xxx" rather than "xxx"*"xsd:string
2. Langtags should be used with untyped string literals in RDF input to VIVO. Use "xxx"@fr-CA rather than
"xxx"@fr-CA*Mxsd:langString

Managing Data in Your VIVO - 82


https://jena.apache.org/documentation/migrate_jena2_jena3.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3. Langtags should be used on all strings which might render differently in different languages. Use "United
States"@en-US. For strings which are not rendered differently in different languages use a simple untyped
string literal. For example "0000-0001-2345-321X"

7.2 Exporting Data from VIVO

« Exporting All Data (see page 83)
» Exporting Selected Data (see page 83)

7.2.1 Exporting All Data

To export all data data from VIVO, use jena3tools, a command line utility provided with VIVO. jena3tools can export
the VIVO content and configuration into files in a format of your choosing. See http://github.com/vivo-project/
jenatools for more information.

7.2.2 Exporting Selected Data

To export selected data from VIVO, use a SPARQL query. See SPARQL Queries (see page 91). SPARQL can export data
in a variety of formats, including CSV, JSON, and RDF/XML.

7.3 Managing Person Identifiers

VIVO provides several means for specifying various identifiers with people. Sign on to VIVO as an editor and open
the Identity tab. You will see various identifiers supported by VIVO.

The table below lists the identity options provided by VIVO. Additional identifiers can be added by Extending the

VIVO ontology!®. See the Notes below the table for additional information regarding identity and identifiers in
VIVO.

Identifier Description Data Predicate Creates
or External
Object Link

sameAs owl sameAs assertion. Object  owl:sameAs No

See http://www.w3.org/TR/owl-ref/#sameAs-def

ORCID iD The Open Researcher and Contributor ID Object  vivo:orcidld Yes
See http://orcid.org

eRA Commons The US NIH Electronic Research Administration Data vivo:eRACommon  No
ID Commons ID. See https://commons.era.nih.gov/ sld

ISI Researcher Thomson Reuters Research ID Data vivo:researcherld No
ID See http://www.researcherid.com/

104 https://wiki.duraspace.org/display/VIVO/Extending+the+VIVO+ontology

Managing Data in Your VIVO - 83


http://github.com/vivo-project/jenatools
http://github.com/vivo-project/jenatools
https://wiki.duraspace.org/display/VIVO/Extending+the+VIVO+ontology
https://wiki.duraspace.org/display/VIVO/Extending+the+VIVO+ontology
https://wiki.duraspace.org/display/VIVO/Extending+the+VIVO+ontology
http://www.w3.org/TR/owl-ref/#sameAs-def
http://orcid.org
https://commons.era.nih.gov/
http://www.researcherid.com/

Identifier

Scopus ID

Health Care
Provider ID

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description Data Predicate Creates
or External
Object Link

Elsevier Scopus Author Identifier. Data vivo:scopusld Yes

See http://help.scopus.com/Content/
h_autsrch_intro.htm

Generic field for holding a health care provider ID  Data obo:ARG_000019 No
of the institution's choice. 7

7.3.1 Notes

1. Many identifiers are configured by default to not be publicly displayed. To change the display level of an
identifier, go to Site Admin > Property Groups, select the identifier in the identity section and then click Edit
Property Record. Alternatively, make the change in initialTBoxAnnotations.n3.

g

sameAs can be configured as supported or unsupported in VIVO. See VIVO v1.6 release planning!®

3. ORCID can be configured for integration with the ORCID. See Activating the ORCID integration (see page 272)

a.

To add ORCID identifiers using RDF, assert the triple associating the personURI with orcidURI:
<personURI> <vivo:orcidld> <orcidURI>, where orcidURI looks like http://orcid.org/xxxx-xxxx-xxxx-
XXXX

b. Add asecond triple to assert that the orcidURI is a thing: <orcidURI> a owl:Thing.

e.

When these two triples are added for a person, the VIVO interface will report the ORCID as
unconfirmed.

ORCID iD  Confirm the ID

http://orcid.org/0000-0002-1304-8447 (pending confirmation) | &

The user can logon to VIVO, select "Confirm the ID" and enter their ORCID password. The ORCID iD
will then be confirmed in VIVO.

Or you can confirm the ORCID by adding another triple to VIVO: <orcidURI>

vivo:confirmedOrcidld <personURI>

4. Fora SCOPUS ID, VIVO provides a link to SCOPUS at http://www.scopus.com/authid/detail.url?
authorld=nnnnnnnn

7.4 Managing Organization Hierarchy

o Overview (see page 85)

« "hasPart, partOf" (see page 85)

+ Your Organizational Data (see page 85)
« Making Triples (see page 86)

Notes regarding the triples (see page 87)

« Managing the Triples in VIVO (see page 87)

Add the triples to VIVO (see page 87)
Updating your triples in VIVO (see page 89)

+ Some Closing Observations (see page 89)

105 https://wiki.duraspace.org/display/VIVO/VIVO+v1.6+releaset+planning#VIVOvl.6releaseplanning-sameAs

Managing Data in Your VIVO - 84


http://help.scopus.com/Content/h_autsrch_intro.htm
http://help.scopus.com/Content/h_autsrch_intro.htm
https://wiki.duraspace.org/display/VIVO/VIVO+v1.6+release+planning#VIVOv1.6releaseplanning-sameAs
https://wiki.duraspace.org/display/VIVO/VIVO+v1.6+release+planning#VIVOv1.6releaseplanning-sameAs
http://orcid.org/xxxx-xxxx-xxxx-xxxx
http://orcid.org/xxxx-xxxx-xxxx-xxxx
http://www.scopus.com/authid/detail.url?authorId=nnnnnnnn
http://www.scopus.com/authid/detail.url?authorId=nnnnnnnn

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7.4.1 Overview

VIVO can be used to mange the hierarchical structure, or organizational chart, of any organization. We describe
how VIVO represents organizational structure, and how to create data that can be loaded into VIVO to represent the
structure of an organization. The Sample Data (see page 51) has a sample university, with sample colleges and
departments, illustrating the techniques described here.

7.4.2 "hasPart, partOf"

VIVO uses the Basic Formal Ontology "hasPart" to indicate that organization A "hasPart" organization B. Sample
University has a College of Science. We say College of Science "partOf" Sample University. VIVO will automatically
assert Sample University "hasPart" College of Science.

The Basic Formal Ontology has been implemented as part of the Open Biomedical Ontologies (OBO). They have
coded "hasPart" as "BFO_0000051" and "partOf" is "BFO_0000050" VIVO uses the OBO representation which can
be found here: http://purl.obolibrary.org/obo/

7.4.3 Your Organizational Data

To manage organizations in VIVO, you will need to create data representing your organizations and your
organizational structure. This is easy to do using a spreadsheet. Simply create one row for each organization in
your institution. For example, the table below shows two colleges as part of Sample University, and each college
has one or more departments. The Department of Chemistry has a division - Organic Chemistry.

Your URI will contain your domain name. In this example we have structured the URI. VIVO URI always start with
the domain, followed by "/individual/" followed by a URI of your choice. Here we have used a tag "org" to indicate
URIs for organizations. This will make the URI easier to find. We then use the name of the organization, with each
word capitalized. URI must be unique. If two organizations within your institution have the same name, you will
need to make unique URI for each - you might add a "1" to the end of one of the URI, for example.

Add as many rows as it takes to represent the organizations within your institution. You can start with some, load
them to VIVO (see below), and create more rows and reload, eventually building up a complete set of organizations.

OrgURI Type Name PartOfURI
http://vivo.mydomain.edu/individual/ universit  Sample

orgSampleUniversity y University

http://vivo.mydomain.edu/individual/ college College of http://vivo.mydomain.edu/
orgCollegeOfScience Science individual/orgSampleUniversity
http://vivo.mydomain.edu/individual/ departm  Physics http://vivo.mydomain.edu/
orgPhysics ent individual/orgCollegeOfScience
http://vivo.mydomain.edu/individual/ departm = Chemistry http://vivo.mydomain.edu/
orgChemistry ent individual/orgCollegeOfScience
http://vivo.mydomain.edu/individual/ division Organic http://vivo.mydomain.edu/
orgOrganicChemistry Chemistry individual/orgChemistry

Managing Data in Your VIVO - 85


http://purl.obolibrary.org/obo/
http://vivo.mydomain.edu/individual/orgSampleUniversity
http://vivo.mydomain.edu/individual/orgSampleUniversity

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

OrgURI Type Name PartOfURI

http://vivo.mydomain.edu/individual/ college College of the  http://vivo.mydomain.edu/

orgCollegeOfTheArts Arts individual/orgSampleUniversity

http://vivo.mydomain.edu/individual/ departm  Theater and http://vivo.mydomain.edu/

orgTheaterAndDance ent Dance individual/orgCollegeOfTheArt
7.4.4 Making Triples

To load data into VIVO, you will make triples out of your organizational data. You can use tools such as Karma, SAS,
python, the VIVO Pump, VIVO Harvester, XSLT, your own scripts, or a text editor.

To load your organizational data into VIVO, you will transform your spreadsheet into triples. Each row of the
spreadsheet will result in three triples: 1) a triple that asserts that the OrgURI is an organization of a particular type;
2) a triple that asserts that the organization has a particular name; and 3) a triple that asserts that the organization
is part of another organization. Notice that the first row in the spreadsheet will generate two triples - Sample
University is not part of another organization. The other six rows will generate 3 triples each. We will have 20
triplesinall2+3 *6=20. The triples are shown below. Notes follow.

Sample Triples

<http://vivo.mydomain.edu/individual/orgSampleUniversity> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#University> .

<http://vivo.mydomain.edu/individual/orgSampleUniversity> <http://www.w3.0rg/2000/01/rdf-schema#label>
"Sample University"@en-US .

<http://vivo.mydomain.edu/individual/orgCollegeOfScience> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#College> .

<http://vivo.mydomain.edu/individual/orgCollegeOfScience> <http://www.w3.0rg/2000/01/rdf-schema#label>
"College of Science"@en-US .

<http://vivo.mydomain.edu/individual/orgCollegeOfScience> <http://purl.obolibrary.org/obo/BFO_0000050>
<http://vivo.mydomain.edu/individual/orgSampleUniversity> .
<http://vivo.mydomain.edu/individual/orgPhysics> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://
vivoweb.org/ontology/core#Department> .

<http://vivo.mydomain.edu/individual/orgPhysics> <http://www.w3.0rg/2000/01/rdf-schema#label> "Physics"@en-
us .

<http://vivo.mydomain.edu/individual/orgPhysics> <http://purl.obolibrary.org/obo/BFO_0000050> <http://
vivo.mydomain.edu/individual/orgCollegeOfScience> .

<http://vivo.mydomain.edu/individual/orgChemistry> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Department> .

<http://vivo.mydomain.edu/individual/orgChemistry> <http://www.w3.0rg/2000/01/rdf-schema#label>
"Chemistry"@en-US .

<http://vivo.mydomain.edu/individual/orgChemistry> <http://purl.obolibrary.org/obo/BFO_0000050> <http://
vivo.mydomain.edu/individual/orgCollegeOfScience> .
<http://vivo.mydomain.edu/individual/orgOrganicChemistry> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Division> .

<http://vivo.mydomain.edu/individual/orgOrganicChemistry> <http://www.w3.0rg/2000/01/rdf-schema#label>
"Organic Chemistry"@en-US .

<http://vivo.mydomain.edu/individual/orgOrganicChemistry> <http://purl.obolibrary.org/obo/BFO_0000050>
<http://vivo.mydomain.edu/individual/orgChemistry> .

Managing Data in Your VIVO - 86



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://vivo.mydomain.edu/individual/orgCollegeOfTheArts> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#College> .

<http://vivo.mydomain.edu/individual/orgCollegeOfTheArts> <http://www.w3.0rg/2000/01/rdf-schema#label>
"College of the Arts"@en-US .

<http://vivo.mydomain.edu/individual/orgCollegeOfTheArts> <http://purl.obolibrary.org/obo/BFO_0000050>

<http://vivo.mydomain.edu/individual/orgSampleUniversity>
<http://vivo.mydomain.edu/individual/orgTheaterAndDance> <http //www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Department> .

<http://vivo.mydomain.edu/individual/orgTheaterAndDance> <http://www.w3.0rg/2000/01/rdf-schema#label>
"Theater and Dance"@en-US .

<http://vivo.mydomain.edu/individual/orgTheaterAndDance> <http://purl.obolibrary.org/obo/BFO_0000050>
<http://vivo.mydomain.edu/individual/orgCollegeOfTheArts> .

7.4.4.1 Notes regarding the triples

1.

The triples are shown in N-triples format!®® and should be stored in a file with the file type ".nt" Elements of

the triples are either URI (in brackets) or strings (in double quotes with a language tag). Each triple ends with
a period.

. Each triple is of the form subject predicate object. The subject is always a URI (in brackets) and is a URI you

specify in your table of data.

. The predicates are from the ontologies VIVO uses to represent data. They are also always URI (in brackets).

There are three kinds of assertions being made. Each has its own predicate:
a. The predicate to assert a type is <http://www.w3.0rg/1999/02/22-rdf-syntax-nsttype>
b. The predicate to assert a name, known as a label, is <http://www.w3.0rg/2000/01/rdf-schemat#label>
c. The predicate to assert that the organization is part of another organization is <http://
purl.obolibrary.org/obo/BFO_0000050>

7.4.5 Managing the Triples in VIVO

Now that we have triples representing our organizations and their organization hierarchy, its easy to load them into
VIVO and update them as necessary. We will load the triples into a "named graph." This is just a collection of
triples with a name. We will use a named graph to make it easy to update - we'll just empty the named graph and
reload it. That way we can be sure that the data in the file of triples is the data in the named graph.

7.4.5.1 Add the triples to VIVO

1.

Sign on VIVO as a system administrator.

2. Navigate to Site Admin > Advanced Data Tools > Ingest Tools > Manage Jena Models
3.
4. Enter the name of your model. Your name must be valid as part of a URI (no spaces). Your might call your

At the top, click on the button "Create Model"

model "orgtest"

106 https://en.wikipedia.org/wiki/N-Triples

Managing Data in Your VIVO - 87


https://en.wikipedia.org/wiki/N-Triples
https://en.wikipedia.org/wiki/N-Triples

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

5. Vitro creates a model with your name. Find itin the list of models. You should see:

Ingest Menu > Available Jena Models

Main Store Models I Configuration Models I

Create Model I

Currently showing Main Store models

http://vitro.mannlib.cornell.edu/a/graph/orgtest

load RDF data I output model clear statements I remove I

attach snapshot to ontology I detach snapshot from ontology I generate permanent URIs I

Click "load RDF data"

Click Choose file and select your file of triples

Click on the selector to indicate that your file is in "N-triples" format
9. Click Load Data

o N

You're done! You have your organizations and your organizational hierarchy data in VIVO. You can navigate to one
of your organizations and see the hierarchical information:

Photo @ JX L Edit this individual Verbose property display is off |

. Resource URI: http://vivo.mydomain.edu/individual/orgChemistry

Chemistry ¢ | Department

- <X Temporal Graph
Websites py

{0 Map of Science

Overview @

Overview Affiliation Publications Research Service Contact Identity Other View All

organization for training ©

people ©

has sub-organization @

Organic Chemistry | 2 fii

organization within @

College of Science | 2

Managing Data in Your VIVO - 88



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7.4.5.2 Updating your triples in VIVO

When you have organizational data to update - a new organization has been added, an organizational change has
been made, an organization has a new name, you discovered an error in your data, or for any other reason, update
the file with your triples and follow the steps below to replace your organizational data in VIVO with the
organizational data in your file.

1. Signon VIVO as a system administrator.

2. Navigate to Site Admin > Advanced Data Tools > Ingest Tools > Manage Jena Models

3. Find your organization named graph it in the list of models.

4. Carefully click "clear statements" for your organization named graph. Be careful not to clear the statements
of any other models.

5. Click "Load RDF data"

6. Click Choose file and select your file of triples

7. Click on the selector to indicate that your file is in "N-triples" format

8. Click Load Data

Your previous organization data has been replaced with your new organizational data.

7.4.6 Some Closing Observations

The basic technique for data management described here - creating triples, loading them into a named graph, and
updating the graph when data changes - can be used to manage any of your VIVO data. You can put people in one
graph, publications in another, grants in another, datasets in another, and manage each by creating triples and
updating graphs. You may wish to create repeatable processes for each of the kinds of data you are managing.
These processes should be based on tools of your choice - Karma, XSLT, or scripts you write.

The Ontology Reference (see page 310) provides details regarding how VIVO represents entities. Practice will lead to
familiarity and the VIVO community is always happy to help with any questions you may have.

7.5 Managing Data Packages

o Overview (see page 89)

« Add a data package (see page 90)

« Update a data package (see page 90)
« Delete a data package (see page 90)

« Available Data Packages (see page 90)

7.5.1 Overview

Data packages are sets of data represented using VIVO RDF in one of the supported VIVO RDF file formats - Turtle
(.ttl), Triples (.nt), Notation3 (.n3) or RDF-XML (.rdf) Data packages are typically produced as semi-static - they can
be loaded into VIVO and updated as needed. Data packages typically deliver statements about entities outside the
management of the particular VIVO.

VIVO manages data packages by creating a new graph for each package, containing the asserted triples for the data
package and named with the name of the data package file. The VIVO inferencer creates inferred triples for the
data packages and stored the inferred triples in the inference graph. When changes are made to the data package

Managing Data in Your VIVO - 89



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

file, the VIVO inferencer must be run to bring the inference graph up to date with the changes made in the asserted
graph for the data package.

An example of a data package would be the Grid data, representing the research organizations of the world. This
data set, maintained by Digital Science, contains more than 65,000 university, research institutes, funding agencies
and other organizations involved in research across the world. The data set contains the official name and
alternate names as well as abbreviations of names of the each organization, its geographic location, its type, date
of founding, parent, child and affiliated organizations, as well as persistent identifiers for the organization. The
data is available as a data package for VIVO at https://github.com/openvivo/grid-rdf

7.5.2 Add a data package
To add a data package to VIVO,

1. Place a copy of the data package file in vivo/home/rdf/abox/filegraph

2. Restart Tomcat. VIVO will add a new graph to the triple store containing the asserted triples in the data
package file. See Graph Reference (see page 305) for additional detail. The VIVO inferencer will infer additional
triples regarding the data package and add those triples to the vitro-kb-info graph. Again see Graph
Reference (see page 305). Note: the inferencer may take quite awhile to complete. Adding a package with tens
of thousands of new entities, each with dozens of attributes may take hours to reinference.

7.5.3 Update a data package
To update a data package:

1. Place a copy of the updated data package filein vivo/home/rdf/abox/filegraph

2. Restart Tomcat. VIVO will compare the contents of the triple store with the contents of the data package
file, and update the triples in the associate graph as needed. VIVO will then reinference the triple store.
Note: the inferencer may take quite awhile to complete.

7.5.4 Delete a data package
To delete a data package:

1. Remove the data package file from vivo/home/rdf/abox/filegraph

2. Restart Tomcat. VIVO will detect that the file is no longer present and remove the associated graph. The
inferencer will be run and triples in the inference graph associated with the deleted data package file will be
removed from the inference graph.

7.5.5 Available Data Packages

Data packages are available at the following locations:

1. Research organizations of the world. From http://gid.ac Available as CC-0 data. https://github.com/
openvivo/grid-rdf

2. Journals of the world. Compiled from CrossRef and NIH PubMed. More than 40K journals, each with title
and ISSN. https://github.com/OpenVIVO/OpenVIVOjournals

3. Dates. Dates with simple URI, known URI. Avoid creating multiple date entities for the same date. Link all
references to a date to a single date entity. https://github.com/OpenVIVO/date-rdf

4. Cities of the United States. Data for all cities in the United States with population 100K or more. Includes
lat/long. https://github.com/mconlon17/vivo-add-cities

Managing Data in Your VIVO - 90


https://github.com/openvivo/grid-rdf
http://gid.ac
https://github.com/openvivo/grid-rdf
https://github.com/openvivo/grid-rdf
https://github.com/OpenVIVO/OpenVIVOjournals
https://github.com/OpenVIVO/date-rdf
https://github.com/mconlon17/vivo-add-cities

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7.6 SPARQL Queries

Overview (see page 91)

Running SPARQL queries (see page 91)
Using SPARQL for reporting (see page 92)
Using SPARQL to clean data (see page 93)
DESCRIBE queries (see page 93)

ASK Queries (see page 95)

Additional SPARQL Resources (see page 95)

7.6.1 Overview

SPARQL is a query language for RDF-based systems such as Vitro and VIVO. Using SPARQL one can extract any
information from VIVO or Vitro, producing reports, or providing data for other software such as visualizations or
user interfaces.

7.6.2 Running SPARQL queries

To run a SPARQL query, navigate to Site Admin > Sparqgl query. You will see a page similar to the one below. Note
that the text is in various colors. VIVO uses the YASQE editor for SPARQL. You can read more about its features at
their web site. See http://yasqe.yasgui.org/ At the top of the Query window are SPARQL prefix declarations for
VIVO. These provides abbreviations for various URLs you use in your SPARQL queries. For more on SPARQL, see
Learning SPARQL. http://learningspargl.com Below the prefix declarations is the actual SPARQL query.

SPARQL Query
Query:
1/ PREFLX ocrer: <NTTP://Puri.org/net/UCKe/ researcn.owLs> xn
18 PREFIX ocresd: <http://purl.org/net/OCRe/study_design.owl#> XM
19 PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
20 PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>
21 PREFIX vitro-public: <http://vitro.mannlib.cornell.edu/ns/vitro/public#>
22 PREFIX vivo: <http://vivoweb.org/ontology/core#>
23 PREFIX scires: <http://vivoweb.org/ontology/scientific-research#>

24
25
26
27
28
29
30
31
32

PREFIX core: <http://vivoweb.org/ontology/core#>

Select ?s ?p 70

~ where {

?s a vivo:Relationship .

}
ORDER BY ?s

Format for SELECT and ASK query results:

ORS_TEXT ()CSV (OTSV OORS_XML ()RS_JSON

Format for CONSTRUCT and DESCRIBE query results:
N-Triples @ RDF/XML N3 O Turtle ©)JSON-LD

The query in the figure above asks for a sorted list of the entities in VIVO that have type Relationship. RS_TEXT has
been selected as an output format. This will display in a browser window. Note that you can select CSV, or TSV.

These will download to your computer. You may also select RS_XML and RS_JSON - these will also display in your
browser window.

Managing Data in Your VIVO - 91


http://yasqe.yasgui.org/
http://learningsparql.com

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Running the above Query in OpenVIVO generates over 10,000 rows of output. The beginning of the output in JSON
format is shown below:

First few lines of JSON output for preceding query

"head": {
"VaI’S": [ Ilsll , Ilpll , Iloll ]
}
"results": {
"bindings": [
{
"s": { "type": "uri" , "value": "http://openvivo.org/a/doil10.4225/03/58ca600d726bd-authorshipl" }

bl

"s": { "type": "uri" , "value": "http://openvivo.org/a/doi10.4225/03/58ca600d726bd-authorship2" }

"s": { "type": "uri" , "value": "http://openvivo.org/a/doil0.6084/m9.figshare.2002020-
authorshipl" }
o
{
"s": { "type": "uri" , "value": "http://openvivo.org/a/doil10.6084/m9.figshare.2002200-
authorshipl" }
} )
{
"s": { "type": "uri" , "value": "http://openvivo.org/a/doil0.6084/m9.figshare.2002200-

authorship2" }
} 3

7.6.3 Using SPARQL for reporting

SPRQL can be used to extract data from VIVO for reporting. Using the TSV (tab separated values) output format, the
results of a SPARQL query can be downloaded from VIVO and uploaded to a spreadsheet, reporting or presentation
tool.

The query below makes a contact list for all people in particular academic unit.

#
# Find all the people with a position in the CTSI or any CTSI sub-unit,
# and list them alphabetically with phone, email, gatorlink, eracommons if any
#
SELECT ?person (MIN(DISTINCT ?xname) AS ?name)
(MIN(DISTINCT ?xphone) AS ?phone)
(MIN(DISTINCT ?xemail) AS ?email)
(MIN(DISTINCT ?xgatorlink) AS ?gatorlink)
(MIN(DISTINCT ?xeracommons) AS ?eracommons)
WHERE {
{?pos vivo:relates <http://vivo.ufl.edu/individual/n8763427> . ?pos a vivo:Position .}
UNION
{<http://vivo.ufl.edu/individual/n8763427> obo:BFO_0000051 ?sub .

Managing Data in Your VIVO - 92



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?pos vivo:relates ?sub . ?pos a vivo:Position .}
?pos vivo:dateTimeInterval ?dt .
OPTIONAL {?dt vivo:end ?end . }
FILTER (!BOUND(?end)) # current positions do not have end dates
?pos vivo:relates ?person . ?person a foaf:Person .
?person rdfs:label ?xname .
?person a ufVivo:UFCurrentEntity .
?person obo:ARG_2000028 ?vcard .
OPTIONAL { ?vcard vcard:hasEmail ?email_thing . ?email_thing vcard:email ?xemail .}
OPTIONAL { ?vcard vcard:hasTelephone ?tel_thing . ?tel_thing vcard:telephone ?xphone .}
OPTIONAL { ?person ufVivo:gatorlink ?xgatorlink .}
OPTIONAL { ?person vivo:eRACommonsId ?xeracommons .}
}
GROUP BY ?person
ORDER BY ?name

For additional examples, some much simpler than the example above, see Mike Conlon®"'s web site http://
mconlonl7.github.io/sparqgl

7.6.4 Using SPARQL to clean data

Using SPARQL queries, one can find triples meeting a criteria forimprovement. You might query for people without
labels, for example.

CONSTRUCT statements can be used to make triples that you would like to remove from your VIVO. Run the query
to make the triples, download them, then use System Admin > Add/Remove RDF data to Remove the triples you
have constructed. In a similar manner, you can construct improved triples and add them to you VIVO.

7.6.5 DESCRIBE queries

Vitro SPARQL supports DESCRIBE queries, but DESCRIBE is not well-defined by W3C standards, allowing
implementation specific variations. In Vitro, a request to DESCRIBE a URL will return all the triples with that URL as
the subject. So, for example:

A sample DESCRIBE query

DESCRIBE <http://openvivo.org/a/doil0.4225/03/58ca600d726bd>

returns

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://purl.obolibrary.org/obo/ARG_2000028> <http://
openvivo.org/a/doil0.4225/03/58ca600d726bd-vcard>

<http://openvivo.org/a/doil10.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/core#relatedBy> <http://
openvivo.org/a/doil0.4225/03/58ca600d726bd-authorship2>
<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.obolibrary.org/obo/BFO_0000031>

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://purl.obolibrary.org/obo/RO_0002353> <http://
openvivo.org/a/eventVIV02017>

107 https://wiki.duraspace.org/display/~mconlon

Managing Data in Your VIVO - 93


https://wiki.duraspace.org/display/~mconlon
https://wiki.duraspace.org/display/~mconlon
http://mconlon17.github.io/sparql
http://mconlon17.github.io/sparql

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://purl.org/ontology/bibo/abstract> "<div>This is
the pre-print version of a paper accepted in Open Repository Conference in Brisbane, Australia, June
2017.<b><br></b></div><div><br></div><b>Abstract\u00A0</b><div><b><br></b><div>Research Graph 1is an open
collaborative project that builds the capability for connecting researchers, publications, research grants
and research datasets (data in research). \u®OAGVIVO 1is an open source, semantic web platform and a set of
ontologies for representing scholarship. \uG®A®To provide interoperability between Research Graph data and
VIVO systems we modelled the Research Graph metamodel using the VIVO Integrated Semantic Framework. To
evaluate the mapping, we used the model to connect figshare RDF records to data collections in Research
Data Australia using Research Graph API. In addition, we are working toward loading Research Graph data
into a VIVO instance. \Uu®OAOVIVO provides a search capability, and pages for first class entities in the
Research Graph model -- researcher, dataset, grant, and publication. \u®00A®The result provides a
visualisation solution for co-authors, co-funding, timeline, and a capability map for finding expertise
related to concepts of interest. \u®GOAOThe resulting linked open data will be made freely available and can
be used in other tools for additional discovery.<br></div></div>"
<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://purl.org/ontology/bibo/doi>
"10.4225/03/58ca600d726bd"

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/corefdatePublished>
<http://openvivo.org/a/date2017-03-16>

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/core#relatedBy> <http://
openvivo.org/a/doil0.4225/03/58ca600d726bd-authorshipl>
<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://purl.org/ontology/bibo/freetextKeyword>
"Research Discovery"

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.0rg/2002/07/owl#Thing>

<http://openvivo.org/a/doil10.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/core#dateCreated> <http://
openvivo.org/a/date2017-03-16>

<http://openvivo.org/a/doil10.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.org/ontology/bibo/Document>

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://purl.org/ontology/bibo/freetextKeyword> "Linked
Open Data"

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://vitro.mannlib.cornell.edu/ns/vitro/
0.7#mostSpecificType> <http://vivoweb.org/ontology/core#ConferencePaper>
<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.obolibrary.org/obo/BFO_0000001>

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://www.w3.0rg/2000/01/rdf-schema#label> "Creating
an open linked data model for Research Graph using VIVO Ontology"
<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://purl.org/ontology/bibo/freetextKeyword> "Open
research outputs"

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.obolibrary.org/obo/IA0_0000030>

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.obolibrary.org/obo/BFO_0000002>

<http://openvivo.org/a/doi10.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/coret#fdateTimeValue>
<http://openvivo.org/a/date2017-03-16>

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://vivoweb.org/ontology/core#dateModified>
<http://openvivo.org/a/date2017-03-16>

<http://openvivo.org/a/doil0.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#ConferencePaper>

<http://openvivo.org/a/doil10.4225/03/58ca600d726bd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.org/ontology/bibo/Article>

Managing Data in Your VIVO - 94



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

7.6.6 ASK Queries

Vitro SPARQL supports ASK queries which return either true (there are triples that satisfy the pattern), or false
(there are no triples that satisfy the pattern). The query below will return true in most VIVOs and false in a new

VIVO.

ASK Query

ASK { ?s a vivo:Relationship . }

7.6.7 Additional SPARQL Resources

YASQUE, "YASQUE Home Page," web site. Last Accessed June 17, 2017. http://yasqe.yasgui.org/

Conlon, M. "Sample SPARQL: SPARQL scripts for getting information from your VIVO," web site. Last
Accessed June 17, 2017. http://mconlon17.github.io/spargl/

DuCharme, B. "Learning SPARQL," Wiley Publishing, 2011. 235 pages. http://www.learningspargl.com/
Apache Jena, "SPARQL Tutorial," web site. Last accessed June 17,2017. https://jena.apache.org/tutorials/
spargl.html

7.7 How to remove data from a specific graph

Using the Ingest Tools,

1.
2.

w

Go to Manage Jena Models and add a new, temporary model.

Use the "load RDF data" button below it to add to this temporary model the RDF you ultimately want to
delete.

Go to back to the Ingest Tools menu, select Subtract One Model from Another.

Set "model to be subtracted from" and "model in which difference should be saved" to the graph you
wanted to delete from in the first place. Set "model to subtract” to the temporary graph you just created.
Run the subtraction.

Go back to Manage Jena Models and remove the temporary model.

7.8 Removing Entities from VIVO

« General Method (see page 96)
« Examples (see page 96)

« Remove publications by type (see page 96)
o Article (see page 96)
o BooK (see page 96)
« Case Study (see page 96)
« Conference Paper (see page 97)
« Editorial Article (see page 97)
+ Proceedings (see page 97)
» Review (see page 97)
« Academic Article (see page 97)
« Remove Other Entities (see page 98)

Managing Data in Your VIVO - 95


http://yasqe.yasgui.org/
http://mconlon17.github.io/sparql/
http://www.learningsparql.com/
https://jena.apache.org/tutorials/sparql.html
https://jena.apache.org/tutorials/sparql.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Journal (see page 98)

7.8.1 General Method

To remove entities from VIVO, run SPARQL queries to retrieve the triples for the entities as RDF. Then go to Site
Administration -> Advanced Data Tools -> Add or Remove RDF Data to upload the RDF to remove the triples for the
entities.

Entities that are involved in relationships will need more attention. The relationship involving the entity should
also be removed.

7.8.2 Examples

7.8.2.1 Remove publications by type
Run the following SPARQL CONSTRUCT queries to retrieve the triples associated with the entities:

Article

construct {
?s ?p 70 .
} where {
?s rdf:type bibo:Article .
?s ?p ?0

Book

construct {
?s ?p 70 .
} where {
?s rdf:type bibo:Book .
?s ?p 70

Case Study

construct {
?s ?p %0 .
} where {
?s rdf:type vivo:CaseStudy .

?s ?p ?0

Managing Data in Your VIVO - 96



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Conference Paper

construct {
?s ?p 70 .
} where {
?s rdf:type vivo:ConferencePaper .
?s 7p ?0

Editorial Article

construct {
?s ?p 70 .
} where {
?s rdf:type vivo:EditorialArticle .

?s ?p ?0

Proceedings

construct {
?s ?p %0 .
} where {
?s rdf:type bibo:Proceedings .

?s ?p ?0

Review

construct {
?s ?p 70 .
} where {
?s rdf:type vivo:Review .

?s ?p 7?0

Academic Article

construct {
?s ?p 70 .
} where {

?s rdf:type bibo:AcademicArticle .

Managing Data in Your VIVO - 97



?s ?p ?0

7.8.2.2 Remove Other Entities

Journal

construct {
?s ?p 70 .
} where {
?s rdf:type bibo:Journal .
?s ?p 7?0

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Managing Data in Your VIVO - 98



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8 Extending and Localizing VIVO

8.1 Overview

VIVO, and Vitro, its underlying technology, are open and flexible. There is significant opportunity to extend VIVO
and/or Vitro to accommodate the needs of your institution. No extensions are needed - VIVO contains a
comprehensive information representation for scholarship. Vitro provides a general purpose platform for semantic
data management.

Some of the topics in this section are very common - most sites want to localize their branding, many sites use
external authentication, and many sites use VIVO in languages other than english. Other topics are more advanced
and less common - creating custom editing forms, for example.

Take what you need and leave the rest.

« Internationalization (see page 99)
« VIVO en Espaniol (see page 111)
« VIVO in Mandarin (see page 122)
» Customizing the Interface (see page 123)
« Home page customizations (see page 127)
« Menu and page management (see page 136)
« Annotations on the ontology (see page 138)
« Class-specific templates for profile pages (see page 154)
 Excluding Classes from the Search (see page 159)
» Custom List View Configurations (see page 159)
« Creating short views of individuals (see page 167)
« Creating a custom theme (see page 181)
 Creating custom entry forms (see page 186)
« Enhancing Freemarker templates with DataGetters (see page 201)
« Enriching profile pages using SPARQL query DataGetters (see page 204)
« Multiple profile types for foaf:Person (see page 209)
« Using OpenSocial Gadgets (see page 213)
» How VIVO creates a page (see page 215)
« Tips for Interface Developers (see page 226)
« Deploying additional ontologies with VIVO (see page 229)
« Enable an external authentication system (see page 231)
» How User Accounts are Associated with Profile Pages (see page 231)
 Using a Tomcat Realm for external authentication (see page 232)
« Authorization (see page 234)
» Writing a controller for a secured page (see page 234)
+ Creating a VIVO authorization policy - an example (see page 238)
« Amore elaborate authorization policy (see page 244)
» The IdentifierBundle - who is requesting authorization? (see page 250)
« Linking to External Vocabularies (see page 252)
 Search Engine Optimization (SEO) (see page 254)

8.2 Internationalization

» VIVO Language Support (see page 100)
« Adding a language to your VIVO site (see page 101)

Extending and Localizing VIVO - 99



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Adding language files to VIVO (see page 101)
Translating VIVO into your language (see page 101)
The locale (see page 101)
The language files (see page 101)
+ Text strings (.properties) (see page 102)
» Freemarker Templates (.ftl) (see page 102)
« RDF data (.n3) (see page 103)
» The selection image (.png, .jpeg, .gif) (see page 103)
» How can | contribute my language files to the VIVO community? (see page 104)
« Adding language support to your local modifications (see page 104)
« Language in the data model (see page 104)
» Language support in VIVO pages (see page 105)
« Structure of the properties files (see page 107)
« Local extension: application vs. theme (see page 108)
Language in Freemarker page templates (see page 108)
» Language-specific templates (see page 109)
« Language in Java code (see page 109)
« Language in JSPs (see page 110)
» Language in JavaScript files (see page 110)
« Tools you can use (see page 110)
« i18nChecker (see page 110)
« Scanning language properties files: (see page 111)
« Scanning Freemarker templates: (see page 111)

8.2.1VIVO Language Support

Multiple language support can mean many things. When a VIVO site supports a language other than English, that
support includes:

« Textthatis displayed in the VIVO pages.
« For example, menus, selections, prompts, tool-tips and plain text.
« Terms in the Ontology, which are frequently displayed as links or section headings.
« Labels and descriptions of properties and classes
+ Textin the data model.
« Forexample, if a book title is available in both French and English, a French-speaking user sees the
French title. If a title is available only in English, it is displayed, without regard to the user's
preference in languages.

Languages can be selected in a variety of ways, depending on the installation parameters:

« AVIVO installer can configure VIVO to use one of the supported languages.
« Different users may see different languages, depending on the settings in their web browser.
« Different users may select a language from a list of available languages.

Language support in VIVO is being implemented in phases:

« Phase 1lincludes read-only support of public pages:
« Pages that are visible to users who are not logged in.
« Also includes support of some administrative pages.
 Thisis currently available.
« Phase 2 will also provide read-write support of profile pages:
« Users will be able to edit language-specific data in profile pages.
« Phase 3 will support administrative pages
« Creating user accounts, manipulating RDF data and other administrative functions.

Extending and Localizing VIVO - 100



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

+ Phase 4 will support "back-end" pages.
+ Used to edit the ontology, or to do low-level editing on individual entities.

VIVO language files are available for English, Spanish, Brazilian Portuguese, and German. If you need support for
another language, please inquire of the VIVO mailing lists, to see if another group is already developing the files you
need.

8.2.2 Adding a language to your VIVO site

8.2.2.1 Adding language files to VIVO

VIVO is distributed with English as the only supported language. VIVO also includes a set of "pseudo-language" files,
as a demonstration of how language support is implemented.

Additional language files are available in the Git repositories at https://github.com/vivo-project/Vitro-languages
and https://github.com/vivo-project/VIVO-languages.

If the repository contains files for the language you want, in the VIVO release that you are using, you can just
download those files and install them.

8.2.2.2 Translating VIVO into your language

First, contact the VIVO development team (see page 0): we would love to talk to you. We will tell you if anyone else is
working on your language, and we will be happy to help with any questions you may have.

When you are ready to go ahead, you must determine the "locale" of your translation. Then you prepare
translations of twenty-one files, as shown below.

8.2.2.3 The locale

Your locale is an internationally recognized code that specifies the language you choose, and the region where it is
spoken. For example, the locale string fr_CA is used for French as spoken in Canada, and es_MX is used for Spanish
as spoken in Mexico. Recognized codes for languages and regions can be found by a simple Google search. Here is a
list of locales that are recognized by the Java programming language!®. You may also use this definitive list of
languages and regions'®, maintained by the Internet Assigned Numbers Authority.

The locale code will appear in the name of each file that you create. In the files that contain RDF data, the locale
code will also appear at the end of each line.

When the locale code appears in file names, it contains an underscore (en_uUsS). When it appears inside
RDF data files, it contains a hyphen (en-US).

8.2.2.4 The language files

You can get the Spanish or the English files from the VIVO and Vitro language repositories, to use as a template for
your own files.

108 http://www.oracle.com/technetwork/java/javase/javase7locales-334809.html
109 http://www.iana.org/assignments/language-subtag-registry

Extending and Localizing VIVO - 101


https://github.com/vivo-project/Vitro-languages
https://github.com/vivo-project/VIVO-languages
http://www.oracle.com/technetwork/java/javase/javase7locales-334809.html
http://www.oracle.com/technetwork/java/javase/javase7locales-334809.html
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The example that follow assume that you are creating files for the Estonian language, as spoken in Estonia, with the
locale et_EE.

Text strings (.properties)

These files contain about 1500 words and phrases that appear in the VIVO web pages. The page templates contain
more than just text - they contain programming logic and display specifiers.

These words and phrases have been removed from the page templates, so no programming knowledge is required
to translate them.

There is one file for phrases used in Vitro, the core around which VIVO is built, and one file for phrases that are
specific to VIVO. In the example, these two files are both called all_et_EE.properties.

Example file names

[Vitro]/webapp/languages/et_EE/i18n/all_et_EE.properties
[VIVO]/languages/et_EE/themes/wilma/i18n/all_et_EE.properties

Example content

minimum_image_dimensions = Minimaalne pildi méddud: {0} x {1} pikslit
cropping_caption = Profiilifoto ndeb alloleval pildil.

Freemarker Templates (.ftl)

Almost all of the text in the Freemarker templates is supplied by the text strings in the properties files. However,
some Freemarker templates are essentially all text, and it seemed simpler to create a translation of the entire
template. These include the help and about pages, the Terms of Use page, and the emails that are sent to new
VIVO users.

Example file names

[Vitro]/webapp/languages/et_EE/templates/freemarker/search-help_et_EE.ftl

[Vitro] /webapp/languages/et_EE/templates/freemarker/termsOfUse_et_EE.ftl
[Vitro]/webapp/languages/et_EE/templates/freemarker/userAccounts-acctCreatedEmail_et_EE.ftl

[Vitro] /webapp/languages/et_EE/templates/freemarker/userAccounts-acctCreatedExternalOnlyEmail_et_EE.ftl
[Vitro] /webapp/languages/et_EE/templates/freemarker/userAccounts-confirmemailChangedEmail_et_EE.ftl
[Vitro]/webapp/languages/et_EE/templates/freemarker/userAccounts-firstTimeExternalEmail_et_EE.ftl
[Vitro] /webapp/languages/et_EE/templates/freemarker/userAccounts-passwordCreatedEmail_et_EE.ftl
[Vitro]/webapp/languages/et_EE/templates/freemarker/userAccounts-passwordResetCompleteEmail_et_EE.ftl
[Vitro]/webapp/languages/et_EE/templates/freemarker/userAccounts-passwordResetPendingEmail_et_EE.ftl
[VIVO]/languages/et_EE/templates/freemarker/aboutMapOfScience_et_EE.ftl
[VIVO]/languages/et_EE/templates/freemarker/aboutQrCodes_et_EE.ftl
[VIVO]/languages/et_EE/templates/freemarker/mapOfScienceTooltips_et_EE.ftl

Example content

<section id="terms" role="region">
<h2>kasutustingimused</h2>

Extending and Localizing VIVO - 102



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<h3>Hoiatused</h3>

<p>
See ${termsOfUse.siteName} veebisait sisaldab materjali; teksti informatsiooni
avaldamine tsitaadid, viited ja pildid ikka teie poolt ${termsOfUse.siteHost}
ja erinevate kolmandatele disikutele, nii Uksikisikute ja organisatsioonide,
ari-ja muidu. Sel maaral copyrightable Siin esitatud infot VIVO veebilehel ja
kattesaadavaks Resource Description Framework (RDF) andmed alates VIVO at
${termsOfUse.siteHost} on mdéeldud avalikuks kasutamiseks ja vaba levitamise
tingimuste kohaselt
<a href="http://creativecommons.org/licenses/by/3.0/"

target="_blank" title="creative commons">
Creative Commons CC-BY 3.0

</a>
litsentsi, mis voéimaldab teil kopeerida, levitada, kuvada ja muuta derivaadid
seda teavet teile anda laenu ${termsOfUse.siteHost}.

</p>

</section>

RDF data (.n3)

Data in the RDF models includes labels for the properties and classes, labels for property groups and class groups,
labels for menu pages and more.

Example file names

[VIVO]/languages/et_EE/rdf/applicationMetadata/firsttime/classgroups_labels_et_EE.n3
[VIVO]/languages/et_EE/rdf/applicationMetadata/firsttime/propertygroups_labels_et_EE.n3
[VIVO]/languages/et_EE/rdf/display/everytime/PropertyConfig_et_EE.n3
[VIVO]/languages/et_EE/rdf/display/firsttime/aboutPage_et_EE.n3
[VIVO]/languages/et_EE/rdf/display/firsttime/menu_et_EE.n3
[VIVO]/languages/et_EE/rdf/tbox/firsttime/initialTBoxAnnotations_et_EE.n3

Example content

<http://vivoweb.org/ontology#vitroClassGrouppeople>
<http://www.w3.0rg/2000/01/rdf-schema#label> "inimesed"@et-EE .
<http://vivoweb.org/ontology#vitroClassGrouppublications>
<http://www.w3.0rg/2000/01/rdf-schema#label> "teadus"@et-EE .
<http://vivoweb.org/ontology#vitroClassGrouporganizations>
<http://www.w3.0rg/2000/01/rdf-schema#label> "organisatsioonid"@et-EE .
<http://vivoweb.org/ontology#vitroClassGroupactivities>
<http://www.w3.0rg/2000/01/rdf-schema#label> "tegevused"@et-EE .

The selection image (.png, .jpeg, .gif)

If you allow the user to select a preferred language, you must supply an image for the user to click on. Typically, this
image is of the flag of the country where the language is spoken.

Extending and Localizing VIVO - 103



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Example file names

[VIVO]/languages/et_EE/themes/wilma/i18n/images/select_locale_et_EE.gif

Example content

8.2.2.5 How can | contribute my language files to the VIVO community?

If you are planning to create a translation of VIVO, you should coordinate with the VIVO developers. When your files
are ready, you can make them available to the development team in any way you choose. Note that the VIVO
project will release your files under the Apache 2 License!'®. They will require a Contributor Agreement stating that
you agree to those terms.

8.2.3 Adding language support to your local modifications

If you make changes to the VIVO code or templates, you may want to add language support to your changes. This is
only necessary if your site supports multiple languages, or if you plan to contribute your code to the VIVO
community.

8.2.3.1 Language in the data model

The usual form of language support in RDF is to include multiple labels for a single individual, each with a language
specifier.

In fact, any set of triples in the data model are considered to be equivalent if they differ only in that the objects are
strings with different language specifiers. If language filtering is enabled, VIVO will display the value that matches
the user's preferred locale. If no value exactly matches the locale, the closest match is displayed.

Consider these triples in the data:

<http://abc.edu/individual/subjectl> <http://abc.edu/individual/propertyl> "coloring" .
<http://abc.edu/individual/subjectl> <http://abc.edu/individual/propertyl> "colouring"@en-UK .
<http://abc.edu/individual/subjectl> <http://abc.edu/individual/propertyl> "colorear"@es .

VIVO would display these values as follows:
User's preferred locale displayed text

en_UK colouring

en_CA colouring

110 http://www.apache.org/licenses/LICENSE-2.0.html

Extending and Localizing VIVO - 104


http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

User's preferred locale displayed text
es_MX colorear

fr_FR coloring

VIVO has limited language support for editing values in the GUI. It is possible to edit language-specific
labels for individuals. Language-specific values for other properties must be ingested into VIVO.

8.2.3.2 Language supportin VIVO pages

This section deals with the framework of the VIVO pages: the page titles, the prompts, the tool tips, the error
messages; everything that doesn't come from the data model. These pieces of text are not stored in RDF, so we
need a different mechanism for managing them.

The mechanism we use is based on the Java language's built-in framework for Internationalization. You can find

more information in the Java tutorials for resource bundlest** and properties files!!2,

"Internationalization" is frequently abbreviated as "118n", because the word is so long that there are 18 letters
between the first "I" and the last "n".

In the 118n framework, displayed text strings are not embedded in the Java classes or in the Freemarker template.
Instead, each piece of text is assigned a "key" and the code will ask the framework to provide the text string that is
associated with that code. The framework has access to sets of properties files, one set for each supported
language, and it will use the appropriate set to get the correct strings.

For example, suppose that we have:

+ The text that will appear in an HTML link, used to cancel the current operation, with the key cancel_1link.
« Thetitle of a page used to upload an image, with the key upload_image_page_title.
« The text of a prompt message, telling users how big an image must be, with the

key minimum_image_dimensions.

The default properties file might show the English language versions of these properties, like this:

Excerpt from all.properties

cancel_link = Cancel
upload_image_page_title = Upload image
minimum_image_dimensions = Minimum image dimensions: {0} x {1} pixels

Notice that the actual image dimensions are not part of the text string. Instead, placeholders are used to show
where the dimensions will appear when they are supplied. This allows us to specify the language-dependent parts
of a message in the properties file, while waiting to specify the language-independent parts at run time.

A Spanish language properties file might show the Spanish versions of these properties in a similar manner:

111 http://docs.oracle.com/javase/tutorial/il8n/resbundle/concept.html
112 http://docs.oracle.com/javase/tutorial/il8n/resbundle/propfile.html

Extending and Localizing VIVO - 105


http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Excerpt from all_es.properties
cancel_link = Cancelar

upload_image_page_title = Subir foto

minimum_image_dimensions = Dimensiones minimas de imagen: {0} x {1} pixels

To use these strings in Java code, start with the 118n class, and the key to the string. Supply values as needed to
replace any placeholders in the message.

Using 118n strings from Java code

protected String getTitle(String siteName, VitroRequest vreq) {
return Il18n.text(vreq, "upload_image_page_title);

private String getPrompt(HttpServletRequest req, int width, int height) {
return I18n.text(req, "minimum_image_dimensions", width, height);

Similarly, using text strings in a Freemarker template begins with the 118n () method.

Using 118n strings in a Freemarker template

<#assign text_strings = i18n() >

<a href="../cancel" >
${text_strings.cancel_link}

</a>

<p class="note">

${text_strings.minimum_image_dimensions(width, height)}
</p>

Here is the appearance of the page in question, in English and in Spanish:

Extending and Localizing VIVO - 106



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Photo Upload

Current Photo
Upload a photo rec, GIF or PNG)

| Browse. ..

Maximum file size: 6 megabytes
Minimum image dimensions: 200 x 200 pixels

Upload photo or Cancel

Subir foto

Foto actual
Suba foto yrec, GIF, o PNG)

| Browse... |

Tamafio maximo de archivo: 6 megabytes
Dimensiones minimas de imagen: 200 x 200 pixels

Structure of the properties files

The properties files that hold text strings are based on the Java 118n framework for resource bundles. Here is a

tutorial on resource bundles!3.

Most text strings will be simple, as shown previously. However, the syntax for expressing text strings is very
powerful, and can become complex. As an example, take this text string that handles both singular and plural:

A complex text string

deleted_accounts = Deleted {0} {0, choice, O#accounts |l#account |l<accounts}.

113 http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

Extending and Localizing VIVO - 107


http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The text strings are processed by the Java 118n framework for message formats. Here is a tutorial on message
formats!, Full details can be found in the description of the MessageFormat!!® class.

Local extension: application vs. theme

The Java 118n framework expects all properties files to be in one location. In VIVO, this has been extended to look in
two locations for text strings. First, it looks for properties files in the current theme directory. Then, it looks in the
main application area. This means that you don't need to include all of the basic text strings in your theme. But you
can still add or override strings in your theme.

If your VIVO theme is named "frodo", then your text strings (using the default bundle name) would be in

* webapp/themes/frodo/i18n/all.properties
« webapp/il8n/all.properties

If you specify a complex locale for VIVO, this search pattern becomes longer. For example, if your user has chosen
Canadian French as his language/country combination, then these files (if they exist) will be searched for text
strings:

* webapp/themes/frodo/i18n/all_fr_CA.properties
* webapp/il8n/all_fr_CA.properties

* webapp/themes/frodo/i18n/all_fr.properties

o webapp/il8n/all_fr.properties

* webapp/themes/frodo/i18n/all.properties
 webapp/il8n/all.properties

When VIVO finds a text string in one of these files, it uses that value, and will not search the remaining files.

8.2.3.3 Language in Freemarker page templates

Here is some example code from page-home. ftl

Excerpt from page-home.ftl

<section id="search-home" role="region">
<h3>${i18n().intro_searchvivo} <span class="search-filter-selected">filteredSearch</span></h3>
<fieldset>
<legend>${i18n() .search_form}</legend>
<form id="search-homepage" action="${urls.search}" name="search-home" role="search" method="post" >
<div 1id="search-home-field">

<input type="text" name="querytext" class="search-homepage" value="" autocapitalize="off" /

<input type="submit" value="${i18n().search_button}" class="search" />
<input type="hidden" name="classgroup" value="" autocapitalize="off" />

</div>

<a class="filter-search filter-default" href="#" title="${718n().intro_filtersearch}">
<span class="displace">${i18n().intro_filtersearch}</span>

</a>

<ul +id="filter-search-nav">
<li><a class="active" href="">${i18n().all_capitalized}</a></1i>
<@lh.allClassGroupNames vClassGroups! />

114 http://docs.oracle.com/javase/tutorial/i18n/format/messageintro.html
115 http://docs.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

Extending and Localizing VIVO - 108


http://docs.oracle.com/javase/tutorial/i18n/format/messageintro.html
http://docs.oracle.com/javase/tutorial/i18n/format/messageintro.html
http://docs.oracle.com/javase/tutorial/i18n/format/messageintro.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

</ul>
</form>
</fieldset>
</section> <!-- #search-home -->

This code lays out all of the formatting and markup, but the actual strings of text are retrieved from the property
files, depending on the current language and locale. Here are the English-language strings used by this code:

English properties used in the example

intro_searchvivo = Search VIVO
search_form = Search form
search_button = Search
intro_filtersearch = Filter search
all_capitalized = All

Language-specific templates

Most Freemaker templates are constructed like the one above; the text is merged with the markup at runtime. In
most cases, this results in lower maintenance efforts, since the markup can be re-structured without affecting the

text that is displayed.

In some cases, however, the template is predominantly made up of text, with very little markup. In these cases, it is
simpler to rewrite the entire template in the chosen language.

The Freemarker framework has anticipated this. When a template is requested, Freemarker will first look for a
language-specific version of the template that matches the current locale. So, if the current locale is es_MX, and a
request is made for termsOfUse. ft1, Freemarker will look for these template files:

Search order for termsOfUse.ftl
Current locale is es_MX
termsOfUse_es_MX.ftl
termsOfUse_es.ftl

termsOfUse. ftl

8.2.3.4 Language in Java code

Java code has access to the same language properties that Freemarker accesses. Here is an example of using a
language-specific string in Java code:

Excerpt from UserAccountsAddPageStrategy.java
FreemarkerEmailMessage email = FreemarkerEmailFactory.createNewMessage(vreq);

email.addRecipient(TO, page.getAddedAccount().getEmailAddress());
email.setSubject(il8n.text("account_created_subject", getSiteName()));

Extending and Localizing VIVO - 109



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The properties files contain this line:

English language properties used in the example

account_created_subject = Your {0} account has been created.

Note how the name of the VIVO site is passed as a parameter to the text message.

8.2.3.5 Language in JSPs
Up through VIVO release 1.7, no attempt has been made to add language support to JSPs.

8.2.3.6 Language in JavaScript files

There is no convenient way to access the i18n framework from JavaScript files. One workaround is to assign values
to JavaScript variables in the Freemarker template, and then access those values from the JavaScript.

For example, the template can contain this:

Excerpt from page-home.ftl

<script>
var i18nStrings = {
countriesAndRegions: '${i18n().countries_and_regions}',
statesString: '${i18n().map_states_string}',
</script>

And the script can contain this:

Excerpt from homePageMaps.js

if ( area == "global" ) {
text = " " + i18nStrings.countriesAndRegions;
}
else if ( area == "country" ) {
text = " " + i18nStrings.statesString;
}

8.2.4 Tools you can use

8.2.4.1i18nChecker

This is a set of Ruby scripts that are distributed with VIVO, in the utilities/languageSupport/il8nChecker
directory. Use them to scan your language properties files and your freemarker templates. The scripts look for
common errors in the files.

Extending and Localizing VIVO - 110



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Scanning language properties files:

« Warn if a specialized file has no default version.
« Warn about duplicate keys, keys with empty values.
« Warn about keys that do not appear in the default version.
« If the "complete" flag is set,
« Warn if the default version is not found.
« Warn about missing keys, compared to the default version.

Scanning Freemarker templates:

« Warn about visible text that contains other than blank space or Freemarker expressions.
+ Visible textis:
+ Anything thatis not inside a tag and not between <script> tags
title="" attributes on any tags
alert="" attributes on <img> tags
alt="" attributes on <img> tags
+ value="" attributes on <input> tags with submit attributes

8.2.5VIVO en Espafriol

La herramienta Web Semantica VIVO ha demostrado ser Gtil para la vinculacién de profesionales y cientificos en las
diferentes ramas de la ciencia. Mas alla de un simple directorio o red social, VIVO posee capacidades de
visualizacién y de intercambio de informacién importantes. VIVO es una herramienta "open source".

Con el soporte de VIVO para multiples idiomas, que viene con la version 1.6, esta pagina sera el centro de
informacién sobre VIVO en Espafiol para hispanohablantes:

+ ;Qué esVIVO?!1®

+ ;Como instalar? (see page 114)

« FAQ

+ Socios colaboradores: El proyecto de adaptacion de la herramienta VIVO en espariol ha sido un trabajo
coordinado entre la Universidad de Cornell, el Departamento de Agricultura de Estados Unidos y el Instituto

Interamericano de Cooperacion para la Agricultura (\CA™") iniciado en 2013.
« Listas de correo

« Comunidad de desarrolladores

Unase a las listas de correo™® para preguntas sobre la implementacién de VIVO, en Inglés o Espafiol.

8.2.5.1 ;Qué es VIVO?
{Qué esVIVO?

116 https://wiki.duraspace.org/pages/viewpage.action?pageld=34665478
117 http://www.iica.int
118 https://lists.sourceforge.net/lists/listinfo/vivo-imp-issues

Extending and Localizing VIVO - 111


https://wiki.duraspace.org/pages/viewpage.action?pageId=34665478
https://wiki.duraspace.org/pages/viewpage.action?pageId=34665478
http://www.iica.int
http://www.iica.int
https://lists.sourceforge.net/lists/listinfo/vivo-imp-issues
https://lists.sourceforge.net/lists/listinfo/vivo-imp-issues

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO es una plataforma web semantica de acceso abierto que permite descubrir la investigacién y el saber técnico
en las multiples disciplinas y extremos administrativos, por medio de perfiles profesionales vinculados e
informacién relacionada. VIVO fue desarrollado originalmente por la Universidad de Cornell, que luego del 2009 en
conjunto con otras cinco universidades en Estados Unidos, lo ampliaron como una herramienta capaz de integrar
perfiles entre varias instituciones. Asimismo, su adopcién facilita la colaboracién entre personas no solo en el
ambito interno de las organizaciones, sino entre los diferentes sectores. En 2013, el [ICA con ayuda del
Departamento de Agricultura de los Estados Unidos y la Universidad de Cornell iniciaron la adaptacién de la
herramienta al idioma espafiol.

VIVO se completa con informacidn acerca de investigadores, técnicos u otros individuos que les permite destacar
sus areas de experiencia, desplegar credenciales académicas, visualizar sus redes de trabajo y mostrar informacion
sobre publicaciones, proyectos, servicios y mas. Los perfiles profesionales y sus descripciones pueden ser
importados de manera programada de fuentes oficiales tales como registros institucionales, repositorios locales y
otras bases de datos bibliograficas.

VIVO y otras aplicaciones compatibles producen una extensa red de conocimiento entre instituciones,
organizacionesy agencias, las que en sus busquedas contribuyen al trabajo colaborativo, las sinergiasy a la
apertura del conocimiento. El software abierto de VIVO (en sus versiones en espafiol e inglés) y sus ontologias estan
disponibles publicamente, asi como los materiales de soporte para implementar, adoptar o desarrollar. Para mas
informacién, visite http://vivoweb.org.

La ciencia tangible

VIVO provee de herramientas de visualizacién y andlisis de redes que maximizan los beneficios con la utilizacién de
los datos disponibles. Esta herramienta permite que datos de alta calidad, como son investigadores, sus
colaborares y fuentes sean revelados, de tal manera que ofrece una visualizacion elegante del esfuerzo
investigador a nivel local, multinacional o global.

Extending and Localizing VIVO - 112


http://vivoweb.org

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

) VIVO Ee——
SR ad |/
s\
%" -
- ] e - _J‘ .
Visualizaciones que Redes de codautores y 1
muestran publicaciones coinvestigadores fen

El mapa de la ciencia muestra las areas tematicas
fuertes de una organizacion o un individuo

¢Por qué utilizar VIVO?

Cualquier individuo tendra acceso a un buscador de VIVO via web. Investigadores, académicos, técnicos,
administradores, agencias financieras, donantes y la sociedad civil se beneficiaran de utilizar VIVO y sus datos
debido a que pueden:

« Crear equipos de investigacion interdisciplinarios
« ldentificar oportunidades de apoyo financiero

« Reclutar personal especializado

« Localizar publicaciones

« Planificar recursos, servicios y presupuestos

« Visualizar redes complejas y relaciones de trabajo

Fuentes de informacion

Adiferencia de otras plataformas o redes sociales, VIVO se sustenta en datos incluidos automaticamente de fuentes
institucionales oficiales que se pueden complementar con informacion adicionada en forma manual. Por ejemplo,
el cosechador le facilita el trabajo a los equipos locales de implementacién, puesto que recupera informacion de
otros sistemas relacionados con publicaciones, recursos humanos, eventos, entre otros.

Metabuscador de VIVO

Este es un singular sitio que permite encontrar, entre los diferentes VIVO, personas, articulos, eventos,
organizacionesy conceptos en diferentes organizaciones. El metabuscador de VIVO provee busquedas relevantes a
lo largo de los servidores o servicios en la nube que utilizan las ontologias de VIVO u otras provenientes de sistemas
similares.

Un “hub de conocimiento” agricola

El esfuerzo iniciado con el IICA, busca motivar a sus 34 Estados Miembros para que integren la mayor cantidad de
perfiles profesionales en el campo agricola en un solo lugar. La experiencia de mas de una década en gestion de
informacién documental en el marco de la Alianza SIDALC (www.sidalc.net!'®) y las mas de 172 instituciones
asociadas, ubican al Instituto en una posicién preferente para articular una plataforma VIVO multilingiie que
vincule mejor a los cientificos, técnicos y otros actores relevantes en el sector agropecuario. Este esfuerzo

119 http://www.sidalc.net

Extending and Localizing VIVO - 113


http://www.sidalc.net
http://www.sidalc.net

hemisférico se sumaria al global de AGRIVIVO*?°

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

el cual lidera la Organizacién de Naciones Unidas para la

Alimentacién y la Agricultura, asi como al Movimiento Mundial CIARD'?! sobre Coherencia de Informacién Agricola

para el Desarrollo.

Con la cooperacién de:

USDA /A®

8.2.5.2 ;Como instalar?

« Install the necessary software
« Itworked?

« Create an empty database and account database

« build LIVE
« Download the source code VIVO
« Specifies the properties of construction
« Compile and deploy
« Itworked?
« run LIVE
« configuring Tomcat
« Assign parameters JVM
« Set safety limits
+ Configure URI encoding

« Be careful when creating elements of context

« Runtime Properties

« basic properties

« Connecting the Solr search index
+ additional properties

« start Tomcat

Install the necessary software

Before installing VIVO sure you have the following programs installed on your computer:

« Java (SE) 1.7.x Java Platform (JDK)'%2

+ VIVO has not been tested with OpenJDK
« Apache Tomcat 6.x or 7.x http://tomcat.apache.org

« Apache Ant 1.8 or higher, http://ant.apache.org!??
« MySQL 5.1 or higher, http://www.mysqgl.com

120 http://www.agrivivo.net
121 http://www.ciard.net

122 http://www.oracle.com/technetwork/es/java/javase/downloads/index.html

123 http://ant.apache.org/bindownload.cgi

Extending and Localizing VIVO - 114


http://www.agrivivo.net
http://www.agrivivo.net
http://www.ciard.net
http://www.ciard.net
http://www.oracle.com/technetwork/es/java/javase/downloads/index.html
http://www.oracle.com/technetwork/es/java/javase/downloads/index.html
http://tomcat.apache.org
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://www.mysql.com

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Check if you have enabled and ANT_HOME variables JAVA_HOME system environment. The configuration of these
requirements depends on the operating system you are using. Check the installation guides for each program to
make the correct settings.

The following browsers are supported for this release:
« Mac:

« Chrome 30.0.1599.69 or higher
« FireFox 3.6.28,10.0.12, 24

» Opera12.02

+ Safari5.0.3

« PC:
« Chrome 25.1364.2 or higher
« FireFox 10.0.12, 24

« Internet Explorer 8,9, 10
« Opera12.02

It worked?

You can try installing the programs by typing the following commands:

[~] # Java -version java version "1.7.0_25" Java (TM) SE Runtime Environment (build 1.7.0_25-b15) Java
HotSpot (TM) 64-Bit Server VM (build 2325-b01, mixed mode) [~] # Mysql --version mysql View 14.14 Distrib
5.5.36, for Linux (x86_64) using readline 5.1 [~] # Ant -version Apache Ant (TM) version 1.9.1 compiled
on May 15 2013

Each of these commands will print versions you have installed. If any of these commands print an error message,
you must check the installation.

Create an empty database and account database

Decide on a database name, user name and password. You will need these values for this step and again when
specify runtime properties.

Login to your MySQL server and creates a new database that uses the character encoding in UTF-8 format. In the
MySQL command line you can create the database and the user with the following commands substituting values
for database, user and password. Usually the computer name is called localhost.

CREATE DATABASE CHARACTER SET utf8 for database; GRANT ALL ON * TO for database user @ 'localhost'
IDENTIFIED BY 'password.';

build LIVE

Download the source code VIVO

Download the source code from the available links LIVE download with names: rel-1.6.zip or rel-1.6.gz and unzip on
your web server. You can download the file from the following link: http://vivoweb.org/download

Extending and Localizing VIVO - 115


http://vivoweb.org/download

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Specifies the properties of construction

Within the VIVO distribution directory, renames the file build.properties example.build.properties. Edit file to meet
your installation, as described in the next section.

These properties are used when compiling VIVO and when deployed within Tomcat. These will be incorporated into
LIVE when fully compiled. If you want to change these properties later, you must stop the Tomcat service, repeat
step compile and deploy, in the end, you must restart the Tomcat to see these changes.

A Windows: To install on a Windows operating system, you must include the letter of the hard drive, you
must use the slash "/" and not the backslash "\" in the directory path, for example c: / tomcat

Property Name vitro.core.dir

Description The directory where Vitro is located. In the simple installation, it is assigned to ./vitro-core,
the current directory.

default Any

Example value .Jvitro-core

Property Name tomcat.home
Description The directory where tomcat is installed.
default Any

Example value / Usr /local / tomcat

Property webapp.name
Name

Descriptio The name of your VIVO application. This is not the name that will be displayed to the user. This

n name appears in the URL used to access LIVE, and the name of the directory path VIVO within
tomcat.

default Any

Example alive

value

Extending and Localizing VIVO - 116



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Property vitro.home
Name

Descriptio Itis the directory where VIVO will store the data that are created. This includes uploaded files

n (usually images) and Solr search indexes. Make sure the directory exists and is writable by the
Tomcat server.

default Any

Example / Usr/local/live / home

value

Compile and deploy

In previous steps, you have defined directory location VIVO, specifying property values in the build.properties file
vitro.home. If the directory does not exist, create it now.

In the command line within the VIVO distribution directory, type the following command:

ant all

VIVO to build and deploy in the Tomcat webapps directory.

The build script can run up to five minutes, and create more than 100 output lines, the process includes several
steps:

« Collect files distribution source directory.
« Compile the Java source code.

* Running unit tests.

« Prepare the Solr search engine.

« Vivo deployed to Tomcat and Solr.

It worked?

If the outgoing message is successful, then the construction has been completed successfully. Proceed to the next
step.

BUILD SUCCESSFUL

Total time: 1 minute 49 seconds

If the output ends with an error message, building failed. Find the fault of the error, correct the problem, and run
the script again.

BUILD FAILED

Total time: 35 seconds

Extending and Localizing VIVO - 117



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Construction output may include warning messages. Java compiler can warn of outdated code. Unit tests can
produce warning messages, and some tests can be ignored if you do not produce consistent results. If the output
ends with a success message, these messages will be ignored.

run LIVE

configuring Tomcat

Assign parameters JVM

VIVO copy small sections of your base RDF data within memory to serve web requests quickly (the copy in memory
and the database remains in sync when editing).

VIVO may require more memory than it has assigned Tomcat by default. Like many facilities Tomcat, the file or
setenv.bat setenv.sh in Tomcat bin directory is a convenient place to allocate memory settings instead. If this file
does not exist within Tomcat directories, you can create it.

For example:
setenv.sh

export CATALINA_OPTS = "- Xms512m -Xmx512m -XX: MaxPermSize = 128m"

This tells tomcat to assign an initial value of 512 megabytes, 512 megabytes maximum value, and a space of 128
megabytes to PermGem. Lower values may be insufficient, especially for small installation tests.

Set safety limits

Vivo is a multithreaded web application that can require more wires than are allowed in the default configuration of
your Linux installation. Make sure your system can support the required number of threads by editing the following
lines in the file /etc/security/limits.conf:

apache hard nproc 400 tomcat6 hard nproc 1500

Configure URI encoding
LIVE handled properly for international characters, you have to configure Tomcat under standard UTF-8 characters.
Edit the conf/ server.xml file and add the following attributes for each element Connector:

URIEncoding = "UTF-8"

<Server ...> <Service ...> <Connector ... URIEncoding = "UTF-8" /> cen </
Connector> </ Service> </ Server>

& Some versions of Tomcat bring this attribute included as default.

Extending and Localizing VIVO - 118



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Be careful when creating elements of context

Each Web application in the distribution of VIVO (VIVO and Solr) includes a file "context fragment" containing
information for the Web application deployment.

Tomcat allows these fragments override it by adding elements of context Context context the server.xml file. If you
decide to do this, make sure the new context item includes the necessary deployment parameters from context
chunk replaced.

Look at the section titled Live Running behind an Apache Server for an example replacement snippet LIVE context.

Runtime Properties

In the process of building VIVO, specifically in the compilation and deployment, a file called
example.runtime.properties in the home directory LIVE (specified by vitro.home in the build.properties file) was
created, rename this file at runtime .properties and edit the file according to your installation, as described below.

These properties are loaded when you start VIVO. If you want to change these properties at a later date, you need to
restart Tomcat for the changes to take effect. No need to repeat step compile and deploy.

A Windows: To install on a Windows operating system, you must include the letter of the hard drive, you
must use the slash "/" and not the backslash "\" in the directory path, for example c: / tomcat

basic properties

These properties define some fundamental aspects of the installation of VIVO. Many sites will need to modify these
values.

Prop Vitro.defaultNamespace
erty

Nam

e

Descr  The RDF default namespace for this installation.

|npt|o VIVO installation RDF makes its resources available for harvest using linked data.
Requests for RDF resource URI redirected to HTML or RDF as that specified by the customer. To make
this possible, the default namespace VIVO must have a certain structure and start with a public web
address VIVO installation. For example, if the web address VIVO facility is http://vivo.example.edu/ the
namespace must be assigned to http://vivo.example.edu/individual in order to support linked data.
Similarly, if LIVE is installed in http://www.example.edu/vivo the namespace must be assigned to
http://www.example.edu/vivo/individual
* The namespace must end with "individual /" (including the slash).

defa  Any

ult

Extending and Localizing VIVO - 119


http://vivo.example.edu/
http://vivo.example.edu/individual
http://www.example.edu/vivo
http://www.example.edu/vivo/individual

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Exam http://vivo.midominio.edu/individual/

ple
value

Property rootUser.emailAddress
Name

Descriptio  Specifies the email address of the primary user account of the VIVO application. This user will have
n a temporary initial password: rootpassword. You will be prompted to create a new password at
first logon.

Note: The primary user account has access to all data and all operations LIVE. Data views can be
amazing when the main user. It is better to create a site administrator account for use in each
administrative task.

default Any

Example vivoAdmin@midominio.edu?*

value

Property VitroConnection.DataSource.url

Name

Description Specifies the JDBC URL for your database. Changes the end of the URL with the name of your
database (If this is not "live").

default Any

Examplevalue  jdbc: mysql: // localhost / live (see page 114)

Property Name VitroConnection.DataSource.username

Description Change the user name that matches the authorized user you created for MySQL.

default Any

Example value username

Property Name VitroConnection.DataSource.password

124 mailto:vivoAdmin@midominio.edu

Extending and Localizing VIVO - 120


http://vivo.midominio.edu/individual/
mailto:vivoAdmin@midominio.edu
mailto:vivoAdmin@midominio.edu

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description Change the password match which gave high in MySQL.

default

Any

Example value features Password

Property
Name

Descriptio
n

default

Example
value

Proper

ty
Name

Descrip

tion

default

Exampl
evalue

email.smtpHost

Specifies an SMTP service that the application will use to send email (optional). If this is left
empty, the contact form will be hidden and disabled, and users will not be notified of changes in
their accounts.

Any

smtp.servidor.edu

email.replyTo

Specifies an email address which will appear as the sender on notifications via e-mail users
(optional). If a user answers the notification, this address will receive the answer. If an email address
is invalid user, this address will receive the error message. If this is left empty, users will not be
notified of changes in their accounts.

Any

vivoAdmin@midominio.edu'®

Connecting the Solr search index

VIVO and search index are currently two different web applications and simple installation puts the two in the same
instance of Tomcat. Still, you have to tell the VIVO application how to get to the Solr Web application.

Property
Name

vitro.local.solr.url

125 mailto:vivoAdmin@midominio.edu

Extending and Localizing VIVO - 121


mailto:vivoAdmin@midominio.edu
mailto:vivoAdmin@midominio.edu

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description ~ The URL in the context of Solr used in local search VIVO. You should consist of:
servername scheme + + + port + vivoweb_app_name "solr"

In the standard installation, the context of Solr will be on the same server as VIVO, and the same
instance of Tomcat. The route has to be webapp.name LIVE (specified below) + "solr"

default Any
Example http: // localhost: 8080 / vivosolr'?6
value

additional properties

The runtime.properties file can accept many additional properties, but are not needed for this simple installation. If
you choose any of the installation options, you'll probably need to configure some of these properties.

start Tomcat

Many of the facilities running Tomcat can be started the following files startup.sh or startup.bat in the Tomcat bin
directory. Start Tomcat and go to your browser to http: // localhost: 8080 / live?" to test the application.

Note that Tomcat may require several minutes to start VIVO.

When you start VIVO, some diagnostic tests run. If a problem is detected VIVO home page redirect to the home page
status describing the problem. You can stop Tomcat, correct the problem and proceeds to step compile and
deploy. If the problem is not serious, the start status page can provide a link to "continue" which will allow VIVO use
despite problems.

If the start was successful, you will see the homepage of VIVO.
If tomcat does not start, or the VIVO application is not visible, check the files in the Tomcat logs directory.

Error messages can be found in [tomcat] /logs/catalina.out [tomcat] /logs/vivo.all.log or [tomcat] /logs/
localhost.log.

& Remember that Tomcat must have permissions to read and write files, and files in the root directory of
VIVO. This means you have to use a particular script or particular user account to start Tomcat.

PDF file of this document?®

8.2.6 VIVO in Mandarin

With VIVO's support for multiple languages, this page provides information about VIVO in Mandarin

« VIVO 1.5 Install Guide in Mandarin (see page 122)

126 http://localhost:8080/vivosolr

127 http://localhost:8080/vivo

128 https://wiki.duraspace.org/download/attachments/96995812/%C2%BFC%C3%B3mo%?20instalar_-v31-20140423_1420.pdf?
api=v2&modificationDate=1522787189599&version=1

Extending and Localizing VIVO - 122


http://localhost:8080/vivosolr
http://localhost:8080/vivosolr
http://localhost:8080/vivo
http://localhost:8080/vivo
https://wiki.duraspace.org/download/attachments/96995812/%C2%BFC%C3%B3mo%20instalar_-v31-20140423_1420.pdf?api=v2&modificationDate=1522787189599&version=1
https://wiki.duraspace.org/download/attachments/96995812/%C2%BFC%C3%B3mo%20instalar_-v31-20140423_1420.pdf?api=v2&modificationDate=1522787189599&version=1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Resource Bundle File in Mandarin*?°

8.3 Customizing the Interface

« Introduction (see page 123)

» Making changes to VIVO (see page 123)

+ VIVO is already customized (see page 123)
« Adding your own customizations (see page 124)

» Working in the GUI (see page 124)

+ RDF files (see page 124)

« Changes to the source files (see page 124)
« Tool summary (see page 124)

« Required skills (see page 124)

o The tools (see page 125)

8.3.1 Introduction

8.3.1.1 Making changes to VIVO

The VIVO application is a popular tool for research networking. Most VIVO sites put their own changes into VIVO, in
order to create a distinctive appearance, or to satisfy their particular needs.

VIVO supports an assortment of tools and techniques for making these changes. Some changes can be
accomplished while VIVO is running, simply by setting values on a form. Other changes require you to add or modify
configuration files that control the application. Still other changes are accomplished by editing the VIVO code, re-
building, and re-deploying the application.

8.3.1.2VIVO is already customized
Customization is built in to the heart of VIVO. VIVO itself is a customization of a more basic product called Vitro.

Here is how Vitro has been customized to become VIVO

Vitro VIivo

No ontology Includes an ontology for Research Networking
Minimal theme Rich theme.

Default display rules Annotations are used to:

+ Assign data properties to groups
« Arrange property groups on the page

129 https://wiki.duraspace.org/download/attachments/96995815/all_zh.properties?
api=v2&modificationDate=1522787189835&version=1

Extending and Localizing VIVO - 123


https://wiki.duraspace.org/download/attachments/96995815/all_zh.properties?api=v2&modificationDate=1522787189835&version=1
https://wiki.duraspace.org/download/attachments/96995815/all_zh.properties?api=v2&modificationDate=1522787189835&version=1

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Vitro VIVO

Default permissions Display and editing permissions are customized, based on the ontology
Default editing forms Editing is customized to the ontology

Default search index Search index contains additional fields, specific to VIVO

Default functionality Additional functionality: visualizations, interface to Harvester, QR codes, etc.
In total: A general-purpose tool  In total: A specialized tool for Research Networking

for working with Semantic Data.

8.3.2 Adding your own customizations

How do you add your changes to VIVO? Perhaps more important, how do you keep your changes when you upgrade
to a newer release of VIVO?

8.3.2.1 Working in the GUI

When you use forms in VIVO, the values you enter are kept in the triple-store. They will be retained when you
upgrade to a new release. If the new release uses a different format to store the values, your changes will be
migrated to the new format.

8.3.2.2 RDFfiles

Some customizations require that you add or modify an RDF file in your VIVO home directory. In general, it's best to
create a new file to contain the RDF statements, so you can easily carry your changes to a new VIVO release.

A"clean" build of VIVO will erase the RDF files in your VIVO home directory. You will need to re-create these files
after the migration.

8.3.2.3 Changes to the source files

As with the RDF files, you should favor new files over changes to existing files. This will make it easier to carry your
changes to a new release.

8.3.3 Tool summary

8.3.3.1 Required skills

The customization tools require different levels of knowledge. Some are as simple as filling out a web form. Most
require the ability to write HTML, with additions from the Freemarker template engine. Some require Java
programming.

As the tools are described, these terms will be used to specify the skills needed:

Extending and Localizing VIVO - 124



Basic

Web development

RDF

SPARQL

Java

OpenSocial

8.3.3.2 The tools

Creating a custom
theme (see page 181)

Annotations on the

ontology (see page 138)

Home page
customizations (see
page 127)

Menu and page

management (see page

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Knowlege required

Requires an understanding of VIVO concepts.

The usual technologies for writing web sites, including HTML, CSS, and JavaScript.

Knowledge of the Freemarker template engine.

Modify or create RDF data files, using RDF/XML, Turtle, or N3 format.

Create queries against the triple-store, using SPARQL.

Create or modify Java code.

Create or modify OpenSocial gadgets, written in JavaScript.

What does it do? How?

Create your own "brand" for VIVO. CSSfiles, JavaScript files,

« Change colors, logo, headings, and templates for HTML.

footers, and more.

Control how data is displayed. Interactive.

« Property groups, labels,
display order, hidden
properties, and more.

Choose from home page options. Edit your home page
template to include a

« Add a geographic focus map.
geograph! ! P selection of sub-templates.

Add new pages to VIVO. Interactive.

« Static pages, navigation pages,

136) >

or dynamic reports.
Profiles for classes (see  Use one type of profile page for Create page templates.
page 154) people and another for

Configure VIVO to associate

organizations. them with classes.

Required
skills

Web
development

Basic

Web
development

Web
development,
optional
SPARQL

Web
development,
RDF

Extending and Localizing VIVO - 125



Multiple profile types
for foaf:Person (see
page 209)

Enriching profile
pages with SPARQL
queries (see page 204)

Enhancing page
templates with
SPARQL queries (see
page 201)

Custom list views (see
page 159)

Custom short views
(see page 167)

Custom entry forms
(see page 186)

Using Open Social
Gadgets (see page 213)

Provide a choice of formats for
profile pages.

« Each page owner selects the
format for his own page.

Display additional data on a profile
page.

Display additional data in any page
template.

Change how certain properties are
displayed

« Change the layout for that

property
« Display additional data with
each value.

Change how search results are
displayed

« Display depends on the type of
result (Person, Document,
etc.).

Also change display on index pages
and browse pages.

Create data entry forms

« Add or edit complex data
structures.

Create optional content for profile
pages.

« Each page owner configures
the gadgets for his own page.

Edit page templates.

Perhaps connectto a
Website image capture
service.

Write a SPARQL query.

Create a template to display
the results.

Configure VIVO to use it.

Write a SPARQL query.

Modify a template to display
the results.

Configure VIVO to use it.

Write a SPARQL query.

Create a template to display
the results.

Configure VIVO to use it.

Write a SPARQL query.

Create a template to display
the results.

Configure VIVO to use it.

Write a generator class in
Java.

Create a template for the
editing form.

Create gadgets from
JavaScript, or install existing
gadgets.

Extending and Localizing VIVO - 126

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Web
development

Web
development,
SPARQL, RDF

Web
development,
SPARQL, RDF

Web
development,
SPARQL, RDF

Web
development,
SPARQL, RDF

Web
development,
SPARQL, RDF,
Java

Web
development,
OpenSocial



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Language support (see  Languages other than English Create files of phrases in the Basic
page 99) . Use VIVO in Spanish de'3|r.ed la.mguage, orinstall
+ Allow viewers to choose their existing files.

preferred language.
+ Implement other languages.

8.3.4 Home page customizations

« Introduction (see page 127)
» The page-home.ftl Template File (see page 127)
o The Research Section (see page 128)
« The Faculty Section (see page 129)
+ The Departments Section (see page 129)
« The Geographic Focus Map (see page 130)
« How the Map Works (see page 131)
« The geographicFocusHtml Macro (see page 132)
» Customizing the Look of the Map (see page 133)
» Change the source of the map tiles (see page 133)
» Change the colors of the markers (see page 133)
» Change the size of the markers (see page 134)
« Enabling the Country and State/Province Maps (see page 134)
« Update the geoFocusHtml macro (see page 134)
« Update the coordinates in the setView() function (see page 134)
» Update the getResearcherCount() function (see page 134)
» Update the latLongJson.js file (see page 135)
« Update the SPARQL query in the GeoFocusMapLocations.java class (see page 135)
« Update your VIVO data as necessary (see page 135)

8.3.4.1 Introduction

You can modify the "Research," "Faculty" and "Departments" sections of the home page, as well as expand the
map section to include country-specific and state or province-specific maps.

8.3.4.2 The page-home.ftl Template File

The new sections of the home page are all referenced as macros in the page-home.ftl template file. The macros
themselves are all located in the lib-home-page.ftl file, which is imported into the page-home.ftl file via this line:

<#import "lib-home-page.ftl" as 1h>

The code below is from the page-home.ftl template and shows how the macros are referenced. So, for example, if
you wanted to modify the order in which these sections appear on the home page, you would move the macro
references accordingly.

Extending and Localizing VIVO - 127



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

68 «!-- List of research classes: e.g., articles, books, collections, conference papers --»

69 <@lh.researchClasses />

70

71l <!-- List of four randomly selected faculty members --=

72 <@lh.facultyMbrHtml /=

[

74 <!-- List of randomly selected academic departments -->

75 <@lh.academicDeptsHtml />

76

77 <#if geoFocusMapsEnabled =

78 <!-- Map display of researchers’' areas of geographic focus. Must be enabled in runtime.properties --»
79 <@lh.geographicFocusHtml />

80 </H#if>

81

82 <!-- 5Statistical information relating to property groups and their classes; displayed horizontally, not vertically--=
83 <@lh.allClassGroups vClassGroups! />

84

85 <#include "fi 1>

86 <f#-- builds json object that is used by js to render the academic departments section --»

87 <@lh.listAcademicDepartments />

8.3.4.3 The Research Section

It's possible that your VIVO installation has defined some of its own classes within the Research Class group.
Cornell's VIVO, for example, has a Library Collection class and a Media Contributions class. If your installation does
include its own classes in this group, you can display these in the Research section of the home page by modifying
the researchClasses macro in the lib-home-page.ftl file. As shown in line 128 below, the classes that get displayed
are hard-coded into the macro. Simply exchange the name of your classes with some or all of the ones below. You
could also add your classes to the existing list.

119 <#macro research[iasses classGroups:;éiaggaFEHEB;”"
120 <ffassign foundClassGroup = false />
121 | <section id="home-research” class="home-sections">

122 <h4>3${118n().research_capitalized}</hd4>

123 <ul=

124 <#list classGroups as group>

125 <#if (group.individualCount > @) &% group.displayName == "research” >

126 <#assign foundClassGroup = true />

127 <#list group.classes as class>

128 <#if (class.individualCount > @) && (class.name == "Academic Article” || class.name == "Book" || class.name ==
. "Chapter” |lclass.name == "Conference Paper" || class.name == "Proceedings” || class.name == "Report”) =

129 <li role="listitem">

13@ <span>${class.individualCount!}</span>&nbsp;

131 <a href="3${urls.base}/individuallist?vclassId=%${class.uri?replace("#","%23")!}" >

132 <#if class.name?substring(class.name?length-1) == "s">

133 ${class.name}

134 <Helsex

135 ${class.name}s

136 </#if>

137 </a=

138 </1i>

139 </ Hif>

148 </Hlist>

141 <liz<a href="%${urls.base}/research” alt="3{i18n().view_all_research}">3${i18n().view_all}</a></1i>

142 </#if>

143 </#list>

144 <#if !foundClassGroup>

145 <p><li>${118n().no_research_content_found}</li></p>

146 </#if>

147 </ul>

148 | </section>
142 | </#macro=

It would be possible to display a random selection of classes rather than a hard-coded list, the same way that the
Departments section displays a randomly selected list of academic departments. To do this, you would have to
copy the macros and java script used for the academic departments, and then modify it accordingly so that it
displays research classes. Refer to The Departments Section below for more details.

Extending and Localizing VIVO - 128



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.4.4 The Faculty Section

There's very little customization that can be done to the faculty section of the home page, excluding css changes
and relocating the section to another part of the home page. The one configurable piece is the number of faculty
members that get displayed. This change is made in the homePageUtils.js file. Locate the getFacultyMembers
function and modify the pageSize variable (shown in line 29 below).

22 function getFacultyMembers() {

23 var individuallist -

24

25 if ( facultyMemberCount > @ ) {

26 £ determine the row at which to start the solr query

27 var rowStart = Math. floor((Math. random()*facultyMemberCount));

28 var diff;

9 var pageSize = 4; /7 the number of faculty to display on the home page
38

8.3.4.5 The Departments Section

The list of academic departments is a randomly selected list that relies on a data getter as well as two macros in the
lib-home-page.ftl file. The data getter is defined in the homePageDataGetters.n3 file. If you want to display
something other than academic departments, you need to update the SPARQL query portion of the data getter,
shown in lines 18-30 below. Substitute the class you want to display for vivo:AcademicDepartment.

11 # academic departments ggpggggpgf

12

13 | <freemarker:lib-home-page.ftl> display:hasDataGetter display:academicDeptsDataGetter .
14

15 display:academicDeptsDataGetter

16 a <java:edu.cornell.mannlib.vitro.webapp.utils.dataGetter. SparglQuerybDataGetters |
17 display:saveToVar "academicDeptDG"

18 display:query """

19 PREFIX rdfs: <http://www.w3.orq/200@/@1/rdf-schema#>

2@ FREFIX ggﬁ: <http:/Awww.w3.ora/1999/02/22-rdf -syntax-ns#>
21 PREFIX wiwvo: <http://vivoweb.org/ontology/coress

22

23 SELECT DISTINCT ?QEEFHEI (str(?label) as ?name)

24 WHERE

25 {

26 ?gggtyﬁ; ng;type vivo:AcademicDepartment .

27 ?ggpryﬁ{ ngg;label ?label

28 ¥

9

3@ ey

It is possible to expand the query to include more than one class. To do so without having to make any other macro
or template changes, use UNION clauses in your query, as follows:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>

Extending and Localizing VIVO - 129



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

SELECT DISTINCT ?theURI (str(?label) as ?name)

WHERE

{{
?theURI rdf:type vivo:AcademicDepartment .
?theURI rdfs:label ?label .

}

UNION

{
?theURI rdf:type vivo:Association .
?theURI rdfs:label ?label .

1}

The following code snippet shows the two macros used to render the Departments section. If you change the data
getter to use a different class, you do not have to change any variable or macro names. The only change you'll need
to make is to the heading of this section so that it correctly reflects the class being displayed. Line 155 (below) is
where you would make the change. (Note the use of the internationalization variable. As part of your change, you
may want to update the i18n/all.properties file to include your new section heading.

151 <#-- Renders the html for the academic departments section on the home page. --»
152 | <#-- Works im conjunction with the homePageUtils.js file --=»
153 <gmacro academicDeptsHtml>

154

155 <h4>%{118n() .departments}</h4>
156 <div id="academic-depts">

157 </divs

158 </section=

159 </ Hmacro=

168

161 <#-- builds the "academic departments"” box on the home page --»
162 <ffmacro listAcademicDepartmentss

163 <SCripts>

164 | var academicDepartments = [

166 <#list 9599?T1?P§EE@E.“5 resultRow=

167 <#assign uri = resultRow["theURI"] />

168 <#tassign label = resultRow["name"] />

169 <ftassign localName = Hzlf5ubstring[Hni?last_index_oF("f"}] s

178 "uri: "${localName}", "name": "3{label}"}<#if (resultRow_hos_next)>,</#if>
171 </ HFlist>

172 | </#if>

173 |1;

174  |wvar urlsBase = "3{urls.base}";

175 | </scripts
176 </Hmacro=

8.3.4.6 The Geographic Focus Map

The new map on the home page uses circular markers to show the countries and regions that researchers in a VIVO
installation have chosen as their areas of geographic focus (vivo:GeographicFocus). Clicking on a marker takes the
user to that country or region's profile page, which shows the list of researchers in that location. The map is built
using the Leaflet.js java script library, map tiles provided without charge by ESRI, and geographical data stored in a
JSON file.

Extending and Localizing VIVO - 130



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The map is enabled in the runtime.properties file. Include or uncomment the line:

homePage.geoFocusMaps=enabled

How the Map Works

When the home page gets loaded, three java script files relating specifically to the map are sourced in: leaflet.js,
latLongJson.js and homePageMaps.js. The first is the java script library that does the actual map rendering, from
sourcing in the map tiles to placing the markers on the map. The second file contains a JSON array containing
geographic data such as the names of countries and regions, their latitude and longitude, and some additional
information that is used to build the GeoJSON object. The last file, homePageMaps.js, contains the functions that
serve as the driver for rendering the map. The following outline covers the sequence of those events.

1) The getGeoJsonForMaps() function uses an AJAX request to call the GeoFocusMapLocations.java class. The
purpose of this class is to run the SPARQL query that retrieves the names of the countries and regions that
researchers have selected as areas of geographic focus as well the number of researchers associated with
each area.

2) Once the SPARQL query results are returned to the getGeoJsonForMaps() function, it then parses the
results and uses several function calls to build the GeoJSON array that gets used by the Leaflet java script. For
example, the getLatLong() function call gets the longitude and latitude of a geographic area from the
latLongJson.js file. The GeoJSON array, which is stored in a variable named "researchAreas," takes this

format:
{ "type": "FeatureCollection",
"features": [{'geometry': {'type': 'Point', 'coordinates': '-64.0,-34.0'},

'type': 'Feature',
'properties': {'mapType': 'global',
'popupContent': 'Argentina',

'html': '1',

'radius': '8,

'uri': "http%3A%2F%2Faims.fao.org%2Faos%2Fgeopolitical.owl%23Argentina'}},
{'geometry': {'type': 'Point', 'coordinates': '-2.0,54.0'},
'type': 'Feature',

'properties': {'mapType': 'global',
'popupContent': 'United Kingdom',
'html': '6"',
'radius': 'l0,
'uri':
'http%3A%2F%2Faims. fao.org%2Faos%2Fgeopolitical.owl%23United_Kingdom'}},
-]

3) Once the researchAreas variable is set, the buildGlobalMap() function is called. The main portion of that
function is shown below:

Extending and Localizing VIVO - 131



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

176 var mapGlobal L.map( 'mapGlobal ').setView([25.25, 23.20], 2);

177 L.tileLayer('http://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/tilen/{z} v/ {y}/{x}.png', {
178 maxZoom: 12,

179 minZoom: 1,

180 boxZoom: false,

181 doubleClickZoom: false,

182 attribution: 'Tiles &copy; <a href="http://www.esri.com/">Esri</a>"
183 1) .addTo(mapGlobal);

184

185 L.geolson(researchAreas, {

186

187 filter: checkGlobalCoordinates,

188 onEachFeature: onEachFeature,

189

190 pointToLayer: functien(feature, latlng) {

return L.circleMarker(latlng, {
radius: getMarkerRadius(feature),

color: "nene”,

weight: 1,
opacity: 0.8,
fillOpacity: @.8
1
199
208 1) .addTo(mapGlobal);
281
282 L.geolson(researchAreas, {
2083
204 filter: checkGlebalCeordinates,
285 onEachFeature: onEachFeature,
2086
207 pointToLayer: function(feature, latlng) {
208 return L.marker(lotlng, {
289 icon: getDivIcon{feature)
218 13;
211
212 1).addTo(mapGlobal);

fillColor: getMarkerFillColor(feature),

Here are some key points to note about the previous code:

« The "L." references in the above code are calls to to Leaflet java script library.
« The setView function in line 176 uses latitude and longitude coordinates to center the display of the

map.

« Alsoin line 176, 'mapGlobal’ (in L.map(‘'mapGlobal')...) is the name of the <div> element in which

Leaflet will render the html for the map.

The geographicFocusHtml Macro

As noted earlier, the lib-home-page.ftl file contains the macros that are used to build the new sections on the home

page. Here is the geographicFocusHtml macro:

Extending and Localizing VIVO - 132



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

178 | <#-- renders the "geographic focus” section on the home page. works in -

179 | <#-- conjunction with the homePageMaps.js and latLonglson.js files, as well -->

180 | <#-- as the leaflet javascript library. -

181 | <#macro geographicFocusHtml>

182 <section id="home-geo-focus” class="home-sections"s

183 <h4>${118n().geographic_focus}</h4>

184 <it-- map controls allow toggling between multiple map types: e.g., global, country, state/province. --»
185 <#t-- VIVD default is for only a global display, though the javascript exists to support the other --»
186 <it-- types. See map documentation for additional information on how to implement additional types. -->
187 <it--

188 <div id="mapControls">

189 <a id="globallink" class="selected" href="javascript:">Global Research</a=&nbsp;|&nbsp;

1%@ <a id="countrylink"” href="javascript:"=Country-wide Research</a=&nbsp;|&nbsp;

il fl <a id="locallink" href="javascript:">Local Research</a>

192 </div=

493 —=>

194 <div id="researcherTotal"></div>

195 <div id="timelIndicatorGeo">

196 <span>${118n(). loading_map_information}&nbsp;&nbsp;&nbsp;

197 <img src="${urls.images}/indicatorWhite.gif">

198 </span>

199 </div=

208 <div i1d="mapGlobal"” class="mapArea"></divs>

201 <ff--

282 <div id="mapCountry” class="mapArea"s=</divs>

283 <div id="maplLocal” class="mapArea"=</div>

204 -=2

285 </section>

206 | </#macro>

Note line 200: this is the <div> element where Leaflet renders the map.

Customizing the Look of the Map
There are three principal ways to customize the look of the map:

1. Change the source of the map tiles that provide the "atlas"
2. Change the colors of the markers
3. Change the size of the markers

Change the source of the map tiles

This is the most significant modification that you can make. The map currently uses tiles provided by ESRI, which
has other map tiles for you to use. Mapquest is another source of free map tiles, as is Google. OpenCloud is a source
of map tiles but they charge a small fee.

To change the tiles, you need to update the L.tileLayer definition in the buildGlobalMap() function. This is shown in
line 177 above. Simply change the URL to the URL of the service providing your map tiles. (That service may also
use a slightly different API.)

Change the colors of the markers

You can change the marker colors in the getMarkerFillColor() function in homePageMaps.js. Note that there are
separate colors for countries and regions. If you do change the colors of the markers, you will also have to update
the legend that appears in the lower left corner of the map. The circles in this legend are actually image files
(map_legend_countries.png and map_legend_regions.png), so you will have to create new image files to match
the colors you have chosen for markers.

Extending and Localizing VIVO - 133



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Change the size of the markers

The size of the markers is the value that is set in the "radius" property in the GeoJSON array. This value is actually
calculated in the GeoFocusMapLocations.java class. You can either update this class or add a new function to
homePageMaps.js and modify the radius value in that java script file.

Enabling the Country and State/Province Maps

Currently, the home page map section only shows one map view: a global view with markers displayed for regions
and countries. However, the code is available to include two additional views, one for a specific country and one for
a specific state or province within a country. These are the steps you need to follow to implement the other two
map views.

1. Update the geoFocusHtml macro

Update the coordinates in the setView() function

Update the getResearcherCount() function

Update the latLongJson.js file

Update the SPARQL query in the GeoFocusMapLocations.java class
Update your VIVO data as necessary

oA wWN

Update the geoFocusHtml macro

If you are using multiple map views, than you need to uncomment the mapControls <div> element in the
geoFocusHtml macro (<div id="mapControls">). If you are only implementing two views (global and country),
then you will want to ensure that the "localLink anchor tag is commented out (<a id="1localLink"
href="javascript:">). These anchor tags, along with corresponding java script in the homePageMaps.js file,
allow the user to toggle between the implemented map views. (No change to the js file is necessary.)

Next you need to uncomment the <div> elements where the additional map views will be rendered: <div
id="mapCountry" class="mapArea"> and/or<div id="mapLocal" class="mapArea'">. Again,only
uncomment the <div> elements you are implementing.

Update the coordinates in the setView() function

Besides the buildGlobalMap() function (discussed above), the homePageMaps.js file also includes
buildCountryMap() and buildLocalMap() functions. These functions are very similar to the buildGlobalMap()
function and work in the same way. When you are implementing a country map, you will want the map to be
centered on that country.

var mapCountry = L.map('mapCountry').setView([46.0, -97.0], 3);

The coordinates above, [46.0, -97.0], center the map on the United States. If you want this map to be centered
on a different country, you will have to change these coordinates accordingly. The third value in the line of code
above, 3, is the zoom value and sets the default for when the map is loaded. Note that the default zoom value for
the global map is 2 and the default for the local map could be any thing from 4 to 8 depending on the location you
are displaying.

Update the getResearcherCount() function

For all three types of views, the map includes summary text that shows the total number of researchers and
geographical areas in the results, as show below:

Extending and Localizing VIVO - 134



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Geographic Focus

52 researchers in 19 countries and regions.

Depending on the map views you implement, and the actual country or areas they display, you may want to modify
the wording that gets displayed here. This is done in the getResearcherCount() function in of the homePageMaps.js
file. (Note that the text here uses internationalization variables, so you may need to update the i18n/all.properties
file as well.)

Update the latLongJson.js file

The latLongJson.js file contains data for countries, transnational regions and states within the United States.
Therefore, if your installation wants to implement a country map other than the U.S., you will need to update the
latLongJson.js file to include the necessary data. For example, if the country to be displayed is Australia, the
latLongJson.js file would need to include data on the states and territories of Australia. The JSON array in this file
takes data in this format:

{"name": "Victoria", "data": {"mapType": "country", "geoClass": "state", "latitude": "-37.4713",
"longitude": "144.7851"}}

Note that the mapType corresponds to the map view, in this case "country" as opposed to "global, while the
geoClass corresponds (loosely) to the VIVO ontology class. ("Loosely," because the class is actually
"StateOrProvince.")

Implementing a state/province map would mean updating the latLongJson.js file to include data for the geographic
areas within a state. For U.S. states, examples would include counties, townships and even more general areas such
as the Hudson or Mohawk valleys in New York (two areas of geographic focus for Cornell researchers). In this third
case the mapType must be set to "local."

Update the SPARQL query in the GeoFocusMapLocations.java class

For performance and practical reasons, the SPARQL query in the GeoFocusLocations.java class excludes states and
provinces. (Since only the global map is displayed by default, there is no reason to include state and provinces in
the query results.) To update the query to include states and provinces, simply remove this line from the query:

FILTER (NOT EXISTS {?location a core:StateOrProvince})

If you want to implement a state/province map, you may need to update the query further to ensure that the local
geographic areas are included in the query results. Although there are VIVO classes for counties and "populated
places," your VIVO installation might have additional refinements to the ontology.

Update your VIVO data as necessary

The SPARQL query in the GeoFocusLocations.java class does not simply return a count for the numbers of
researchers that have selected a country (for example) as an area of geographic focus. The query also roll-ups the
counts for "child" locations into the "parent" location. For example, if 5 researchers have the U.S. as their area of
geographic focus, and another 5 researchers have individual states as their focus, the query will return a count of 10
for the U.S. This is accomplished through the vivo:geographicallyContains object property. Similarly, country
counts are rolled up into regional counts through the geo:hasMember object property. /t's possible that you will

Extending and Localizing VIVO - 135



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

need to curate your VIVO data to ensure that the necessary object property relationships exist in your installation.
This is especially true with the local geographical areas.

8.3.5 Menu and page management

o Overview (see page 136)
« What can it do for you? (see page 136)
+ Before and After (see page 136)
+ What do you need to know? (see page 136)
» Getting started (see page 137)
« What to do (see page 137)

8.3.5.1 Overview

What can it do for you?

« —Create “browse” pages, static pages, or pages that display the results of a query (reports)
« —Remove existing pages
+ —Manipulate the page menu

It's easy to surmise that Page Management only allows you to make changes to the menu. And it's true that you can
create new menu pages, rearrange the menu, or remove items from it.

But you can also use Page Management to create pages that aren't in the menu. You assign a simple URL to each
page, so you can link to them from your other pages. The content of the pages can be simple HTML, the results of a
SPARQL query, or a "browse" page for individuals in VIVO.

Before and After

v | VO | share « discover

Home People Organizations Research Events

v IVO | snare = discover

My NEW page Organizations People Home Research

What do you need to know?

+ —How to follow the GUI for page management

Extending and Localizing VIVO - 136



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« —Optional - how to write Freemarker templates
« —Optional - how to write SPARQL queries

Getting started

VIVO comes with a set of managed pages, including the ones that you see in the menu on each page.

8.3.5.2 What to do

Go to the Site Admin page, and choose Page management.

Site Configuration

Institutional internal class
Manage profile editing
Page management

Menu ordering

Restrict Logins

Site information

Startup status

User accounts

Use the links provided to create new pages, or edit existing ones.

Page Management

Title URL Custom Template Menu Page Controls
Departmental Grants JdeptGrants individual-dept-active-grants.ftl _f
Departmental Research Areas /deptResearchAreas individual-dept-res-area-details.ftl &
Events /events v & |
Home v &
Organizations /organizations v &
Pages /pagelList pagelist.ftl &
People /people v & i
Research /research v &

Use Menu Ordering to set the order of menu items.

Click on the Menu Ordering link to re-arrange the menu. Drag entries up or down to establish the order you want.
When you refresh the page, or go to another, you will see your changes in the menu.

Extending and Localizing VIVO - 137



Menu QOrdering
t Home

t People

t Organizations
t Research

1t Events

Add new menu page

Refresh page after reordering menu items

8.3.6 Annotations on the ontology

« Edit property groups (see page 138)

« Edit the appearance of properties (see page 141)
« Create and edit faux properties (see page 143)

« Edit class groups (see page 148)

« Edit the appearance of classes (see page 151)

8.3.6.1 Edit property groups

o Overview (see page 138)
+ Before and After (see page 138)
» What do you need to know? (see page 139)
» Getting started (see page 139)

« What to do (see page 139)

Overview

Before and After

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Rename "Affiliation" to "Allegiances", and change the order of "Publications" and "Research".

Extending and Localizing VIVO - 138



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Krafft, Dean Blackmar | Cornell Academic Staff @

Positions

» Director and Chief Technology Strategist, Lib Administration

Dr. Krafft received his Ph.D. in Computer Science from Cornell University in 1981. Since the
1990s, he has been involved in digital library research, most recently heading the National
Science Digital Library project at Cornell. In July 2008 he joined the Cornell University
Library as Chief Technology Strategist, while retaining a Senior Research Associate
appointment in Information Science. In August 2010, he became the Director of IT for the
Cornell University Library in addition to con (... mare)

Networks

Co-author Network

Websites

Digital Libraries web page

> Map of Science

«é)o Co-investigator

Network

Affiliation Publications Research Teaching Service Background Contact Identity Other View All

e R con S 2

Allegiances Research Publications Teaching Service Background Contact Identity Other View All

R = PSRy IV - - O

What do you need to know?

How to follow the GUI for property groups.

Getting started

VIVO comes with a default set of property groups. You can rename them, reorder them, create new groups or delete
existing ones. You can also move properties from one group to another, but that is covered in Edit the appearance
of properties (see page 141).

What to do
From the VIVO Site Admin page, navigate to the Property Groups page.

Index Site Admin

Property Management
Object property hierarchy
Data property hierarchy
Property groups

You can add a new property group, or click on the name of an existing group to edit it.

Extending and Localizing VIVO - 139



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Property Groups

Add new property group

overview

Display Rank: 10

affiliation

Display Rank: 30

publications
Display Rank: 40

re<paarch

You can change the name of a group, change its display rank, or even delete it.

Property Group Editing Form

Editing Existing Record (* Required Fields)

Property group name (max 120 characters)

overview

Public description (short explanation for dashboard)

Display rank (lower number displays higher)
10

S rarges | “oeire | “reser W o —

When an profile page is displayed, the property groups are shown in order of ascending display rank.

Properties that aren't included in any of the groups are displayed on the profile page as part of the group named
Other. Thisis not an actual property group; it is simply a display convention.

If you delete a property group, the properties that were in it will be displayed in Other, until you assign them to
new groups.

Extending and Localizing VIVO - 140



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.6.2 Edit the appearance of properties

o Overview (see page 141)
« What can it do for you? (see page 141)
+ Before and After (see page 141)
+ What do you need to know? (see page 142)
» Getting started (see page 142)
+ What to do (see page 142)
* Notes (see page 143)

Overview

What can it do for you?
Change how VIVO displays the properties of an individual.
For each property, you can change

« thedisplay label

« the public and private descriptions

« which property group it belongs to

« the display rank within the property group

+ who can see the values

« who can edit the values

« whether the values will be published in linked open data requests

« whether the display will be collated by sub-properties (object properties only)

You can also change things like the namespace and parent property, but these are actually changes to the
ontology.

Notice that there are necessary differences between the editing options for a data property and those for an object
property. Since an object property describes the relationship between two individuals, it is richer than a data
property which has only a text value.

The property editing form also allows you to assign a custom entry form to a property, as described in Customize:
date entry forms (see page 138)

Before and After

Modify the "fax" property, changing the display label to "fax number(s)", and moving it to the "Affiliation" property
group.

Extending and Localizing VIVO - 141



Contact

Contact

fax

222-333-4444
222-444-5555

mailing address

20 Grove Street

Ithaca, New York 14850
United States of America

What do you need to know?

How to follow the GUI for property editing.—

Getting started

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Affiliation Contact

Affiliation

fax numberi(s)

222-333-4444
222-444-5555

Contact
mailing address

20 Grove Streat

Ithaca, New York 14850
United States of America

VIVO comes with a default set of properties. You can edit them to suit your display requirements, or make more

extensive modifications, by customizing the ontology.

What to do

There are several ways to navigate to the Property Editing Form for a particular property. Perhaps the most
common way is to show the profile page for an individual, turn on verbose property display,

click on the name of the property you want to edit,

from the Property Control Panel, choose to edit the property

Extending and Localizing VIVO - 142



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Photo @, m Eddit this individual Verbose property display is off

ource URI: hitp:/ /vivo mydomain edu/individual /n812F

Baker, Able

Preferred Title @

Faculty Member

fax @ yivofaxNumber ( property); order in group display le Edit this Data Property

222-333-4444 2R

222-444-5555

-— il

When the property editing form appears, make the changes you want to see, and click on Submit Changes.
Navigate to a profile page and you will see the effect of your changes immediately.

Data Property Editing Form

Editing Existing Record (" Required Fields)
Public label Property group

preferred title affiliation hd|

for grouping properties on individual page

Ontology Internal name* (RDF local name)
VIVO core = preferredTitle

Edit via "change URI" on previous screen Edit via “change URI"

Domain class Range datatype
FrafDarenn ~l niebmnnd fiica IF lanaiiana Fane desiandt
Notes

Properties may appear differently depending to someone who is authorized to edit them. Try logging out to see
how your changes will appear to the general user.

8.3.6.3 Create and edit faux properties

o Overview (see page 144)

« What do you need to know? (see page 146)
+ Getting started (see page 146)

+ Creating a faux property (see page 147)

« Editing a faux property (see page 147)

Extending and Localizing VIVO - 143



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Overview

The emphasis in ontology design has been fewer properties connecting more classes. For example, we see that the
relationship between a Person, an Authorship, and an Article is very similar to the relationship between a Person,
an Award Receipt and an Award.

Award or
Honor
Receipt

Information
Authorship Content
Entity
relates

The profile pages in VIVO have been organized by properties. This re-use of properties makes it difficult to organize
information on the page. Not only do we want to see at a glance the difference between an authorship and a
received award; we may also want to display them in different areas of the page, using different custom views, etc.

VIVO allows us to create "faux" properties, as restrictions on object properties. The faux property has the same
property URI as its base property. It has a domain and a range that are restrictions of the domain and range of the
base property. Once we have established these criteria, we can assign display properties to the faux property, just
as if it were its own object property with its own URI.

In this way, we can define faux properties as follows:

URI Domain Range label property group
relatedBy = Person Award or Honor Receipt = awards and honors Background
relatedBy = Person Authorship selected publications = Publications
relatedBy = Award or Honor Award or Honor Receipt  receipts Overview
relatedBy Information Content Entity =~ Authorship authors Overview
relates Award or Honor Receipt Person award or honor for Overview
relates Award or Honor Award or Honor Receipt = receipt of Overview

Now, these same relationships display quite differently:

Extending and Localizing VIVO - 144



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

awards and

Award or
Honor
Receipt

Award or
Honor
award or
honor for

Information
Authorship Content
Entity

relates ' authors

Extending and Localizing VIVO - 145



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Index Log in

Home People Organizations Research Events

Baker, Able ' Faculty Member Publications in VIVO
1 total @

@ Co-author Network
{J> Map of Science

&8

Publications Background Contact View All

Publications

selected publications

academic article
Baloney. Delicatessen.
Background

awards and honors

Blue Cross, conferred by The Blue Cross Organization

Contact
full name
Able Baker
©2015 VIVO Project | Terms of Use | Powered by VIVO About Support

In general, it makes sense to partition all of a property into faux properties. Then the base property is set to be
invisible (except to the root user), and the faux properties display the desired information.

What do you need to know?

How to follow the GUI for faux properties.
Getting started

VIVO comes with a default set of faux properties. You can edit them to suit your display requirements, or make more
extensive modifications.

Extending and Localizing VIVO - 146



Creating a faux property

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

First, navigate to the control panel for the object property you want to create a faux property for. The control panel
can be accessed by clicking Object Property Hierarchy on the Site Administration Page, then clicking on an object
property, i.e. related by. The Create New Faux Property button can be found next to a list of that property's existing

faux properties.

publish level (unspecified)

fram 1 w 50

Show Examples of Statements Using This Property

Edit Property Record Add New Child Property

authors domalin: Information Content Entity, range: Authorship

awards and honors domain: Person, range: Award or Honor Recelpt

awards and honors received domain: Organization, range: Award or Honor Recelpt
credential of domain: Credential, range: Issued Credential

credentials domain: Person, range: Issued Credential

editor of domain: Person, range: Editorship

editors domain: Infarmatian Content Entity, range: Editorship

people domaln: Organization, range: Position

positions domain: Person, range: Pasition
receipts domain: Award or Honor, range: Award or Honor Recelpt
selected publications domain: Organization, range: Authorship
selected publications domain: Person, range: Authorship

e gl = P rovery

Editing a faux property

There are several ways to navigate to the Faux Property Editing Form. Perhaps the most common way is to show
the profile page for an individual, and turn on verbose property display.

Photo @ LUIDWENTN Fdit this individual

Resource URI: hitp:/ /vivg i

Verbose property display is off | RUTLEL
ividual /n1654

Baker, Able .~

Preferred Title ©

Faculty Member

Positions ©

positions is a faux property of vivo:relatedBy (object property); order in group: 40; display level: all users, including

public; update level: all users who can log in; publish level: all users, including public

In this example, we see that positions is a faux property of vivo: relatedBy. If you click on the link

for positions, you will see the Faux Property Editing Form for positions. On the other hand, if you click the link
for vivo:relatedBy, you will see the Object Property Editing Form for vivo: relatedBy. In addition to the
parameters for vivo: relatedBy, you will also see links to each of the faux properties that are based on it:

Extending and Localizing VIVO - 147



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

authors domain: Informatien Content Entity, range: Authorship Create New Faux Property

awards and honors demain: Persan, range: Award or Honor Recelpt

awards and honors received domain: Organization, range: Award or Honor Receipt
credential of domain: Credential, range: Issued Credential

credentials demain: Person, range: Issued Credential

editor of domain: Persan, range: Editorship

editors domain: Information Content Entity, range: Editorship

people domain: Organization, range: Position

positions domain: Persan, range: Position

ecelpts domain: Award or Honor, range: Award or Honor Receipt

selected publications domain: Organization, range: Authorship

From each of these pages, you can modify or delete the faux property that is displayed.

Alternatively, the Faux Property Editing form can be accessed by navigating to the Site Administration Page
and clicking Faux Property Listing. This will display the complete list of faux properties. Click the title to access the
editing form for that faux property.

Note: Faux property custom list views are configured in the Faux Property Editing form, rather than as documented
in Custom List View Configuration®*® for ontology properties.

8.3.6.4 Edit class groups

o Overview (see page 148)
+ Before and After (see page 148)
« What do you need to know? (see page 149)
« Getting started (see page 149)
o What to do (see page 149)

Overview

Before and After
Rename "people" to "personnel”, and move it to the end of the display order.

Index | Site Admin

Home People Organizations Research Events

people organizations locations

Faculty Member (2) Academic Department (1) Continent (7)

Librarian (1) Department (1) Country (210)

Person (3) Institute (1) Geographic Location (316)
Organization (2) Geographic Region (316)

State or Province (50)

research Transnational Region (27)
Grant (2)

130 https://wiki.duraspace.org/display/VIVO/Custom+List+View+Configurations

Extending and Localizing VIVO - 148


https://wiki.duraspace.org/display/VIVO/Custom+List+View+Configurations
https://wiki.duraspace.org/display/VIVO/Custom+List+View+Configurations

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Index | Site Admin | root -

Home People Organizations Research Events

organizations locations personnel
Academic Department (1) Continent (7) Faculty Member (2)
Department (1) Country (210) Librarian (1)
Institute (1) Geographic Location (316) Person (3)
Organization (2) Geographic Region (316)

State or Province (50)
research Transnational Region (27)
Crant (2)

What do you need to know?

How to follow the GUI for class groups.

Getting started

VIVO comes with a default set of class groups. You can rename them, reorder them, create new groups or delete
existing ones. You can also move classes from one group to another.

What to do
From the VIVO Site Admin page, navigate to the Class Groups page.

Index Site Admin

Class Management
Class hierarchy
Class groups

You can add a new class group, or click on the name of an existing group to edit it. You can also create a new class,
but that involves editing the ontology.

Extending and Localizing VIVO - 149



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Class Groups

Display Options Classes by Class Group j Add New Class Add New Group

activities
Display Rank: 2

courses

Display Rank: 3

events

Display Rank: 4

organizations
Display Rank: 5

equipment
Display Rank: 7

racaarch

You can change the name of a group, change its display rank, or delete it.

Classgroup Editing Form

Editing Existing Record ( Required Fields)

Class group name* (max 120 characters)

publications

Display rank (lower number displays first)
40

When the index page is displayed, the class groups are shown in order of ascending display rank.

Classes that aren't included in any of the groups are not displayed on the index page. If you delete a class group,
the classes that were in it will not be displayedon the index page unless you assign them to new groups.

Class groups and their membership can also affect the contents of managed pages. "Browse"-style pages display
the contents of some or all of the classes in a single group, so the structure of your class groups will affect how
these pages can be configured. Find more information in the section on Menu and page management (see page 136).

Class groups are also used to provide facets in search results.

Extending and Localizing VIVO - 150



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.6.5 Edit the appearance of classes

o Overview (see page 151)
« What can it do for you? (see page 151)
+ Before and After (see page 151)
+ What do you need to know? (see page 152)
+ Getting started (see page 152)
« What to do (see page 152)
* Notes (see page 154)

Overview

What can it do for you?
Change how VIVO displays a class of individuals.
For each class, you can change

« thedisplay label

« the public and private descriptions

« which class group it belongs to

+ who can see the values

« who can edit the values

« whether the values will be published in linked open data requests

You can also change things like the namespace and parent class, but these are changes to the ontology.

The class editing form also allows you to assign a custom entry form to a class, as described in Custom entry forms
(see page 186)

Before and After

Rename "Faculty Member" to "Member of the Faculty", and move it from the "People" class group to the
"Research" class group.

Home People Organizations Research Events
People

Baker, Able  Faculty Member

Faculty Member (1) Faculty Member
all ABCDEFGHIJKLMN

*—t Baker, Able
5 |

Person (1)

B
el

Cantact

Extending and Localizing VIVO - 151



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Research

Home People Organizations Research Events

Member of the Faculty (1)

Baker, Able | Member of the Faculty

Contart

What do you need to know?

How to follow the GUI for class editing.—

Getting started

Member of the Faculty
Al ABCDEFGHIJKLM

_-t Baker, Able
7 |

VIVO comes with a default set of classes. You can edit them to suit your display requirements, or make more

extensive modifications, by customizing the ontology.

What to do

From the VIVO Site Admin page, navigate to the Class Hierarchy page.

Class Management
Class hierarchy

If you know the ancestry of the class you want to change, you can navigate to it through the hierarchy. Otherwise,
you may want to set the display options to show A1l Classes, and scroll directly to the class you want.

Extending and Localizing VIVO - 152



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

All Classes

Display Options All Classes j Add New Class

Abstract (vivo)

An abstract that is published as a standalone document or in a journal of abstracts
Class Group: research

Ontology: VIVO Core

Academic Article (bibo)

Written by scholars for other scholars, typically published in an academic journal with an abstract and bibliography
Class Group: research

Ontology: Bibontoclogy

Academic Degree (vivo)

An academic degree at any level, both as reported by individuals for employment and as offered by academic degree programs.
Ontology: VIVO Core

Academic Department (vivo)

A distinct, usually specialized educational unit within an educational organization.

Clace Crann Araanizatinne

Click on the name of the class you want to edit.

Faculty Member (vivo)

A person with at least one academic appointment to a specific faculty of a university or institution of higher learning.
Class Group: people

Ontology: VIVO Core

This shows you the Class Control Panel. Click on the Edit Class button, and you will see the Class Editing Form.

Edit Class

You can change the class label, or the membership in a class group. You can also change the definition and
description of the class.

Extending and Localizing VIVO - 153



Class Editing Form
Editing Existing Record (* Required Fields)
Class label

Faculty Member

by convention use initial capital letters, spaces OK

Ontology

VIVO Core j

Edit via "change URI" an previous screen

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Class group

peaple j

for menu pages, search results and the index page

Internal name* (RDF local name)
FacultyMember

Edit via “change URI"

Short definition to display publicly
A person with at least one academic appointment to a specific faculty of a university or instituti

Example for ontology editors

Description for ontology editors

Definition from here: http://research.carleton.ca/htr/defs.php.

Display level Update level

all users, including public j all users who can log in j
Publish level

all users, including public j

Display rank when collating property by subclass Custom entry form

When you have made the changes, click on Submit Changes, and navigate to a page where you can see the
results.

Notes

There is no need to restart or rebuild VIVO to see the effects of your changes.

8.3.7 Class-specific templates for profile pages

» Overview (see page 155)
« How to do it (see page 156)
« Changes on an empty data model (see page 156)
« Changes to an existing data model (see page 156)
« Adding specifications (see page 156)
« Removing specifications (see page 157)
« Changing specifications (see page 158)
o Other mechanisms (see page 158)

Extending and Localizing VIVO - 154



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.7.1 Overview

When the profile page for an individual is created, it includes the standard header and footer, but most of the
content is built by the Freemarker template individual. ftl.

Sometimes you would prefer for a particular class of individuals to have a particular style of profile page.For
example, you want the contact information for a foaf: Person to appear right below their picture. Or you want to
see a link to their co-investigator network near the top of the page.

VIVO lets you specify different templates for different classes of individuals. The standard distribution includes
three of those specifications. Here are examples of profile pages for a Person, and Organization, and a Concept,
with and without specified templates.

specified template default template

Person

Home People Organizations Research  Events Home People  Organizations Research  Events
Jefferson, Rebecca | Head of the Price Library of <~ Co-investigator Jefferson, Rebecca | Faculty Member
Judaica
Affiliation Research Background Contact View All
Positions

Associate University Librarian, Special and Area Studies Collections, Smathers Library

home department

2010
_ ? Faculty, Special and Area Studies Collctions, Smathers Library 2010 Special and Area Studles Collections
Contact Info
@ fefferson@ufl.edu
& (352) 273-2650
head of
Affiliation Research Background Contact View All Isser and Rae Price Library of Judaica Curator 2010
home department positions
Special and Area Studies Collections Associate University Librarian, Special and Area Studies Collections, Smathers Library 2010

Faculty, Special and Area Studies Collections, Smathers Library 2010
head of
Isser and Rae Price Library of Judaica Curator 2010- el

Association of Jewish Studies Member 2010 -

member of

Association of Jewish Studies Member 2010

Organizat
ion

Home People  Organizations Research  Events

Agricultural and Resource Economics (Washington State University) | Academic

Department

Agricultural and Resource Economics (Washington State University) | Academic
Department

<X Temporal Graph
Faculty Research Areas Affliation
economics | Economic dynamics | Law | Natural resource economics {0 Map of Science

Policy | Water resources

Affiliation faculty position
Huffaker, Ray G, Adjunct Professor 1990 -
people

faculty position

Huffaker, Ray G, Adjunct Professor 1990
Washington State University

organization within

Washington State University

Extending and Localizing VIVO - 155



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Concept

18th-Century Studies | Concept 18th-Century Studies | Concept

Associated Departments Overview Other View All
English | Graduate School | Honors Program

ea of
Overview Other View All

Mccrea, Brian R, Professor and Programs Director, English
rea of

subject area of
Mccrea, Brian R, Professor and Programs Director, English

VIVO: A Semantic Web Network Enabling Collaboration Among Scientists

VIVO: A Semantic Web Network Enabling Collaboration Among Scientists

A specified profile template applies to individuals of the specified class, and to individuals of all sub-classes. So a
page specified for foaf:Person will also apply to its sub-classes, like vivo: FacultyMember.

8.3.7.2 Howtodoit

There is no page in VIVO that will allow you to set or change these template specifications. Here are two ways to set
itup.

Changes on an empty data model

When you start an empty VIVO instance for the first time, it will load the files in the rdf/tbox/firsttime directory
into the asserted-tbox model.

Thefile initialTBoxAnnotations.n3,in this directory, contains the triples that specify these profile templates.
They are scattered in the file, and mingled with other triples, but if you look, you can find these statements:

foaf:0rganization
vitro:customDisplayViewAnnot
"individual--foaf-organization.ftl"AAxsd:string .
foaf:Person
vitro:customDisplayViewAnnot
"individual--foaf-person.ftl"AAxsd:string .
skos:Concept
vitro:customDisplayViewAnnot
"individual--skos-concept.ftl"Axsd:string .

You can remove triples from this file prior to the first startup of VIVO, or add triples to create other template
specifications.

Changes to an existing data model

If VIVO has already been started, the files in rdf/tbox/firsttime will not be read again. You can use the
advanced data tools on the Site Administrator's page to make changes.

Adding specifications

+ Create a specialized Freemarker template.
« Prepare an RDF file containing the triples you want to add. Here is an example, in Turtle format:

Extending and Localizing VIVO - 156



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix vitro: <http://vitro.mannlib.cornell.edu/ns/vitro/0.7#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

bibo:Article
vitro:customDisplayViewAnnot
"individual--bibo-article.ftl"Axsd:string .

Login to VIVO as an admin user
Follow the header link to the Site Admin page
On the Site Admin page,under Advanced Data Tools, choose Ingest tools.

« Thelink to Add/Remove RDF data istempting, but it does not allow us to load into a specific model.
On the Ingest Menu page, choose Manage Jena Models.
In the list of available models, locate the controls for http://vitro.mannlib.cornell.edu/default/
asserted-tbox, and choose load RDF data.
Onthe Load RDF Data page, use the Browse control to locate your RDF file, and select the type of RDF
format you used. Click the Load Data button.

Advanced Data Tools

Ingest Menu > Load RDF Data

RDF document URI:

Add/Remove RDF data
Or upload a file from your computer:
RDF export

SPARQL guery Browse... | pages_for_class.u
SPARQL query builder

o

Ingest Menu

Connect DB

anage Jena Models
Subtract OME Model from Another

o

http:/ /yvittgmannlib.cornell.edu/default/asserted-tbox
load RDF data output model clear statements remove
attach snapshot to . detach hot from | g URIs

If there is a problem with the load, you will see a screen that shows an error message. Unfortunately, if the load is
successful, you will see no indication. You will simply be returned to the list of available models.

You must restart VIVO to see the effect of your changes.

Removing specifications

« Create an RDF file containing the triples you want to remove. In this example, we will remove the triple that
was added above, so we will use the same file.

+ Login to VIVO as an admin user.

« Follow the header link to the Site Admin page.

Extending and Localizing VIVO - 157



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

+ OntheSite Admin page,under Advanced Data Tools, choose Add/Remove RDF data.
+ Onthe Add or Remove RDF Data page, use the Browse control to locate your RDF file, choose to remove
mixed RDF, and select the type of RDF format you used. Click the submit button.

Add or Remove RDF Data
Advanced Data Tools Enter Web-accessible URL of document containing RDF to add or remove:
Ingesl |l_
RDF export
SPARQL quen Or upload a file from your computer:
SPARQL guery builder
add instance data (supports large data files)
add mixed RDF (instances and/or ontology)
l- stances and/or ontology)
\ \
4 create classgroups automatically

If there is a problem with your data file, you will see a screen showing an error message. If the removal is successful,
you will see a message like the following:

Home People Organizations Research Events

Removed RDF from file pages_for_class.ttl. Removed 3 statements.

Note that the message tells you how many triples you asked to have removed, without regard to whether they
actually existed in the data model.

You must restart VIVO to see the effect of your changes.

Changing specifications

There is no direct way to replace triples in the data model. Use the preceding steps to remove the triples you don't
want, and to add new triples to replace them.

Other mechanisms
Expert VIVO users will be aware of many other ways of adding or removing triples.

Remember that VIVO must be restarted, since the list of specific templates is created at startup.

Extending and Localizing VIVO - 158



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.8 Excluding Classes from the Search

8.3.8.1
« Overview
+ Steps to create a new search exclusion
+ Example on the contents of an RDF file to define exclusions

8.3.8.2 Overview

AVIVO/Vitro instance can be customized to exclude a class of individuals from the search index. Allinstances of a
class can be excluded from the search index by adding a vitroDisplay:excludeClass'3! property between
vitroDisplay:Searchindex and the URI of the class that you would like to exclude. This will have the effect of not
displaying any individual with this class in search results, on the index page, in browse pages and as options for
entry in some forms. The search exclusions are controlled by RDF statements in the display model.

8.3.8.3 Steps to create a new search exclusion

1. Create a file with your new exclusion

2. Inyour deploy directories, place that file in either vivo/rdf/display/everytime or vitro/webapp/
rdf/display/everytime

3. Stop Tomcat, deploy, and restart Tomcat

4. Login to VIVO as an admin and rebuild the search index.

8.3.8.4 Example on the contents of an RDF file to define exclusions

@prefix vitroDisplay: <http://vitro.mannlib.cornell.edu/ontologies/display/1.1#> .

vitroDisplay:SearchIndex
vitroDisplay:excludeClass <http://example.org/ns/ex/Hat> .

8.3.9 Custom List View Configurations

« Introduction (see page 160)
« List View Configuration Guidelines (see page 160)
« Registering the List View (see page 160)

Required Elements (see page 160)
Optional Elements (see page 161)
Construct Queries (see page 161)
The Select Query (see page 161)

« General select query requirements (see page 161)

« Data which is required in public view, optional when editing (see page 162)

131 http://vitroDisplayexcludeClass

Extending and Localizing VIVO - 159


http://vitroDisplayexcludeClass
http://vitroDisplayexcludeClass

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Collated vs. uncollated queries (see page 162)
+ Datetimes in the query (see page 163)
« The Template (see page 163)
« List View Example (see page 164)
« Associate the property with a list view (see page 164)
 The list view configuration (see page 164)
« The Freemarker Template (see page 167)

8.3.9.1 Introduction

Custom list views provide a way to expand the data that is displayed for object and data properties. For example,
with the default list view the hasPresenterRole object property would only display the rdfs:label of the role
individual; but with a custom list view, the "presentations" view includes not only the role but also the title of the
presentation, the name of the conference where the presentation was given and the date the presentation was
given. This wiki page provides guidelines for developing custom list views as well as an example of a custom list
view.

8.3.9.2 List View Configuration Guidelines

Registering the List View

A custom list view is associated with an object property in the RDF files in the directory /vivo/rdf/display/
everytime. To register a list view, create a new . rdf or .n3 file in that directory. The file must be well-formed
RDF/XML or N3.

Here is an example of registering a new association in a file named newListViews.n3:

<http://vivoweb.org/ontology/core#authorInAuthorship>
<http://vitro.mannlib.cornell.edu/ontologies/display/1l.1#listViewConfigFile>
"listViewConfig-authorInAuthorship.xml" .

With this triple the authorInAuthorship object property is associated with a list view configuration that is
defined in a file named listViewConfig-authorInAuthorship.xml.

Place the N3 file containing this triple (or the well-formed RDF/XML file) in the /vivo/rdf/display/everytime
directory, redeploy VIVO and restart tomcat to put the new custom list view in effect.

Note: Faux property custom list views are not registered in the same way. The list view is specified in the
configuration of the faux property itself, using the faux property editing form. See details in Create and edit faux
properties. (see page 143)

Required Elements
The list view configuration file requires three elements:

1. list-view-config: this is the root element that contains the other elements
2. query-select: this defines the SPARQL query used to retrieve data
3. template: this holds the name of the Freemarker template file used to display a single property statement

Extending and Localizing VIVO - 160



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Optional Elements
The list-view-config root element can also contain two optional elements:

1. query-construct: one or more construct queries used to construct a model that the select query is run
against

2. postprocessor: a Java class that postprocesses the data retrieved from the query before sending it to the
template. If no post-processor is specified, the default post-processor will be invoked.

Construct Queries

Because SPARQL queries with multiple OPTIONAL clauses are converted to highly inefficient SQL by the Jena API,
one or more construct queries should be included to improve query performance. They are used to construct a
model significantly smaller than the entire dataset that the select query can be run against with reasonable
performance.

The construct queries themselves should not contain multiple OPTIONAL clauses, to prevent the same type of
inefficiency. Instead, use multiple construct queries to construct a model that includes all the necessary data.

In the absence of any construct queries, the select query is run against the entire dataset. If your select query does
not involve a lot of OPTIONAL clauses, you do not need to include construct queries.

The construct queries must be designed to collect all the data that the select query will request. They can be
flexibly constructed to contain more data than is currently selected, to allow for possible future expansion of the

SELECT and to simplify the WHERE clause. For example, one of the construct queries for core:hasRole?*? includes:

CONSTRUCT {

?role ?roleProperty ?roleValue .
} WHERE {

?role ?roleProperty ?roleValue .

That s, itincludes all the properties of the role, rather than just those currently selected by the select query.

The ordering of the construct queries is not significant.

The Select Query

General select query requirements

Use a SELECT DISTINCT clause rather than a simple SELECT. There can still be cases where the same individual is
retrieved more than once, if there are multiple solutions to the other assertions, but DISTINCT provides a start at
uniqueness.

The WHERE clause must contain a statement ?subject ?property ?object, with the variables ?subject and ?property
named as such. For a default list view, the ?object variable must also be named as such. For a custom list view, the
object can be given any name, but it must be included in the SELECT terms retrieved by the query. This is the
statement that will be edited from the edit links.

132 http://corehasRole

Extending and Localizing VIVO - 161


http://corehasRole
http://corehasRole

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Data which is required in public view, optional when editing

Incomplete data can result in a missing linked individual or other critical data (such as a URL or anchor text on a
link object). When the user has editing privileges on the page, these statements are displayed so that the user can
edit them and provide the missing data. They should be hidden from non-editors. Follow these steps in the select
query to ensure this behavior:

« Enclose the clause for the linked individual in an OPTIONAL block.

« Select the object's localname using the ARQ localname function, so that the template can display the local
name in the absence of the linked individual. Alternatively, this can be retrieved in the template using the
localname(uri) method.

+ Require the optional information in the public view by adding a filter clause which ensures that the variable
has been bound, inside tag <critical-data-required>. For example:

OPTIONAL { ?authorship core:linkedInformationResource ?infoResource }

+ This statement is optional because when editing we want to display an authorship that is missing a link to
an information resource. Then add:

<critical-data-required>
FILTER ( bound(?infoResource) )

</critical-data-required>

« The Java code will preprocess the query to remove the <critical-data-required> tag, either retaining its text
content (in public view) or removing the content (when editing), so that the appropriate query is executed.

Collated vs. uncollated queries

The query should contain <collated> elements, which are used when the property is collated. For uncollated
queries, the fragments are removed by a query preprocessor. Since any ontology property can be collated in the
Ontology Editor, all queries should contain the following <collated> elements:

« A?subclass variable, named as such, in the SELECT clause. If the ?subclass variable is missing, the property
will be displayed without collation.

SELECT DISTINCT <collated> ?subclass </collated> ...

« ?subclass must be the first term in the ORDER BY clause.

ORDER BY <collated> ?subclass </collated> ...

« Include the following in the WHERE clause, substituting in the relevant variables for ?infoResource and
core:InformationResource:

<collated>
OPTIONAL { ?infoResource a ?subclass

Extending and Localizing VIVO - 162



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?subclass rdfs:subClassOf core:InformationResource .

}
</collated>

Postprocessing removes all but the most specific subclass value from the query result set.

Alternatively (and preferably):

<collated>
OPTIONAL { ?infoResource vitro:mostSpecificType ?subclass

?subclass rdfs:subClassOf core:InformationResource .

}
</collated>

Automatic postprocessing to filter out all but the most specific subclass will be removed in favor of this
implementation in the future.

Both collated and uncollated versions of the query should be tested, since the collation value is user-configurable
via the ontology editor.

Datetimes in the query

To retrieve a datetime interval, use the following fragment, substituting the appropriate variable for ?edTraining:

OPTIONAL {
?edTraining core:dateTimeInterval ?dateTimeInterval
OPTIONAL { ?dateTimelInterval core:start ?dateTimeStartValue .
?dateTimeStartValue core:dateTime ?dateTimeStart

}
OPTIONAL { ?dateTimeInterval core:end ?dateTimeEndValue .

?dateTimeEndValue core:dateTime ?dateTimeEnd

The variables ?dateTimeStart and ?dateTimeEnd are included in the SELECT clause.

Many properties that retrieve dates order by end datetime descending (most recent first). In this case, a post-
processor must apply to sort null values at the top rather than the bottom of the list, which is the ordering returned
by the SPARQL ORDER BY clause in the case of nulls in a descending order. In that case, the variable names must be
exactly as shown to allow the post-processor to do its work.

The Template
To ensure that values set in the template on one iteration do not bleed into the next statement:

« The template should consist of a macro that controls the display, and a single line that invokes the macro.
« Variables defined inside the macro should be defined with <#local> rather than <#assign>.

To allow for a missing linked individual, the template should include code such as:

<#local linkedIndividual>
<#if statement.org??>

Extending and Localizing VIVO - 163



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<a href="${url(statement.org)}">${statement.orgName}</a>
<#else>
<#-- This shouldn't happen, but we must provide for it -->
<a href="${url(statement.edTraining)}">${statement.edTrainingName}</a> (no linked organization)
</#if>
</#local>

The query must have been constructed to return orgName (see above under "General select query requirements"),
or alternatively the template can use the localname function: ${localname(org)}.

If a variable is in an OPTIONAL clause in the query, the display of the value in the template should include the
default value operator ! to prevent an error on null values.

8.3.9.3 List View Example

This example will walk through the custom list view for the core:researchAreaOf object property. This property is
displayed on the profile page for research area individuals.

Associate the property with a list view

In this example we're using RDF/XML to associate the researchAreaOf object property (line 1) with a specific list
view configuration (line 2):

<rdf:Description rdf:about="http://vivoweb.org/ontology/corefiresearchArea0f'">
<display:listViewConfigFile rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">listViewConfig-

researchAreaOf.xml</display:listViewConfigFile>

</rdf:Description>

The list view configuration

The root <list-view-config> element in our listViewConfig-researchAreaOf.xml file contains the required <query-
select> and <template> elements as well as two optional <query-construct> sections and an optional
<postprocessor> element.

This is the <query-select> element:

<query-select>
PREFIX afn: &lt;http://jena.hpl.hp.com/ARQ/function#&gt;
PREFIX core: &ltj;http://vivoweb.org/ontology/core#&gt;
PREFIX rdfs: &ltj;http://www.w3.0rg/2000/01/rdf-schema#&gt;
PREFIX vitro: &ltj;http://vitro.mannlib.cornell.edu/ns/vitro/0.7#&gt;
PREFIX foaf: &ltj;http://xmlns.com/foaf/0.1/&gt;

SELECT DISTINCT
?person
?personName
?posnLabel
?orglLabel
?type
?personType

Extending and Localizing VIVO - 164



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2title
WHERE {
?subject ?property ?person
?person core:personInPosition ?position
OPTIONAL { ?person rdfs:label ?personName }
OPTIONAL { ?person core:preferredTitle ?title }
OPTIONAL { ?person vitro:mostSpecificType ?personType
?personType rdfs:subClassOf foaf:Person
}
OPTIONAL { ?position rdfs:label ?posnLabel }
OPTIONAL { ?position core:positionInOrganization ?org .
?org rdfs:label ?orgLabel
}
OPTIONAL { ?position core:hrJobTitle ?hrJobTitle }
OPTIONAL { ?position core:rank ?rank }
}
ORDER BY ?personName ?type
</query-select>

Here is the first <query-construct> element:

<query-construct>
PREFIX rdfs: &ltj;http://www.w3.0rg/2000/01/rdf-schema#&gt;
PREFIX core: &ltj;http://vivoweb.org/ontology/core#&gt;

CONSTRUCT {
?subject ?property ?person
?person core:personInPosition ?position
?position rdfs:label ?positionLabel
?position core:positionInOrganization ?org .
?org rdfs:label ?orgName
?position core:hrJobTitle ?hrJobTitle
} WHERE {
{
?subject ?property ?person
} UNION {
?subject ?property ?person
?person core:personInPosition ?position
} UNION {
?subject ?property ?person
?person core:personInPosition ?position
?position rdfs:label ?positionLabel
} UNION {
?subject ?property ?person
?person core:personInPosition ?position
?position core:positionInOrganization ?org
} UNION {
?subject ?property ?person
?person core:personInPosition ?position
?position core:positionInOrganization ?org .
?org rdfs:label ?orgName
} UNION {
?subject ?property ?person

Extending and Localizing VIVO - 165



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?person core:personInPosition ?position .
?position core:hrJobTitle ?hrJobTitle

}

</query-construct>

The second <query-construct> element:

<query-construct>
PREFIX rdfs: &ltj;http://www.w3.0rg/2000/01/rdf-schema#&gt;
PREFIX core: &ltj;http://vivoweb.org/ontology/core#&gt;
PREFIX foaf: &ltj;http://xmlns.com/foaf/0.1/&gt;
PREFIX vitro: &ltj;http://vitro.mannlib.cornell.edu/ns/vitro/0.7#&gt;

CONSTRUCT {
?subject ?property ?person .
?person rdfs:label ?label .
?person core:preferredTitle ?title .
?person vitro:mostSpecificType ?personType .
?personType rdfs:subClassOf foaf:Person
} WHERE {
{
?subject ?property ?person
} UNION {
?subject ?property ?person .
?person rdfs:label ?label
} UNION {
?subject ?property ?person .
?person core:preferredTitle ?title
} UNION {
?subject ?property ?person .
?person vitro:mostSpecificType ?personType .

?personType rdfs:subClassOf foaf:Person

}

</query-construct>

Next is the required <template> element:

<template>propStatement-researchAreaOf.ftl</template>

And here is the <postprocessor> element:

<postprocessor>edu.cornell.mannlib.vitro.webapp.web.templatemodels.individual.ResearchAreaOfPostProcessor</

postprocessor>

Note: the <postprocessor> is included here only to show the syntax. The actual listViewConfig-researchAreaOf.xml
file in the VIVO code base does not use a custom post-processor.

Extending and Localizing VIVO - 166



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The Freemarker Template

Finally, here are the contents of our Freemarker template, propStatement-researchAreaOf.ftl.

<#import "lib-sequence.ftl" as s>
<@showResearchers statement />
<#-- Use a macro to keep variable assignments local; otherwise the values carry over to the
next statement -->
<#fmacro showResearchers statement>
<#local linkedIndividual>
<a href="${profileUrl(statement.uri("person"))}" title="${i18n().person_name}">$
{statement.personName}</a>
</#local>
<#if statement.title?has_content >
<#local posnTitle = statement.title>
<#else>
<#local posnTitle = statement.posnLabel!statement.personType>
</#HIf>
<@s.join [ linkedIndividual, posnTitle, statement.orglLabel!"" ] /> ${statement.type!}
</#macro>

8.3.10 Creating short views of individuals

o Overview (see page 168)
« What does it do? (see page 168)
« How is it created? (see page 168)
« Details (see page 168)
« The class association (see page 168)
« The customViewForIndividual definition (see page 169)
» The SparqlQueryDataGetter definition (see page 169)
+ The Freemarker template (see page 170)
« The default template can be modified in the theme (see page 170)
« Some examples (see page 171)
« The scenario (see page 171)
« SEARCH example (see page 171)
« The default template (see page 171)
+ Specifying the custom short view (see page 171)
« INDEX example (see page 172)
+ The default template (see page 172)
+ Specifying the custom short view (see page 173)
+ BROWSE example (see page 174)
« The default template (see page 174)
+ Specifying the custom short view (see page 175)
» Troubleshooting (see page 179)
« Errorsinthe template? (see page 179)
« Errorsin the Query? (see page 180)
« Errorsin the config file? (see page 180)
* Notes (see page 180)
« Waiting for the Application and Display Ontology (see page 180)
« Classes are not inferred (see page 180)

Extending and Localizing VIVO - 167



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« More than one applicable short view (see page 181)
» Hard-coded BROWSE view for People (see page 181)

8.3.10.1 Overview

What does it do?

Custom short views are used in three different contexts within VIVO, to give you more control over how an
individual is displayed in that context.

You can configure VIVO to display different classes of individuals in different ways. As an example, you might choose
to display a Faculty Member in a grey color if she has no current appointments.

Custom short views will frequently be different in the three different contexts in which they are available. For
example, you might want to show the image of a Person on a search result, but you might not want to display that
image in the Person index pages.

How is it created?
Ashort view is defined by two elements. First there will be a group of RDF statements in this file:
vitro/webapp/web/WEB-INF/resources/shortview_config.n3

In a VIVO release, this file is empty (except for a few comments), and the default short views are used in all cases.
You will add RDF to this file as you define your custom short views. The RDF statements will name the class of
Individual, the Freemarker template, and any SPARQL queries that are used to get the data you need to display.

The other thing you will need is the Freemarker template itself, to render your custom view.
An example of some custom short views can be found in this directory:
vivo/utilities/acceptance-tests/suites/ShortViews/

The directory contains a copy of shortview_config.n3, and some Freemarker templates. These files are
essentially the same as the examples on this page.

8.3.10.2 Details

The class association

A statement associates a custom short view with a VIVO Class from the ontology. For example:

vivo:FacultyMember
display:hasCustomView mydomain:facultySearchView .

This means that the specified short view will be used for any Individual that has vivo: FacultyMember as a most
specific class.

Extending and Localizing VIVO - 168



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

& Only the most specific classes of an Individual are recognized by the short views. So if you want a custom
short view to be used for all Person objects, you must define it on Person and on FacultyMember and on
FacultyMemberEmeritus, etc.

The customViewForIndividual definition
An object is given a URI and declared to be a customViewForIndividual

It may apply to one or more of the contexts: SEARCH, INDEX, or BROWSE.
It must have an associated template, and may have one or more associated DataGetters.

Here is an example:

mydomain: facultySearchView

a display:customViewForIndividual ;
display:appliesToContext "SEARCH" ;
display:hasTemplate "view-search-faculty.ftl" ;

display:hasDataGetter mydomain:facultyDepartmentDG .

This custom view applies in the SEARCH context. It specifies a DataGetter, which will be invoked to find data each
time this short view is rendered. It also specifies the Freemarker template that will render the view.

The SparglQueryDataGetter definition
The DataGetter must also be defined in the RDF, like this:

mydomain: facultyDepartmentDG
a datagetters:SparqlQueryDataGetter ;
display:saveToVar "details" ;
display:query e
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT ?deptName

WHERE {
?9ndividualUri vivo:hasMemberRole ?membership .
?membership vivo:roleContributesTo ?deptUri .
?deptUri
a vivo:AcademicDepartment ;

rdfs:label ?deptName .

}
LIMIT 20

Besides the type and the URI, this object specifies a SPARQL query, and the name of a Freemarker variable where
the results of the query will be stored.

When the SPARQL query is executed, the value of 2individualUrl will be bound to the actual URI of the
Individual being displayed. The values returned from the query will be stored in an array of Freemarker Hash
containers, with each one representing a row of the SPARQL query result. The Hash will contain the values returned
by the query, keyed to the variable names used in the query.

Extending and Localizing VIVO - 169



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

When this array of Hash containers has been constructed, it is stored in the variable named by the DataGetter
declaration; detatils in this case.

The DataGetter is optional in a custom short view. If no DataGetter is specified, then the Freemarker template will
only have the standard set of data available to it.

Conversely, multiple DataGetters may be specified on a short view. If this is done, each DataGetter should assign to
a different Freemarker variable, to avoid problems with overwriting data.

The Freemarker template

A default template exists for each of the short view contexts: SEARCH, INDEX and BROWSE.
If no custom short view is defined for an Individual, the default template will be used to render the Individual.

The custom template will likely be based on the default template for that context. For example, the default
template for search results is called view-search-default. ft1 and looks like this:

<#import "lib-vivo-properties.ftl" as p>

<a href="s${individual.profileUrl}" title="1individual name">${individual.name}</a>

<@p.displayTitle individual />

<p class="snippet">${individual.snippet}</p>

Our modified template is this:

<#import "lib-vivo-properties.ftl" as p>
<a href="${individual.profileUrl}" title="individual name">${individual.name}</a>
<@p.displayTitle individual />
<#if (details[0].deptName)?? >
<span class="display-title">Member of ${details[0].deptName}</span>

</#if>

<p class="snippet">${individual.snippet}</p>

So, if a department name was found for this Faculty member, it will be displayed. If more than one was found, the
remainder will be ignored, since the template only displays the first one.

The default template can be modified in the theme

Besides taking advantage of custom short views, the theme author may also choose to override the templates for
the default short views. This would merely require creating a new template with the same name as the one being
overridden, and putting this new template into the template directory of your theme.

Extending and Localizing VIVO - 170



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.10.3 Some examples

The scenario

When a FacultyMember appears in a short view, we would like to add the name of his/her department. This
information isn't directly available, so we will need to obtain it from a SPARQL query.

This should work in all three contexts, SEARCH, INDEX, and BROWSE.
This will only apply to FacultyMembers. Other individuals will use the default short views.

If the FacultyMember is not a member of a department, the short view should just omit the name, without causing
an error.

SEARCH example

The default template
The default short view for the SEARCH context looks like this:

And it produces results like this:

Search results for 'Faculty'

Dog, Charlie | Faculty Member
... Dog Charlie Chair 123 Midway Street Brooktondale New York Member Age

Baker, Able | Faculty Member
... Instructor Instructor Afghanistan Instructor Agent Faculty Member Person

Specifying the custom short view

In the shortview_config.n3 configuration file, create these structures:

vivo:FacultyMember

display:hasCustomView mydomain:facultySearchView .

mydomain:facultySearchView

a display:customViewForIndividual ;
display:appliesToContext "SEARCH" ;

display:hasTemplate "view-search-faculty.ftl" ;
display:hasDataGetter mydomain: facultyDepartmentDG .

mydomain:facultyDepartmentDG
a datagetters:SparqlQueryDataGetter ;
display:saveToVar "details" ;

display:query ren

Extending and Localizing VIVO - 171



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT ?deptName

WHERE {
?individualUri vivo:hasMemberRole ?membership .
?membership vivo:roleContributesTo ?deptUri
?deptUri
a vivo:AcademicDepartment ;
rdfs:label ?deptName .
}
LIMIT 20

Create the template view-search-faculty. ftlto look like this:

<#import "lib-vivo-properties.ftl" as p>
<a href="${individual.profileUrl}" title="1individual name">${individual.name}</a>
<@p.displayTitle individual />
<#if (details[0].deptName)?? >
<span class="display-title">Member of ${details[0].deptName}</span>

</#if>

<p class="snippet">${individual.snippet}</p>

The new search results look like this:

Search results for 'faculty’

Dog, Charlie | Faculty Member | Member of Art Department
... Dog Charlie Chair 123 Midway 5treet Brooktondale New York Member Ag

Baker, Able | Faculty Member
... Instructor Instructor Afghanistan Instructor Agent Faculty Member Perso

INDEX example

The default template
The default short view for the INDEX context looks like this:

<#import "lib-properties.ftl" as p>
<a href="${individual.profileUrl}" title="name">${individual.name}</a>

<@p.mostSpecificTypes individual />

Extending and Localizing VIVO - 172



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

And it produces results like this:

Faculty Member | RDF

Baker, Able
Dog, Charlie

Specifying the custom short view

In the shortview_config.n3 configuration file, create these structures:

vivo:FacultyMember
display:hasCustomView mydomain:facultyIndexView .

mydomain: facultyIndexView
a display:customViewForIndividual ;
display:appliesToContext "INDEX"
display:hasTemplate "view-index-faculty.ftl" ;
display:hasDataGetter mydomain:facultyDepartmentDG .

mydomain:facultyDepartmentDG
a datagetters:SparqlQueryDataGetter ;
display:saveToVar "details" ;
display:query e
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT ?deptName

WHERE {
?individualUri vivo:hasMemberRole ?membership .
?membership vivo:roleContributesTo ?deptUri
?deptUri
a vivo:AcademicDepartment ;

rdfs:label ?deptName .

3
LIMIT 20

Note that the DataGetter is the same as in the previous example. If two custom short views want to use the same
DataGetter, there is no need to code it twice. If both of these examples are tried at the same time, the two custom
short views would refer to the same DataGetter.

Create the template view-index-faculty. ftlto look like this:

<#import "lib-vivo-properties.ftl" as p>
<a href="${individual.profileUrl}" title="individual name">${individual.name}</a>

<@p.displayTitle individual />

Extending and Localizing VIVO - 173



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<#if (details[0].deptName)?? >
<span class="display-title">Member of ${details[0].deptName}</span>
</#if>

The new index looks like this:

Faculty Member  RDF

Baker, Able

Dog, Charlie | Member of Art Department

BROWSE example

The default template
The default short view for the BROWSE context looks like this:

<#import "lib-properties.ftl" as p>
<1i class="4individual" role="listitem" role="navigation">

<#if (individual.thumbUrl)??>
<img src="${individual.thumbUrl}" width="90" alt="${individual.name}" />
<hl class="thumb">
<a href="${individual.profileUrl}" title="${i18n().view_profile_page_for}
${individual.name}}">${individual.name}</a>
</h1l>
<#else>
<h1>
<a href="${individual.profileUrl}" title="${i18n().view_profile_page_for}
${individual.name}}">${individual.name}</a>
</h1>
</#HIf>

<#assign cleanTypes =
'edu.cornell.mannlib.vitro.webapp.web.TemplateUtils$DropFromSequence' ?new()
(individual.mostSpecificTypes, vclass) />
<#if cleanTypes?size == 1>
<span class="title">${cleanTypes[0]}</span>
<#elseif (cleanTypes?size > 1) >
<span class="title">
<ul>
<#1list cleanTypes as type>
<li>${typel}</li>
</#list>
</ul>
</span>
</#if>

Extending and Localizing VIVO - 174



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

</1i>
Notice that it contains some conditional logic, producing different results depending on whether there is an image

file associated with the Individual, or whether the type being browsed is the most specific type for the individual.

The default template produces results like this:

Faculty Member
Al A B CDEF GCHI J KLMNOPOORSTUWY WXY Z

Baker, Able

Dog, Charlie

Or this:

Person
AlA B CDEF GHI J KL MNOPIGGERESTWUWOWWY WXY Z

Baker, Able

Faculty Member

Dog, Charlie

Faculty Member

Specifying the custom short view

In the shortview_config.n3 configuration file, create these structures:

Extending and Localizing VIVO - 175



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

vivo:FacultyMember
display:hasCustomView mydomain:facultyBrowseView .

mydomain:facultyBrowseView

a display:customViewForIndividual ;
display:appliesToContext "BROWSE" ;

display:hasTemplate "view-browse-faculty.ftl" ;
display:hasDataGetter mydomain:facultyDepartmentDG ;
display:hasDataGetter mydomain:facultyPreferredTitleDG .

mydomain:facultyDepartmentDG
a datagetters:SparqlQueryDataGetter ;
display:saveToVar "details" ;
display:query e
PREFIX rdfs: <http://www.w3.0org/2000/01/rdf-schema#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT ?deptName

WHERE {
?individualUri vivo:hasMemberRole ?membership .
?membership vivo:roleContributesTo ?deptUri
?deptUri

a vivo:AcademicDepartment ;

rdfs:label ?deptName .

}
LIMIT 20

mydomain:facultyPreferredTitleDG
a datagetters:SparqlQueryDataGetter ;
display:saveToVar "extra"
display:query e
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT ?pt
WHERE {
?individualUri <http://vivoweb.org/ontology/corefipreferredTitle> ?pt
}
LIMIT 1

Note that the first DataGetter is the same as in the previous examples. If two custom short views want to use the
same DataGetter, there is no need to code it twice. If two or more of these examples are tried at the same time, the
short views would each refer to the same DataGetter.

Also note that this short view uses two DataGetters. One stores its results in "details" and the other stores its results
in "extra", so the freemarker template will have access to both sets of results.

Create the template view-browse-faculty. ft1lto look like this:

<#import "lib-properties.ftl" as p>

<1i class="individual" role="listitem" role="navigation">

Extending and Localizing VIVO - 176



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<#if (dindividual.thumbUrl)??>
<img src="${individual. thumbUrl}" width="90" alt="${individual.name}" />
<hl class="thumb">
<a href="${individual.profileUrl}" title="View the profile page for
${individual.name}}">${individual.name}</a>
</h1>
<#else>
<h1l>
<a href="${individual.profileUrl}" title="View the profile page for
${individual.name}}">${individual.name}</a>
</h1l>
</#if>

<#if (extral[0].pt)?? >
<span class="title">${extral[0].pt}</span>
<#else>
<#tassign cleanTypes =
'edu.cornell.mannlib.vitro.webapp.web.TemplateUtils$DropFromSequence'?new()
(individual.mostSpecificTypes, vclass) />
<#if cleanTypes?size == 1>
<span class="title">${cleanTypes[0]}</span>
<#telseif (cleanTypes?size > 1) >
<span class="title">

<ul>
<#list cleanTypes as type>
<li>${typel}</1li>
</#list>

</ul>

</span>
</#HIf>
</#Hif>

<#if (details[0].deptName)?? >
<span class="title"><em>Member of</em> ${details[0].deptNamel}</span>
</#if>

</1i>

Extending and Localizing VIVO - 177



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The new browse results look like this:

Faculty Member
Al A B CDEF GCHI J KL MNOPOORSTWUWVWXIXY Z

Baker, Able

Dog, Charlie

Member of Art Department

Or this:

Person
AlA B CDEF GHI J KL MMNOPIOGORSTWUVWYV WXY Z

Baker, Able

Faculty Member

Dog, Charlie

Faculty Member

Member of Art Department

Extending and Localizing VIVO - 178



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.10.4 Troubleshooting

Errors in the template?

If the freemarker template for a short view contains syntax errors, the request will not throw an exception, which
will be written to the VIVO log (vivo.all. log). The page will still render, but with an error message in place of the
intended short view.

For example, in search results:

Search results for 'faculty’

Can't process the custom short view for Dog, Charlie

Can't process the custom short view for Baker, Able

In an index page:

Faculty Member | RDF
Can't process the custom short view for Baker, Able

Can't process the custom short view for Dog, Charlie

In browse results:

Faculty Member
AlAB CDEF GHI J KL MMNIOPIOORSTWUVWYV WXY Z

Can't parse the short view template 'view-browse-faculty.ftl' for Baker, Able

Can't parse the short view template "view-browse-faculty.ftl' for Dog, Charlie

Extending and Localizing VIVO - 179



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Errors in the Query?

If the SPARQL query defined in the configuration file contains syntax errors, the log will contain a stack trace for the
exception. The information in the exception may be cryptic, but will at least tell you where the error is located
within the query.

For example:

2012-10-23 17:25:26,499 ERROR [FreemarkerHttpServlet] com.hp.hpl.jena.query.QueryParseException:
Encountered " <VAR1> "?individualUri "" at line 6, column 1.
Was expecting:

||{|| .

The page will not render properly. Instead it will show a standard error screen:

Home People Organizations Research Events

There was an error in the system.

Return to the home page

Errors in the config file?

Other errors in the configuration file may give less obvious results. For example, if your customView object calls for
a data getter that does not exist, the page will attempt to render without that data. If the data from that data getter
is optional, you will see no error indicator except for a message in vivo.all. log

8.3.10.5 Notes

Waiting for the Application and Display Ontology

This implementation of short views is intended to be temporary, pending the implementation of the Application
and Display Ontology (A&DO).

Much of the RDF that is entered in the configuration file (shortview_config.n3) should be replaced by triplesin
the A&DO. It's not clear where the SPARQL queries will be specified.

Classes are not inferred

Short views are applied based on the most-specific classes of the Individual. No inference is done when trying to
find applicable views. So if an Individual has a type of FacultyMember, then a short view that applies to Person will
not be used. Even though the Indvidual should also have a type of Person, it will not be among the most specific
types for the Individual, and so does not apply. If you want a short view to apply to all sub-classes of Person, you
must explicitly list each of these sub-classes in shortview_config.n3

Extending and Localizing VIVO - 180



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

This is expected to change when the Application and Display Ontology is used.

More than one applicable short view

In theory, it is possible that an Individual may qualify for two short views simultaneously. An Individual could have
two most specific types (say FacultyMember and ExemptEmployee), and both of those types might have configured
short views. Or, in the degenerate case, there might be multiple short views configured for a single type.

In these cases, one of the applicable short views will be arbitrarily selected.

Hard-coded BROWSE view for People

In the BROWSE context, if no short view is found for a given class URI, but that class is included in the People
classgroup, a hard-coded short view is applied. This is to maintain compatibility with previous versions.

It is hoped that the Application and Display Ontology will be expressive enough to configure this behavior within
the standard mechanism. Until then, it is coded into the class
edu.cornell.mannlib.vitro.webapp.services.shortview.FakeApplicationOntologyService

8.3.11 Creating a custom theme

o Overview (see page 181)
« What can it do for you? (see page 181)
+ Before and After (see page 182)
+ What do you need to know? (see page 182)
» Getting started (see page 183)
» The structure of pages in VIVO (see page 183)
« Some significant templates (see page 184)
« Making changes (see page 185)
« Modify files in the theme (see page 185)
« Add files to the theme (see page 185)
« Add CSS, JavaScript, or image files (see page 185)
+ Add Freemarker templates (see page 185)
« Override files that are not in the theme directory (see page 185)
« Override CSS, JavaScript or image files that are not in the theme directory (see page 185)
« Override Freemarker templates that are not in the theme directory (see page 186)
« Working on the theme (see page 186)
« When to restart Tomcat (see page 186)

8.3.11.1 Overview

What can it do for you?

Change the "look and feel" of your VIVO installation. Change the styling, the images, the layout, the text, and more.
Modify the header and footer on all pages.

Extending and Localizing VIVO - 181



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Before and After

Home People  Organizations ~ Research = Events Junk

e ™ SUNY REACH blak search
Welcome to VIVO -.
VIVO is a research-focused discovery tool that enables collaboration among scientists across all disciplines.
Home

Browse or search information on people, departments, courses, grants, and publications.
Search VIVO o R

\ e e

L E () coitsctorormowemny SunyBronk - UPSTATE| s
SUNY REACH (Research Excellence in Academic Health)
is a program to unify and advance the research vision of

Branse New York State's public Academic Health Centers and their integrated Medical Schools.

SUNY REACH INVESTIGATOR DATABASE SUNY REACH ORGANIZATION

Rl Using the toolbars above, browse or search information
Faculty Member ] on people, organizations, research publications and Focus Groups:
Locations G16) rereon ] more . Clinical and Translational Research
About the SUNY REACH Investigator Profiles + Neural Degeneration and Regeneration
« Neuroscience of Substance Abuse
« Receptors and Brain Development
INY REACH EXTRAMURAL FUNDING el
i Technical Aspect:
Funding Resulting from REACH Collaborations: . Semantic Web Architecture Group
+ Multi-campus Projects
« Single-campus Projects
12015 VO Preect | Terms ofUse | Powered by IVO)| Verson nkaonn st | susgon

5 5UNY REACH | Terms of se | Powered by VIVO) | ebmast

STUDY RESEARCH ENGAGE CONTACT & M @&\meuuuvem«y

i Fid an Expert I

A comprehensive view of the University of Melbourne's academic staff: their research, and expertise. » Home | People | Organizations | Research | Events

Home | Expert by Organis: assiicaion | Experts by Inemational Linkage | Ou

Welcome to VIVO

VIVO is a research-focused discovery tool that enables collaboration among researchers across all disciplines.

Welcome to Find an Expert

Search Find an Expert
Browse or search information on people, departments, courses, grants, and publications

@ Show only avalable supervisors
Search for experts, by name or research topic Search VIVO

Search
Support
Find an Expert ives you a window into the University' broad research and feaching iteress. Leam how o use i 001 o fid the expert you need. Browse by

I'm looking for a research I'm looking for a research T'm looking for an expert Keep Find an Expert
collaborator supervisor opinion profiles up to date

ORI @) Cornell Academic Appointee

Find supenvisorsand  Find someane to provide expert Researchers update their
interests and expertise match your  mentors from a wide range of comment, opinion, analysis, or profiles via THEMIS selt-service
next project. disciplines and practice areas. consulation,

(RIS @D Cornell Academic Staff

Colse=lzs teel Cornell Affiliated Person

Events (33,696)

Help for

1 Powerad oy VIVO 1 Find an Exps Da

Cornell Emeritus Professor

Organizations (7,806)
9 (EI1) Cornell Faculty Member

Equipment (101)
quip! a Faculty Member

Research (138,920

Faculty Member Emeritus

Topics (1,949)

Melbourne Research Graduate Student

Locations (1,054)
Level 5, 161 Bary Street Emal: Make an enquiry Authoriser: Librarian

“The University of Melbourne Deputy Vice-Chancellor (Research)
Parkville 3010 VIC Australia Maintainer:
Research Marketing Manager

Non-Academic
Non-Faculty Academic

Baktoton
Person

THE UNIVERSIT’ Postdoc
E VERSITY O .
P ECNIVER IO EST. 1853 :

2% MELBOURNE

2013 Cornell University Library | Terms of Use | Powered by VIV | Version branch rel-

sbout | Contactus | Support

What do you need to know?

« Standard web-site technologies: HTML, CSS and maybe JavaScript.
« Something about the Freemarker'*3 template engine.
« Where the theme files are stored in VIVO, and how to reference them.

133 http://freemarker.org/

Extending and Localizing VIVO - 182


http://freemarker.org/
http://freemarker.org/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Getting started

VIVO comes with a standard theme, called wilma. wilmaisafolderinvivo/installer/webapp/target/
vivo/themes.

To create a new theme, choose a name for your new theme. In these examples below we we will call the new theme
fred.

Copy the wilma directory and its contents to a new directory called fred. fred mustalsobein vivo/installer/
webapp/target/vivo/themes.

Your new theme will contain CSS files, image files, and Freemarker'3* templates.

Run the Maven install to deploy your new theme to the Tomcat container. Restart the VIVO Tomcat process. You
can then go to the Site Admin page and choose Site Information, to select your theme as the current one.

Site Information

Editing Existing Record
Site name (max 50 characters)

VIVO

Contact email address contact form submissions will be sent to this address

Theme fred %

Copyright text used in footer (e.g., name of your institution)

VIVO Project

Copyright URL copyright text links to this URL

ave changes Cancel

8.3.11.2 The structure of pages in VIVO

The pages in VIVO are built around three different frameworks. Each of these uses the same header and footer, to
provide consistency. In addition to including the header and footer, the pages frequently include smaller templates
to provide detail.

These are the basic frameworks:

The home page  Asthe point of entry for VIVO, the home page is special. It is based on the Freemarker
template page-home. ftl

134 http://freemarker.org/

Extending and Localizing VIVO - 183


http://freemarker.org/
http://freemarker.org/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

All other public Based on the Freemarker template page. ftl

pages
"back-end" Pages used for editing the ontology, or manipulating the raw data of VIVO are based on a
pages JSP named basicPage.jsp

8.3.11.3 Some significant templates
page.ftl

page.ftlisthe default base template. The rest of the theme templates listed are components of page. ftl
(included either directly or indirectly). Closer inspection of page. ft1 reveals a stripped down file that declares
minimal markup itself and instead reads as a list of includes for the component templates.

On the VIVO home page, page-home.ftl is used instead of page.ftl. It serves much the same purpose, but allows you
to create a different layout for your home page than for the other pages in VIVO.

For consistency, It is critical that the following components be maintained:
head.ftl

This component template is responsible for everything within the <head> element. Note that the open and closing
tags for the <head> element are defined in page. ft1 and wrap the include for head. ftl. There are several
includes within head. ft1 that should be carried over to any new theme to maintain expected functionality:

o <#include "stylesheets.ftl"> -ensuresthatthe necessary stylesheets called by templates
downstream will be added to the page via <link> elements

« <#include "headscripts.ftl"> -ensures that the scripts called by templates which must be in the
<head> will be added to the page via <script> elements

identity.ftl

This component template is responsible for rendering the VIVO logo, secondary navigation and search input field at
the top of the page. There are no mandatory includes from identity. ftlthat need to be carried over but there
are 2 template variables that are of particularinterest (${user} and ${urls}).

menu.ftl

This component template is responsible for rendering the primary navigational menu for the site. In wilma, it also
happens to declare the open tag for the main content container. There are no mandatory includes from menu. ft1.
The ${menu} template variable is crucial since it contains an array of menu items needed to build the primary
navigational menu.

footer.ftl

This component template is responsible for rendering the copyright notice, revision information, secondary
navigation, and link for the contact form. There is a single include that should be maintained:

o <#include "scripts.ftl"> -ensuresthatthe non head scripts (those that don't need to be placed in the
<head>) called by the templates will be added to the page via <script> elements

Several template variables of interest include ${copyright}, ${user}, and ${version}.
googleAnalytics.ftl

This component template is included by footer. ft1l. Simply uncomment the <script> element and provide your
Google Analytics Tracking Code.

Adjust the markup as necessary in page. ft1, and these component templates to achieve the desired content
structure, and modify the stylesheets to meet layout needs and style your site. Remember that changes should be

Extending and Localizing VIVO - 184



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

made in the source directory and that you will need to redeploy the project before the changes are reflected in the
live website.

You can find more information about the structure of the VIVO theme in How VIVO creates a page (see page 215).

8.3.11.4 Making changes

Modify files in the theme

You can edit the Freemarker templates and the CSS files in the theme with any text editor. You can replace the
image files with images that you choose.

Add files to the theme

Add CSS, JavaScript, orimage files

As you modify the templates, you may want to use additional images, CSS files, or JavaScript files. When your
templates refer to these files, they will use the Freemarker variable urls. theme, as shown in these examples:

<!-- an image file -->
<img src="${urls.theme}/images/arrow-green.gif"/>

<!-- a CSS file -->
<link rel="stylesheet" href="${urls.theme}/css/screen.css" />

<l-- a JavaScript file (create a js directory in your theme) -->
<script type="text/javascript" src="${urls.theme}/js/my.js"></script>

Add Freemarker templates

If your modifications use new Freemarker templates, you can refer to them more simply. Freemarker already knows
where your theme directory is located.

<#include "my-new-template.ftl">

Override files that are not in the theme directory

In order to keep the theme directory uncluttered, VIVO keeps most of the front-end files in a separate location.
Changes to the theme usually involve the files in the theme directory, but you can override other files as well.
Override CSS, JavaScript or image files that are not in the theme directory

You may notice that templates refer to files that are not in the theme directory. They use references based on the
Freemarker variable urls.base instead of urls. theme, like this:

<l-- an image file -->

Extending and Localizing VIVO - 185



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<img src="s${urls.base}/images/arrowIcon.gif"/>

<l-- a CSS file -->
<link rel="stylesheet" href="${urls.base}/css/login.css" />

<!-- a JavaScript file -->

<script type="text/javascript" src="${urls.base}/js/browserUtils.js"></script>

These refer to files in the vivo/installer/webapp/target/vivo directory. If you look, you will see that this
directory contains some files also used in the construction of thr VIVO interface.

Override Freemarker templates that are not in the theme directory

To override templates not in the theme directory, simply modify freemarker templatesin vivo/installer/
webapp/target/vivo. These changes will apply to all your themes.

VIVO treats all available Freemarker templates as belonging to the same flat namespace, whether they are in the
theme directory or in the templates/freemarker directory, or one of its sub-directories. Afile in vivo/
installer/webapp/target/vivo can be overridden by a corresponding file in the theme directory.

Working on the theme

When you make changes to VIVO, you should make the changes in your VIVO distribution directory, run Maven
install, restart Tomcat, and test the changes. If you are doing full customizing of VIVO, this cycle might be best.

If you are only working on the theme, you can speed things up.

« Tell the build script to skip the unit tests: they don't test the theme
« mvn install -Dskiptests=true
« Don'trestart Tomcat
«+ VIVO always serves the most recent version of CSS files, image files, and JavaScript files. You don't
need to restart Tomcat to make that happen.
« However, your browser may cache these files so you won't see the most recent version. Here are
some suggestions for bypassing your browser cache®3®,
« Tell VIVO to reload Freemarker templates each time they are requested. See Tips for Interface Developers
(see page 226).

Some developers prefer to make theme changes inside the tomcat/webapp/vivo directory. This eliminates the
need to run the build script, but opens the threat of having the changes over-written the next time the build script
runs.

When to restart Tomcat

If you make changes to any of the source files in the theme, including images, CSS, JavaScript or Freemarker
templates, you must run the build script, but you do not need to restart Tomcat.

8.3.12 Creating custom entry forms

o Overview (see page 187)
+ An example (see page 187)
o How isit created? (see page 188)

135 http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

Extending and Localizing VIVO - 186


http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache
http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.12.1 Overview

Custom entry forms allow VIVO to transcend the general-purpose, utilitarian editing scheme of Vitro. Without
custom entry forms, VIVO users must edit each RDF triple individually. With a custom entry form, users can edit a
complex data structure on a single page.

VIVO is distributed with a dozens of custom entry form generators. You may want to modify these form generators,
or add more of your own.

8.3.12.2 An example

Say you wish to establish that a particular person is a member of a particular academic department. This
relationship can be expressed as a member role. See Membership Model (see page 336)

But what if the academic department doesn't exist in VIVO yet? You will want to create that department, and assign
aname toit. You may also want to record the member role in that department, when their membership began, and
when it ended (if it is not ongoing).

Without a custom entry form, you would need to record each piece of data individually.

Home People Organizations Research Events

Select an existing Member Role for Dog, Charlie

There are no entries in the system from which to select.

Please create a new entry.

Member Role (vivo) =/ Add a new item of this type or Cance

VIVO includes a custom form generator for this relationship. The custom entry form looks like this:

Extending and Localizing VIVO - 187



Home People QOrganizations Research Events

Create membership entry for Dog, Charlie

Membership In *

Academic Department Name *

Select an existing Academic Department or create a new one.

Role in Academic Department

Years of Participation in Academic Department
Start Year (

End Year

Create Entry or Cance

* required fields

8.3.12.3 How is it created?

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

A The creation of custom entry forms is an arcane and eldritch art, for which little documentation is

available.

Each form requires a Java class known as a EditConfigurationGenerator. The generator describes the
data structure being created, lists the SPARQL queries used, and includes a reference to the Freemarker

template that will render the form.

You can start by examining the existing generators in this directory
[VIVO]/src/edu/cornell/mannlib/vitro/webapp/edit/n3editing/configuration/

generators

and the Freemarker templates found here

[VIVO] /productMods/templates/freemarker/edit/forms

+ Note: The directory structure has changed in version 1.9+.

[VIVO]/src/... is now [VIVO]/api/src/main/java/...

[VIVO]/productModsj/... is now [VIVO]/webapp/src/main/webapp/...

There is also a short page of technical description called Implementing custom forms using N3 editing (see

page 196).

8.3.12.4 Accessing VIVO Data Models

Extending and Localizing VIVO - 188



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Accessing the models (see page 189)
« Attributes on Context, Session, or Request (see page 189)
The DAO layer (see page 190)
« OntModelSelectors (see page 190)
« The RDF Service (see page 191)
« Model makers and Model sources (see page 191)
« The ModelAccess class (see page 191)
« Initializing the Models (see page 191)
« Where are the RDF files? (see page 191)
o The "first time" (see page 192)
« Initializing Configuration models (see page 192)
+ Application metadata (see page 192)
» User Accounts (see page 192)
« The Display model (see page 192)
« Display TBox (see page 192)
« DisplayDisplay (see page 193)
« Initializing Content models (see page 193)
+ base ABOX (see page 193)
+ base TBoX (see page 193)
« base Full (see page 194)
« inference ABOX (see page 194)
« inference TBOX (see page 194)
« inference Full (see page 194)
o union ABOX (see page 194)
o union TBOX (see page 194)
« union Full (see page 194)
« Transition from previous methods (see page 194)

Accessing the models

There is an incredible variety of ways to access all of these models. Some of this variety is because the models are
accessed in different ways for different purposes. Additional variety stems from the evolution of VIVO in which new
mechanisms were introduced without taking the time and effort to phase out older mechanisms.

Here are some of the ways for accessing data models:

Attributes on Context, Session, or Request

Previously, it was common to assign a model to the ServletContext, to the HTTP Session, or to the
HttpSessionRequest like this:

OntModel ontModel = (OntModel) getServletContext().getAttribute("jenaOntModel");

Object sessionOntModel = request.getSession().getAttribute("jenaOntModel");

ctx.setAttribute("jenaOntModel", masterUnion);

Occasionally, conditional code was inserted, to retrieve a model from the Request if available, and to fall back to
the Session or the Context as necessary. Such code was sporadic, and inconsistent. This sort of model juggling also
involved inversions of logic, with some code acting so a model in the Request would override one in the Session,
while other code would prioritize the Session model over the one in the Request. For example:

Extending and Localizing VIVO - 189



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

public OntModel getDisplayModel(){
if( _req.getAttribute("displayOntModel") != null ){
return (OntModel) _req.getAttribute(DISPLAY_ONT_MODEL);

} else {
HttpSession session = _req.getSession(false);
if( session != null ){

if( session.getAttribute(DISPLAY_ONT_MODEL) != null ){
return (OntModel) session.getAttribute(DISPLAY_ONT_MODEL);
}else{
if( session.getServletContext().getAttribute(DISPLAY_ONT_MODEL) != null){
return (OntModel)session.getServletContext().getAttribute(DISPLAY_ONT_MODEL);

}
log.error("No display model could be found.");
return null;

This mechanism has been removed in 1.6, being subsumed into the ModelAccess class (see below). Now,

the ModelAccess attributes on Request, Session and Context are managed using code that is private to
ModelAccess itself. Similarly, the code which gives priority to a Request model over a Session model is uniformly
implemented across the models.

It remains to be seen whether this uniformity can satisfy the various needs of the application. If not, at least the
changes can all be made within a single point of access.

The DAO layer

This mechanism is pervasive through the code, and remains quite useful. In it, a WebappDaoFactory is created,
with access to particular data models. This factory then can be used to create DAO objects which satisfy interfaces
like IndividualbDao, OntologyDAO, or UserAccountsDAO. Each of these object implements a collection of
convenience methods which are used to manipulate the backing data models.

Because the factory and each of the DAOs is an interface, alternative implementations can be written which provide

« Optimization for Jena RDB models
« Optimization for Jena SDB models
« Filtering of restricted data

+ and more...

Initially, the WebappDaoFactory may have been used only with the full Union model. But what if you want to use
these DAOs only against asserted triples? Or only against the ABox? This led to the OntModelSelector.

OntModelSelectors

An OntModelSelector provides a way to collect a group of Models and construct a WebappDaoFactory. With
slots for ABox, TBox, and Full model, an OntModelSelector could provide a consistent view on assertions, or on
inferences, or on the union. The OntModelSelector also holds references to a display model, an application
metadata model, and a user accounts model, but these are more for convenience than flexibility.

Prior to release 1.6, OntModelSelectors, like OntModels, were stored in attributes of the Context, Session, and
Request. They have been subsumed into the ModelAccess class.

Extending and Localizing VIVO - 190



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Further, the semantics of the "standard" OntModelSelectors have changed, so they only act as facades before
the Models store in ModelAccess. In this way, if we make this call:

ModelAccess.on(session) .setOntModel(ModelID.BASE_ABOX, someWeirdModel)

Then both of the following calls would return the same model:

ModelAccess.on(session).getOntModel(ModelID.BASE_ABOX) ;
ModelAccess.on(session).getBaseOntModelSelector () .getABoxModel();

Again, this is a change in the semantics of OntModelSelectors. It insures a consistent representation of OntModels
across OntModelSelectors, but it is certainly possible that existing code relies on an inconsistent model instead.

The RDF Service

Model makers and Model sources

The ModelAccess class

A TBD - Show how it represents all of these distinctions. Describe the scope searching and masking, wrt set
and get. Include the OntModelSelectors and WADFs.

Initializing the Models

When VIVO starts up, OntModel objects are created to represent the various data models. The configuration models
are created from the datasource connection, usually to a MySQL database. The content models are created using
the new RDFService layer. By default this also uses the datasource connection, but it can be configured to use any
SPARQL endpoint for its data.

Some of the smaller models are "memory-mapped" for faster access. This means that they are loaded entirely into
memory at startup. Any changes made to the memory image will be replicated in the original model.

The data in each model persists in the application datasource (usually a MySQL database), or in the RDFService.
Also, data from disk files may be loaded into the models. This may occur:

« the first time that VIVO starts up,
« ifamodelis found to be empty,
+ every time that VIVO starts up.

depending on the particular model.

Where are the RDF files?

In the distribution, the RDF files appearin [vivo]/rdf andin [vitro] /webapp/rdf. These directories are
merged during the build process in the usual way, with files in VIVO preferred over files in Vitro.

During the build process, the RDF files are copied to the VIVO home directory, and at runtime VIVO will read them
from there.

Extending and Localizing VIVO - 191



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The "first time"

For purposes of initialization, "first time" RDF files are loaded if the relevant data model contains no statements.
Content models may also load "first time" files if the RDFService detects that its SDB-based datastore has not been
initialized.

Initializing Configuration models

Application metadata
Function: Describes the configuration of VIVO at this site. Many of the configuration options are obsolete.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
Source: the application Datasource (MySQL database) (memory-mapped)
If this is the first startup, read the files in rdf/applicationMetadata/firsttime.

« InVitro, there are none
+ InVIVO, initialSiteConfig.rdf, classgroups.rdf and propertygroups.rdf

User Accounts
Contains login credentials and assigned roles for VIVO users.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
Source: the application Datasource (MySQL database) (memory-mapped)
If this model is empty, read the files in rdf/auth/firsttime.

« InVitro, there are none (except during Selenium testing)
« InVIVO, there are none.

Every time, read the files in rdf/auth/everytime

« InVitro, permissions_config.n3
« InVIVO, there are none.

The Display model
This is the ABox for the display model, and contains the RDF statements that define managed pages, custom short
views, and other items.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata
Source: the application Datasource (MySQL database) (memory-mapped)
If this model is empty, read the files in rdf/display/firsttime

« InVitro, application.owl, menu.n3, profilePageType.n3
« VIVO contains its own copy of menu.n3, which overrides the one in Vitro

Every time, read the files in rdf/display/everytime

« inVitro, displayModelListViews.rdf
+ InVIVO, homePageDataGetters.n3, localeSelectionGUI.n3, vivoDepartmentQueries.n3,
vivoListViewConfig.rdf, vivoSearchProhibited.n3

Display TBox
The TBox for the display model.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX

Source: the application Datasource (MySQL database) (memory-mapped)

Extending and Localizing VIVO - 192


http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Every time, read the files in rdf/displayTbox/everytime.

+ InVitro, displayTBOX.n3
« InVIVO, there are none

DisplayDisplay
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel

Source: the application Datasource (MySQL database) (memory-mapped)
Every time, read the files in rdf/displayDisplay/everytime

« InVitro, displayDisplay.n3
« InVIVO, there are none.

Initializing Content models

base ABox
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-2

Source: named graph from the RDFService
If first setup, read the files in rdf/abox/firsttime

« InVitro, there are none
+ InVIVO, geopolitical.verl.1-11-18-11.individual-labels.rdf

Every restart, read the files in rdf/abox/filegraph, and create named models in the RDFService. Add them as sub-
models to the base ABox. If these files are changed or deleted, update the RDFService accordingly.

« InVitro, there are none
« InVivo, geopolitical.abox.ver1.1-11-18-11.owl, academicDegree.rdf, continents.n3
us-states.rdf, dateTimeValuePrecision.owl, validation.n3, documentStatus.owl, vocabularySource.n3

base TBox
Name: http://vitro.mannlib.cornell.edu/default/asserted-tbox

Source: named graph from the RDFService (memory-mapped)
If first setup, read the files in rdf/tbox/firsttime (without subdirectories)

« InVitro, there are none
+ InVIVO, additionalHiding.n3 initialTBoxAnnotations.n3

Every restart, read the files in rdf/tbox/filegraph, and create named models in the RDFService. Add them as sub-
models to the base TBox. If these files are changed or deleted, update the RDFService accordingly.

« InVitro, vitro-0.7.owl, vitroPublic.owl
« InVIVO, 44 files:

[usr/local/vivo/home/rdf/tbox/filegraph

README . md education.owl personTypes.n3

agent.owl event.owl process.owl
appControls-temp.n3 geo-political.owl publication.owl

bfo-bridge.owl grant.owl relationship.owl
bfo.owl linkSuppression.n3 relationshipAxioms.n3
classes-additional.owl location.owl research-resource-iao.owl

clinical.owl object-properties.owl research-resource.owl

Extending and Localizing VIVO - 193


http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel
http://vitro.mannlib.cornell.edu/default/vitro-kb-2
http://vitro.mannlib.cornell.edu/default/asserted-tbox

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

contact-vcard.owl object-properties2.owl research.owl
contact.owl object-properties3.owl role.owl
data-properties.owl objectDomains.rdf sameAs.n3
dataDomains.rdf objectRanges.rdf service.owl
dataset.owl ontologies.owl skos-vivo.owl
date-time.owl orcid-interface.n3 teaching.owl
dateTimeValuePrecision.owl other.owl vitro-0.7.owl
documentStatus.owl outreach.owl vitroPublic.owl

base Full

Source: a combination of base ABox and base TBox

inference ABox
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-inf

Source: named graph from the RDFService

inference TBox
Name: http://vitro.mannlib.cornell.edu/default/inferred-tbox

Source: named graph from the RDFService (memory-mapped)

inference Full
Source: a combination of inference ABox and inference TBox

union ABox
Source: a combination of base ABox and inference ABox

union TBox
Source: a combination of base TBox and inference TBox

union Full
Source: a combination of union ABox and union TBox

Transition from previous methods

& TBD - What are we transitioning from? Check out VIVO-82.

« Semantics have changed: saves code, but may alter some uses.
« Always searches the stack
« OMS are facades with no internal state
« There is no way to set an OMS - set the models instead
« Keeps consistent

prior to ModelAccess using ModelAccess
User Accounts ctx.getAttribute("userAccountsOntModel ~ ModelAccess.on(ctx).getUserAccountsModel()
Model "

ctx.setAttribute("userAccountsOntModel"  ModelAccess.on(ctx).setUserAccountsModel(m
, model) odel)

Extending and Localizing VIVO - 194


http://vitro.mannlib.cornell.edu/default/vitro-kb-inf
http://vitro.mannlib.cornell.edu/default/inferred-tbox

DisplayModel

"jenaOntModel"

"baseOntModel"

"assertionsMode
lll

Base Full Model

prior to ModelAccess

req.getAttribute("displayOntModel")

session.getAttribute("displayOntModel")

ctx.getAttribute("displayOntModel")
ModelContext.getDisplayModel(ctx)
ctx.setAttribute("displayOntModel",
model)
ModelContext.setDisplayModel(model,

ctx)

req.setAttribute("displayOntModel",
model)

ctx.getAttribute("jenaOntModel")

session.getAttribute("jenaOntModel")

req.getAttribute("jenaOntModel")

ctx.setAttribute("jenaOntModel", model)

req.setAttribute("jenaOntModel", model)

ModelContext.getBaseOntModel(ctx)
ctx.getAttribute("baseOntModel")
session.getAttribute("baseOntModel")

ModelContext.setBaseOntModel(model,
ctx)

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

using ModelAccess

ModelAccess.on(req).getDisplayModel()

ModelAccess.on(session).getDisplayModel()

ModelAccess.on(ctx).getDisplayModel()

ModelAccess.on(ctx).getDisplayModel()

ModelAccess.on(req).setDisplayModel(model)

ModelAccess.on(ctx).getJenaOntModel()

ModelAccess.on(session).getJenaOntModel()

ModelAccess.on(req).getJenaOntModel()

ModelAccess.on(ctx).setOntModel(ModellD.UN
ION_FULL, model)

ModelAccess.on(req).setOntModel(ModellD.U
NION_FULL, model)

ModelAccess.on(req).setJenaOntModel(model

)

ModelAccess.on(ctx).getOntModel(ModellD.BA
SE_FULL)

ModelAccess.on(ctx).getBaseOntModel()

Extending and Localizing VIVO - 195



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

prior to ModelAccess using ModelAccess

"inferenceModel  ctx.getAttribute("inferenceOntModel") ModelAccess.on(ctx).getinferenceOntModel()

Inference Full
Model
Notes:

+ "jenaOntModel" is a previous term for the Union Full model. The convenience methods
getJenaOntModel() and setJenaOntModel(m)support this use.

« "baseOntModel" and "assertionsModel" are both previous terms for the Base Full model. The convenience
methods getBaseOntModel() and setBaseOntModel (m)support this use.

prior to ModelAccess using ModelAccess

ontModelSelector ModelContext.setOntModelSelector(mod no mutator methods

unionOntModelSel el, ctx) ModelAccess.on(ctx).getOntModelSelector()
ector I(\gggelContext.getUmonOntModelSelector ModelAccess.on(ctx).getUnionOntModelSel

ector()
ctx.getAttribute("ontModelSelector")

ctx.getAttribute("unionOntModelSelector
Il)

baseOntModelSele  ctx.getAttribute("baseOntModelSelector") ModelAccess.on(ctx).getBaseOntModelSele
ctor ctor()

inferenceOntModel  ctx.getAttribute("inferenceOntModelSelec  ModelAccess.on(ctx).getInferenceOntModel
Selector tor") Selector()

« The default WebappDaoFactory is the one backed by the unionOntModelSelector. On the request level, this
is also known as the "fullWebappDaoFactory". The convenience methodsgetWebappDaoFactory ()
and setWebappDaoFactory (wdf) support this use.

« "baseWebappDaoFactory" and "assertionsWebappDaoFactory" are both previous terms for the
WebappDaoFactory backed by the baseOntModelSelector. The convenience
methods getBaseWebappDaoFactory () and setBaseWebappDaoFactory (wdf) support this use.

« Nobody was using the "deductionsWebappDaoFactory", so we got rid of it.

8.3.12.5 Implementing custom forms using N3 editing

« Overview

« Steps of an Edit
« Step 1. Getting the link to the edit
+ Step 2. Generating the EditConfiguration
« Step 3. HTML creation by FreeMarker

Extending and Localizing VIVO - 196



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Step 4. Response From Client

Overview

The Vitro/VIVO system comes with basic RDF editing capabilities to add object and datatype statements to
individuals. Frequently, people deploying Vitro/VIVO desire a web form which allows editing of multiple properties
and individuals on the same form. A contact information form would be an example of a feature that would be
implemented with a custom form in Vitro/VIVO.

The creation of a custom forms in Vitro/VIVO is done in two parts. The firstis an implementation of the java
interface EditConfigurationGenerator and the second is a FreeMarker template for the presentation. The
EditConfigurationGenerator creates a EditConfiguration that controls how the values from the form will be used in
the editing of the RDF, server side validation, which template to use, and other aspects of the edit. The FreeMarker
template controls the HTML and Javascript for the form.

The EditConfigurationGenerator classes can be associated with an RDF property so that they are used from an
individual’s profile page or by a direct URL.

The main concept of custom forms is that the values submitted by the HTTP request will be substituted into
placeholders in RDF N3 strings. These strings are then parsed to Jena RDF Model objects and that RDF is added to
the system. For the modification of an existing value, a second set of strings is created and parsed which become
the RDF statements to remove for the edit. This substitution is why the editing system is frequently called “N3
Editing”. In practice, the N3 strings use only the turtle subset of the N3 syntax.

Steps of an Edit

Step 1. Getting the link to the edit

When a user is logged in, individual profile pages have edit links next to the listed properties. These links will take
the user to a page with an edit form. The links on the individual profile page are routed to the
EditRequestDispatchController which will determine which EditConfigurationGenerator to use based on which
property is being edited. The VIVO/Vitro system can be configured to associate a EditConfigurationGenerator with a
property so that the edit links will use a custom EditConfigurationGenerator. If no custom form is specified then the
default object or data property EditConfigurationGenerator will be used.

A property can be associated with a custom form in one of two ways:

A) if you go to the site admin -object property hierarchy - the property you want associated with the form, click on
the property then edit property record, you can put in the Java class name of the generator in the custom entry
form field.
E.g.edu.cornell.mannlib.vitro.webapp.edit.n3editing.configuration.generators.AddDistributionGenerator. This will
allow you to associate the custom form while the system is running.

B) if you will be deploying the system for the first time and starting with an empty database, you would update
vivo-core-1.5-annotations.rdf to specify that the property has a custom form using the
vitro:customEntryFormAnnot*3® property.

Step 2. Generating the EditConfiguration

When the user clicks the link, the client browser requests the URL of the edit link which will be to the
EditRequestDispatchControl. That servlet will set up all that is needed in the session for the edit and respond with
the HTML form. A custom form is setup by the EditConfigurationGenerator which has the sole purpose of making

136 http://vitrocustomEntryFormAnnot

Extending and Localizing VIVO - 197


http://vitrocustomEntryFormAnnot
http://vitrocustomEntryFormAnnot

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

an EditConfiguration object. The EditRequestDispatchController will run getEditConfiguration() on the
EditConfigurationGenerator to create the EditConfiguration. The EditConfiguration object has properties to define
the characteristics of the edit. The EditConfiguration will specify the FreeMarker template for the form, and the
server side instructions for validating the submitted result and instructions for processing the edit. When authoring
a custom form, a central task is the coding of the EditConfigurationGenerator to produce an EditConfiguration that
encodes logic of how you desire the edit to happen. The EditConfigurationGenerator is just a java class that creates
an EditConfiguration.

When generating the EditConfiguration at runtime, an edit key will be created and the completed EditConfiguration
will be associated with that key in the server side user session. This edit key is used to handle parallel editing and
back button complexity. The EditConfiguration object for an edit is in a one to one relation with the HTML form for
an edit. If the user goes to edit a street address and then goes to edit that street address a second time, the first edit
will have an EditConfiguration object in the session and an HTML form with one edit key, and the second will have a
different EditConfiguration in the session and an HTML form with a different edit key. An HTML form created for a
edit will have an “edit key“ to associate that specific instance of the HTML form with an object stored in the user’s
session.

The EditConfiguration can specify SPARQL queries for existing values for fields of the form. These are executed as
part of the generation of the EditConfiguration.

Step 3. HTML creation by FreeMarker

Once the EditRequestDispatchController has the EditConfiguration and put it in the session, it will set up some
standard values for the template and pass them and the EditConfiguration to the FreeMarker template specified in
EditConfiguration.getTemplate(). The HTML form is then generated using the normal FreeMarker process. The
HTML form must contain a field with the EditKey so associate the edit with an EditConfiguration in the session.

Step 4. Response From Client

The form will be submitted by the client’s browser to ProcessRdfFormController. This will get the EditConfiguration
based on the edit key from the submitted values. It will run validation and then substitute the values from the form
into the N3 templates and parse the N3 to RDF. The N3 that gets created will be then added to the VIVO/Vitro
models. If the edit is a change of an existing value, then the RDF for the statements to remove will be created and
removed form the VIVO/Vitro models.

8.3.12.6 Servlet Lifecycle Management

» Specifying context listeners (see page 199)
« Writing context listeners (see page 200)

Description

Like most Java Enterprise applications, Vitro servlets rely on the ServletContext to hold object that they will need to
use when servicing requests. These objects are created by ServletContextListeners, which are run by the
StartupManager.

The StartupManager creates instances of the listeners and runs them, accumulating information about their
running in the StartupStatus.

As each listener runs, it may add messages to the StartupStatus. Each message will have a severity level associated
with it:

Extending and Localizing VIVO - 198



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« FATAL - The listener encountered a problem. Perhaps the application was configured incorrectly, or perhaps
the system utilities are not performing as intended. The problem is severe enough that the application will
not run. The message describes the problem, with suggestions on how to fix it.

« WARNING - The listener encountered a problem, but the problem will not prevent the application from
running. The message describes the problem, and tells what parts of the application will be affected, with
suggestions on how to fix the problem.

+ INFO - No problem is indicated. The message contains information that may be helpful in monitoring the
application.

If a FATAL status is recorded, the StartupManager will not execute any additional listeners. Access to the
application will be blocked, and any attempt to access the application will display the StartupStatus in an error

page.
If a WARNING status is recorded, the StartupManager continues as normal. Access to the application will be blocked
one time, to display the StartupStatus. In subsequent requests, the application will respond normally.

When logged in, an administrator may view the StartupStatus from a link on the Site Admin page.

Specifying context listeners

In any Java Enterprise application, developers can specify context listeners in the deployment descriptor
(web.xml). These listeners that will be activated when the application starts and when it shuts down.

In Vitro, the only listener in web.xml is the StartupManager. Here is the relevant section of Vitro’s web.xml:

<l==
StartupManager instantiates and runs the listeners from startup_listeners.txt
All ServletContextListeners should be listed there, not here.
-=>
<listener>
<listener-class>edu.cornell.mannlib.vitro.webapp.startup.StartupManager</listener-class>
</listener>

Vitro contains a list of startup listeners in a file at Vitro (see page 363)/webapp/config/startup_listeners.txt. This file is
simple text with each line containing the fully-qualified class name of a startup listener. Blank lines are ignored, as
are comment lines - lines that begin with a “hash” character. Here is a portion of that file:

#

# ServletContextListeners for Vitro,

# to be instantiated and run by the StartupManager.

#

edu.cornell.mannlib.vitro.webapp.config.ConfigurationPropertiesSetup
edu.cornell.mannlib.vitro.webapp.config.RevisionInfoSetup
edu.cornell.mannlib.vitro.webapp.email.FreemarkerEmailFactorys$Setup

# DefaultThemeSetup needs to run before the JenaDataSourceSetup to allow creation

# of default portal and tab
edu.cornell.mannlib.vitro.webapp.servlet.setup.DefaultThemeSetup

Extending and Localizing VIVO - 199



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Writing context listeners
Each listener must implement the ServletContextListener interface, and must have a zero-argument constructor.

When Vitro starts, the StartupManager will call contextlnitialized() in each listener, in the order that they appear in
the file. The listener can call methods on StartupStatus to record messages. If the listener is successful, it should
record one or more INFO messages that provide a brief description of what it has done. If a problem is detected, the
listener may record WARNING messages or ERROR messages, depending on the severity of the problem. The
listener may also throw a RuntimeException from contextlnitialized(), which the StartupManager will treat like an
ERROR.

Here is an example of a basic listener. When contextlnitialized() is called, the listener will perform some setup. If
there is no problem, a call to StartupStatus.info() reports some basic information about the listener’s actions. If a
problem is found, a call to StartupStatus.warning() describes the nature of the problem (by reporting the
exception) and how this problem will affect the application.

public static class Setup implements ServletContextListener {
@Override
public void contextInitialized(ServletContextEvent sce) {
ServletContext ctx = sce.getServletContext();

StartupStatus ss = StartupStatus.getBean(ctx);

try {
FreemarkerEmailFactory factory = new FreemarkerEmailFactory(ctx);
ctx.setAttribute (ATTRIBUTE_NAME, factory);

if (factory.isConfigured()) {
ss.info(this, "The system is configured to "
+ "send mail to users.");
} else {
ss.info(this, "Configuration parameters are missing: "
+ "the system will not send mail to users.");
}
} catch (Exception e) {
ss.warning(this,
"Failed to initialize FreemarkerEmailFactory. "
+ "The system will not be able to send email "

+ "to users.", e);

@Override
public void contextDestroyed(ServletContextEvent sce) {
sce.getServletContext().removeAttribute (ATTRIBUTE_NAME);

Note that the StartupManager treats ServletContextListeners just like you would expect from reading the Servlet
2.4 specification:

« Only oneinstance of the listener is created per JVM.
« The contextlnitialized() method is called once when the system is starting.
« The contextDestroyed() method is called on that same instance when the system shuts down.

Extending and Localizing VIVO - 200



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.13 Enhancing Freemarker templates with DataGetters

o Overview (see page 201)

« An example (see page 201)

» Creating the DataGetter (see page 201)
+ Modifying the template (see page 202)
o Summary (see page 203)

8.3.13.1 Overview
Itis possible for a Freemarker template to display data that is not normally provided to it.

You can create an RDF file that describes a custom DataGetter object, and associates it with the desired template.
Each time that template is used, the DataGetter will be executed, and the data will be stored in a variable, so the
template can display it.

This does not require changes to the Java code. You create the RDF file in your VIVO distribution directory and
modify the template in your theme.

8.3.13.2 An example

Let's assume that we need to display information about the most recent data ingest operation. We want to display
the name of the Person who supervised the ingest. We would like to display this on every page.

As part of the ingest process, we can load statements like this into the data model:

<http://vivo.mydomain.edu/individual/n5242>
<http://vivo.mydomain.edu/individual/isMostRecentUpdater>
"true" .

<http://vivo.mydomain.edu/individual/n5242>
<http://www.w3.0rg/2000/01/rdf-schema#label>
"Baker, Able" .

We would like for VIVO to display the name of this individual on every page, so the footer will change from this:

2013 VIVO Project | Terms of Use | Powered by VIVO | Version unknown About Support

to this:

©2013 VIVO Praject | Terms of Use | Powered by VIVO | Version unknown | Updated by Baker, Able About Support

8.3.13.3 Creating the DataGetter

VIVO allows you to define and use DataGetter objects in several contexts. DataGetters come in many flavors, but
the most commonly used is the SparqlQueryDataGetter, which lets you define a SPARQL query, and store the
results of that query for your Freemarker template to display.

Extending and Localizing VIVO - 201



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

By adding statements to your data model, you can define a SparqlQueryDataGetter object, and associate it with
a Freemarker template. Here is the definition that is used in this example:

@prefix display: <http://vitro.mannlib.cornell.edu/ontologies/display/1.1#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<freemarker:footer.ftl> display:hasDataGetter display:updatedInfoDataGetter .

display:updatedInfoDataGetter
a <java:edu.cornell.mannlib.vitro.webapp.utils.dataGetter.SparqlQueryDataGetter> ;
display:saveToVar "updatedInfo" ;
display:query """
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#>
PREFIX local: <http://vivo.mydomain.edu/individual/>

SELECT (str(?rawLabel) AS ?updater)
WHERE {
?2uri local:isMostRecentUpdater 7?0 ;
rdfs:label ?rawLabel .

}
LIMIT 1

These statements can be added to your data model in any of several ways. For this example, | stored these linesin a
file called data_getter_for_example.n3 and placed it in the VIVO distribution directory under rdf/display/
everytime. Files placed in this directory are loaded when VIVO starts, but are not persisted when VIVO stops. This
allows you to edit or remove the file without leaving residual statements in your data model.

Notice that:

« The first statement says that the Freemarker template footer. ft1 has a DataGetter, defined in
subsequent lines.
+ The definition of the DataGetter states:
+ the type of the data getter,
« the SPARQL query that will be executed
+ the Freemarker variable that will hold the results.

The results of the SPARQL query are stored in a Freemarker variable, in this case updatedInfo. The variable will
contain a Sequence of Hashes, where each Hash represents one line of the SPARQL result. Within each Hash, result
values are specified as key/value pairs.

For more information on Sequences and Hashes, consult the Freemarker manual:

« Retrieving data from a Sequence®’
« Retrieving data from a Hash'*®

8.3.13.4 Modifying the template

Here is the standard footer. ftltemplate:

137 http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_sequence
138 http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_hash

Extending and Localizing VIVO - 202


http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_sequence
http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_sequence
http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_hash
http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_hash

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

footer.ftl

<#-- $This file is distributed under the terms of the license in /doc/license.txt$ -->
</div> <l-- #wrapper-content -->
<footer role="contentinfo">
<p class="copyright">
<#if copyright??>
<small>&copy;${copyright.year?c}
<#if copyright.url??>
<a href="${copyright.url}" title="${i18n().menu_copyright}">${copyright.text}</a>
<#else>
${copyright.text}
</#HIF>
| <a class="terms" href="${urls.termsOfUse}" title="${i18n().menu_termuse}">$
{i18n() .menu_termuse}</a></small>
</#HIF>
${i18n() .menu_powered} <a class="powered-by-vivo" href="http://vivoweb.org" target="_blank"
title="${i18n() .menu_powered} VIVO"><strong>VIVO</strong></a>
<#if user.hasRevisionInfoAccess>
| ${i18n().menu_version} <a href="${version.moreInfoUrl}" title="${i18n().menu_version}">$
{version.label}</a>
</#if>
</p>
<nav role="navigation">
<ul id="footer-nav" role="list">
<1i role="Tl1istitem"><a href="${urls.about}" title="${i18n().menu_about}">${i18n() .menu_about}</
a></1i>
<#if urls.contact??>
<11 role="Tl1istitem"><a href="${urls.contact}" title="${i18n().menu_contactus}">$
{i18n() .menu_contactus}</a></1i>
</#HIF>
<li role="listitem"><a href="http://www.vivoweb.org/support" target="blank" title="$
{i18n() .menu_support}">${i18n() .menu_support}</a></1i>
</ul>
</nav>
</footer>
<#include "scripts.ftl">

Insert these lines between lines 17 and 18:

<#if (updatedInfo?first.updater)??>
| Updated by ${updatedInfo?first.updater}
</#HIF>

The SPARQL result is obtained and stored into the Freemarker variable updatedInfo each time the footer. ftl
template is loaded for display. The name we want is in the first row of the SPARQL result, keyed to the name
updater.

8.3.13.5 Summary

Enhancing Freemarker templates is one more way to use the VIVO DataGetter mechanism. When you associate
a DataGetter with a Freemarker template, that DataGetter will be run each time the template is invoked. This is

Extending and Localizing VIVO - 203



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

true whether the template is specified by the controller, or included in another template. You can modify the
template to display the data from the DataGetter, but it is prudent to include an <#1 > tag, so your template
won't fail if the data is not found.

8.3.14 Enriching profile pages using SPARQL query DataGetters

« Introduction (see page 204)
+ The Steps and an Example (see page 204)
« Step 1. Define the Customization (see page 204)
+ Step 2. Write the SPARQL Query (see page 204)
« Step 3. Produce the N3 for the Data Getter (see page 205)
« Step 4. Create a Freemarker Template (see page 206)
« Step 5. Incorporate the New Template into the Application (see page 207)
«+ Step 6. Create the Drill-down Page Using Page Management (optional) (see page 207)

8.3.14.1 Introduction

VIVO supports the development of SPARQL query data getters that can be associated with specific ontological
classes. These data getters, in turn, can be accessed within Freemarker templates to provide richer content on VIVO
profile pages. For example, the profile page for an academic department lists only the names of the faculty within
that department and their titles, but with a SPARQL query data getter it is possible to extend the faculty
information to display all of the faculty members' research areas.

8.3.14.2 The Steps and an Example

There are five mandatory steps involved in developing and implementing a class-specific SPARQL query data
getter. In this wiki page we'll walk through an example and provide details on each of these steps.

1. Define the customization

2. Write the SPARQL query

3. Produce the N3 for the data getter
4. Create a Freemarker template

5. Incorporate the new template into the application

Step 1. Define the Customization

This first step might seem obvious but it's helpful to define as specifically as possible the change being made to
VIVO. For our example, we'll use the one mentioned in the introduction. On academic department pages, we'll
provide a list of all the faculty members' research areas and we'll display these beneath the department overview
near the top of the page. In addition, we want the listed research areas to be links that will take us to a detail page
that shows all of the faculty who have selected a given research area. This last requirement, being able to drill down
to a details page, requires both an additional template and data getter, and so we'll need an optional sixth step:
Create the Drill-down Page Using Page Management.

Step 2. Write the SPARQL Query

Having defined our requirements, we now need to write a query that will return the data we want -- specifically, the
rdfs labels of the research areas and, because we want to be able to drill-down on these labels, the URI of the

Extending and Localizing VIVO - 204



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

research areas. An obvious place to write and test a query is the SPARQL Query page that you can access from the
Site Admin page. Here's our test query:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
SELECT DISTINCT (str(?researchArealLabel) AS ?ralLabel) ?ra

WHERE {
<http://localhost:8080/individual/n2936> vivo:organizationForPosition ?posn .
?posn vivo:positionForPerson ?person .
?person vivo:hasResearchArea ?ra .
?ra rdfs:label ?researchArealLabel
}

ORDER BY ?ralLabel

There are two points to note here. In line 3 of the query we convert the label variable to a string to prevent any
duplicate labels from appearing; and in line 5 we use the specific URI for an academic department. This URI allows
us to test the query, but it will have to be replaced by a "generic" subject in our next step.

Step 3. Produce the N3 for the Data Getter

Once the SPARQL query has been tested, we define the data getter using triples stored in a .N3 file. This file is then
placed in the WEB-INF directory in the VIVO source code, as follows: rdf/display/everytime/
deptResearchAreas.n3.

The N3 for our data getter consists of two parts: (1) the triple that associates our data getter with the
AcademicDepartment class and (2) the triples that define the data getter itself. Here is the former:

<http://vivoweb.org/ontology/core#AcademicDepartment> display:hasDataGetter
display:getResearchAreaDataGetter .

And here are the triples that define the getResearchAreaDataGetter data getter:

display:getResearchAreaDataGetter
a <java:edu.cornell.mannlib.vitro.webapp.utils.dataGetter.SparqlQueryDataGetter>;
display:saveToVar "researchAreaResults";
display:query """
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX vivo: <http://vivoweb.org/ontology/core#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT (str(?researchArealabel) AS ?raLabel) ?ra
WHERE {
?individualURI vivo:relatedBy ?posn .
?posn a vivo:Position .
?posn vivo:relates ?person .
?person a foaf:Person .
?person vivo:hasResearchArea ?ra .
?ra rdfs:label ?researchArealLabel
}
ORDER BY ?ralLabel

Extending and Localizing VIVO - 205



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Note that we have exchanged our specific department URI with the variable ?individualURI. ?individualURI is
a "built-in" variable; that is, when the data getter is executed the value of this variable is set to the URI of the
individual whose page is being loaded. So in our example, because we have associated the data getter with the
AcademicDepartment class, when the IndividualController loads an academic department, the URI of that
department gets set as the value of the ?individualURI variable in our query.

Also note line 3 of the data getter:

display:saveToVar "researchAreaResults".
The "save to" variable researchAreaResults is what we use to access the query results in our template.

Step 4. Create a Freemarker Template

Now that we've created our data getter, getResearchAreaDataGetter, and have a "save to" variable with which
to access the query results, we create a Freemarker template -- individual-dept-research-areas.ftl -- and use the
<ttlist> function to loop through and display the results. The following markup is all that's needed in this new
template.

<#if researchAreaResults?has_content>
<h2 id="facultyResearchAreas" class="mainPropGroup">
Faculty Research Areas}
</h2>
<ul id="dindividual-hasResearchArea" role="1list">
<#1list researchAreaResults as resultRow>
<1i class="ralLink">
<a class="ralLink" href="${urls.base}/deptResearchAreas?deptURI=${individual.uri}&raURI=$
{resultRow["ra"]}" title="research area">
${resultRow["ralLabel"]}
</a>
</1i>
</#list>
</ul>
</#if>

In the very first line we check to ensure that the query actually produced results. If not, no markup of any kind gets
rendered. Otherwise, we give the new template section a heading, define an unordered list (<ul>) to contain the
research areas, and then loop through the results. Note that the research area labels are contained within an
anchor tag (<a>) because we want to be able to use these as links to a list of the faculty members for each research
area. The URL in the href attribute includes what looks like a servlet name, /deptResearchAreas, and two
parameters: deptURI and raURI. The deptURI parameter is the URI of the department that has been loaded by
the IndividualController, and this value is accessible through the template variable ${individual.uri}. The raURI
parameter is the URI of the research area, the value of which is available in our query results. These parameters and
the servlet name will be used to develop the drill-down page that lists the faculty members in a department that
have an interest in a specific research area.

Extending and Localizing VIVO - 206



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Step 5. Incorporate the New Template into the Application

Now that we have a template to display the list of research areas, we need to update the individual.ftl template to
source in the new template. Since individual.ftl is used to render individuals of many different classes, we include
an <tif> statement to ensure that the individual-dept-research-areas.ftl template only gets included when the
individual being loaded is an AcademicDepartment:

<#if individual.mostSpecificTypes?seq_contains("Academic Department")>
<#include "individual-dept-research-areas.ftl">
</#if>

Step 6. Create the Drill-down Page Using Page Management (optional)

To this point, we have created a class-specific SPARQL query data getter, which retrieves the research areas of the
faculty in a given academic department; developed a new template to render the results of our data getter; and
updated the individual.ftl template to display the list of research areas. In Step 1, however, we defined
requirements that include the ability to drill down from a selected research area to display a list of the faculty
members in the department who have an interest in that research area. This is also done using a SPARQL query and
new template. But in this case the query does not need to be associated with a specific class and defined in an .N3
file. Instead, we can create a SPARQL query page using the Page Management*® functionality.

As noted in Step 4, the anchor tags in the list of research areas include an href attribute that takes this format:

href="${urls.base}/deptResearchAreas?deptURI=${individual.uri}&raURI=${resultRow["ra"]}"

When creating the SPARQL query page in Page Management, as shown in the illustration below, we set the "Pretty
URL" field to /deptResearchAreas. This portion of the href attribute, then, is not the name of an actual servlet
but it effectively functions as one, and it is also associated with the template that we also define in Page
Management: individual-dept-res-area-details.ftl. When a user clicks on one of the listed research areas, this is the
template that the application will load.

Note the SPARQL query that is defined in the illustration below. It uses as variables the same parameters that are
part of the href above: deptURI and raURI. Like the ?individualURI discussed in Step 3, the values of these
two parameters will become the values of the corresponding variables in the SPARQL query.

139 https://wiki.duraspace.org/display/VIVO/Customize%3A+Page+tmanagement

Extending and Localizing VIVO - 207


https://wiki.duraspace.org/display/VIVO/Customize%3A+Page+management
https://wiki.duraspace.org/display/VIVO/Customize%3A+Page+management

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Title * Content Type *
Departmental Research Are:z Select a type j Add one or more types
Pretty URL * Spargl Query Results - deptResearchAreas
Variable Name *

/deptResearchAreas
Must begin with a leading forward slash: / deptResearchAreas
(e.g., /people)
Enter SPARQL query here *
Template *
_ PREFIX rdfs: <http://www.w3.org/2000/01/rdf=schema#>
(O Default

® Custom template requiring content
() Custom template containing all content

individual-dept-res-area-details.ftl

?person

) This is a menu page zi:ﬁ;?nriié 2:hasResea

Save this content or delete

Now that the SPARQL query page has been created in Page Management, we still need to create the individual-
dept-res-area-details.ftl template. Just as in Step 4, where we used the "save to" variable to access the query
results in the individual-dept-research-areas.ftl template, we now use the variable defined in the "Variable Name'
field (above) to access the results of that SPARQL query. Here is the content of the new template:

<#if deptResearchAreas?has_content>
<section 1id="pagelList">
<#list deptResearchAreas as firstRow>
<div class="tab">
<h2>${firstRow["raLabel"]}</h2>
<p>
Here are the faculty members 1in the ${firstRow["deptLabel"]}
department with an interest in this research area.
</p>
</div>
<#break>
</#list>
</section>
<section id="deptResearchAreas">
<ul role="11ist" class="deptDetailsList">
<#1list deptResearchAreas as resultRow>
<1i class="deptDetailsListItem">
<a href="${urls.base}/individual${resultRow["person"]?substring(resultRow["person"]?
last_index_of ("/"))3}"
title="faculty name">
${resultRow["personLabel"]}
</a>
</1i>
</#list>
</ul>

Extending and Localizing VIVO - 208



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

</section>
</HIF>

Once again we use an <#if> statement to check for results. But this time we use the <#list> function twice: once to
retrieve just the first row, which is used to provide a heading and some introductory text; and a second time to list
all of the faculty members with an interest in the selected research area.

8.3.15 Multiple profile types for foaf:Person

« Introduction (see page 209)
» The Profile Page Types (see page 209)
o The Standard View (see page 209)
o The Quick View (see page 210)
» Implementing Multiple Profile Pages (see page 211)
« Step 1. Develop or a Website Image Capture Service (see page 211)
« Step 2. Update the runtime.properties File (see page 211)
« Step 3. Override the Default foaf:Person Template (see page 211)
« Step 4. Update the Webpage Quick View Template (see page 212)
» Step 5. Set the Profile Page Type for your foaf:Persons (see page 212)
« Using the Standard View Without Implementing Multiple Profile Pages (see page 213)

8.3.15.1 Introduction

VIVO now supports multiple profile pages for foaf:Persons. This feature, which is optional so installations can
continue to use just the individual--foaf-person.ftl template, currently consists of two profile page types: a standard
view, which is a redesigned version of the foaf:Person template in previous releases; and a quick view, which
emphasizes the individual's own web page presence while providing summary VIVO information, such as current
positions and research areas. The profile quick view requires the use of a web service that captures images of web
pages. This web service is not included with the VIVO software, so an installation will either have to develop their
own service or use a third-party service, usually for a small fee depending on the number of images served.
Examples of these services include WebShotsPro, Thumbalizr and Websnapr.

8.3.15.2 The Profile Page Types

As noted above, there are currently two supported profile page types. Here are examples of those two views

The Standard View

The standard view is similar to the default foaf:Person template except that the information displayed at the top of
the page is divided into only two primary columns instead of three. The actual template name for this page type is
individual--foaf-person-2column.ftl.

Extending and Localizing VIVO - 209



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Index Log in

Home People Organizations Research Events

Byrd, Henry R.  Professor @

Positions

Professor, Entomology at Geneva

My main goal in tree fruit extension entomology is to interpret the results of current
research on fruit pests and formulate it into useful information that can then be made
Publications in VIVO available to various clientele groups. | am a primary contributor to the development and
implementation of the fruit program area plan of work that addresses the needs of diverse
audience groups, including: the horticultural industry sector (growers, consultants,
agricultural industry representatives of crop protection, production, processing,
packing/storage, and distribution companies); governmental and regulatory agencies;
Co-author Network  campus- and field-based Cornell Cocperative Extension agents, specialists, and support
staff; academic peers in neighboring states and provinces; and the public sector, including

12 in the last
10 full years B

19

{> Map of Science homeowners, community groups, local schools, and other public organizations.
== Co-investigator Research Areas 222
Network

agricultural engineering | entomology = integrated crop management
integrated pest management international agriculture | pest management
pesticide management

Contact Websites
professor@longhair.net 123 456 7890  Plant Breeding and Genetics Profile

The Quick View

As illustrated below, the quick view puts a visual emphasis on the individual's own web presence. In this case, the
person only has one web page displayed. When there is more than one, the primary web page is displayed as shown
and any additional web pages are displayed as thumbnails beneath the primary one.

Index Log in

Home People Organizations Research Events

H Baeumner, Antje J | Faculty Member @.
R

Positions

» Professor, Biological and Environmental Engineering (BEE),
College of Agriculture and Life Sciences (CALS)

Bioanal ytical Microsystems & Biosensors

- Research Areas 222
‘Welcome 1o the BMB Lab

e vy oo s teswns el uiciuigics biomedical instrumentation and diagnostics | food science
- = i biosensars and micic- e Usng tabricason tochniques oniginaly . R ) B

e o genomics | materials science | nanobiotechnology

pownsgny L nanomaterials, nanodevices, and nanoscience | pathogens

detecton of pamagens and oner

science education

D e e e e — Networks

AdOMOn. Pis 13 ComBned WIR e Iresnganon of new e R T

: g Syuon o 4D (fmempm ; : ) )

pop a4 i vee PR [7 Co-authors | “$= Co-investigator Network

( Map of Science

Extending and Localizing VIVO - 210



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

It's possible that there will be some individuals who do not have a web page to display. In that situation the quick
view will display as follows.

Index Log in

Home People Organizations Research Events

. van der Meulen, Marjolein | Swanson Professor of Biomedical Engineering @

Positions

» Professor, Sibley School of Mechanical and Aerospace Engineering (M&AE), College of Engineering

» Associate Dean, College of Engineering, Cornell University

» Associate Dean, College of Engineering, Cornell University

Research Areas 222

biomedical mechanics | biomedical mechanics and biomechanics | mechanics of biclogical materials
solid mechanics | systems biology and biomedical engineering

Networks

[ Co-authors =§= Co-investigator Network | ({* Map of Science

8.3.15.3 Implementing Multiple Profile Pages
Here are the steps required to implement the multiple profile pages feature.

1. Develop or a website image capture service
Update the runtime.properties file

Override the default foaf:Person template
Update the webpage quick view template

Set the Profile Page Type for your foaf:Persons

aorwn

Step 1. Develop or a Website Image Capture Service

Since there are currently only two page views, and one of those emphasizes the individual's own web site, to
implement the multiple profile pages feature requires that an installation either develop its own web service for
capturing images of web sites or select a third-party service for this purpose. As noted in the introduction, these
services include WebShotsPro, Thumbalizr and Websnapr.

A third option, however, would be to modify the quick view template (individual--foaf-person-quickview.ftl) so that
it does not display a web page image (as in the third screen shot above). This template file is located in the
productMods/templates/freemarker/body/individualdirectory.

Step 2. Update the runtime.properties File

Set the multiViews.profilePageTypes to "enabled" and ensure that it is not commented out.
Step 3. Override the Default foaf:Person Template

There are two ways to override the default individual--foaf-person.ftl template, which is located in the themes/
wilma/templates directory: (1) rename the file, or (2) remove it from that directory.

Extending and Localizing VIVO - 211



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Step 4. Update the Webpage Quick View Template

The template that displays the web page image in the quick view is named propStatement-webpage-quickview.ftl.
As delivered, this template uses a placeholder link (or links) to display the individual's web page (or pages), while
the code that calls the web service is currently commented out. Here is that section of the template:

40 | <#-- This section commented out until the web service for the web page snapshot is implemented. --»
41 | <#-- The assumption is made that the service will require the url of the web page and possibly --»

42 <ff-- an imaoge size as well. Delete the placeholder link once the web service is implemented. >

43 <ff--

44 <span id="span-3{identifier}"” class=“ﬂg§g§gg:}n§1§g§gn:ﬂy“>

45 ${strings.loading_website_image}. . .&nbsp;&nbsp;&nbsp;<img src="${urls.images}/indicatortihite.gif">

46 </span>

47 | <a title="${il8n().click_to_view_web_page(linkText)}" href="${statement.url}">

48 <img id="img-${identifier}" class="org-webThumbnail" src="http://your.web.service/getsTheImage?url=${statement.url}${imgSize}"

49

50

51

52

53

54 alt="${118n().click_webpage_icon}"
. style="display:none"/>

55 </a>

56 | <#else>

57 </1i>

8 <l class="weblinksmall">

59 <a title="%${i18n().click_to_view_web_page(linkText)}" href="${statement.url}">

60 <img id="icon-${identifier}" src="3{urls.images}/individual/weblinkIconSmall.png" alt="3{i18n().click_webpage_icon}"
. style="display:none"/>

61 </a>

62 </ Hif>

63 ==

b4 <ff-- Here is the placeholder link, 4 lines long -->

65 <a href="$§{statement.url}” title="%${i18n().link_text}">

66 ${linkText}

67 </a>

68 <script=3("altitle="${i18n().link_text}']").parent({'11i").css("float", "none");</script>

69 <felse>

70 <a href="${profileUrl(statement.uri("1ink"))}" title="${i18n().link_name}">${statement.linkName}</a> (3{i18n(]).no_url_provided})

71 </ Hif>

72

Note the highlighted text on line 48. The URL in the src attribute is where you call either the web service you
developed or the third-party service. The APIs for these services are fairly standard. Besides the URL of the web site
that will be the source of the screen shot, the code in this template assumes that the API also takes an image size.
For example, some services can provide small, medium and large images; others may only provide a large image
and a thumbnail image. Once you've updated line 48 to call your web service, remember to comment out or
remove the placeholder link, lines 65-68.

Step 5. Set the Profile Page Type for your foaf:Persons

When multiple profile pages are implemented, the default view is the standard profile view. You can change an
individual's profile page type through the GUI by accessing the Page Type drop down:

00

Page Type Standard profile view ~|

Extending and Localizing VIVO - 212



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

You can also set the profile page type by ingesting RDF. An N3 triple, for example would consist of the following
parts:

« the subject would be the URI of the individual, such as

<http://localhost:8080/1individual/n7829>;

« the predicate would be the hasDefaultProfilePageType object property,

<http://vitro.mannlib.cornell.edu/ontologies/display/
1.1#hasDefaultProfilePageType>;

« and the object would be the type of profile,
<http://vitro.mannlib.cornell.edu/ontologies/display/1.1#quickView> (or #standard).

The ProfilePageType class is defined in the display model. Refer to the profilePageType.n3 file for details.

8.3.15.4 Using the Standard View Without Implementing Multiple Profile Pages

It's possible that an installation may want to use the standard view instead of the default foaf:Person template, but
does not want to implement multiple profile pages. This can be done by simply (1) overriding the default
foaf:Person template (just as in Step 3 above) and (2) ensuring that the multiViews.profilePageTypes properties in
the runtime.properties file is either commented out or set to "disabled."

8.3.16 Using OpenSocial Gadgets

o Overview (see page 213)

« What can you do? (see page 213)

« An example (see page 213)

« OpenSocial (see page 215)

o ORNG (see page 215)
+ Adding gadgets to VIVO (see page 215)

« Under your control (see page 215)

« Under control of your faculty (see page 215)
+ Getting started (see page 215)

8.3.16.1 Overview

What can you do?

Your site administrators can configure a collection of "gadgets" for your VIVO installation. From that collection,
each faculty member can decide which gadgets he will show on his profile page, and how they should be
configured.

Perhaps it would be better to describe the gadgets as "page sections", because you can use CSS styling to make the
gadget seamlessly match your theme. The result is profile pages that still look unified, but are at least partially
configurable by the individual faculty member.

An example

Here is a portion of a profile page from UCSF Profiles. Each gadget is there because the page owner selected it and
configured it.

Extending and Localizing VIVO - 213



gadget

gadget

gadget

gadget

[

UCSF Profiles *i1yus
sparch, OVSCOWEY, Natwowk 1%y ]
Bador At e o D iy | Casmaar s
Ty ———————
Douglas Bauer, MD

Ovarvas  bmmwsh  Pesiewd Fubiceioe  Weinims  Pesbewi Visos e Tha desy
M Cravk. Dwle  Moreel  Bollasiers
Cra#rvsn

o D | N DR B OO © e [ o Garel e Meoors I UCET anes | meraen
B T N e —
| el P Bilprinriy Crmags | shactend ey e
WCBH by ey gy, iy . wimingy. fegrons. e st of outsgeem—". el ol shakrls'
duorieny. cimoe morarien. e Paend dvvhooion

Intmruaty

e agstmeme e, Pl dnborier boeaceen.

Fa

il Pl b b

& Bar O Tha-palis
-
Vil DA

P, A M.

& B Do i g, i e, s st pmsiars. A gl ket 313 00 17
g AT
Mo rr ¢ i

[ Y RV TP SRS SO ST S —
urwtnsl, o Mapllige? JASAA b Ui 757 B B TR W 1505
[RR -

« Posoo b, B 2

Yéutrins

by e by Aavsmeyare ©

Clirimad Proplin 38 UCHY Mo’ Gamier
T B Cooromanng Cemer

T LR frvasr ol terae sl il ek Profin

e L R W——

wd VWidao

ey

i Sty ard B rmle e FOCKSS *F J21 0

s wref Dby s Deyn gy [Moictee &, 00
More iric
ko paoey o e Doosgios C Besrs resssch

Ben 1 oot o R0 ot
CRIBGRGINE DRMOROIeRE bme

]
DO T SNy oalecoorols Frachues Seol
Sprm Cho M PN WoTar
S Ty A A Te VRCLEW s deeaty
et e e
- &
m M &8 8
s R s
iy
b L e e e e s M I elrd e b i mrs b g

= marg padiswiors Remssrrhars ca g in rais e e el e

. 5, i i B, Mot 1, el T, Wk, ot B9, Sy [, B 56,
Fiefiorafl W Bsbrirsng! Thymad ryslyrcion e o M dor Frovieres & Byvisersin P oo
M- v, Aot I el T ey B T T
Napmin P

1 Loy 8. Slackward 5 Goneys i Lew 033, Evtsies B, Wilems G Fy 8, Grendl | Geaffae FU Selernh
A hgchary O, B D0, Mlwmon CM Tapiry nd phyos BoRety T 0o T T oatsmgoeis Feciews
sy AR, e Vasd 4 Aag b TR IS TE
b

1 weiee 8. Gemgert A, Colet TH, s D, Dewmat L Commg 4, lenmgery I Oasgns 4. siey D4, Aoy

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

g & efmrimn

Ftatid i

o gy wn s
=y

oy

s Bore
b PR

e sty
R A i

e+ . e e s

ach, Daven
Cammrem. Sarva
Bl s tam
Wi b
Sareger dew
e w3 g

Ml s

e e e

[

e,
B L T
[ [T T——
[REgTEe
[T —
Bara Dapet e
[Py
] Tr—
i, Lo

L b e T e
o et b ST Profims

Extending and Localizing VIVO - 214



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

OpenSocial

The OpenSocial standard was developed to make it easy for developers to add functionality to social networking
systems like Google and MySpace. OpenSocial has lost popularity in social networking, but is becoming more
favored in enterprise systems.

The Clinical and Translational Science Institute at UCSF created a project to host OpenSocial gadgets in the
Harvard Profiles system. In keeping with the cross-platform origins of OpenSocial, the CTSI team decided to adapt
their gadgets for use in VIVO as well.

ORNG

Social networking systems provide very little information about their participants. The group at CTSI wanted to
combine the display tools of OpenSocial with the data structure of VIVO RDF. They accomplished this through an
extension to the standard, which they called Open Research Networking Gadgets, or ORNG.

8.3.16.2 Adding gadgets to VIVO

The gadgets used at UCSF are provided in a library. Some are written specifically for UCSF, or specifically for the
Harvard Profiles platform. However, many are available for use in VIVO.

You can also create your own gadgets. The gadgets are written in JavaScript, and you can use the existing gadgets
as coding examples.

Under your control

The VIVO administrators select which gadgets will be available for the site. They also decide where the gadgets will
appear on a profile page, if enabled.

Under control of your faculty

Each page owner may choose to enable individual gadgets for their page. A gadget may be written to accept
settings that allow further configuration of its content and appearance.

8.3.16.3 Getting started

The VIVO Installation Instructions contain a section on how to add OpenSocial gadgets to a VIVO site. This will
require some setup, and re-deploying VIVO. Once those steps are completed, your gadget library is configured by
settings in a MySQL database table, and the gadget appearance is controlled by your Freemarker templates and
CSSfiles.

For more information about Open Research Networking Gadgets, see the ORNG web site'#,

8.3.17 How VIVO creates a page

« The home page (see page 216)
A profile page (see page 218)

« The People page (see page 223)
« Aback-end page (see page 225)

140 http://www.orng.info/

Extending and Localizing VIVO - 215


http://www.orng.info/
http://www.orng.info/

8.3.17.1 The home page

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Like the title page of a book, it is not unusual for the home page of a web site to be different from all other pages. In
the default VIVO theme, the most significant difference is that the search box is moved from the header to a more

prominent location on the page.

Index | Login

I Home People Organizations Research Events

menu.ftl

Welcome to VIVO

VIVO is a research-focused discovery tool that enables
collaboration among scientists across all disciplines.

Browse or search information on people, departments, courses,
grants, and grants.

Search VIVO

limit search —+ iR Search
Faculty

1 Baker, Able
View all ...

Research
- e

Log in

Email

Password

Departments

» Department of Redundancy
Department

View all ...

Faculty, Jane
= § Assistant Professor
View all ...

page-home. ftl

3 2 2 316

People Organizations Research

Locations

footer.ftl

©2014 VIVO Project | Terms of Use | Powered by VIVO

About | Support

The following templates are used in the home page.

pageSetup.ftl
page-home. ftl
head. ftl
stylesheets.ftl
headScripts.ftl
identity.ftl
languageSelector. ftl
menu. ftl

Extending and Localizing VIVO - 216



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

developer.ftl
footer.ftl
scripts.ftl

googleAnalytics.ftl

Template

pageSetu
p.ftl

page-
home. ftl

head.ftl

styleshe
ets.ftl

headScri
pts.ftl

identity
Lftl

language
Selector
ftl

menu. ftl

develope
r.ftl

footer.f
tl

scripts.
ftl

googleAn
alytics.
ftl

Purpose

Sets some class and formatting parameters.

The special template used for the home page.

Creates the HTML <HEAD> tag.

Inserts links to CSS stylesheets.

Inserts links to JavaScript files that must appear in

the <HEAD> section of the page. These are somewhat
unusual, since most JavaScript links appear at the end
of the page.

Draws the heading of the heading of the page,
including the VIVO logo and the Index and Log 1in
links.

Allows the user to select their preferred language. If
the site supports only one language, this template has
no effect.

Displays the page links (Home, People, etc.) at the top
of the page.

Displays the developer panel, used when testing and
monitoring VIVO operation. If developer mode has not
been enabled, this templates produces nothing.

Draws the footer of the page, including the copyright
notice, and the About and Support links.

Inserts links to JavaScript files. Compare
to headScripts.ftl.

Inserts JavaScript code to work with Google Analytics.
By default, this is commented out, since each site will

need to insert their own ID values in order to produce

meaningful results.

From

Included in every page, by

TemplateProcessingHelper.java

Specified as the page template
by HomePageController.java,
overriding the default page. ftl.

Included by page-home. ft1.

Included by head. ftl.

Included by head. ft1.

Included by page-home. ft1.

Included by identity. ftl.

Included by page-home. ft1l.

Included by menu. ft1.

Included by page-home. ft1.

Included by footer. ftl.

Included by footer. ftl.

Extending and Localizing VIVO - 217



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.17.2 A profile page

By numbers, the vast majority of pages on a VIVO site are profile pages. These are all likely to be structured around
the properties of each individual. However, the format can be very different depending on whether that individual
is a person, an organization, or a research grant.

Index = Login

T

|Home People Organizations Research Events menu. ftl |

Faculty, Jane | Assistant Protessor == Co-investigator
Network
Positions individual-positions.ftl [} ividual-
Aeron Chair, Henry Miller Institute 2001 visualizationFoafPerson ft1
propStatement-personInPosition.ftl

individual-
contactInfo.ftl

cosaimis - m( individual—foaf-person. ftl

= jaf@mydomain.edu
ebsites

individual-webpage.ftl

ttp:/ /xked.com
ropStatement-webpage.ftl

Affiliation Research Contact View All individual-property-group-tabs.ftl
Affiliation
head of individual-properties.ftl

Department of Redundancy Department Lord High Executioner 2010 - 2014

propStatement-hasRole.ftl

Research

research overview individual-properties.ftl

- P— -
| Searching for the answer to life's big questions. propstatement-dataDafault. ££1 |

principal investigator on individual-properties.ftl
I Why is there Air? 1963 propStatement-hasInvestigatorRole.ftl I

IFunnY Fellows 2014 - propStatement-hasInvestigatorRole.ftl I

Contact

full name individual-properties. ftl

I Jane Faculty propStatement-fullName. ££1 I

footer.ftl

®2014 VIVO Project | Terms of Use | Powered by VIVO About | Suppart

The following templates are used in this particular profile page. As explained in the notes, the choice of templates is
driven in part by the content of the page.

Extending and Localizing VIVO - 218



pageSetup.ftl
page.ftl
head. ftl
stylesheets.ftl
headScripts.ftl
identity.ftl
languageSelector. ftl
search.ftl
menu. ftl
developer.ftl
individual--foaf-person.ftl
individual-setup.ftl
individual-orcidInterface.ftl
individual-contactInfo.ftl
individual-webpage.ftl
propStatement-webpage. ftl
individual-visualizationFoafPerson.ftl
individual-adminPanel. ftl
individual-positions.ftl
propStatement-personInPosition.ftl
individual-overview. ftl
individual-researchAreas.ftl
individual-geographicFocus. ftl
individual-openSocial.ftl
individual-property-group-tabs.ftl
individual-properties.ftl
propStatement-hasRole.ftl
individual-properties.ftl
propStatement-dataDefault.ftl
propStatement-hasInvestigatorRole.ftl
propStatement-hasInvestigatorRole. ftl
individual-properties.ftl
propStatement-fullName.ftl
footer.ftl
scripts. ftl
googleAnalytics.ftl

Template Purpose

pageSetup.ft asabove.

1

page.ftl The master template for most

VIVO pages.

From

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Specified by FreemarkerHttpServlet.java.

Extending and Localizing VIVO - 219



Template
head.ftl

stylesheets.
ftl

headScripts.
ftl
identity.ftl

languageSele
ctor.ftl

search.ftl

menu. ftl

developer.ft
1

individual--
foaf-
person.ftl

individual-
setup.ftl

individual-
orcidInterfa
ce.ftl

individual-
contactInfo.
ftl

individual-
webpage. ftl

Purpose

as above.

Draws the search box in the
header of the page.

as above.

The main body of the profile
page.

Sets some basic values for the
following templates to use.

Implements the VIVO
integration to ORCiD. If this
integration is not enabled, this
template has no effect.

Displays the person's phone
numbers and email addresses.

Displays the person's preferred
web pages.

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

From

Included by page. ftl.

VIVO is configured to use this template as the body of a
profile page for any foaf:Person. You can change
this configuration: see Class-specific templates for
profile pages (see page 154).

This is specified in initialTBoxAnnotations.n3,and
recognized by IndividualResponseBuilder.java
and IndividualTemplatelLocator.java.

Included by individual--foaf-person.ftl.

Included by individual--foaf-person.ftl.

Included by individual--foaf-person.ftl.

Included by individual--foaf-person.ftl.

Extending and Localizing VIVO - 220



Template

propStatemen
t_
webpage. ftl

individual-
visualizatio
nFoafPerson.
ftl

individual-
adminPanel.f
tl

individual-
positions.ft
1

propStatemen
t_
personInPosii
tion.ftl

individual-
overview. ftl
individual-
researchArea
s.ftl
individual-
geographicFo
cus.ftl

individual-
openSocial.f
tl

Purpose

Displays a link to one of the
person's preferred web pages.

Displays the visualization links
for co-authors, co-investigators

Displays links for a VIVO
administrator to use when
editing this person's
information

Displays the positions that this
person currently holds.

Displays one position that this
person currently holds.

Display additional information
about the person.

Implements the VIVO
integration to OpenSocial
gadgets. If this integration is not
enabled, this template has no
effect.

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

From

VIVO is configured to use this template when displaying
preferred web pages. You can change this
configuration: see Custom List View Configurations (see
page 159).

This is specified in 1istViewConfig-webpage.xml,
which is specified in PropertyConfig.n3
and vivoListViewConfig.rdf.

Included by individual--foaf-person.ftl.

Included by individual--foaf-person.ftl.

Included by individual--foaf-person.ftl.

VIVO is configured to use this template when displaying
positions. You can change this configuration: see
Custom List View Configurations (see page 159).

This is specified in 1istViewConfig-
personInPosition.xml,which is specified
in PropertyConfig.n3.

Included by individual--foaf-person.ftl.

You can configure VIVO to display OpenSocial
gadgets on profile pages: see Using OpenSocial
Gadgets (see page 213).

Included by individual--foaf-person.ftl.

Extending and Localizing VIVO - 221



Template

individual-
property-
group-
tabs.ftl

individual-
properties.f
tl

propStatemen
t_
hasRole. ftl
individual-
properties.f
tl

propStatemen
t_
dataDefault.
ftl

propStatemen
t_

hasInvestiga
torRole. ftl

propStatemen
t_
hasInvestiga
torRole. ftl
individual-
properties.f
tl

propStatemen

t_
fullName.ftl

footer.ftl
scripts.ftl

googleAnalyt
ics. ftl

Purpose

Displays the groups of
properties for this person.

Each invokation

of individual-
properties. ftldisplaysa
property group.

Each subordinate template
displays one property for this
person.

as above.

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

From

Included by individual--foaf-person.ftl.

Each reference to individual-properties.ftlis
included by individual-property-group-
tabs. ftl.

VIVO is configured to use these subordinate templates
when displaying research overview, roles, and names.
You can change this configuration: see Custom List
View Configurations (see page 159).

Extending and Localizing VIVO - 222



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.3.17.3 The People page

The page management GUI provides an easy way for VIVO administrators to create simple pages. These pages may
also be added to the menu bar. By default, VIVO is configured with eleven such pages. Five of them are listed in the
menu.

Index | Site Admin root -
search. ftl Search
Home People Organizations Research Events menu. ftl
People page-classgroup.ftl
Faculty Member () Faculty Member
al ABCDEFGHIJKLMNOPQRSTUVWXYZ
Librarian (1)
Baker, Able
Person (3)
menupage-browse.ftl
Faculty, Jane
Assistant Professor
page.ftl
footer.ftl
©2014 VIVO Project | Terms of Use | Powered by VIVO | Version rel-1.7-rc2-38-gbb7ab3b tag About Support

The following templates are used in the People page, and in other pages that allow users to browse through a class
group.

pageSetup.ftl
page.ftl
head. ftl
stylesheets.ftl
headScripts.ftl
identity.ftl
languageSelector. ftl
search.ftl
menu. ftl
developer.ftl
page-classgroup.ftl
menupage-checkForData. ftl

Extending and Localizing VIVO - 223



menupage-browse. ftl

menupage-scripts.ftl

footer.ftl

scripts.ftl

googleAnalytics.ftl

Template

pageSetup.f
tl
page.ftl

head. ftl

stylesheets
ftl

headScripts
ftl

identity. ft
1

languageSel
ector.ftl

search.ftl
menu. ftl

developer.f
tl

page-
classgroup.
ftl

menupage-
checkForDat
a.ftl

menupage-
browse.ftl

Purpose

as above.

Combines the components to create an
AJAX-driven page that browses among the
classes in a class group.

Checks to see if the page will be empty.
Displays messages suitable to a VIVO
administrator or to another user,
depending on who is viewing the page.

Creates the page context that will be filled
by AJAX calls.

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

From

VIVO is configured to use this template in

the People menu page page. You can change
this configuration: see Menu and page
management (see page 136).

This template is invoked
by ClassGroupPageData.java, whichis
assigned to the People page in menu.n3.

Included by page-classgroup. ftl.

Included by page-classgroup.ftl.

Extending and Localizing VIVO - 224



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Template Purpose From

menupage- Creates or links to the JavaScripts used in Included by page-classgroup. ftl.
scripts.ftl browsing among classes of individuals.

footer.ftl as above.
scripts.ftl

googleAnaly
tics.ftl

8.3.17.4 A back-end page

VIVO provides several pages that allow administrators to edit the classes and properties in the ontology, and to
create or adjust class groups and property groups. These pages are built around the older JSP (Java Server Pages)
technology, although the header and footer are created from the same Freemarker templates as other pages.

Index | Site Admin root -
-
Home People Organizations Research Events menu. ftl
Classgroup Editing Form formBasic. j sp

Editing Existing Record (' Required Fields)
Class group name* (max 120 characters)
people

clas sqroup retry.jsp
Display rank (lower number displays first -

1

e o Lo Lo

basicPage. jsp

footer.ftl

©2014 VIVO Project | Terms of Use | Powered by VIVO | Version rel-1.7-rc2-38-gbb7ab3b ta About Support

The following templates and JSPs are used in creating this page.

Extending and Localizing VIVO - 225



basicPage.jsp
head. ftl

stylesheets.ftl
headScripts.ftl

identity.ftl

languageSelector.ftl

search.ftl

menu. ftl
developer.ftl

formBasic.jsp

classgroup_retry.jsp

footer.ftl
scripts.ftl

googleAnalytics.ftl

Template

basicPage.jsp

head. ftl
stylesheets. ftl

headScripts.ftl
identity.ftl

languageSelector.f

tl

search.ftl

menu. ftl
developer.ftl

formBasic.jsp

classgroup_retry.j
sp

footer.ftl
scripts. ftl

googleAnalytics.ft
1

Purpose

The master template for the VIVO back-

end pages.

as above.

A generic frame that provides title and

buttons for an edit.

Shows the fields that may be edited for a

class group.

as above.

8.3.18 Tips for Interface Developers

« Use the Developer Panel (see page 227)
+ Developer Panel Settings (see page 227)
« Iterate your code more quickly (see page 228)

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

From

Specified by
ClassgroupRetryController.java

Specified by
ClassgroupRetryController.java

Specified by
ClassgroupRetryController.java

Extending and Localizing VIVO - 226



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Don'trestart VIVO until you need to (see page 228)
« Defeat the Freemarker cache (see page 228)
+ Customizing listViewConfigs (see page 228)
« Reveal what VIVO is doing (see page 228)
« Insert template delimiters in the HTML (see page 228)

8.3.18.1 Use the Developer Panel

Many of these techniques involve the Developer Panel. You can start the Developer Panel at Site Admin > Activate
Developer Panel. When the Developer Panel has been activated, you will see:

discover

VIVO IS RUNNING IN DEVELOPER MODE.

Home People Organizations Research Events

When you click on the Developer Mode banner, you will see:

VIVO [swec - 0 - scoe

Index | Site Admin | root

VIVO s RUNNING IN DEVELOPER MODE.

) ENABLE DEVELOPER MODE

ALLOW ANONYMOUS USER TO SEE AND MODIFY DEVELOPER SETTINGS

[ GENERAL T SEARCH I AUTHORIZATION

FREEMARKER TEMPLATES PAGE CONFIGURATION
DEFEAT THE TEMPLATE CACHE LoG THE Use oF custom L1sT view XML FiLes.
InserT HTML COMMENTS AT START AND END OF TEMPLATES LOG THE USE OF CUSTOM SHORT VIEWS IN SEARCH, INDEX AND BROWSE PAGES.
SPARQL Queries LANGUAGE SUPPORT
LoG EACH QUERY DEFEAT THE CACHE OF LANGUAGE PROPERTY FILES
SHOW STACK TRACE LOG THE RETRIEVAL OF LANGUAGE STRINGS
RESTRICT BY QUERY STRING B
SET L0G LEVELS SHOw CONFIGURATION
RESTRICT BY CALLING STACK 'SHOW AUTHORIZATION INFO SHOW BACKGROUND THREADS
Srow RDF DATA SOURCES

Save Settings

Home People Organizations Research Events Capability Map

To close the Developer Panel, unselect "Enable Developer Mode" in the upper left hand corner, and press "Save
Settings" in the lower left hand corner.

Developer Panel Settings

You can change settings on The Developer Panel interactively, while VIVO is running, or you can use
adeveloper.properties file in your VIVO home directory.

A typical developer.properties file

developer.enabled=true
developer.permitAnonymousControl=true

Extending and Localizing VIVO - 227



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

developer.defeatFreemarkerCache=true

When any feature of The Developer Panel is active, you will see this indicator in the header of your VIVO pages:

This is to remind you that developer options may slow down your VIVO, and should not be used in production.

8.3.18.2 Iterate your code more quickly

Don't restart VIVO until you need to

VIVO will detect changes to the templates without requiring a restart. However, you will probably want to defeat
the Freemarker cache (see below).

Also, VIVO will serve the latest version of CSS, JavaScript, orimage files. For these files, however, you may need to
clear the cache in your browser. Instructions for doing this will differ, depending on which browser you are using. If
you don't know how to reset the cache in your browser, you may want to consult this web site: http://
clearyourcache.com/, or just search the web for "clear browser cache".

If you change any other types of files, you will need to restart VIVO after running the build script.

Defeat the Freemarker cache

As mentioned above, VIVO will detect changes to Freemarker templates. By default, however, VIVO will not detect
the changes immediately. The Freemarker framework caches the templates that it uses, and won't even look to see
if a template has changed until 1 minute after it was last read from disk. In a production system, of course, that
makes the accessing much more efficient. When you are making frequent changes, it's an annoyance.

Use The Developer Panel to defeat the Freemarker cache.

Customizing listViewConfigs
Ted Lawless has written an open-source Python script to assist with viewing the output of a listViewConfig*!

without having to rebuild the entire Vivo app.

Also, you can skip the unit tests when building VIVO. Unit tests do not apply to listViewConfigs.

8.3.18.3 Reveal what VIVO is doing

Insert template delimiters in the HTML

It's not always clear which template has created a particular piece of your HTML page. Templates include other
templates, templates are invoked in custom list views, short views, etc. You can use The Developer Panel to insert
comments in the HTML that tell you where each template begins and ends.

For example, this section of a page was produced mostly by the identity. ft1template.
The languageSelector. ftltemplateisincluded, but does not generate any HTML. The next section is produced
by the menu. ft1 template, and so on.

141 http://lawlesst.github.io/notebook/vivo-listview.html

Extending and Localizing VIVO - 228


http://clearyourcache.com/
http://clearyourcache.com/
http://lawlesst.github.io/notebook/vivo-listview.html
http://lawlesst.github.io/notebook/vivo-listview.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<body >
<!-- FM_BEGIN 1identity.ftl -->

<header 1id="branding" role="banner">

<hl class="vivo-logo"><a title="VIVO | connect share discover" href="/vivo">
<span class="displace">VIVO</span>
</a></h1>

<nav role="navigation">
<ul id="header-nav" role="1list">
<!-- FM_BEGIN languageSelector.ftl -->
<!-- FM_END languageSelector.ftl -->
<1i role="Tl1istitem"><a href="/vivo/browse" title="Index">Index</a></1i>
<1li role="Tl1istitem"><a href="/vivo/siteAdmin" title="Site Admin">Site Admin</a></1li>
<li>
<ul class="dropdown">
<1li id="user-menu'"><a href="#" title="user">Jim</a>
<ul class="sub_menu">

<1i role="listitem"><a href="/vivo/accounts/myAccount" title="My account">My account</a></

1i>
<1i role="listitem"><a href="/vivo/logout" title="Log out">Log out</a></li>
</ul>
</1i>
</ul>
</1i>
</ul>
</nav><!-- FM_END 1identity.ftl -->

<!-- FM_BEGIN menu.ftl -->

</header>

8.4 Deploying additional ontologies with VIVO

« Filegraphs (see page 229)
o Example (see page 230)
« Namespace Prefixes (see page 230)

The most straightforward way to load additional ontologies into VIVO is to use the Add/Remove RDF Data feature
shown on the Site Admin page. This loads an ontology directly into the triple store. The disadvantage is that all
additional ontologies and local edits are loaded into a single graph. This can make it cumbersome to update
individual ontologies to reflect edits made outside of VIVO.

8.4.1 Filegraphs

There is another mechanism for incorporating ontologies into VIVO. This involves "filegraphs," and is how the VIVO-
ISF ontology is included with the software. Filegraphs are RDF documents stored in the VIVO home directory. Each
filegraph corresponds to a single graph in the triple store. Every time Tomcat starts, VIVO checks each of these

Extending and Localizing VIVO - 229



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

graphs to ensure that its contents exactly match the triples found in the corresponding file. If the file has changed,
VIVO makes the necessary modifications to the triple store. If a filegraph is removed from its directory, its graph in
the triple store will be deleted the next time Tomcat starts.

8.4.1.1 Example

vitro.home/
rdf/
tbox/
filegraph/
agent.owl
appControls-temp.n3
bfo-bridge.owl
bfo.owl

myOntology.owl

Adding myOntology.owl to the directory shown above will automatically create the corresponding graph in the
triple store after Tomcat is restarted:

http://vitro.mannlib.cornell.edu/filegraph/tbox/myOntology.owl

Modifying or removing the myOntology.owl file in the filegraph directory and restarting Tomcat will automatically
update the ontology VIVO.

8.4.2 Namespace Prefixes

Additional ontologies, whether directly imported via 'Add/Remove RDF data' or implemented as filegraphs, are
listed in the ontology list ('Site Admin > Ontology list'). While the ontologies name and namespace are
automatically added to the list, the prefix is not. Instead, the note '(not yet specified)' appears. This behavior occurs
even if the prefix is correctly specified in the RDF file.

For ontologies that are added to an existing VIVO installation, the prefix needs to be entered manually into the
ontology list. If the additional ontology is to be provided with the software before installation, however, the prefix
to be added automatically during the build process can be specified beforehand.

@ Note

The following procedure is only relevant if you want to add an ontology before the software is installed on
aserver.

VIVO keeps an internal record of prefixes that is read from the /rdf/tbox/firsttime/ directory. The prefixes of the
ontologies that are loaded with VIVO are specified in the 'initialTBoxAnnotations.n3' file. You can add an additional
prefix by adding the following lines either to this file or to a separate file:

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix vitro: <http://vitro.mannlib.cornell.edu/ns/vitro/0.7#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

Extending and Localizing VIVO - 230



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://*URI/of/the/added/ontology*>
rdfs:label "xName of added ontology*" @en-US;

vitro:ontologyPrefixAnnot "*OntologyPrefix*"AAxsd:string

Of course, the strings enclosed by asterisks need to be adapted according to your custom ontology. After VIVO is
built, you should find the new ontology in the ontology list, with its specified prefix.

8.5 Enable an external authentication system

» How User Accounts are Associated with Profile Pages (see page 231)
+ Using a Tomcat Realm for external authentication (see page 232)

8.5.1 How User Accounts are Associated with Profile Pages

« Auser account may have an externalAuthld (see page 231)
 runtime.properties may contain a value for selfEditing.idMatchingProperty (see page 232)
» The profile page may match the externalAuthld on the user account (see page 232)

There are three elements in the linkage between a User Account and a Profile page:

+ The user account holds the externalAuthId

« runtime.properties specifies the URI of the matching property

+ The profile page must have a property with that URT whose value matches the externalAuthId. (The
property value is either a String or an untyped literal.)

8.5.1.1 A user account may have an externalAuthld
« The externalAuthId is optional.

« There are several ways to create a externalAuthId:

« If you are using internal authentication - managed within VIVO — then each account must be created
by an admin, and the admin may choose to set the externalAuthld to a useful value.

« If you are using external authentication - Shibboleth, or the like - then when a user without an
account passes authentication, an account is created auto-magically. The externalAuthld is set to the
user's Shibboleth ID.

« Regardless of the type of authentication, you could choose to ingest the information for the user
accounts, and create the externalAuthld as part of that ingest.

« In any case, the externalAuthld can be used to link to the user's profile page.
« This info is stored in the userAccounts model.

+ You can confirm this by going to the SiteAdmin page, clicking on "Ingest Tools", then "Manage Jena
Models", then the button labelled "RDB Models", then the "output model" link under vitro-kb-userAccounts.
The output should contain statements that look something like this:

<http://vivo.mydomain.edu/individual/u8041>
a <http://vitro.mannlib.cornell.edu/ns/vitro/authorization#UserAccount>;

Extending and Localizing VIVO - 231


http://vivo.mydomain.edu/individual/u8041
http://vitro.mannlib.cornell.edu/ns/vitro/authorization#UserAccount

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://vitro.mannlib.cornell.edu/ns/vitro/authorization#emailAddress>
"jeb228@cornell.edu"*xsd:string ;
<http://vitro.mannlib.cornell.edu/ns/vitro/authorization#externalAuthld>
"jeb228"Axsd:string ;

« ldon't know what would happen to a user with more than one one externalAuthID. Probably VIVO will
arbitrarily choose among them.

8.5.1.2 runtime.properties may contain a value for selfEditing.idMatchingProperty

+ You can confirm this value by looking in the vivo.all. log file in Tomcat logs. Each time VIVO starts up, the
first entry written to the log contains all of the properties from runtime.properties. It helps to inspect
this if you might possibly be reading the wrong runtime.properties file.

« At Cornell, ours looks like this:

selfEditing.idMatchingProperty = http://vivo.cornell.edu/ns/hr/0.9/hr.owl#netld

8.5.1.3 The profile page may match the externalAuthld on the user account

« To associate a profile page with a user account, the Individual must have a data property whose URI is the
one from runtime.properties, and whose value is equal to the externalAuthld of the user account.
« For example, the Individual object that forms the basis for my profile page contains a statement like this:

<http://vivo.cornell.edu/individual/JamesBlake>
<http://vivo.cornell.edu/ns/hr/0.9/hr.owl#netld>
"jeb228"

+ You can confirm this by logging in as an admin, navigating to the profile page, clicking on "edit this
individual" and then the button labelled "Raw Statements with this Resource as Subject"
+ Inthe example above, the "netld" field is set to an untyped Literal. A String Literal will work also.

8.5.2 Using a Tomcat Realm for external authentication

8.5.2.1

» Background Testing Background
» Testing

Background

VIVO is not written to use the standard JEE or Tomcat authentication systems, so using a Tomcat Realm would
require some customization. This doesn't seem very difficult, it just hasn't been a priority for us.

Extending and Localizing VIVO - 232


http://vitro.mannlib.cornell.edu/ns/vitro/authorization#emailAddress
http://vitro.mannlib.cornell.edu/ns/vitro/authorization#externalAuthId

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

When VIVO is set up to use external authentication, it uses a reverse-proxy setup, where an Apache HTTP server
intercepts all calls to Tomcat. The Apache server uses a Shibboleth module or other module to secure a particular
page: http://localhost:8080/vivo/loginExternalAuthReturn.

If an HTTP request is made to that page, and the request does not belong to a session that is already logged it, the
Shibboleth module in Apache will intercept the request and guide the user through the authentication process.
When the user's credentials are accepted, the module invokes the secured page, as requested, storing the user's ID
in one of the HTTP headers. The VIVO code reads the user ID from the HTTP header and stores it in the session
object. Only that one page is secured, and VIVO remembers the user ID for use in subsequent requests.

Which HTTP header will VIVO inspect for the user ID? The header which is named in
externalAuth.netldHeaderName.

Most institutions that use VIVO also use Shibboleth in their web applications, or something with a similar
mechanism. The IT group at the institution provides the VIVO implementers with the appropriate Apache module
and configuration information.

I don't know of anyone who has tried to use a Tomcat Realm to accomplish external authentication in VIVO. | think
it would require some small modification of the VIVO code, perhaps a change to
ExternalAuthHelper.getExternalAuthld(). Tomcat would use the Realm to create a Principal object in the HTTP
request, and VIVO would get the user ID from that Principal instead of looking in an HTTP header. Web.xml would
be modified to secure the page, as you have already done.

8.5.2.2 Testing
It really was just that easy!

| added these lines to ExternalAuthHelper.getExternalAuthld(), right after the check for a null request object:

Principal p = request.getUserPrincipal();
if (p !'= null) {
log.debug("Found a UserPrincipal in the request: " + p);
String userId = p.getName();
if (StringUtils.isNotEmpty(userId)) {
log.debug("Got external auth from UserPrincipal: " + userId);
return userId;

| added these lines to the end of web.xml, just before the closing </web-app>:

<security-constraint>
<web-resource-collection>
<web-resource-name>ExternalAuthPage</web-resource-name>
<url-pattern>/loginExternalAuthReturn</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>tomcat</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>

Extending and Localizing VIVO - 233


http://localhost:8080/vivo/loginExternalAuthReturn

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

</login-config>

| set this property in deploy.properties:

externalAuth.buttonText = Log in using basic Tomcat

And voila, my tomcat-users.xml file is my external authentication system!

Obviously, you will want to use FORM authentication, instead of BASIC, and something other than the default
Realm. But | expect you know how to do that already.

Please, let me know how this progresses for you. This may be something that we will add to the next release.

Jim Blake

8.6 Authorization

« Writing a controller for a secured page (see page 234)

+ Creating a VIVO authorization policy - an example (see page 238)

+ A more elaborate authorization policy (see page 244)

+ The IdentifierBundle - who is requesting authorization? (see page 250)

« Writing a controller for a secured page (see page 234)

+ Creating a VIVO authorization policy - an example (see page 238)

+ A more elaborate authorization policy (see page 244)

+ The IdentifierBundle - who is requesting authorization? (see page 250)

8.6.1 Writing a controller for a secured page

» Concepts (see page 234)
» Asecured page (see page 234)
» How is a page secured? (see page 235)
+ Who may view a secured page? (see page 235)
« What happens if the user is not authorized? (see page 235)
« What happens when a user logs out? (see page 235)
+ Requested Actions (see page 235)
« The most common case (see page 236)
+ The steps (see page 236)
» Decide on a permission and requested action (see page 236)
« Write the controller to require the requested action (see page 236)
« Grant the permission to the desired users. (see page 236)
+ A more complex example (see page 237)

8.6.1.1 Concepts

A secured page

A secured page in VIVO is one that can not be viewed by the general public. If an unauthorized user attempts to view
a secured page, even by entering the URL directly into a browser, the attempt should fail.

Extending and Localizing VIVO - 234



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

How is a page secured?

To secure a page, the controller code requests authorization to perform a particular RequestedAction. If the user
is not authorized to perform that action, the controller rejects the request. For example,

the RevisionInfoController checks to see whether the user is authorized for the
SEE_REVISION_INFO.ACTION. If the useris not authorized for that action, they will not see the Revision Info page.

Other controllers use more complicated tests to determine whether a user is authorized. For example,
the ManageProxiesAjaxController permits access by any user who is authorized for either
the MANAGE_PROXIES.ACTION or the MANAGE _OWN_PROXIES.ACTION.

Who may view a secured page?

A secured page can never be viewed by someone who is not logged in to VIVO. Since we don't know who the user is,
we can't know whether they are authorized to view the page.

If a user is logged in, there is a list of Ident1ifiers associated with their account. The Identifiers are pieces of
information about that user, including their account URI, the URI of their profile page, their assigned role, any proxy
permissions, and more. When a secured page is requested, these Identifiers are passed to the list of

active Policy objects. Each Policy applies its own logic to determine whether the user may view the secured

page.

What happens if the user is not authorized?

+ Ifthe useris logged in, but does not have authorization to view the secured page, the browser will be
redirected to the VIVO home page. A message at the top of the page will state that the user is not authorized
to view the page he requested.

« If the useris not logged in, the browser will be redirected to the VIVO login page. When the user logs in, the
browser will be redirected to the secured page, and the test is repeated.

« If the useris authorized, the secured page will be displayed.
« If the user is not authorized, the home page will be displayed, as previously described.

What happens when a user logs out?

If a user is viewing an unsecured page, and clicks on the "Log out" link, the page will be refreshed. For some pages,
particularly profile pages, the contents of the page may have changed. Many people appreciate this feature when
editing their own profiles. Log in, and you can edit. Log out, and you can see what your page looks like to the public.

If a user is viewing a secured page and clicks on the "Log out" link, the browser will be redirected to the VIVO home
page.

8.6.1.2 Requested Actions

Requested actions are usually quite simple. For example, the RevisionInfoController requests permission to
display the revision info page. The user either has that permission or they do not.

On the other hand, Requested actions can be quite detailed. For example, the ImageUploadController requests
permission to add or modify a particular triple in the data model. If the user is logged in as root or admin, they have
permission. However, if the user is logged in as a self-editor, a complex algorithm is performed to determine
whether they are authorized to add or modify the triple in question. They may be authorized because the subject of
the triple is the URI of their own profile page, or because they have been given proxy rights to edit the page in
question, or several other possibilities.

Extending and Localizing VIVO - 235



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.6.1.3 The most common case

The most common scenario for a secured page is when a simple, unparameterized action is requested, and the user
either

+ has a permission that provides authorization, or
« does not have that permission and is not authorized.

The steps

Decide on a permission and requested action

Simple permissions like this are usually implemented by the SimplePermission class, which also provides an
implementation for the corresponding RequestedAction.

In some cases, it makes sense to re-use an existing instance of SimplePermission. So for

example, SimplePermission.USE_ADVANCED_DATA_TOOLS_PAGES authorizes the user for any and all of the RDF
ingest/export pages. In other cases, it makes more sense to create a new instance.

So SimplePermission.MANAGE_PROXIES stands alone with only one usage.

For this example, we will look at SimplePermission.SEE_REVISION_INFO, which has only one usage.

Write the controller to require the requested action

If the controller extends FreemarkerHttpServlet, override the requiredActions () method, like this:

@Override
protected Actions requiredActions(VitroRequest vreq) {
return SimplePermission.SEE_REVISION_INFO.ACTIONS;

If the controller exends VitroHttpServlet (but not FreemarkerHttpServlet), add a test to the doGet ()
and doPost () methods, like this:

@Override
public void doPost(HttpServletRequest req, HttpServletResponse resp) {
if (!isAuthorizedToDisplayPage(req, resp,
SimplePermission.SEE_REVISION_INFO.ACTIONS)) {

return;

Both of these examples take advantage of the fact that each instance of SimplePermission defines its
own RequestedAction, as well as its own Actions set.

Grant the permission to the desired users.

Each Permission, simple or otherwise, can be assigned to PermissionSets within VIVO. Each user account is
associated with a PermissionSet, and may use the Permissions associated with it. The assignment
of Permissions to PermissionSets occurs in the file called

Extending and Localizing VIVO - 236



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

[vitro] /webapp/rdf/auth/everytime/permission_config.n3

By inspecting the RDF in this file, we can see that the SEE_REVISION_INFO permission is assigned
to ADMIN, CURATOR, and EDITOR PermissionSets. Here is an excerpt of the file with the relevent RDF:

@prefix auth: <http://vitro.mannlib.cornell.edu/ns/vitro/authorization#> .
@prefix simplePermission: <java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#> .

auth:ADMIN auth:hasPermission simplePermission:SeeRevisionInfo .

auth:CURATOR auth:hasPermission simplePermission:SeeRevisionInfo .

auth:ADMIN auth:hasPermission simplePermission:SeeRevisionInfo .

In future versions of VIVO, the Permission/PermissionSet framework may be extended to permit multiple
PermissionSets per user, with GUI-based configuration.

8.6.1.4 A more complex example

/A TBD

It's all about the action that your controller is requesting, and whether your user has
authorization to do it.
+ Actions can be parameterized (modify this statement) or not (see the revision info page)
+ Authorization can come from a policy, or from a permission
« Permissions can be simple, or as complex as a policy
Look at the simplest case: RevisionInfoController
+ Not parameterized: SimplePermission.something. ACTION
Code in HttpServlet, FreemarkerServlet, JSP
Look at a complex case: ImageUploadController
+ Also ManageProxiesAjaxController
In some cases, itisn't a question of whether your controller will run, but what it will do:
« BaselndividualTemplateModel
« public boolean isEditable() {

AddDataPropertyStatement adps = new AddDataPropertyStatement(
vreqg.getJenaOntModel(), individual.getURI(),
RequestActionConstants.SOME_URI);

AddObjectPropertyStatement aops = new AddObjectPropertyStatement(
vreqg.getJenaOntModel(), individual.getURI(),
RequestActionConstants.SOME_URI,
RequestActionConstants.SOME_URI);

return PolicyHelper.isAuthorizedForActions(vreq, new Actions(adps).or(aops));

}

+ LoginRedirector

+  private boolean canSeeSiteAdminPage() {
return PolicyHelper.isAuthorizedForActions(request,
SimplePermission.SEE_SITE_ADMIN_PAGE.ACTIONS);

}

« BaseSiteAdminController

Extending and Localizing VIVO - 237



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

. if (PolicyHelper.isAuthorizedForActions(vreq,
SimplePermission.MANAGE_USER_ACCOUNTS.ACTIONS)) {
data.put("userAccounts", UrlBuilder.getUrl("/accountsAdmin"));

}

8.6.2 Creating a VIVO authorization policy - an example

o Overview (see page 238)
+ The example (see page 238)
« Lines 1-39: imports (see page 239)
 Lines 40-56: Class declaration, variables, constructor (see page 239)
+ Lines 57-68: Implement the isAuthorized() method (see page 240)
+ Lines 69-81: Make quick and easy decisions (see page 240)
«+ Lines 82-105: Execute the SPARQL query and test the result (see page 241)
o Lines 106-171: Subroutines (see page 242)
« Setup when VIVO starts (see page 243)
o Lines 172-193: The Setup class (see page 244)
« Invoking the Setup class (see page 244)
« Amore complicated example (see page 244)

8.6.2.1 Overview

The ability of users to access data in VIVO is controlled by a collection of Policy objects. By creating or controlling
Policy objects, you can control access to the data.

The Policy objects are instances of Java classes that implement the PolicyIface interface. These objects are
created when VIVO starts up, and are collected in the ServletPolicyList. When code in VIVO needs to know
whether a user is authorized to perform a particular action, the code creates a RequestedAction object and
passes it to the Policy list for approval.

When the list is asked for approval, the first Policy in the list is asked first. It must respond with a decision that

is AUTHORIZED, UNAUTHORIZED, or INCONCLUSTIVE. If the decision is AUTHORIZED or UNAUTHORIZED, it is taken to
be final, and the other Policies in the list are not consulted. If the decision is INCONCLUSIVE, then the next Policy in
the listis asked to approve the same request, and the process repeats until a conclusive answer is obtained, or until
all policies have answered. If no Policy has answered with AUTHORIZED, the request fails.

The code below is an example of such a Policy. The entire class is available in the attached filel%2,

8.6.2.2 The example

This Policy will check each request to edit an object property statement. The request will be rejected if the
statement appears in any graph that is not in the approved set.

The use case is where an individual whose data is stored in the default graph (vitro-kb2) links to data in other
graphs which were created by ingest and may not be edited. The result of this Policy is that there will be no edit link
from the profile page of the individual to that data.

142 https://wiki.duraspace.org/download/attachments/96995961/RestrictEditingByGraphPolicy.java?
api=v2&modificationDate=1522787193551&version=1

Extending and Localizing VIVO - 238


https://wiki.duraspace.org/download/attachments/96995961/RestrictEditingByGraphPolicy.java?api=v2&modificationDate=1522787193551&version=1
https://wiki.duraspace.org/download/attachments/96995961/RestrictEditingByGraphPolicy.java?api=v2&modificationDate=1522787193551&version=1

Lines 1-39: imports

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

/* $This file 1is distributed under the terms of the license 1in /doc/license.txt$ */

package edu.

import
import
import
import
import
import

import
import

import

import

import

import
import
import
import
import
import
import
import

import

import
import
import
import
import
import
import
import
import

import

java.
java.
java.
java.
java.

java.

util.
util.
util.
util.
util.
util.

Arraylist;

Arrays;

Collections;

HashSet;
List;
Set;

cornell.mannlib.vitro.webapp.auth.policy;

javax.servlet.ServletContext;

javax.servlet.ServletContextEvent;

javax.servlet.ServletContextListener;

org.apache

org.

com
com.
com.
com.
com.
com.
com
com.

com.

edu.
edu.
edu.
edu.
edu.
edu.
edu.
edu.
edu.
edu.

apache

.hp.
hp.
hp.
hp.
hp.
hp.
.hp.
hp.
hp.

cornell.

hpl.
hpl.
hpl.
hpl.
hpl.
hpl.
hpl.
hpl.
hpl.

.commons.logging.Log;

.commons.logging.LogFactory;

jena.query.
jena.query.
jena.query.
jena.query.
jena.query.
jena.query.
jena.query.
jena.rdf.model.RDFNode;

jena.shared.Lock;

Dataset;

Query;

QueryExecution;
QueryExecutionFactory;
QueryFactory;
ResultSet;

Syntax;

mannlib.vitro.webapp.auth.identifier.IdentifierBundle;

cornell.mannlib.vitro.webapp.auth.identifier.common.IsRootUser;

cornell.mannlib.vitro.webapp.auth.policy.ifaces.Authorization;

cornell.mannlib.vitro.webapp.auth.policy.ifaces.PolicyDecision;

cornell.mannlib.vitro.webapp.auth.policy.ifaces.PolicyIface;

cornell.mannlib.vitro.webapp.auth.requestedAction.ifaces.RequestedAction;

cornell.mannlib.vitro.webapp.auth.requestedAction.propstmt.EditObjectPropertyStatement;

cornell.mannlib.vitro.webapp.dao.jena.QueryUtils;

cornell.mannlib.vitro.webapp.servlet.setup.JenaDataSourceSetupBase;

cornell.mannlib.vitro.webapp.startup.StartupStatus;

Import statements for the classes used in the Policy

Lines 40-56: Class declaration, variables, constructor

[ **

* Deny authorization to edit a statement from one of the prohibited graphs.

*/

public class RestrictEditingByGraphPolicy implements PolicyIface {

private static final Log log = LogFactory

Extending and Localizing VIVO - 239



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

.getLog(RestrictEditingByGraphPolicy.class);

private static final Syntax SYNTAX = Syntax.syntaxARQ;
private static final Set<String> PERMITTED_GRAPHS = new HashSet<>(
Arrays.asList(new String[] { "http://vitro.mannlib.cornell.edu/default/vitro-kb-2" }));

private final Dataset dataset;

public RestrictEditingByGraphPolicy(ServletContext ctx) {
this.dataset = JenaDataSourceSetupBase.getStartupDataset(ctx);

The class must implement the PolicyIface interface.

The constructor stores a reference to the startupDataset, which will be used to execute SPARQL queries.
Because this reference is taken from the context, it will contend with all other context-based references for access
to a single database connection. It would be more efficient to use a Dataset that was provided by

the HttpServletRequest, but a Policy never has access to the Request. This will be changed in a future release.
(See this JIRA issuel®))

The PERMITTED_GRAPHS constant holds the set of graph URIs for which editing is permitted. It would be a simple
code change to use a PROHIBITED_GRAPHS constant instead.

Lines 57-68: Implement the isAuthorized() method

[ *x*
* For each request to Edit an ObjectProperty, find out what graph the
* statement is in. Prohibit editing if the statement is in the wrong graph.
*
* Note that this will not work with a DataProperty, since the
* EditDataProperty object does not contains the value of the property. We
* didn't anticipate that editing privileges would be determined by the
* contents of the string.
*/
@Override
public PolicyDecision isAuthorized(IdentifierBundle whoToAuth,
RequestedAction whatToAuth) {

Every PolicyIFace class mustimplement this method.

« whoToAuth is a collection of Identifiers, each one holding a piece of information about the user who is
currently logged in.
+ whatToAuth is the action being requested.

Lines 69-81: Make quick and easy decisions

if (whoToAuth == null) {

return inconclusiveDecision("whoToAuth was null");

143 https://jira.duraspace.org/browse/VIVO-269

Extending and Localizing VIVO - 240


https://jira.duraspace.org/browse/VIVO-269
https://jira.duraspace.org/browse/VIVO-269

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

if (whatToAuth == null) {
return inconclusiveDecision("whatToAuth was null");

}
if (IsRootUser.isRootUser (whoToAuth)) {
return inconclusiveDecision("Anything for the root user");

}
if (! (whatToAuth instanceof EditObjectPropertyStatement)) {
return inconclusiveDecision("Only interested in editing object properties");

Policies are called very frequently, especially when a large profile page is displayed. Whenever possible, answer the
easy questions first before doing more expensive tests.

Checking for nu11 arguments should not be necessary - these arguments should never be null. However, it is simple
defensive programming, and not costly.

This policy is only interested in requests to edit object property statements, so we can quickly reject any other type
of RequestedAction. Again, the INCONCLUSIVE decision is equivalent to saying "let someone else decide.”

This policy does not attempt to restrict the editing of data property statements. This is because

the EditDataPropertyStatement class does not include the value of the data property. At one time it was felt
that this could not affect the decision of whether to permit the request. This will be changed in a future release (See
this JIRA issuel®).

This policy will not restrict the root account from attempting to edit statements.

We already have RootUserPolicy, which says that the root user is permitted to do anything. So why do we
need this test?

We need to consider the order in which policies are called, and to remember that polling ono a
RequestedAction will stop when any policy returns a decision that is not INCONCLUSIVE. So, if this Policy is
placed before RootUserPolicy, and returns an UNAUTHORIZED decision, then the RootUserPolicy will never
been consulted.

The question of "what to do when one Policy would authorize and another Policy would prohibit" is a tricky
one.

Lines 82-105: Execute the SPARQL query and test the result

EditObjectPropertyStatement stmt = (EditObjectPropertyStatement) whatToAuth;

String queryString = assembleQueryString(stmt);
List<String> graphUris = executeQuery(queryString);
log.debug("graph URIs: " + graphUris);

if (graphUris.isEmpty()) {
log.warn("Can't find this statement in any graph: " + stmt);
return inconclusiveDecision("Can't find this statement in any graph: "
+ stmt);

144 https://jira.duraspace.org/browse/VIVO-268

Extending and Localizing VIVO - 241


https://jira.duraspace.org/browse/VIVO-268
https://jira.duraspace.org/browse/VIVO-268

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

graphUris.removeAll(PERMITTED_GRAPHS) ;
if (graphUris.isEmpty()) {
log.debug("Permitted: " + stmt);
return inconclusiveDecision("Statement is only in permitted graphs: "
+ stmt);

log.debug("Statement is prohibited: " + stmt + ", graphs=" + graphUris);
return unauthorizedDecision("Statement is in a prohibited graph, "
+ stmt + " din " + graphUris);

Assemble the query and execute it. This results in a list of the URIs of all Graphs that contain this statment. (See the
subroutines in the next section).

What to do if we do not find the statement in any graph? It would be possible to err on the side of caution and
return an UNAUTHORIZED decision. We could even throw a RuntimeException of some sort to abort the page
display. In this case, we choose to return INCONCLUSIVE and write a warning to the log.

If the statement appears only in the permitted graphs, return a decision of INCONCLUSIVE, letting some other
policy decide.

If the statement appears in other, prohibited graphs, return a decision of UNAUTHORIZED, rejecting the requested
action.

Lines 106-171: Subroutines

private static final String QUERY_TEMPLATE = "" + //
"SELECT ?graph WHERE{" + //
" GRAPH ?graph{" + //
" ?s ?p 20 "+ //
L SV
"} LIMIT 10"; //

private String assembleQueryString(EditObjectPropertyStatement stmt) {
String g = QUERY_TEMPLATE;

g = QueryUtils.subUriForQueryVar(q, "s", stmt.getSubjectUri());

g = QueryUtils.subUriForQueryVar(q, "p", stmt.getPredicateUri());

g = QueryUtils.subUriForQueryVar(q, "o", stmt.getObjectUri());

return q;

We have a template for the SPARQL query. Substitute the values for this statement into the query. The only
unresolved variable will be ?graph.

private List<String> executeQuery(String queryStr) {
log.debug("select query dis: '" + queryStr + "'");
QueryExecution gqe = null;
dataset.getLock().enterCriticalSection(Lock.READ);
try {
Query query = QueryFactory.create(queryStr, SYNTAX);

Extending and Localizing VIVO - 242



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

ge = QueryExecutionFactory.create(query, dataset);
return parseResults(queryStr, qe.execSelect());
} catch (Exception e) {
log.error("Failed to execute the Select query: " + queryStr, e);
return Collections.emptylList();
} finally {
if (ge != null) {
ge.close();
}
dataset.getlLock().leaveCriticalSection();

private List<String> parseResults(String queryStr, ResultSet results) {
List<String> uris = new ArraylList<>();
if (results.hasNext()) {
try {
RDFNode node = results.next().get("graph");
if ((node != null) && node.isResource()) {
uris.add(node.asResource().getURI());
}
} catch (Exception e) {
log.warn("Failed to parse the query result" + queryStr, e);

}

return uris;

Execute the SPARQL query against the Dataset. Extract the graph URIs from the result.

/%%
* An UNAUTHORIZED decision says
* "Not allowed. Don't bother asking anyone else".
x/
private PolicyDecision unauthorizedDecision(String message) {
return new BasicPolicyDecision(Authorization.UNAUTHORIZED, getClass()

.getSimpleName() + ": " + message);
}
[ *x
* An INCONCLUSIVE decision says '"Let someone else decide".
x/

private PolicyDecision inconclusiveDecision(String message) {
return new BasicPolicyDecision(Authorization.INCONCLUSIVE, getClass()
.getSimpleName() + ": " + message);

Convenience methods for creating PolicyDecision return values.

8.6.2.3 Setup when VIVO starts

When VIVO starts execution, the StartupManager processes the file startup_listeners. txt, and instantiating
each class that is named in the file, and invoking the contextsInitialized () method on each class.

Extending and Localizing VIVO - 243



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Lines 172-193: The Setup class

/]
// Setup class - must be specified in startup_listeners.txt before any

// policy that might be more permissive.

J ] =

public static class Setup implements ServletContextListener {

@Override

public void contextInitialized(ServletContextEvent sce) {
ServletContext ctx = sce.getServletContext();
StartupStatus ss = StartupStatus.getBean(ctx);

RestrictEditingByGraphPolicy p = new RestrictEditingByGraphPolicy(
ctx);
ServletPolicyList.addPolicy(ctx, p);
ss.info(this,
"Editing object properties 1is only permitted in these graphs: "
+ RestrictEditingByGraphPolicy.PERMITTED_GRAPHS) ;

@Override
public void contextDestroyed(ServletContextEvent sce) { /* nothing */

}

The Setup class must implement ServletContextListener.

On startup, create an instance of the Policy, and add it to the ServletPolicyL1ist. Produce an informative
message for the startup status screen.

On shutdown, there is nothing to be done. If there were resources to be freed or files to be closed, this would be the
placetodoit.

Invoking the Setup class

Initialize the policy in startup_listeners.txt

edu.cornell.mannlib.vitro.webapp.auth.policy.RestrictEditingByGraphPolicyS$Setup

Add this line to startup_listeners. txt. Consult the note above regarding placement of this Policy relative to
the other Policies.

8.6.2.4 A more complicated example

For another example of writing a policy, look at A more elaborate authorization policy (see page 244)

8.6.3 A more elaborate authorization policy

Extending and Localizing VIVO - 244



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« The RequestedAction (see page 245)
« The Controller (see page 246)
» The requestedActions() method (see page 246)
« What happens if the Policy does not authorize the Action? (see page 247)
« Calling isAuthorizedToDisplayPage() (see page 247)
« What happens if the Policy does not authorize the Action? (see page 247)
« For finer control, (see page 248)
» What happens if the Policy does not authorize the Action? (see page 248)
« The Policy (see page 248)

Suppose you want to do something more elaborate than just prohibit access to a page. For example, perhaps you
want to have some profiles be accessible only to certain people.

This becomes a more interesting task, because all profiles are presented by the same controller. So how do you tell
the controller that a person is authorized to view the page for one profile but not for another?

You must create a RequestedAction that takes parameters, and then have your Policy use those parametersin
its decision.

Another issue is that there are several URLs that will lead to the same profile page. These URLs are equivalent:

Equivalent URLs for the same individual
http://vivo.mydomain.edu/individual/n4796
http://vivo.mydomain.edu/display/n4796

http://vivo.mydomain.edu/individual?uri=http%3A%2F%2Fvivo.mydomain.edu%?2Findividual%2Fn4796

The IndividualController is also responsible for handling Linked Open Data requests, and again there are a
variety of URLs ways to request them. How will you handle all of these URLs that lead to the same page?

8.6.3.1 The RequestedAction

The RequestedActionis how the Controller asks the PolicyStack whether an action is authorized. Each
policy may:

« approve the action (AUTHORIZED)
+ reject the action (UNAUTHORIZED)
« let another policy decide (INCONCLUSIVE)

If all policies return INCONCLUSIVE, the action is rejected.

Most policies are written to check the class of the RequestedAction, and to ignore everything they don't
understand, like this:

if (! (whatToAuth instanceof DisplayDataPropertyStatement)) {
return new BasicPolicyDecision(Authorization.INCONCLUSIVE, "Unrecognized action");

}

The exception to this is RootUserPolicy, which approves every action if the root user is logged in. So,if you create
your own class, its likely that only your policy will approve or reject it.

Extending and Localizing VIVO - 245



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Something to remember: the Pol1icy objects do not have access to the current request. So your RequestedAction
must carry all of the information that the Pol1icy will require to make a decision. In this example, the Pol1icy needs
to know who is logged in, and which profile page they are requesting.

The {{RequestedAction}} class

package edu.cornell.mannlib.vitro.webapp.controller.individual;
import edu.cornell.mannlib.vitro.webapp.auth.requestedAction.ifaces.RequestedAction;
import edu.cornell.mannlib.vitro.webapp.beans.Individual;
import edu.cornell.mannlib.vitro.webapp.beans.UserAccount;
/*xx
* Ask for authorization to display this individual to this user.
*/
public class DisplayRestrictedIndividualAction extends RequestedAction {
private final UserAccount user;
private final Individual individual;
public DisplayRestrictedIndividualAction(UserAccount user, Individual individual) {
this.user = user;
this.individual = dindividual;
}
public UserAccount getUser() {
return user;
}
public Individual getIndividual() {
return individual;

8.6.3.2 The Controller
So how does the controller request the action, and what does it do if the action is rejected?

There are a few ways to handle this. If your controller is a sub-class of FreemarkerHttpServlet, and if you are
willing to accept the default behavior, you can use the requestedActions () method. Otherwise, you can use
the FreemarkerHttpServlet.processRequest () method, or just the doGet () method.

Remember, the IndividualController needs to deal with several different types of URLs and types of requests.
However, it has a method that analyzes the request for you, and creates an IndividualRequestInfo object. You
can get the information you need from that, as shown in the examples below.

The requestedActions () method

This method is a shortcut for subclasses of FreemarkerHttpServlet. Just override this method so it returns
an Actions object. The framework will check to see if the policies approve this requested action. Here is an
example.

Overriding the {{requestedActions}} method
@Override

protected Actions requiredActions(VitroRequest vreq) {

IndividualRequestInfo requestInfo = analyzeTheRequest(vreq);

Extending and Localizing VIVO - 246



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Individual individual = requestInfo.getIndividual();
UserAccount user = LoginStatusBean.getCurrentUser(vreq);

return new Actions(new DisplayRestrictedIndividualAction(user, individual));

What happens if the Policy does not authorize the Action?
If the PolicyStack rejects the action, one of two things will happen.

« Ifthe useris not logged in, they will be sent to the login screen. No explanation is offered, but after they log
in, the request is repeated.
« Ifthe useris logged in, they will be sent to the home page. A message will appear, like this:

Index Site Admin TestGuy hd

V IVO | share « discover

Home People Organizations Research Events

We're sorry, but you are not authorized to view the page you requested. If you think this is an error, please contact
us and we'll be happy to help.

Welcome to VIVO

VIVO is a research-focused discovery tool that enables collaboration among scientists across all disciplines.

Browse or search information on people, departments, courses, grants, and grants.

Calling isAuthorizedToDisplayPage()

If your controller is not a sub-class of FreemarkerHttpServlet, you can accomplish the same result by calling
isAuthorizedToDisplayPage (). This method takes one or more RequestedAction objects, and behaves
exactly the same as requestedActions () doesin a FreemarkerHttpServlet.

You must control the code flow yourself, however. If the method returns false, your code should immediately
return. In that case, the framework has already set the HttpServletResponse to redirect as described above.

Simply the code looks like this:

public void doGet(HttpServletRequest request, HttpServletResponse response) {
if (!isAuthorizedToDisplayPage(request, response, new MyRequestedAction())) {
return;

If you search the VIVO code base, you will find this pattern in several controller classes.

What happens if the Policy does not authorize the Action?

The result is the same as with the requiredActions () method.

Extending and Localizing VIVO - 247



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

For finer control,

In some cases, the default behavior is not wanted. For example, you may want to have your controller display one
thing if the action is approved, but display another thing if the action is rejected. In neither case would you want to
forward the user to a different page.

In that case, you can call the isAuthorizedForActions () method on the PolicyHelper class.

if (PolicyHelper.isAuthorizedForActions(vreq, new MyRequestedAction())) {
showAuthorizedResult(request, response);
} else {

showUnauthorizedResult(request, response);

What happens if the Policy does not authorize the Action?
That's completely up to you.

8.6.3.3 The Policy

Let's return to the example with the IndividualController and the DisplayRestrictedIndividualAction.
What might the policy look like? Here is a rather silly example. In all likelihood, the actual policy would certainly be
more elaborate.

The policy class
/* $This file 1is distributed under the terms of the license 1in /doc/license.txt$ */
package edu.cornell.mannlib.vitro.webapp.controller.individual;

import javax.servlet.ServletContextEvent;

import javax.servlet.ServletContextListener;

import org.apache.commons.logging.lLog;

import org.apache.commons.logging.LogFactory;

import edu.cornell.mannlib.vitro.webapp.auth.identifier.IdentifierBundle;

import edu.cornell.mannlib.vitro.webapp.auth.policy.BasicPolicyDecision;

import edu.cornell.mannlib.vitro.webapp.auth.policy.ServletPolicyList;

import edu.cornell.mannlib.vitro.webapp.auth.policy.ifaces.Authorization;

import edu.cornell.mannlib.vitro.webapp.auth.policy.ifaces.PolicyDecision;

import edu.cornell.mannlib.vitro.webapp.auth.policy.ifaces.PolicyIface;

import edu.cornell.mannlib.vitro.webapp.auth.requestedAction.ifaces.RequestedAction;
import edu.cornell.mannlib.vitro.webapp.beans.Individual;

import edu.cornell.mannlib.vitro.webapp.beans.UserAccount;

public class PermitProfilesPolicy implements PolicyIface {

private static final Log log = LogFactory
.getLog(PermitProfilesPolicy.class);

Extending and Localizing VIVO - 248



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

@Override
public PolicyDecision isAuthorized(IdentifierBundle whoToAuth,
RequestedAction whatToAuth) {
if (!(whatToAuth [dnstanceof DisplayRestrictedIndividualAction)) {
return inconclusiveDecision("Only interested in displaying profiles");
}
DisplayRestrictedIndividualAction action = (DisplayRestrictedIndividualAction) whatToAuth;

UserAccount user = action.getUser();
Individual individual = action.getIndividual();
if (user == null) {
return inconclusiveDecision("User 1is not logged in.");
}
if (individual == null) {

return inconclusiveDecision("Not on a profile page.");

return isAuthorized(user, individual);

[ *x
* This is totally bogus. Presumably you would have more sensible criteria.
x/
private PolicyDecision isAuthorized(UserAccount user, Individual individual) {
if (individual.getURI().equals(
"http://vivo.mydomain.edu/individual/n4526")) {
log.debug("Permit access to " + individual.getLabel());
return authorizedDecision("I'll let anybody can see this guy.");
} else {
log.debug("Deny access to " + dndividual.getLabel());

return inconclusiveDecision("Some other policy might approve it, but I won't.");

[ **
* An AUTHORIZED decision says "Go ahead. Don't need to ask anyone else".
*/
private PolicyDecision authorizedDecision(String message) {
return new BasicPolicyDecision(Authorization.AUTHORIZED, getClass()
.getSimpleName() + ": " + message);

[ **
* An INCONCLUSIVE decision says '"Let someone else decide".
*/
private PolicyDecision inconclusiveDecision(String message) {
return new BasicPolicyDecision(Authorization.INCONCLUSIVE, getClass()

.getSimpleName() + ": " + message);
}
2 ettt
// Setup class
2 ettt

Extending and Localizing VIVO - 249



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

public static class Setup implements ServletContextListener {
@Override
public void contextInitialized(ServletContextEvent sce) {
ServletPolicyList.addPolicy(sce.getServletContext(),
new PermitProfilesPolicy());

@Override
public void contextDestroyed(ServletContextEvent sce) {

// Nothing to clean up.

As in the previous example (Creating a VIVO authorization policy - an example (see page 238)), the policy's Setup class
must be added to startup_Tlisteners.txt

8.6.4 The IdentifierBundle - who is requesting authorization?

The policy interface has a single method, and looks like this:

public interface PolicyIface {
public PolicyDecision isAuthorized(IdentifierBundle whoToAuth, RequestedAction whatToAuth);

The nature of whatToAuth is covered in Creating a VIVO authorization policy - an example (see page 238) and A more
elaborate authorization policy. (see page 244) This page is about whoToAuth.

8.6.4.1 The challenge of identity and authorization
A user's level of authorization may depend on a variety of information:

+ arethey logged in?

« whatis their role?

« do they have a profile page?

« what information is in their profile page?

+ do they have "proxy authorization" to edit additional pages?

These questions are made more complex because this information is stored in multiple data models. Also, the
policy does not have access to the current request or session, so it is not always easy to obtain information.

8.6.4.2 The IdentifierBundle to the rescue

Notice that the 1sAuthorized method receives an argument of the type IdentifierBundle. This consists of
many Identifier objects, and each Identifier contains a small piece of information about the current user.

You can see the contents of this bundle (as well as many other things) by directing your browser to /vivo/admin/
showAuth. This screen shot shows information about an anonymous (not logged in) session:

Extending and Localizing VIVO - 250



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Current user

Not logged in

Identifiers:

HasPermission[DisplayByRolePermission['Public’]]

HasPermission[SimplePermission[‘java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#PageViewahlePublic']]

HasPermission[SimplePermission[‘java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#QueryFullModel')]

Associated Individuals: (match by http:/ /vivoweb.org/ontology/core#scopusld)

none

And this one shows information about a user who is logged in as a self-editor.

Current user

URL: | http://vivo.mydomain.edu/individual/u6627

First name: | Able

Last name: | Baker

Email Address: | abaker@mydomain.edu

External Auth ID: | abaker

Login count: | 5

Role: | http://vitro.mannlib.cornell.edu/ns/vitro/authorization#SELF_EDITOR

Identifiers:

HasPermissionSet[Self Editor]

HasPermission[DisplayByRolePermission['Public']]

HasPermission[SimplePermission[java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#DoFrontEndEditing']]

HasPermission[SimplePermission['java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#EditOwnAccount']]

HasPermission[SimplePermission[java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#ManageOwnProxies']]

HasPermission[SimplePermission[‘java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#PageViewableLoggedIn']]

HasPermission[SimplePermission[java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#PageViewablePublic']]

HasPermission[SimplePermission[java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#QueryFullModel']]

HasPermission[SimplePermission[‘java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#QueryUserAccountsModel']]

HasPermission[SimplePermission[java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#UseBasicAjaxControllers']]

HasPermission[SimplePermission[‘java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#UseMiscellaneousPages']]

HasProfile[http://vivo.mydomain.edu/individual /n8155]

IsUser[http://vivo.mydomain.edu/individual fu6627]

Associated Individuals: (match by http://vivoweb.org/ontology/core#scopusld)

‘ http://vivo.mydomain.edu/individual/n8155 ‘ May edit |

Your policy has access to these Identifier objects, and the Identifier classes have static methods that make it
easier to find the information you want.

Forexample, in edu.cornell.mannlib.vitro.webapp.auth.identifier.common.IsUser

String userUri = null;
Collection<String> userUris = IsUser.getUserUris(whoToAuth);
if (luserUris.isEmpty()) {
userUri = userUris.iterator().next();
}
// null means not logged 1in.
// Non-null is the URI of the user account.

And,in edu.cornell.mannlib.vitro.webapp.auth.identifier.common.HasProfile

Extending and Localizing VIVO - 251



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

String profileUri = null;
Collection<String> profileUris = HasProfile.getProfileUris(whoToAuth);
if (!profileUris.isEmpty()) {
profileUri = profileUris.iterator().next();
}
// null means either not logged in, or no profile.
// Non-null is the URI of the profile page.

In most cases, the policy is more interested in the URI of the profile page, rather than the URI of the user account.
However, either one might come in handy.

It might be worth noting that HasProfile and HasProxyEditingRights are both subclasses of
HasAssociatedIndividual. That means that you can easily distinguish between them, or not, according to the
needs of your particular policy.

8.7 Linking to External Vocabularies

o Overview (see page 252)
« VIVO RDF statements referencing external concepts (see page 253)
« Adding a new external vocabulary service to VIVO (see page 254)

8.7.1 Overview

VIVO provides the ability to use external vocabularies to represent the research areas of scholars, and the concepts
pertaining to scholarly works. External vocabularies that provide RDF can be used with VIVO. Using an external
service, a curator, or page owner may query the external vocabulary for terms, and select terms representing the
work or scholar. The terms are fetched from the external service and added to the VIVO triple store. Links from the
work or person and added to connect the person or work to the selected term or terms.

See below

Index | Site Admin | root v

VIVO e o o —

Home People Organizations Research Events Capability Map

Manage Concepts

Concept (Type) Vocabulary Source

Rhetoric Remove

External Vocabulary Services

© AGROVOC (Agricultural Vocabulary)
GEMET (GEneral Multilingual Environmental Thesaurus)

LCSH (Library of Congress Subject Headings)
UMLS (Unified Medical Language System)

Sl or Select or create a VIVO-defined concept.

Return to Profile Page

Extending and Localizing VIVO - 252



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.7.2 VIVO RDF statements referencing external concepts

When external concepts are added to VIVO, they retain their original URI from the external vocabulary. Since we
have no way of knowing whether these URIs represent OWL classes or RDF instance data, VIVO does not assert a
type for the concepts, which will therefore only be interpreted as being of type owl:Thing.

subject

http://vivo.cornell.edu/individual/
individual22972

http://
link.informatics.stonybrook.edu/
umls/CUI/C1518584

http://vivo.cornell.edu/individual/
individual22972

http://
link.informatics.stonybrook.edu/
umls/CUI/C0036612

http://vivo.cornell.edu/individual/
individual22972

http://www.eionet.europa.eu/
gemet/concept/3645

http://vivo.cornell.edu/individual/
individual22972

http://
link.informatics.stonybrook.edu/
umls/CUI/C0599807

http://vivo.cornell.edu/individual/
individual22972

http://
link.informatics.stonybrook.edu/
umls/CUI/C0872261

predicate

http://vivoweb.org/ontology/
core#thasResearchArea

rdfs:label

http://vivoweb.org/ontology/
core#thasResearchArea

rdfs:label

http://vivoweb.org/ontology/
core#thasResearchArea

rdfs:label

http://vivoweb.org/ontology/
coret#thasResearchArea

rdfs:label

http://vivoweb.org/ontology/
core#thasResearchArea

rdfs:label

object
http://
link.informatics.stonybrook.edu/

umls/CUI/C1518584

ontology

http://
link.informatics.stonybrook.edu/
umls/CUI/C0036612

semantic

http://www.eionet.europa.eu/
gemet/concept/3645

geographic information system
http://
link.informatics.stonybrook.edu/

umls/CUI/C0599807

informatics

http://
link.informatics.stonybrook.edu/
umls/CUI/C0872261

repositor

Extending and Localizing VIVO - 253



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.7.3 Adding a new external vocabulary service to VIVO

External vocabulary services are defined in the graph http://vitro.mannlib.cornell.edu/filegraph/abox/
vocabularySource.n3. You can explore the contents of this graph by navigating to System Admin / Ingest tools /
Manage Jena models. Find vocabularySource.n3 in the list of models. Click Output Model. You will get a file
containing the assertions made to define external vocabulary services in your VIVO.

8.8 Search Engine Optimization (SEO)

« Overview (see page 254)

« Citation Metatags (see page 254)

« Sitemap (see page 254)

« Additional SEO Considerations (see page 255)

8.8.1 Overview

VIVO is often used by institutions to highlight and promote the works of their scholars. Promotion works best if the
VIVO profile and related pages are easily found by search engines, and considered to be high value by search
engines. VIVO provides citation metatags and a site map to help search engines recognize the value of VIVO pages
in search results.

VIVO sites can do more to improve boost SEO. See the recommendations from the University of California San
Francisco below for additional ideas.

8.8.2 Citation Metatags

Citation meta tags are included on the pages of works. An example from the VIVO sample data is shown below.

Citation metatags regarding a publication

<meta tag="citation_author" content="Bogart, Andrew " />

<meta tag="citation_author" content="Roberts, Patricia " />

<meta tag="citation_author" content="Stevens, Emily K" />

<meta tag="citation_date" content="2015" />

<meta tag="citation_journal_title" content="Journal of Political Rhetoric" />
<meta tag="citation_firstpage" content="1" />

<meta tag="citation_lastpage" content="54" />

<meta tag="citation_volume" content="15" />

<meta tag="citation_issue" content="2" />

8.8.3 Sitemap

For better indexing and discoverability of your VIVO installation, a sitemap generator is included - only profile pages
are included in the sitemap. To see your sitemap, append /sitemap.xml to your VIVO URL.

Extending and Localizing VIVO - 254


http://vitro.mannlib.cornell.edu/filegraph/abox/vocabularySource.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/vocabularySource.n3

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

8.8.4 Additional SEO Considerations

The University of California San Francisco has done considerable work on SEO for research networking systems.
They have compared VIVO installations to other systems, and provided guidelines for enhancing SEO. We strongly
recommend sites implement as many of their recommendations as possible to boost their SEO for their scholars
and their works.

« RNS SEO 2016: How 90 research networking sites perform on Google — and what that tells us https://
biomed20.ucsf.edu/2016/08/18/rns-seo0-2016/

« RNS SEO: How 52 research networking sites perform on Google, and what that tells us https://
biomed20.ucsf.edu/2015/08/14/rns-seo/

+ SEO for Research Networking: How to boost Profiles/VIVO traffic by an order of magnitude https://
biomed20.ucsf.edu/2014/08/25/seo-for-research-networking/

Extending and Localizing VIVO - 255


https://biomed20.ucsf.edu/2016/08/18/rns-seo-2016/
https://biomed20.ucsf.edu/2016/08/18/rns-seo-2016/
https://biomed20.ucsf.edu/2015/08/14/rns-seo/
https://biomed20.ucsf.edu/2015/08/14/rns-seo/
https://biomed20.ucsf.edu/2014/08/25/seo-for-research-networking/
https://biomed20.ucsf.edu/2014/08/25/seo-for-research-networking/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9 System Administration

+ Creating and Managing User Accounts (see page 256)
« Backup and Restore (see page 259)

+ Inferences and Indexing (see page 260)

+ The Site Administration Page (see page 260)

» The VIVO log file (see page 265)

+ Activating the ORCID integration (see page 272)

» Performance Tuning (see page 277)

« Virtual Machine Templates (see page 285)

« Moving your VIVO Instance (see page 285)

+ Regaining access to the root account (see page 286)
« Altmetrics Support (see page 287)

+ Troubleshooting (see page 288)

« High Availability (see page 292)

+ Replicating Ontology Changes Across Instances (see page 293)

9.1 Background

VIVO system administration requires experience in operating systems, Java application administration, Tomcat,
MySQL (or triple store or database being used as persistent storage), backup process and Internet security. In
addition, familiarity with VIVO data representation (ontology, triples, and RDF formats) is recommended.

9.2 Creating and Managing User Accounts

o Overview (see page 256)

« Authentication (see page 257)
« Internal Authentication (see page 257)
o External Authentication (see page 257)
« External-Only Accounts (see page 257)

« What is a User Account? (see page 257)

« User Roles (see page 257)

« Profile Pages (see page 258)

« The Root User Account (see page 258)

« Managing User Accounts (see page 259)
« Normal workflow (see page 259)
« Workflow without Email (see page 259)
o External Authentication (see page 259)

9.2.1 Overview

In VIVO, the basic functions of browsing and searching are open to anyone. However, if a VIVO user wants to view
restricted data, or to manage VIVO, he must log in to a User Account.

When a user logs in, he provides his credentials and is associated with a User Account. The credentials are often an
Email address and password, but might be different information, depending on how VIVO is configured.

System Administration - 256



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Each User Account has a Role assigned to it. The Role determines how much the user is authorized to do. The
lowest Role will permit the user to edit his own profile page. Higher Roles permit editing additional data properties,
modifying the ontologies, and administering the VIVO application.

9.2.2 Authentication

9.2.2.1 Internal Authentication

Every VIVO system allows users to log in to an existing User Account by supplying the Email Address and password
to the account. Even in an installation that relies on external authentication, there are administrative pages that
allow a user to login with Email Address and password.

9.2.2.2 External Authentication

VIVO can be configured to work with an External Authentication system like Shibboleth or CUWebAuth. In that case,
the user provides whatever information the External Authentication system requires, and the External
Authentication system passes an ID value to VIVO. VIVO recognizes that the user is logged in to the User Account
whose "External Authentication ID" field matches that ID.

If a user passes External Authentication, but no User Account matches the ID, VIVO prompts the user to enter his
Email Address, First Name, and Last Name, and creates a User Account with that information.

NOTE:To configure VIVO for an External Authentication system, please consult the Installation Guide, and refer to
the section entitled ‘Using an External Authentication System with VIVO’. Note also that the value of the property
(the designated External Authentication ID field) must be an exact match for the username/email of the user.

9.2.2.3 External-Only Accounts

When creating an account, an administrator may indicate that it is for external authentication only. In that case, no
password is assigned to the account, since the External Authentication system manages its own passwords or other
credentials.

9.2.3 What is a User Account?

Each User Account is identified by the user’s Email address. Each account will have the user’s first name and last
name, and a role. The account will have additional information, depending on how it is used.

« External Authentication ID - permits logging in by the External Authentication system.
NOTE: Two User Accounts may not have the same External Authentication ID

« Password - permits logging in by the Internal Authentication system.

« Matching ID - can be used to associate the User Account with a profile page.

9.2.4 User Roles

In VIVO there are four user roles that can be assigned: administrator, curator, editor, and self-editor. Future releases
will allow VIVO administrators to create additional roles. Permissions provided to roles will determine access
options available to user accounts within VIVO. It is important to consider what a new user’s role may be, prior to
setting up the new account.

System Administration - 257



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Self-Editor -- The self-editor may create data properties, relationships and entities directly associated to his or her
profile.

Editor-- The editor may add, delete and modify entities, object properties and data properties.

Curator-- In addition to performing the tasks of the Editor, the Curator may modify the ontologies, class groups,
property groups, and edit site information, including the text displayed on the About page and contact email
address.

System Administrator -- In addition to the abilities of the Curator, the Administrator may access the menu
management, user accounts, and advanced data tools features. The advanced data tools section include the ingest
menu, Add/Remove RDF data, RDF export, SPARQL query, and SPARQL query builder privileges.

9.2.5 Profile Pages

Each User Account may be matched with an Individual in the VIVO data model. The display page for that Individual
is known as the “profile” for that User Account.

A common use of this feature is matching a profile to each member of the campus community. When a user logs in
to VIVO, he is directed to his profile page, and is authorized to edit the information on that page.

It is typical for a university to ingest information into VIVO, including the “network ID” for each member of the
campus community. When a user logs in to VIVO using the External Authentication system, the ID from the
authenticating system is matched against the “network ID” on the individual, and VIVO matches the User Account
to the profile.

It is also possible for an administrator to match a User Account with a profile by editing the User Account.

NOTE: To configure VIVO to match User Accounts with profiles, please consult the Installation Guide, and refer to
the section entitled 'Specify Deployment Properties'.

9.2.6 The Root User Account

Each VIVO installation has a special User Account, called the root account. The root account has no Role.
Nonetheless, the root account is authorized:

« tosee all data elements
« toedit all data elements
« toview any page

« to modify the ontologies

Since the root account can do all of these things, it can be particularly useful and particularly dangerous. It can also
give you a distorted view of what your VIVO site looks like. Use the root account to create other User Accounts or to
access VIVO in emergencies, and use it with deliberation.

The email address for the root account is specified as part of the VIVO installation process.

NOTE:To configure the root account, please consult the Installation Guide, and refer to the section entitled 'Specify
Runtime Properties'.

System Administration - 258



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.2.7 Managing User Accounts

9.2.7.1 Normal workflow

In normal operation, users will receive an Email message when a VIVO account is created for them, when their
password is reset by an administrator, or when the Email address on their User Account is changed. One benefit of
this is that the administrator does not need to know the user’s password, and does not need to tell the user his
password.

As noted above, when a new account is created, or when an administrator resets the user’s password, the user
receives an Email message. The message describes the action that has occurred, and includes a link for the user to
click, to set the password on the account.

Note: User Accounts that are created for External Authentication do not require passwords, so no such link is sent.

9.2.7.2 Workflow without Email

Email notifications can be disabled by configuring VIVO without a “Reply-To” address. In that case, users are not
notified when User Accounts are created or changed.

When creating a new User Account, the administrator must set a password, and must inform the user of the
password (unless the account is to be used for External Authentication only). When the user first logs in to the
account, he will be prompted to change the password. Resetting the password on an account involves a similar
process.

Note: 7o disable Email notifications, please consult the Installation Guide, and refer to the section entitled 'Specify
Deployment Properties'.

9.2.7.3 External Authentication

In many VIVO installations, the creation of most User Accounts is simple and routine. A user presents credentials to
the External Authentication system, and VIVO creates an account with minimal privilege, prompting the user for
name and Email Address. In this case, an administrator may edit such an account to assign a higher Role, if desired.

Alternatively, an administrator may create a User Account, add an External Authentication ID, and assign a high-
level Role. When the user log in for the first time, they will already have an account with the desired level of
privilege.

9.3 Backup and Restore

There are four components that you will want to backup

1. TheVIVO home directory
a. This holds your site's user accounts and encrypted passwords, along with other authorization and
display settings.
b. Holds the Solr search index. The search index is not vital to a backup, since it can be rebuilt.
However, rebuilding the index is time-consuming
c. Also holds any uploaded image files, and any customized RDF files.
d. Holdsyour runtime.properties file.
2. TheVIVO relational database

System Administration - 259



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

a. This holds all of your instance data (people, organizations, etc), as well as any customizations that
you entered through the GUI.
3. The VIVO RDF store
a. In most cases, the VIVO RDF store is held in the VIVO relational database (above), but at some sites it
might be in a separate triple-store.
4. TheVIVO installation directory
a. If you have customized the templates or the Java code, you will want to preserve those changes.
b. Ata minimum, this directory contains your build.properties file.

9.4 Inferences and Indexing

« Recompute Inferences (see page 260)
» Re-building the search index (see page 260)

9.4.1 Recompute Inferences

The inference engine / Reasoner may need to be told to run, and that is achieved by a user with administrative
privileges visiting a job specific site.

http://vivo.mydomain.edu/RecomputeInferences

9.4.2 Re-building the search index

The Solr search may need to have its index re built, and that is achieved by a user with administrative privileges
visiting a job specific site.

http://vivo.mydomain.edu/SearchIndex

9.5 The Site Administration Page

o Site Administration (see page 261)
» Data Input (see page 261)
« Ontology Editor (see page 262)
« Class Management (see page 262)
+ Property Management (see page 262)
« Site Configuration (see page 263)
« Site Information (see page 263)
« Advanced Tools (see page 263)
« Ingest tools (see page 264)
o Site Maintenance (see page 264)

System Administration - 260



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.5.1 Site Administration

Once you are logged into VIVO, you will notice in the upper right hand portion of the page links to "Index" and "Site
Admin", alongside a drop-down menu with your name on it, and containing links to "My account" and "Log out".

Once you have logged into VIVO, clicking on the “Site Admin” link takes you to the “Site Administration” page. As an
administrator, you will be able to access all five feature and content areas of VIVO: Data Input, Ontology Editor, Site
Configuration, Advanced Data Tools, and Site Maintenance. Each is introduced below.

Site Administration

Data Input Site Configuration

Faculty Member (vivo) s Institutional internal class
Manage profile editing
Page management

Menu ordering
Site information

User accounts

Ontology Editor Advanced Data Tools

Ontology list Add/Remove RDF data
Ingest tools

Class Management RDF export

Class hierarchy SPARQL quen

Class groups

Property Management
Object property hierarchy
Data property hierarchy
Faux Property Listing
Property groups

Site Maintenance

Rebuild search index
Rebuild visualization cache
Recompute inferences
Startup status /!

Restrict logins

Activate developer panel

9.5.2 Data Input

There are three ways to manually input data into VIVO. 1) on the Site Administration Menu, a new individual of any
class may be added directly through the Data Input menu. 2) Selections can be made on many of the pages to add
individuals. For example, on user profile pages, users with editing privileges can add, change and remove data. 3)
Data can be added as a batch, a collection of RDF triples in a format known to VIVO and expressed in the ontologies
known to VIVO.

On the Site Administration page, you can enter a new individual of any type by selecting the type from the drop
down menu, and pressing "Add Individual of this class." VIVO will add an individual of the class you have selected,
creating a new URI for the individual, and creating an assertion that the individual is a member of the class you
have selected. Once an individual has been created, object and data properties may be added for that individual on
the page displaying the individual’s profile. The object and data properties presented for editing will vary by the
type of the individual, in accordance with the ontology;

System Administration - 261



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.5.3 Ontology Editor

In VIVO, information is identified by references to Unique Resource Identifiers (URIs). URIs can be used by other web
pages and applications to locate and retrieve specific chunks of data. The detailed level to which VIVO captures
information enables complex relationships among data to be represented.

The VIVO web application is built using RDF "triples" or statements consisting of a subject (known as an individual,
item, or entity), a predicate (an object property or a data property) and an object (any individual in VIVO). Subject-
predicate-object triples express the relationships among the individuals in VIVO via object properties and support

attributes of individuals via data properties.

The first two parts (subject and predicate) of every triple are URIs. An object property triple has the URI of another
individual in VIVO its object, while the third element of a data property triple is a data value - typically a text string,
number, or date.

Ontology List - VIVO supports keeping an internal list of ontology namespaces and corresponding prefixes to
facilitate using external ontologies as well as to help differentiate local ontology additions from VIVO core.

9.5.3.1 Class Management
Individuals in VIVO are typed as members of one or more classes organized and displayed as a hierarchy.

Class hierarchy - The class hierarchy provides a framework to help identify the different types of individuals
modeled in a VIVO application. In the Class Hierarchy page, you can edit/add classes, add entities to a class, and
add auto links.

Class groups - Class groups are a VIVO-specific extension to support using VIVO as a public website as well as an
ontology and content editor. Class groups are a means to organize the classes in VIVO into groups. They represent
the facets seen when VIVO is searched (people, activities, events, organizations, etc).

9.5.3.2 Property Management

If classes define what each individual in VIVO is, properties define how that individual relates to other individuals
and allow an individual to have attributes of its own. VIVO has two property editors, one for object properties and
another for data properties.

Object property hierarchy - Object properties represent the relationship between entities (also known as items or
individuals) in VIVO. Object properties can be created and edited from the Object Property Hierarchy.

Data property hierarchy - A data property connects a single subject individual (e.g., a Person or Event) with some
form of attribute data. Data properties can be created and edited from the Data property hierarchy link.

Faux property listing - Faux properties are a VIVO-specific extension to allow the same object property to be used
in various contexts, with a context specific label and context specific domain and range. A listing of the faux
properties in VIVO. You can display the list alphabetically, or organized by base property. The Site Administration
page provides a simple view-only listing. See Create and edit faux properties (see page 143) to manage faux
properties.

Property groups - Like class groups, property groups are a VIVO-specific extension to support using VIVO as a
public website as well as an ontology and content editor.

System Administration - 262



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.5.4 Site Configuration

This section discusses the site configuration aspects of VIVO. It enables administrators to add or adjust to their
institution’s site specific details, as well as to manage menus, tabs, and user accounts.

Institutional internal class - set the class that will be used to indicate that individuals are part of your institution.
See Create, Assign, and Use an Institutional Internal Class (see page 59)

Manage profile editing - Assign profile editors to individual profiles. Use this feature to allow someone other than
the profile owner to edit the owner's profile.

Page management - Create and manage custom pages, as well the presence of pages on menus. See Menu and
page management (see page 136)

Menu Ordering - order the menus on the main VIVO navigation banner. See Menu and page management (see page
136)

9.5.4.1 Site Information

The Site information link provides administrators with the capabilities of editing and adding site specific details for
that institution’s instance of VIVO.

Site Name — Text entered here will be displayed in the browser title bar and bookmark label. It is set to “VIVO” by
default.

Contact email address — This field is the email address or listserv that you want the Contact Us form to use. The
SMTP host in your configuration file (runtime.properties) must be set for the Contact Us form to work as intended.

Theme — The default theme is “wilma”. If you create a new theme (see Creating a custom theme (see page 181)), then
it should be available to choose in this drop-down pick list.

Copyright text — Text entered here for a label in the footer for the copyright URL.

Copyright URL — The URL you want the copyright to go to in the footer. It could be your institution’s copyright
information or the actual institution.

9.5.5 Advanced Tools

The Advanced tools are VIVO’s built-in features for data management and export. Please refer to the Advanced
Tools section below for detailed instructions.

In addition, many VIVO adopters may require additional information regarding the importing and exporting of RDF
data and creating SPARQL queries.

There are several avenues available to acquire guidance with these advanced tools. Information sources such as
the VIVO Data Ingest Guide, the W3C’s Resource Description Framework model, and the W3C’s SPARQL Query
Language for RDF, to name a few. Please refer to Appendix A for links and additional resources.

Add/Remove RDF data - This tool allows for the manipulation of RDF data in the main model through importing
RDF documents for addition or removal.

Ingest tools - A suite of data management tools. See below for a description of each tool.
RDF export - This tool allows for the export of ontology and data in a variety of RDF formats. Options include:

« Exportallinstance data
« Export a specific ontology such as FOAF, VIVO core, SKOS, etc.
+ Export the entire ontology for VIVO

System Administration - 263



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

SPARQL query - This tool allows SPARQL select, construct, and describe statements against the main model to be
saved in a variety of formats including: CSV, RDF/XML, N3 and more.

9.5.5.1 Ingest tools

Manage Jena Models - This tool allows for the management of the main webapp, as well as separate data models
and datasets. The ability to attach separate models to the webapp, load RDF data to a mode, clear statements, and
output models as N3 RDF is performed here.

Subtract One Model from Another — This tool allows for the comparison of models for updating information that
already exists in VIVO. By subtraction of a current model from a newly constructed model (from the same data
source) and vice versa, the additions and subtractions for updating the data are generated.

Convert CSV to RDF — This tool allows for VIVO to read and convert CSV (comma-separated values) and Tab-
delimited data into RDF

Convert XML to RDF — This tool allows for VIVO to read and convert well-formed XML into RDF

Execute SPARQL CONSTRUCT — This tool allows for using SPARQL to produce desired RDF from one or multiple
source models. This tool is commonly used to map classes and properties to VIVO namespace(s).

Generate Thox — Tbox statements describe the terms of controlled vocabularies, for example, a set of classes and
properties that constitute the ontology. This tool allows for the creation of a Tbox from one or multiple source
models.

Name Blank Nodes — This action turns blank nodes, a node in an RDF graph which is not identified by a URI and is
not a literal, into nodes with either randomly generated or pattern based URIs.

Smush Resources — This tool allows for using a compression method to distinguish like entities and “Smush”
them together based on the specified URI of a property.

Merge Resources — This tool allows two individuals with different URIs to be collapsed into a single URI. Any
statements using the “duplicate individual URI” will be rewritten using the “primary individual URL.” If there are
multiple statements for a property that can have only a single value, the extra statements will be retracted from the
model and offered for download.

Process Property Value Strings — This tool allows for an arbitrary method on a Java class available on the
application class path to transform string values of a given property. The method should take a single String as a
parameter and return a String.

Change Namespace of Resources — This tool will change all resources in the supplied “old namespace” to be in
the “new namespace.” Additionally, the local names will be updated to follow the established “n” + random integer
naming convention.

Split Property Value Strings into Multiple Property Values — This tool allows for parsing multiple property
values from a single ingested string. This can be used to parse MeSH Terms, controlled vocabulary, and keywords
associated with the ingested data.

Execute Workflow — This tool allows for a simple way of scripting actions (specified in RDF) that would otherwise
require manual interaction with the ingest tools.

Dump or restore the knowledge base - dump or restore configuration models or content models

9.5.6 Site Maintenance

Rebuild search index - in some situations, you may need to rebuild the SOLR search index. See Inferences and
Indexing (see page 260)

System Administration - 264



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Rebuild visualization cache - Large-scale visualizations like the Temporal Graph or the Map of Science involve
calculating total counts of publications or of grants for some entity. Since this means checking also through all of
its sub-entities, the underlying queries can be both memory-intensive and time-consuming. For a faster user
experience, we wish to save the results of these queries for later re-use. To this end we have devised a caching
solution which will retain information about the hierarchy of organizations-namely, which publications are
attributed to which organizations-by storing the RDF model. We're currently caching these models in memory. The
cache is built (only once) on the first user request after a server restart. Because of this, the same model will be
served until the next restart. This means that the data in these models may become stale depending upon when it
was last created. To avoid restarting the server in order to refresh the cache, administrators can use the Rebuild
visualization cache link.

Recompute inferences - in some cases, you may wish to recompute the inferences in VIVO. See Inferences and
Indexing (see page 260)

Startup status - shows the messages that were produced during VIVO startup.
Restrict logins - toggles user login. When logins are restricted, only the root user may login

Activate Developer panel - Shows the developer panel from which additional debugging information is available.
See Tips for Interface Developers (see page 226)

9.6 The VIVO log file

+ What does a log message look like? (see page 265)
» What is the right level for a log message? (see page 266)
« Setting the output levels (see page 266)
» Production settings (see page 266)
» Developer settings (see page 266)
« Changing levels while VIVO is running (see page 267)

The VIVO log file contains time-stamped statements intended to help you

« identify the configuration of VIVO,
« monitor the progress of the application, and
« diagnose problems that occur.

The log file is written to the logs directory of your Tomcat application. It is usually called vivo.all. log, but the
name may vary, depending on how your VIVO was installed.

The log file can also be helpful during development and debugging. This is particularly true if the developer takes
advantage of the different logging levels.

9.6.1 What does a log message look like?

Here is an example of some code that writes to the log

private static final Log log = LogFactory.getlLog(WebappDaoSetup.class);

log.info(elapsedSeconds + " seconds to set up models and DAO factories");

and here is the resulting line in the log:

System Administration - 265



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2012-11-15 12:20:37,406 INFO [<span class="confluence-1link">WebappDaoSetup</span>] 3 seconds to set up
models and DAO factories

The log holds the time that the statement was written, the severity level of the message,
the name of the Java class that wrote the statement, and the contents of the statement itself.

Writing exceptions to the log can be tricky: check out this page on Writing Exceptions to the Log (see page 269)

9.6.2 What is the right level for a log message?

Each log message has an output level (sometimes known as a severity level).
The most common levels are DEBUG, INFO, WARN, ERROR.
Each level conveys a sense of how important the message is.

ERRO  Serious errors which need to be addressed and may result in unstable state.
R

WAR Runtime situations that are undesirable or unexpected, but not necessarily "wrong", especially if the
N system can compensate; "almost" errors.

INFO Interesting runtime events; routine monitoring information. Commonly used to describe how the
system starts up, or changes that are worth noting as the system runs.

DEBU  Used by developers when debugging their code. These messages will not appear in the log unless
G specifically enabled (see below)

The logging framework also supports the levels of FATAL for very serious errors,
and TRACE for verbose debugging messages, but these are much less commonly used.

9.6.3 Setting the output levels

9.6.3.1 Production settings
The output levels for VIVO are determined by a file called [vitro-core]/webapp/config/log4j.properties

This file sets the general output level to INFO, which means that messages at the INFO level or higher will be
written to the log. Messages at DEBUG or lower will not be written to the log.

The file also sets higher output levels for some classes that are otherwise too chatty with their log messages. So for
example, the StartupStatus classis assigned an output level of WARN. This means that messages at the WARN level
or higher will be written to the log, and messages at INFO or lower will not.

9.6.3.2 Developer settings

Developers can make temporary changes to these settings by creating a file called [vitro-core]j/webapp/
config/debug.log4j.properties

System Administration - 266



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

When VIVO is rebuilt, the settings in this file will be used instead of the settings in the default file. A developer will
commonly change the output level of the classes or packages he is currently working on, using this file.

The debug settings file is ignored by Git. As a result it remains unique to the individual developer, and can be
changed without concern.

The debug settings file should not be present in a VIVO that is being built for production use.

9.6.3.3 Changing levels while VIVO is running
You can change the log levels for individual Java classes while VIVO is running.
Direct your browser to [vivo]/admin/log4j.jsp This page requires that you log in to VIVO as an administrator.

This page shows a list of all Java classes with active Logger components. Each class has a drop-down list that
allows you to set the log output level for that class. Select the level(s) you want, and scroll to the bottom of the
page to click the button labeled Submit changes to logging levels. The change is effective immediately.

This feature should be used with care. A log level of DEBUG can significantly slow down some Java classes, and can
result in very large amounts of output to the log of a busy system.

Note: The log4j . jsp page shows only the classes with active Loggers. This means that you can't set use this page
to set the output level of a class prior to the first time it is used. Java loads classes dynamically, and until the class is
loaded, it does not have an active Logger.

9.6.4 Customizing the logging configuration

9.64.1
« Overview
+ The default configuration
« Writing some messages to a special log
« More information

9.6.4.2 Overview

VIVO uses the Log4J package for logging status messages. VIVO is shipped with a configuration file that sets up the
logging properties, so the VIVO log is written to vivo.all. login the [tomcat]/logs directory. Most sites find this
default configuration suitable when they start out, but often as people become more experienced with VIVO, they
prefer to change the logging options.

9.6.4.3 The default configuration

The configuration file is found at [vitro]/webapp/config/log4j.properties. The file looks something like
this:

log4j.appender.AllAppender=org.apache.log4j.RollingFileAppender
log4j.appender.AllAppender.File=$${catalina.home}/logs/${webapp.name}.all.log
log4j.appender.AllAppender.MaxFileSize=10MB

System Administration - 267



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

log4j.appender.AllAppender.MaxBackupIndex=10
log4j.appender.AllAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.AllAppender.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c{1}] %m%n

log4j.rootLogger=INFO, AllAppender

log4j.logger.edu.cornell.mannlib.vitro.webapp.startup.StartupStatus=WARN
log4j.logger.edu.cornell.mannlib.vitro.webapp.dao.jena.pellet.PelletListener=WARN
log4j.logger.org.springframework=WARN
log4j.logger.com.hp.hpl.jena.sdb.sql.SDBConnection=ERROR

(The listing above has been abridged for clarity. Comments have been removed, as have some repetitious lines.)

The file creates an "appender", which tells Log4J where to write the log messages, and how to manage them. It
creates a "root logger" which will set the default properties for all logging: using the named appender and omitting
any messages that are lower than INFO level. Finally, it overrides the logging threshold level for some special
classes and packages.

In more detail (by line numbers):

(1) Use a RollingFileAppender. This will write messages to the named file, until the file becomes too large.
Then the accumulated messages are "rolled over" to a backup file, and logging continues.

(2) Specify the name and location of the log file. During the build process, ${webapp . name} will be replaced
by vivo, or whatever you have chosen as the name of your webapp. When VIVO starts, Log4J will replace $$
{catalina.home} with the value of the system property named catalina.home. This is the Tomcat home
directory.

(3) Files will roll over when they reach 10 MegaBytes of content.
(4) No more than 10 files will be kept

(5, 6) The message layout is determined by this pattern. It consists of the date and time, the severity of the
message, the name of the class writing the message, and the message itself (followed by a linefeed).

(8) The root logger, and by default all loggers, will write to this appender. Only messages with a level of INFO
or higher will be written to the log. That is, messages with levels of DEBUG or TRACE will not be written.

(10, 11) Override the defaults for these classes. The write too many INFO messages, so we restrict them to
WARN or higher.

(12) Override the default for the entire package of org. springframework

(13) Don't show messages from com.hp.hpl.jena.sdb.sql.SDBConnection unless they are ERROR or
FATAL.

9.6.4.4 Writing some messages to a special log

Here is an example of how to override the defaults for particular classes in VIVO. In this example, the messages
associated with rebuilding the search index are to be written to a special log file. The messages about re-
inferencing are also to be written to that file.

The lines below can be added to the end of the default configuration:

log4j.appender.SpecialAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.SpecialAppender.DatePattern="."yyyy-MM-dd
log4j.appender.SpecialAppender.File=/usr/local/vivo/logs/inference_and_indexing.log

System Administration - 268



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

log4j.appender.SpecialAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.SpecialAppender.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c{1}] %m%n
log4j.logger.edu.cornell.mannlib.vitro.webapp.search.indexing.IndexBuilder=SpecialAppender
log4j.logger.edu.cornell.mannlib.vitro.webapp.search.indexing.IndexWorkerThread=SpecialAppender
log4j.logger.edu.cornell.mannlib.vitro.webapp.reasoner.ABoxRecomputer=SpecialAppender

Here we define a second appender, and tell three particular Java classes to use that appender.
Again, by line numbers:

(15, 16) Use a DailyRollingFileAppender. Unlike the RollingFileAppender, this log file will roll over at midnight
every day. There is no maximum number of files.

(17) The log file will be /usr/local/vivo/logs/inference_and_indexing.log. At midnight, the file will
be renamed to inference_and_indexing_log.2013-06-21 (for example).

(18, 19) The layout of the message is the same as for the main log file
(20, 21, 22) These three classes will write to the new appender.

Notice that the log messages for these classes will now be written both to the main log file and to this special file.
By default, the appenders are "added" to the classes where they are specified. If you want these classes to only
write to the special file, you must turn off the "additivity" property of those classes, as shown below:

log4j.additivity.edu.cornell.mannlib.vitro.webapp.search.indexing.IndexBuilder=false
log4j.additivity.edu.cornell.mannlib.vitro.webapp.search.indexing.IndexWorkerThread=false
log4j.additivity.edu.cornell.mannlib.vitro.webapp.reasoner.ABoxRecomputer=false

9.6.4.5 More information

Log4J is a very powerful and flexible framework. Many different options are available through the use of appenders,
layouts, and filters. For more information, you may want to consult

« The Log4J manual'® - a compact discussion of the many aspects of Log4J.
« The Log4J APl documentation4®

« The documentation of the Log4j properties file!*’

9.6.5 Writing Exceptions to the Log

9.6.5.1
« Not the Right Way
+ Declaring a Logger
« Bad, Better, Good
« Whoops

145 http://logging.apache.org/log4j/1.2/manual.html
146 http://logging.apache.org/log4j/1.2/apidocs/
147 http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PropertyConfigurator.html

System Administration - 269


http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/apidocs/
http://logging.apache.org/log4j/1.2/apidocs/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PropertyConfigurator.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PropertyConfigurator.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.6.5.2 Not the Right Way

This is not a good way to handle an exception:

} catch(Exception e) {
}

An exception occurred, but we ignored it. Don’t do this. Please.

This isn't very good either (although, to be fair, it is better than a kick in the head):

} catch(Exception e) {
e.printStackTrace();
}

In Vivo/Vitro the stack trace is printed to catalina.out instead of vivo.all.log. In the Vivo Harvester it is printed to
standard out (System.out). It has no timestamp and no source information, so we can’t correlate it with other
messages in the log. Were any other messages produced by the same request? We’ll never know.

9.6.5.3 Declaring a Logger

In Vivo and Vitro, we use Apache Commons Logging. Create a logger in your Java code with a couple of imports and
a static variable:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class MyClass {
private static final Log log = LogFactory.getlLog(MyClass.class);

In the Vivo Harvester, we use Simple Logging Facade 4 Java. Create a logger in your Java code much like ACL:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class MyClass {
private static Logger log = LoggerFactory.getlLogger (MyClass.class);

9.6.5.4 Bad, Better, Good

So, if this isn't good, how can we improve on it?

System Administration - 270



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

} catch(Exception e) {
}

This is better. We’re still ignoring it, but we could stop ignoring it just by raising the logging level:

} catch(Exception e) {
log.debug(e, e);
}

This is better still. Here is a clue as to why we’re ignoring the exception.

} catch(Exception e) {
// This happens if the model data is bad - it's not important
log.debug(e, e);

}

What if we do want to write the exception to the log? What's the right way to do it?

Not like this, for reasons mentioned earlier:

} catch(Exception e) {
e.printStackTrace();
}

This is better:

} catch(Exception e) {
log.error(e, e);

}

If you have an idea of why a certain exception might be occurring, this would be the best:

} catch(IllegalStateException e) {

log.error("One of the flay-rods has gone out of skew.", e);
} catch(Exception e) {

log.error(e, e);

}

But alas, sometimes no useful message occurs to us.

9.6.5.5 Whoops

Unlike some other logging frameworks (Log4J, for example) Apache Commons Logging won't check to see whether
your first argument is an exception. Instead, it just converts it to a String and prints it to the log.

So, this probably doesn't do what you wanted:

System Administration - 271



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

} catch(Exception e) {
log.error(e);

}

It logs the class of the exception, and the message in the exception, but it doesn't write the stack trace. That's why
this is better:

} catch(Exception e) {
log.error(e, e);

}

This way, the Exception class and it's message are written to the log twice, but that's a small price to pay - at least
you get the stack trace in the log as well.

And this is best:

} catch(ExpectedTypeAException e) {
log.error("Some informative message explaining why TypeA might occur", e);
} catch(ExpectedTypeBException e) {
log.error("Some informative message explaining why TypeB might occur", e);
} catch(Exception e) {
log.error ("Some informative message explaining that an unexpected error occurred", e);

3

Because you get to provide more information, you don't write anything twice, and you do get the stack trace.

9.7 Activating the ORCID integration

o Overview (see page 272)
« When applying for credentials (see page 273)
« Informing the users (see page 273)
« Connecting to your application (see page 274)
« Configuring VIVO (see page 275)
+ The Client ID from your ORCID credentials (see page 275)
« The Client Secret from your ORCID credentials (see page 275)
» The base URL for your VIVO application, as seen from outside. (see page 276)
« The version of ORCIDs API protocol that VIVO will expect. (see page 276)
» The label used to describe a VIVO profile page (see page 276)
+ The entry point for ORCID's public API. (see page 276)

9.7.1 Overview

VIVO contains code that will converse with the ORCID registry through its API. When this conversation is enabled, a
VIVO user can authoritatively confirm his ORCID iD in VIVO, and cite his VIVO page in his ORCID record as an external
identifier.

In order to activate the VIVO-ORCID integration, your organization must have a membership in ORCID. You may
then register your VIVO installation as a client application, and obtain the credentials needed for that connection.

System Administration - 272



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Once you have the credentials, you can enter them in the runtime.properties file and restart VIVO.

You may want to start by obtaining credentials for ORCID's sandbox API. This will let you see how the integration
appears. If you have made local modifications to VIVO, you will want to ensure that they do not interfere with the
integration before going into production.

Once you are satisfied that the integration is working as expected, you can apply for credentials on ORCID's
production registry.

9.7.2 When applying for credentials

9.7.2.1 Informing the users

The user must grant authorization before VIVO can read or write to their ORCID record. Some of the text they see
will come from your credentials. Notice this section of the application:

The name of your client application will be displayed to the user as they use the integration screens. Here is an
example, where the name of the client application is "Cornell VIVO-ORCID Integration".

System Administration - 273



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

ORCID

Cornell VIVO-ORCID Integration @
has asked for the following access to your ORCID Record

®

Get your ORCID iD

This application will not be able to see your ORCID password, or other
private info in your ORCID Record. Privacy Policy.

If the user clicks on the question mark, they will see the short description of your client application. In this example,
the short description is "Connect your VIVO identity with your ORCID identity."

ORCID

Cornell VIVO-ORCID Integration @
ABOUT: Connect your VIVO identity with your ORCID identity.

has asked for the following access to your ORCID Record

®

Get your ORCID iD

9.7.2.2 Connecting to your application

Once the user logs in to their ORCID account, and grants authorization to your application, the ORCID pages will
transfer control of the session back to VIVO. In order to do that, it needs to know where your application is located.
Notice this section of the application:

System Administration - 274



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Knowledge Base article

OAuth2 redirect_uris or callback URLs for this client (enter at least one)

You may provide just the domain of your application, such as http://vivo.mydomain.edu.

9.7.3 Configuring VIVO

To converse with ORCID, VIVO requires these values in the runtime.propertiesfile.

Property orcid.clientId
name

Descripti  The Client ID from your ORCID credentials

©l When your application for credentials is accepted, you will receive a Client ID to be used in
communications with the API. If you apply for sandbox credentials first, and then production
credentials, you will likely receive two different Client IDs.

Default NONE
value

Example 0000-0012-0661-9330
value

Propert orcid.clientPassword
y hame

Descript  The Client Secret from your ORCID credentials

ion When your application for credentials is accepted, you will receive a Client Secret to be used in
communications with the API. If you apply for sandbox credentials first, and then production
credentials, you will likely receive two different Client Secrets.

Default NONE
value

Example 103de999-1a37-400c-309f-2094ba72c988
value

System Administration - 275



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Property orcid.webappBaseUrl
name

Descripti  The base URL for your VIVO application, as seen from outside.
on VIVO will use this to construct a callback URL that the ORCID API can use to return control to VIVO.

The actual callback URL will be the string you provide here with the suffix of /orcid/callback
added at the end.

Default NONE
value

Example http://vivo.mydomain.edu

value http://some.domain.edu/vivo/

Property name orcid.apiVersion

Description The version of ORCIDs API protocol that VIVO will expect.
Versions 1.0.23, 1.2, or 2.0

Default value NONE

Examplevalue 2.0

Property nam orcid.externalIdCommonName
e
Description The label used to describe a VIVO profile page

If the user authorizes the addition of their VIVO profile page to their ORCID record, it will
appear as an "external ID", with this label

Default value NONE

Example VIVO profile page at Great Western University
value

Property name orcid.api

Description The entry point for ORCID's public API.
This changes, depending on whether you are using the sandbox API or the production API.

Default value NONE

System Administration - 276



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Examplevalue sandbox

release

9.8 Performance Tuning

» SDB - MySQL Tuning (see page 277)
« Version Recommendation (see page 277)
» MySQL DB Engine (see page 277)
» MySQL Buffers (see page 277)
« Temporary Tables (see page 277)

9.8.1 SDB - MySQL Tuning

By default, MySQL has reasonable defaults for a regular RDBMS application. However, SDB has a slightly unusual
database layout - it has very few tables, some of which grow quite large, very quickly. Whilst the SDB code is well
optimised for the majority of cases, to get the best performance, you should tune MySQL to take into account the
table, index and join sizes.

9.8.1.1 Version Recommendation

It is recommended that you use 5.5 or later of MySQL (or the MariaDB equivalent).

9.8.1.2 MySQL DB Engine

It is recommended that you use innodb with the barracuda file format. You should also configure MySQL to use a
file for each table.

innodb_file_per_table = 1
innodb_file_format = barracuda

9.8.1.3 MySQL Buffers

Although this won't affect an initial query, having large buffers for the indexes will help query performance once
they have been warmed.

join_buffer_size = 32M
read_rd_buffer_size = 32M
innodb_buffer_pool_size = 1536M

9.8.1.4 Temporary Tables

SDB can generate some large joins, and by default anything over 16MB will be spooled to disk. This can slow large
queries down dramatically. To avoid this, increase the temporary table sizes.

System Administration - 277



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

max_heap_table_size=256M
tmp_table_size=256M

9.8.2 Additional Performance Tips

« Whatis performance? (see page 278)
+ What kind of performance is normal? How do | know if | have a problem? (see page 278)
« Individual page display (see page 278)
+ RDF loading (see page 279)
+ Inference recomputation and search index rebuilding (see page 279)
+ Tools for measuring performance (see page 279)
» Testing without local modifications (see page 279)
+ Tuning for improved performance (see page 279)
» Memory (see page 279)
« Server connections (see page 279)
« MySQL configuration (see page 280)
« In-memory temporary tables (see page 280)
« Key buffer size (see page 280)
+ InnoDB buffer pool size (see page 280)
« Transaction logging (see page 280)
+ HTTP caching (see page 280)
« Alternative triple stores (see page 280)
» Misbehaving robots (see page 281)

9.8.2.1 What is performance?

Performance can mean different things to different sites including the length of time it takes to render a large page
(e.g., a person with 800 - 1500 publications), to display a visualization, to load new data, to regenerate the search
index or recompute inferences, or to generate an export of RDF data.

9.8.2.2 What kind of performance is normal? How do | know if | have a problem?

This section gives some very rough guidelines for determining whether your VIVO is performing similarly to
established production installations on typical modern server hardware or virtual machines. The numbers below
assume that VIVO is otherwise idle; that is, not loaded with concurrent public page requests or performing other
background operations.

Individual page display

The time it takes to render an individual page can vary significantly depending on the types of data involved. The
page for a person with many publication citations will take longer to render than one with simple links to other
individuals. As a very general rule, your VIVO should be able to handle around 100 data items (properties) per
second when displaying an individual page. Thus, if the page for a person with 500 publication links displays in five
seconds, there may be relatively little room for performance tweaking short of caching the entire page. If the page
takes 50 seconds to appear, there is very likely a serious performance bottleneck somewhere in the installation or a
hardware deficiency that needs to be addressed.

System Administration - 278



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

RDF loading

Loading RDF through VIVO is slower than inserting it directly into the triple store because VIVO performs additional
operations such as inference and search index maintenance as the data are changed. You should still expect to see
at least several hundred triple insertions per second.

Inference recomputation and search index rebuilding

These operations are important for VIVO installations that modify data directly in the triple store instead of adding
or removing RDF through VIVO. You should expect inference recomputation to average about 20-25 milliseconds
perindividual. (You can find your values in vivo.all. log.) Search index rebuilding is typically faster, on the
order of 10 ms per individual.

9.8.2.3 Tools for measuring performance

Members of the VIVO community have found the following tools helpful in testing and measuring a site's
performance:

+ Google Analytics. Records some basic performance metrics in the Behavior > Site Speed section, such as
average page load time.

« JMeter. Generates simultaneous connections for testing of performance under real-world production loads.

« New Relic. Software analytics suite including JVM and MySQL monitoring.

Testing without local modifications

Local code modifications - especially custom list views and filter policies - can introduce inefficiencies that lead to
poor performance. Similarly, code under development may contain performance regressions or new features that
have not yet been optimized. If you have made any such modifications or are using pre-release code, it is important
to test performance when your VIVO database is used with an official VIVO release. If the observed performance
differs significantly from that exhibited by a modified version, the modifications are suspect.

9.8.2.4 Tuning for improved performance

Memory

Ensure that that Java JVM for your VIVO has been allocated sufficient memory (heap space). This is a critical
element of the installation process, as the default Java heap setting will cause VIVO to run extremely slowly. A
production VIVO installation should typically be allocated several gigabytes of heap space.

Additionally, ensure that your server has enough memory to support the heap space you have allocated.
Otherwise, data may be swapped to disk, which can seriously degrade performance. On a server that runs only
VIVO, the available memory should be about double the Java heap space.

Server connections

A production VIVO installation often involves an Apache web server, the Tomcat servlet container, and a MySQL
database server. The numbers of available connections between each of these servers should be set to prevent
unnecessary bottlenecks. Thus, the maximum number of database connections should slightly exceed the number
of possible concurrent Tomcat threads, which should in turn exceed the number of simultaneous Apache worker
threads or child processes.

System Administration - 279



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

MySQL configuration

Data display in VIVO often depends on complex SPARQL queries that, when using the default SDB triple store, are
translated into similarly complex SQL queries. Tuning the MySQL database server can significantly increase
performance. There are a number of tools available for assisting with this process, such as mysqltuner.p|*®
(https://github.com/rackerhacker/MySQLTuner-perl). There are also a few typical parameters that often require
adjustment.

In-memory temporary tables

The nature of the SQL queries generated by the triple store often requires the generation of temporary tables.
Ideally these temporary tables will remain in memory; if they exceed the threshold where MySQL writes them to
disk, this can result in serious slowdowns. Depending on the amount of data in your VIVO and your server’s
available memory, you may need to increase the size limit for in-memory temporary tables.

Consult the MySQL documentation for the parameters

« tmp_table_size
« max_heap_table_size

Key buffer size

If your VIVO database uses MySQL’s traditional MylSAM storage engine, consult the documentation for the
key_buffer_size parameter. Increasing this value can yield significant performance benefit.

InnoDB buffer pool size

If your VIVO database uses MySQL’s newer InnoDB storage engine, consult the documentation for the
innodb_buffer_pool_size parameter. Setting this value as large as possible given available memory will improve
performance.

Transaction logging

Changing MySQL’s transaction logging settings can lead to dramatic improvements to the speed at which triples
are added to or removed from the database. For more details, see ,Writing the MySQL transaction log” here:
MySQL tuning, and troubleshooting (see page 281)

HTTP caching

If VIVO's dynamically-generated pages do not exhibit acceptable load times, you may wish to enable HTTP caching.
See Use HTTP caching to improve performance (see page 283). With this configuration, subsequent requests for
pages whose contents have not changed will result in those pages being served directly from a cache instead of
being regenerated from data in the triple store.

Alternative triple stores

While VIVO is tested with and configured by default to use Jena's SDB triple store with the MySQL database server,
VIVO also includes support for TDB and Virtuoso as well as the ability to connect via HTTP to a SPARQL 1.1-
complaint endpoint. Use of a different store may yield performance improvements, offer additional possibilities for
performance tuning, or enable features such as clustering and load balancing. In addition, configuring SDB to use a
database server other than MySQL may offer advantages for your installation. Note that some of the SPARQL

148 http://mysqltuner.pl

System Administration - 280


http://mysqltuner.pl
http://mysqltuner.pl
https://github.com/rackerhacker/MySQLTuner-perl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

queries in the list views (see page 278) employed by VIVO in page rendering have been optimized for SDB/MySQL with
substitution of UNION for OPTIONAL. These queries should be modified for optimum performance with other
stores that do not exhibit the same quirks.

Misbehaving robots

In some cases, poor VIVO performance has been traced to search engine robots that either ignore or misread
directives in VIVO's robots.txt file, or which issue requests for large pages at a rate that greatly exceeds the demand
otherwise encountered in typical production use. If the search engine in question is not critical to VIVO's visibility, it
may be advisable to restrict access to the associated robots. In some situations, institutional search appliances are
responsible for the excessive server load. Here, discussions with local IT staff may be warranted.

9.8.3 MySQL tuning, and troubleshooting

9.8.3.1
« Tuning MySQL
« Writing the MySQL transaction log
+ Setting the MySQL query cache size
« Tracing back from SQL to SPARQL
+ Regenerating MySQL indexes
« TCMalloc and MySQL

9.8.3.2 Tuning MySQL

From Stony Brook -

By popular request, I've been asked to re-send information about the MySQLTuner tool. It helped give us
feedback on several key mysql tuning parameters. And it gives suggestions on settings that may help your
system run more efficiently, and thus your VIVO run a little bit faster.

The mysqltuner.pl*? script can be found at:

https://github.com/rackerhacker/MySQLTuner-perl

From Mark at Griffith Uni -
We use an enterprise hosted MySQL ie. remote to our vivo server via gigabit ethernet. In this configuration we
have found MySQL to be a real performance bottleneck. Here are some parameters that we have found it
worthwhile experimenting with:
innodb_flush_log_at_trx_commit=2

+ this resulted in about a 3x speedup (especially for big ingests)

tmp_table_size

max_heap_table_size

149 http://mysqltuner.pl/

System Administration - 281


http://mysqltuner.pl/
http://mysqltuner.pl/
https://github.com/rackerhacker/MySQLTuner-perl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

key_buffer_size (needed because many of our queries include a group or sort)

Writing the MySQL transaction log

MySQL allows you to control its logging behavior, using the the innodb_flush_log_at_trx_commit parameter.
On some systems, changing the value of this parameter can dramatically improve performance.

Using the default setting, the log is written to the file buffer and the buffer is flushed to disk at the end of each
transaction. This is necessary to insure full ACID compliance, but the overhead is substantial. Most of VIVO is not
transaction-oriented: each statement is added or deleted in its own transaction. So the default setting means that a
physical write to disk is required for each new RDF statement.

Setting innodb_flush_log_at_trx_commit to 0 or 2 will greatly improve throughput, while adding a minimal
level of risk to the data. Under some circumstances, with some settings, up to one second of transactions can be
lost. Most VIVO installations will find this to be an acceptable level of risk.

setting meaning worst case risk

1 (default) Write the log after each If MySQL crashes, lose transactions in progress.

transaction. . . .
On power failure or system crash, lose transactions in

Flush to disk after each progress.
transaction.

2 Write the log after each If MySQL crashes, lose transactions in progress.

transaction. .
On power failure or system crash, lose one second of

Flush to disk once per second. transactions.
0 Write the log once per second. If MySQL crashes, lose one second of transactions.
Flush to disk once per second. On power failure or system crash, lose one second of

transactions.

This page provides full details regarding innodb_flush_log_at_trx_commit: http://dev.mysqgl.com/doc/
refman/5.1/en/innodb-parameters.htmlisysvar_innodb_flush_log_at_trx_commit

Setting the MySQL query cache size

Increasing the MySQL query cache size will likely translate into improved VIVO performance in that once large pages
have been fetched once, they're typically quite a bit faster to load on later fetches.

Tracing back from SQL to SPARQL

If we identify particularly slow SQL queries, we can try to trace them back to SPARQL queries in the code and look
for optimizations to those queries or attempt to solve the problem in a different way.

One approach is to watch the status of the MySQL query process during slow queries or page rendering to see what
it's doing and/or do an EXPLAIN SELECT on the generated SQL.

System Administration - 282


http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Regenerating MySQL indexes

If performance is abysmal on a simple query, check for missing or corrupted MySQL indexes that may cause the
query engine to do full table scans.

TCMalloc and MySQL

Interesting GitHub blog post (https://github.com/blog/1422-tcmalloc-and-mysql) describing debugging MySQL
performance issues, and using tools like the open source Percona Toolkit!*® and the Google-contributed TCMalloc
from gperftools®.,

9.8.4 Use HTTP caching to improve performance

As a VIVO implementation grows in size and tracks more and more scholarly activity, profile pages can be pulling in
hundreds of relationships to render the page, which results in more data being retrieved from the underlying triple
store and longer page load times. For example, a profile page for a faculty member with hundreds of publications,
which isn't uncommon, can lead to multiple second page loads.

Instead of querying the database each time a page is loaded, a cached version of the page can be served, provided
the user is not logged in. VIVO supports HTTP caching directly. To enable, uncomment the
"http.createCacheHeaders = true" line in runtime.properties:

runtime.properties

Tell VIVO to generate HTTP headers on 1its responses to facilitate caching the

profile pages that it creates.

For more information, see this wiki page:

https://wiki.duraspace.org/display/VIVO/Use+HTTP+caching+to+improve+performance

Developers will likely want to leave caching disabled, since a change to a
Freemarker template or to a Java class would not cause the page to be
considered stale.

H O OH B OH O H K O H H K

http.createCacheHeaders = true

VIVO will now generate eTags for caching, which are stored in VIVO's Solr index. More information is available from
Ted Lawless, who originally demonstrated the eTag method, here!®2,

Next, enable mod_cache in Apache by uncommenting LoadModule lines in httpd.conf:

httpd.conf

LoadModule cache_module modules/mod_cache.so
LoadModule cache_disk_module modules/mod_cache_disk.so

and adding the following configuration lines to httpd.conf or in its own .conf file within Apache's conf.d directory:

150 http://www.percona.com/doc/percona-toolkit/2.1/
151 http://code.google.com/p/gperftools/
152 https://lawlesst.github.io/notebook/vivo-caching.html

System Administration - 283


https://github.com/blog/1422-tcmalloc-and-mysql
http://www.percona.com/doc/percona-toolkit/2.1/
http://www.percona.com/doc/percona-toolkit/2.1/
http://code.google.com/p/gperftools/
http://code.google.com/p/gperftools/
https://lawlesst.github.io/notebook/vivo-caching.html
https://lawlesst.github.io/notebook/vivo-caching.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

mod_cache.conf

#The default expire needs to be 0 in a self-editing environment so that E-Tags can be reverified.
#Requests to cached URLs that haven't expired will never reach the VIVO web application.
#

<IfModule mod_cache.c>
CacheRoot /var/cache/apache2
CacheEnable disk /display
CacheEnable disk /individual
CacheIgnoreNoLastMod On
CacheDefaultExpire 0
CacheMaxExpire 0
CacheIgnoreHeaders Set-Cookie

</IfModule>

The above configuration was provided by Ted Lawless. Restart Apache and Tomcat. Large pages should now load
significantly faster for logged-out users.

You can verify http caching is occurring by looking in the directory specified as CacheRoot and seeing if files are
being added. You can also use your browser's debugging tools, like Firebug or Chrome debug tools, to inspect the
HTTP status code of the response for a profile page. In Chrome, enable Developer Tools (View > Developer >
Developer Tools, or ~881) and select 'Network' on the pane that appears. Cached pages will return a 304 "Not
Modified" response.

9.8.5 HTTP Cache Awareness (*)

o Overview (see page 284)

« How to enable cache awareness (see page 284)

« What pages can be cached? (see page 285)

« What do the caching headers look like? (see page 285)
» How to configure your cache (see page 285)

VIVO adds headers to some HTTP responses, to assist in caching profile pages

9.8.5.1 Overview

@ VIVO doesn't cache, but it helps to support caching.

9.8.5.2 How to enable cache awareness

@ What runtime properties are used to control it? Can it be controlled in developer mode?

System Administration - 284



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.8.5.3 What pages can be cached?

@ Only works on profile pages, and only if you are not logged in.

9.8.5.4 What do the caching headers look like?

@ Show a simple request with a cacheable response. Show a conditional request with a current ETag, Show a
conditional request with a stale ETag.

9.8.5.5 How to configure your cache

@ It's up to you to insure that you don't cache something without an ETag. You should assume that all pages
are stale.

9.9 Virtual Machine Templates

o Docker (see page 285)
» Vagrant (see page 285)

9.9.1 Docker

Justin Littman®®® has created code for dockerizing VIVO. Docker for VIVO is available on GitHub**

9.9.2 Vagrant

Ted Lawless'™ has created a Vagrant box to allow for quickly installing and testing the full VIVO application. The
VIVO Vagrant is available on Github!®e,

9.10 Moving your VIVO Instance

This page describes what you would need to do to move your VIVO instance from one machine to another.

153 https://wiki.duraspace.org/display/~justinlittman
154 https://github.com/gwu-libraries/vivo-docker

155 https://wiki.duraspace.org/display/~tlawless

156 https://github.com/lawlesst/vivo-vagrant

System Administration - 285


https://wiki.duraspace.org/display/~justinlittman
https://wiki.duraspace.org/display/~justinlittman
https://github.com/gwu-libraries/vivo-docker
https://github.com/gwu-libraries/vivo-docker
https://wiki.duraspace.org/display/~tlawless
https://wiki.duraspace.org/display/~tlawless
https://github.com/lawlesst/vivo-vagrant
https://github.com/lawlesst/vivo-vagrant

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.10.1 Step-by-step guide

NoakswbhE

10.

11.
12.
13.

Make a backup of your current VIVO source directory

Make a backup of your current VIVO relational database

If different from your relational database, make a backup of your current VIVO triple store

Copy these backup files to your new machine

Create the vivo database, using the same username and password as the previous machine

Load the relational database from the backup

If you're installing everything into the same place that they were installed on the original machine, then
there are no configuration changes to be made

Otherwise, you'll need to modify your build.properties in the VIVO source directory, and
runtime.properties inthe VIVO home directory, changing any paths necessary

If your relational database and triple store information are the same as before (same graphs, same
usernames, same passwords), then there are no configuration changes to be made

Otherwise, you'll need to modify your x. propertiies files (see above), changing any username and
password information for relational and semantic stores

Make sure tomcat is NOT running prior to building and installing VIVO

Build and install VIVO

Start tomcat

And that should be it.

9.11 Regaining access to the root account

A

This page is intended to make access easier for VIVO developers and maintainers. An attacker cannot use
these techniques to gain access to your VIVO installation. These techniques can only be used by someone
who already has full access to your installation.

To gain access to the database, create a new root account.

+ Modify the runtime.properties file to include a root account of your choosing, and restart VIVO

rootUser.emailAddress = new_root@mydomain.edu

System Administration - 286



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

+ Open VIVO in the browser. You will see a warning screen like the following:
Warning

VIVO issued warnings during startup.

+ WARNING: RootUserPolicy$Setup

e runtime.properties specifies 'new_root@mydomain.edu’ as the value for ‘rootUseremail Address', but the system contains this root user instead:
vive_root@ mydomain_edu

¢ educomell. mannlib.vitro webapp.auth policy RootUserPolicy$Setup

«  WARNING: RootUserPolicy$Setup
o Creating root user ‘new_root® mydomain edu’

o educomell. mannlib.vitro webapp.auth. policy RootUserPolicy$Setup

+* WARNING: RootUserPolicy$Setup
o For security, it is best to delete unneeded root user accounts.

e edu.comell mannlib vitro webapp.auth policy RootUserPolicy$Setup

Continue

Startup trace

The full list of startup events and messages.

« INFO: ConfigurationPropertiesSetup

A Inrecrres TWFROINErazonresehnild neomertioe’ 'viten homa' wae ot o nerflocalivivalddaia’
Click Continue to view the VIVO home page.
+ Log in using the new root account. The first-time password for your new root account will
be rootPassword, and you will be asked to assign a new password.

You now have two root accounts, and you know the password to the new one. Use the User Accounts pages to
either

+ Delete the old root account,
or
« Set a fresh password on the old root account and delete the new root account.

9.12 Altmetrics Support

« Overview (see page 287)
+ Display (see page 288)
« Configuration (see page 288)

9.12.1 Overview

"Altmetrics" is a general term for non-traditional metrics related to scholarly works. See Wikipedia: https://
en.wikipedia.org/wiki/Altmetrics

"Altmetric" is a company, a division of Digital Science, that collects altmetrics and makes them available via APIs.
See http://altmetric.com

VIVO uses APIs provided by Altmetric to provide altmetrics on scholarly works. Altmetrics makes its service
available without fee or license restriction.

System Administration - 287


https://en.wikipedia.org/wiki/Altmetrics
https://en.wikipedia.org/wiki/Altmetrics
http://altmetric.com

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.12.2 Display

Scholarly works identified by DOI, PubMed ID, or ISBN have altmetric "badges" associated with them. These
badges are links to altmetrics information provided by Altmetrics.

selected publications

academic article

Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis.
Immunologic research. 56:398-412. 2013 [Atmetric 23

Immunostimulation in the era of the metagenome. Cellular & molecular immunology. 8:213-225.
2011 [Ajgme!rlc 2

Clicking on a badge takes you to the Altmetrics web site page for the scholarly work. For example:

\/ Altmetric 2 What s this page? F Embed badge 2 Share

VIVO: A Semantic Approach to Scholarly Networking and Discovery

Overview of attention for article published in Synthesis Lectures on the Semantic Web: Theory and Technology, October 2012

SUMMARY Policy documents Twitter Facebook

You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click
here to find out more.

Title  VIVO:A Semantic Approach to Scholarly Networking and Discovery

& View on publisher site

Published in Synthesis Lectures on the Semantic Web: Theory and Technology, October 2012

Dol 10.2200/500428ed1v01y201207wbe002 &
Katy B6 , Michael Conlon, C -Rikert, Ying Ding, Katy BG , Michael Conlon, Jon...
) Authors aty Borner, Michael Conlon, Jon Corson-Rikert, Ying Ding, Katy Bérner, Michael Conlon, Jon. S Alert me about new
Mentioned by fshow] p—

. 1 policy source
. 3 tweeters

. 2 Facebook pages
TWITTER DEMOGRAPHICS

Readers on v
. 57 Mendeley The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more
about how the information was compiled.

9.12.3 Configuration

Six configuration parameters regulate how VIVO uses and displays altmetrics. See Configuration Reference (see page
295)

9.13 Troubleshooting

+ Having problems with your VIVO installation? (see page 288)
» Can'tfind any individuals? (see page 289)
« Mail not working? (see page 289)

9.13.1 Having problems with your VIVO installation?
« Check your STOMCAT DIRECTORY/logs - specifically catalina.out and vivo.all.log

System Administration - 288



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« If you can't find vivo.all.log check that the data folder defined in your runtime.properties file (commonly /
usr/local/vivo/home) is defined properly and is writable by Tomcat.

9.13.2 Can't find any individuals?

« First, try restarting Tomcat and go to [yourhost]/vivo/Searchindex to see whether rebuilding the search
index will fix the problem
+ Inthe [tomcat]/logs directory, check vivo.all.log to see whether there are any error messages related to Solr
+ Go to [yourhost]/vivosolr to see whether the Solr greeting page appears
« Ifit does appear, then Vivo just can't reach it. Make sure that vitro.local.solr.url is set correctly in
runtime.properties.
« If you get a 403 HTTP error, then the authorization on Solr is a problem. Check your permissions.
« If it does not appear, and you don't get a 403, then Solr did not install properly. Try cleaning the
[tomcat]/webapps directory and [tomcat]/conf/Catalina/localhost directory, and rebuild VIVO using
Maven
« To see your individual, go to the Site Admin page
« click on 'Class Hierarchy'
+ navigate to the FacultyMember class link and select that link
« onthe left side of the page select the button 'show all individuals in this class'
« Ifanindividual is found, you can select 'raw statements with this individual as subject' and you can also
select 'display this individual (public)' and from there select the 'RDF' link to show the underlying RDF for
the Person and some associated enitities.

9.13.3 Mail not working?

« Inorder for VIVO to send e-mails, it needs to have access to an SMTP server. In runtime.properties, you can
set email.smtphost to the name of an SMTP server that will accept messages from your VIVO host.

« If you don't have access to an SMTP server, comment out the line for email.smtphost. VIVO will detect this,
and will not attempt to send e-mails to the users. Instead, you will be required to set a password on each
account as you create it, and the user will be required to change that password the first time he logs in.

« You may want to test emailing people from your server.

9.13.4 Troubleshooting Tips

9.134.1
« Warning screen at startup
« Rebuilding the Search Index
+ How to Serve Linked Data
» Long URLS

9.13.4.2 Warning screen at startup

As VIVO goes through its startup process, it executes a series of "smoke tests" to try to confirm that the
configuration is correct. For example, it checks to see that the home directory exists, and that VIVO has permission
to write to it. It checks that VIVO can connect to the database. It checks that Solr is running, and that VIVO can
connect toit.

System Administration - 289



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

If any of these tests fail, you will see a warning or error message when you direct your browser to VIVO. If the
message is a warning (yellow), you may click the "continue" link to ignore the warning. If the message is an error
(red), it is considered fatal, and VIVO will not respond to any requests.

Some of the warnings or errors may be cryptic, but they are intended to offer clues as to why your VIVO installation
will not work properly.

9.13.4.3 Rebuilding the Search Index

The search index of VIVO is used not just for full text search but also for the menu pages and index pages. If the
system is not displaying the individuals that you would expect to see, the search index may need to be rebuilt. To
rebuild the index log in as an administrative user and request

http://vivo.example.edu/SearchIndex

This page will allow you to start a rebuild of the search index. A rebuild may take some time. The browser page will
refresh every few seconds. Once the index rebuild is set up, the page will display how much time the rebuild has
taken, and an estimate of how much additional time will be needed. When the indexing is completed, the page will
return to its previous state.

9.13.4.4 How to Serve Linked Data

The default namespace value set during installation needs to match the domain name where you are serving your
VIVO application from (VIVO web address).

Examples of VIVO web addresses and default namespace values:

VIVO web address (url) Default namespace value
http://vivo.example.edu http://vivo.example.edu/individual
http://vivo.example.edu/vivo/ http://vivo.example.edu/vivo/individual/

http://vivoTEST.example.edu:8080/  http://vivoTEST.example.edu:8080/individual/

To check what your default namespace is currently set for:

1. Loginto VIVO as an administrator, go to Site Admin -> SPARQL query.
2. Clear all of the text from the text area, enter the following query in the text area:

SELECT ?a ?b WHERE { ?a <http://vitro.mannlib.cornell.edu/ns/vitro/0.7#rootTab> ?b }

System Administration - 290



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3. Scroll down and click “Run Query” and you should get a result like this:

4. To get the default namespace from the result, take everything in braces up to and including the last forward
slash. In this case the default namespace is

http://vivo.mydomain.edu/individual/

5. If the default namespace does not match the domain name where your VIVO application is installed, follow
the steps below:
a. Use the “Change Namespace of Resources” option under Site Admin - Ingest Tools to set the default
namespace to match your VIVO application domain name as in the above examples.
b. SetVitro.defaultNamespacein runtime.properties to the value for your namespace
C. Restart Tomcat

9.13.4.5 Long URLS

If you checked your default namespace and ensured it matches the domain name where your VIVO application is
installed, you may find that you still have long URLs on some people profiles.

In other words, you expect to have URLs like this: *

http://vivo.example.edu/individual/n5143

But instead, you have URLs like this:

http://example.edu/individual?uri=http%3A%2F%2Fvivo.example.edu%2Fsomethingl%2Fn5143

In this case, you have individuals with URIs that are not in your VIVO application’s default namespace. There are a
couple of ways that this could have happened:

The individuals could have been created using a ingest process that did not create individuals in the default
namespace.

The individuals could have been created when the system had a different default namespace.
The individuals could be from RDF data that was imported.

In general, once you have the default namespace set up correctly for your VIVO application, then all the individuals
you create using the web interface will have the default namespace. You have to be careful to make sure that any
individuals created by an ingest process use the default namespace.

Some individuals that are shipped with the application are not in the default namespace. For example, the
countries and geographical locations are in a different namespace. Do not attempt to change the namespace of
these individuals.

System Administration - 291



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.14 High Availability

o Overview (see page 292)

« Session management (see page 292)

+ Caching (see page 292)

o Solr (see page 292)

+ Home directory (see page 292)

« Content triple store (see page 293)

« Configuration triple store (see page 293)

9.14.1 Overview

VIVO, as delivered, is not a high availability application. Single points of failure in the application are addressed
below. Some of these can be improved by approaches to deployment as noted. Others would require additional
development to provide high availability deployment options.

9.14.2 Session management

VIVO code makes use of HttpSession objects. Sessions can be replicated in Tomcat and/or sticky routing to the
servers.

9.14.3 Caching

VIVO does limited caching. VIVO caches some information in the visualisation stack. This is not critical to the
operation of VIVO, as application servers can each build their own cache. Sticky routing, so that people get
consistent graphs in a single session may be sufficient, even if each server could vary slightly in what is displayed.

9.14.4 Solr

Every server must use a single Solr cluster, rather than relying on Solr being installed alongside VIVO. Any changes
being written to the index would then be shared by all instances. A shared cluster also takes care of the file system
storage of Solr, which is currently maintained in the VIVO home directory.

9.14.5 Home directory

VIVO uses static configuration information, the config and rdf directories, and runtime.properties. These need to
be consistent across multiple servers. That could be achieved via a shared home directory, or just multiple identical
deployments.

There are three additional areas in the home directory that are of concern. The configuration triple store
(tdbModels) is addressed below. Solr indexes are addressed above. The upload directory stores thumbnails for
people, etc. If you allowing real-time upload of photos, this directory needs to be on a shared HA filesystem. If you
are only batch ingesting thumbnails from external sources, then syncing the directory across servers could suffice.
If you are simply linking to externally hosted images, the uploads folder will not be a concern.

System Administration - 292



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.14.6 Content triple store

By default, this is SDB, stored in MySQL. An HA MySQL configuration should permit multiple application servers to
access the same MySQL server cluster.

9.14.7 Configuration triple store

The configuration triple store is TDB, stored in the tdbModels folder in the home directory. TDB requires that you
only have one JVM accessing a TDB triple store. Replication is not possible while the TDB files are open. There are
two potential solutions. Through disciplined system administration you may find that the material in the
configuration triple store can be considered static. The triple store can then be replicated across each server using
a copy. A second approach would involve storing the configuration triple store using SDB in an HA MySQL cluster.
This would involve recoding relevant parts of the Vitro application, which appears to be feasible.

... (see page 292)

9.15 Replicating Ontology Changes Across Instances

» Purpose (see page 293)
o Procedure (see page 293)
o Best Practice (see page 294)

9.15.1 Purpose

Suppose changes are made to the VIVO core ontology through the web interface on one VIVO instance, and these
changes are needed in another instance. For example, changes are made in a development instance, tested, and
approved for deployment in production. Changes may include:

« changing the display label of a core class or property
« changing the property group of a core class or property
« changing the display rank of a core class or property

The procedure below describes how such changes can be replicated between instances.

9.15.2 Procedure

In the steps below, instance #1 is the the instance that contains the changes you have made to the core ontology.
Instance #2 is the instance you wish to copy the ontology changes to.

1. Oninstance #1, go to Site Admin > Ingest Tools > Manage Jena Models.

Find "http://vitro.mannlib.cornell.edu/default/asserted-tbox" and click "output model."
On instance #2, locate the same model and click "clear statements."

On instance #2, under the same model, click "load RDF data."

Load the file output in step 2 (N3 format).

Restart instance #2.

I

System Administration - 293


http://vitro.mannlib.cornell.edu/default/asserted-tbox

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

9.15.3 Best Practice

Semantic additions to the core ontology (new classes and properties) should made in a local ontology, isolated

from the core ontology. Additions should be discussed on vivo-tech@googlegroups.com®’ to insure they are
necessary and represent common ontological practice. Edits to the core ontology should be rare.

157 mailto:vivo-tech@googlegroups.com

System Administration - 294


mailto:vivo-tech@googlegroups.com
mailto:vivo-tech@googlegroups.com

10 Reference

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Configuration Reference (see page 295)

« Directories and Files (see page 302)

» Graph Reference (see page 305)

» Ontology Reference (see page 310)

« Freemarker Template Variables and Directives (see page 359)

+ Architecture (see page 360)
URL Reference (see page 392)
VIVO APIs (see page 393)

« Resource Links (see page 419)

10.1 Overview

This section contains reference material for the VIVO and Vitro systems. These materials take the form of glossaries
and lists. They are not intended in the form of instructional materials. For processes used to support VIVO and
Vitro, see the System Administration (see page 256) section and the introductory sections in particular for processes

and instructional material.

10.2 Configuration Reference

o Overview (see page 295)

« VIVO Runtime Properties (see page 295)

10.2.1 Overview

VIVO's operation can be determined by setting corresponding properties in runtime.properties.

10.2.2 VIVO Runtime Properties

Property

Vitro.defaultName
space = http://
vivo.mydomain.edu
/individual/

rootUser.emailAdd
ress =
vivo_root@mydoma‘i
n.edu®s®

Description

This namespace will be used when generating URIs for objects created in the editor.
In order to serve linked data, the default namespace must be composed as follows
(optional elements in parentheses): scheme + server_name (+ port) (+
servlet_context) + "/individual/" For example, Cornell's default namespace is:
http://vivo.cornell.edu/individual/

The email address of the root user for the VIVO application. The password for this
user is initially set to "rootPassword", but you will be asked to change the password
the first time you log in.

158 mailto:vivo_root@mydomain.edu

Reference - 295


http://vivo.cornell.edu/individual/
mailto:vivo_root@mydomain.edu
mailto:vivo_root@mydomain.edu
mailto:vivo_root@mydomain.edu

Property

VitroConnection.D
ataSource.url =
jdbc:mysql://
localhost/
vitrodb
VitroConnection.D
ataSource.usernam
e:
vitrodbUsername
VitroConnection.D
ataSource.passwor
d:
vitrodbPassword

email.smtpHost =

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description
The basic parameters for a database connection. Change the end of the URL to

reflect your database name (if it is not "vitrodb"). Change the username and
password to match the authorized database user you created.

Email parameters which VIVO can use to send mail. If these are left empty, the

smtp.mydomain.edu!® "Contact Us" form will be disabled and users will not be notified of changes to their

email.replyTo =
vivoAdmin@mydoma‘i
n.edu'®

vitro.local.solr.
url = http://
localhost:8080/
vivosolr

selfEditing.idMat
chingProperty =
http://
vivo.mydomain.edu
/ns#networkId

externalAuth.netI
dHeaderName =
remote_userID

accounts.

URL of Solr context used in local VIVO search. This will usually consist of: scheme +
server_name + port + vivo_webapp_name + "solr" In the standard installation, the
Solr context will be on the same server as VIVO, and in the same Tomcat instance.
The path will be the VIVO webapp.name?®! (specified in build.properties) + "solr"
Example: vitro.local.solr.url = http://localhost:8080/vivosolr

How is a logged-in user associated with a particular Individual? One way is for the
Individual to have a property whose value is the username of the user. This value
should be the URI for that property.

If an external authentication system such as Shibboleth or CUWebAuth is to be used,
this property says which HTTP header will contain the user ID from the
authentication system. If such a system is not to be used, leave this commented out.
See Using an external authentication system®2

159 http://smtp.mydomain.edu

160 mailto:vivoAdmin@mydomain.edu

161 http://webapp.name

162 https://wiki.duraspace.org/display/VTDA/Using+an+external+authentication+system

Reference - 296


mysql://localhost/vitrodb
mysql://localhost/vitrodb
mysql://localhost/vitrodb
http://smtp.mydomain.edu
http://smtp.mydomain.edu
mailto:vivoAdmin@mydomain.edu
mailto:vivoAdmin@mydomain.edu
mailto:vivoAdmin@mydomain.edu
http://localhost:8080/vivosolr
http://localhost:8080/vivosolr
http://localhost:8080/vivosolr
http://webapp.name
http://webapp.name
http://localhost:8080/vivosolr
http://vivo.mydomain.edu/ns#networkId
http://vivo.mydomain.edu/ns#networkId
http://vivo.mydomain.edu/ns#networkId
https://wiki.duraspace.org/display/VTDA/Using+an+external+authentication+system
https://wiki.duraspace.org/display/VTDA/Using+an+external+authentication+system

Property

VitroConnection.D
ataSource.pool.ma
xActive = 40

VitroConnection.D
ataSource.pool.ma
xIdle = 10

VitroConnection.D
ataSource.dbtype
= MySQL

VitroConnection.D
ataSource.driver

com.mysql.jdbc.Dr
iver
VitroConnection.D
ataSource.validat
ionQuery = SELECT
1

OpenSocial.shindi
gURL = http://
localhost:8080/
shindigorng

OpenSocial.tokenS
ervice =
myhost.mydomain.e
dul®: 8777

OpenSocial.tokenK
eyFile =

/usr/local/
vivo/data/
shindig/openssl/
securitytokenkey.
txt

OpenSocial.sandbo
x = True

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description

The maximum number of active connections in the database connection pool.
Increase this value to support a greater number of concurrent page requests.

The maximum number of database connections that will be allowed to remain idle
in the connection pool. Default is 25% of the maximum number of active
connections.

Parameters to change in order to use VIVO with a database other than MySQL. These
parameters allow you to change the relational database that is used as the back end
for Jena SDB. If you want to use a triple store other than SDB, you will need to edit
applicationSetup.n3. See the installation instructions for more details.

For OpenSocial integration, the base URL of the ORNG Shindig server. Usually, this is
the same host and port number as VIVO itself, with a context path of "shindigorng".

For OpenSocial integration, The host name and port number of the service that
provides security tokens for VIVO and Shindig to share. For now, the host name must
be the actual host, not "localhost" or "127.0.0.1" The port number must be 8777

For OpenSocial integration. The path to the key file that will be used when
generating security tokens for VIVO and shindig to share.

For OpenSocial integration. Only set sandbox to True for dev/test environments.
Comment out or set to False in production

163 http://myhost.mydomain.edu

Reference - 297


http://localhost:8080/shindigorng
http://localhost:8080/shindigorng
http://localhost:8080/shindigorng
http://myhost.mydomain.edu
http://myhost.mydomain.edu
http://myhost.mydomain.edu

Property

RDFService. langua
geFilter = false

languages.forcelo
cale = en_US

languages.selecta
bleLocales =
en_US, es_GO

orcid.clientId =
0000-0000-0000-00
0X
orcid.clientPassw
ord =
00000000-0000-00600
0-0000-000000000600
00
orcid.webappBaseU
ri = http://
localhost:8080/
vivo

orcid.messageVers
ion = 1.0.23
orcid.externalIdC
ommonName = VIVO
Cornell
Identifier

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description

Show only the most appropriate data values based on the Accept-Language header
supplied by the browser. Default is false if not set.

Force VIVO to use a specific language or Locale instead of those specified by the
browser. This affects RDF data retrieved from the model, if
RDFService.languageFilter is true. This also affects the text of pages that have been
modified to support multiple languages.

Alist of supported languages or Locales that the user may choose to use instead of
the one specified by the browser. Selection images must be available in the i18n/
images directory of the theme. This affects RDF data retrieved from the model, if
RDFService.languageFilter is true. This also affects the text of pages that have been
modified to support multiple languages. This should not be used with
languages.forceLocale, which will override it.

ORCiD integration parameters. See Activating the ORCID integration (see page 272)

Reference - 298


http://localhost:8080/vivo
http://localhost:8080/vivo
http://localhost:8080/vivo

Property

orcid.publicApiBa
seUrl = http://
pub.sandbox.orcid
.org/vl.1

orcid.authorizedA
piBaseUrl =
http://
api.sandbox.orcid
.org/vl.1

orcid.oauthAuthor
izeUrl = http://
sandbox.orcid.org
/oauth/authorize

orcid.oauthTokenU
ri = http://

api.sandbox.orcid
.org/oauth/token

orcid.publicApiBa
seUrl = http://
localhost:8080/
mockorcid/mock/

orcid.authorizedA
piBaseUrl =
http://localhost:
8080 /mockorcid/
mock/

orcid.oauthAuthor
izeUrl =

http://
localhost:8080/
mockorcid/mock/
oauth/authorize

orcid.oauthTokenU
ri =

http://
localhost:8080/
mockorcid/mock/
oauth/token

Description

Setup for the ORCID sandbox

Setup for the mockorcid app

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 299


http://pub.sandbox.orcid.org/v1.1
http://pub.sandbox.orcid.org/v1.1
http://pub.sandbox.orcid.org/v1.1
http://api.sandbox.orcid.org/v1.1
http://api.sandbox.orcid.org/v1.1
http://api.sandbox.orcid.org/v1.1
http://sandbox.orcid.org/oauth/authorize
http://sandbox.orcid.org/oauth/authorize
http://sandbox.orcid.org/oauth/authorize
http://api.sandbox.orcid.org/oauth/token
http://api.sandbox.orcid.org/oauth/token
http://api.sandbox.orcid.org/oauth/token
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/
http://localhost:8080/mockorcid/mock/oauth/authorize
http://localhost:8080/mockorcid/mock/oauth/authorize
http://localhost:8080/mockorcid/mock/oauth/authorize
http://localhost:8080/mockorcid/mock/oauth/authorize
http://localhost:8080/mockorcid/mock/oauth/token
http://localhost:8080/mockorcid/mock/oauth/token
http://localhost:8080/mockorcid/mock/oauth/token
http://localhost:8080/mockorcid/mock/oauth/token

Property

google.maps.key=

resource.altmetri
c=disabled

resource.altmetri
c.displayto=right

resource.altmetri
c.badge-
type=donut

resource.altmetri
c.hide-no-
mentions=true

resource.altmetri
c.badge-
popover=right

resource.altmetri
c.badge-
details=right

homePage.geoFocus
Maps=enabled

multiViews.profil
ePageTypes=enable
d

http.createCacheH
eaders = true

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description

To use the Google Maps (e.g. Map of Science), you need to have a key for Google
Maps. See https://developers.google.com/maps/documentation/javascript/get-api-
key When you have a key, uncomment the line below and add it here

Uncomment and set this to disabled if you don't want AltMetric badges

Display the badge to the left or right of the title (default = right). Options: left, right

Badge type to display (default = donut) Options: See AltMetric documentation'®4-
recommended settings: donut, medium-donut

Hide the badge if there are no mentions (default = true) Options: true, false

Display more details about the score when you hover over the badge (default = right)
Options, right, left, up, down

Display extended details alongside the badge (default = none)

When the following flag is set to enabled, the VIVO home page displays a global map
highlighting the geographical focus of foaf:person individuals. See Home page
customizations (see page 127)

VIVO supports the simultaneous use of a full foaf:Person profile page view and a
"quick" page view that emphasizes the individual's webpage presence.
Implementing this feature requires an installation to develop a web service that
captures images of web pages or to use an existing service outside of VIVO. See
Multiple profile types for foaf:Person (see page 209)

Tell VIVO to generate HTTP headers on its responses to facilitate caching the profile
pages that it creates. See Use HTTP caching to improve performance (see page 283)
Developers will likely want to leave caching disabled, since a change to a Freemarker
template or to a Java class would not cause the page to be considered stale.

164 https://api.altmetric.com/embeds.html#badge-types

Reference - 300


https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://api.altmetric.com/embeds.html#badge-types
https://api.altmetric.com/embeds.html#badge-types

Property

harvester.locatio
n = Jusr/local/
vivo/harvester/

visualization.top
LevelOrg =
http://
vivo.mydomain.edu
/individual/
topLevelOrgURI

visualization.tem
poral = enabled

proxy.eligibleTyp
elList = http://
xmlns.com/foaf/
0.1/Person,
http://
xmlns.com/foaf/
0.1/0Organization

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Description

Absolute path on the server of the Harvester root directory. You must include the
final slash. Setting a value for harvester.location indicates that the Harvester is
installed at this path. This will enable the Harvester functions in the Ingest Tools

page.

The temporal graph visualization is used to compare different organizations/people
within an organization on parameters like number of publications or grants. By
default, the app will attempt to make its best guess at the top level organization in
your instance. If you're unhappy with this selection, uncomment out the property
below and set it to the URI of the organization individual you want to identify as the
top level organization. It will be used as the default whenever the temporal graph
visualization is rendered without being passed an explicit org. For example, to use
"Ponce School of Medicine" as the top organization: visualization.topLevelOrg =
http://vivo.psm.edu/individual/n2862

The temporal graph visualization can require extensive machine resources. This can
have a particularly noticeable impact on memory usage if The organization tree is
deep, The number of grants and publications is large. VIVO 1.3 release mitigates this
problem by the way of a caching mechanism hence we can safely set this to be
enabled by default.

Types of individual for which we can create proxy editors. If this is omitted, defaults
to http://www.w3.0rg/2002/07/owl#Thing

Reference - 301


http://vivo.mydomain.edu/individual/topLevelOrgURI
http://vivo.mydomain.edu/individual/topLevelOrgURI
http://vivo.mydomain.edu/individual/topLevelOrgURI
http://vivo.mydomain.edu/individual/topLevelOrgURI
http://vivo.psm.edu/individual/n2862
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Organization
http://www.w3.org/2002/07/owl#Thing

Property

Vitro.reconcile.d
efaultTypelList =
http://
vivoweb.org/
ontology/
core#Role,
core:Role;
http://
vivoweb.org/
ontology/
coret#AcademicDegr
ee, core:Academic
Degree;
http://
purl.org/NET/
c4dm/
event.owl#Event,
event:Event;
http://
vivoweb.org/
ontology/
coret#tLocation,
core:lLocation;
http://
xmlns.com/foaf/
0.1/0Organization,
foaf:0rganization
)
http://
xmlns.com/foaf/
0.1/Person,
foaf:Person;
http://
purl.obolibrary.o
rg/obo/
IAO_0000030,
obo:IA0_0000030

Description

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Default type(s) for Google Refine Reconciliation Service. The format for this property
isid, name;id1, namel;id2, name2 etc. For more information, see Service Metadata
from this page: https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation-

Service-Api

10.3 Directories and Files

« Overview (see page 303)

« High Level Directories (see page 303)
« Directory Structure (see page 303)

Reference - 302


http://vivoweb.org/ontology/core#Role
http://vivoweb.org/ontology/core#Role
http://vivoweb.org/ontology/core#Role
http://vivoweb.org/ontology/core#Role
http://vivoweb.org/ontology/core#AcademicDegree
http://vivoweb.org/ontology/core#AcademicDegree
http://vivoweb.org/ontology/core#AcademicDegree
http://vivoweb.org/ontology/core#AcademicDegree
http://vivoweb.org/ontology/core#AcademicDegree
http://purl.org/NET/c4dm/event.owl#Event
http://purl.org/NET/c4dm/event.owl#Event
http://purl.org/NET/c4dm/event.owl#Event
http://purl.org/NET/c4dm/event.owl#Event
http://vivoweb.org/ontology/core#Location
http://vivoweb.org/ontology/core#Location
http://vivoweb.org/ontology/core#Location
http://vivoweb.org/ontology/core#Location
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://purl.obolibrary.org/obo/IAO_0000030
http://purl.obolibrary.org/obo/IAO_0000030
http://purl.obolibrary.org/obo/IAO_0000030
http://purl.obolibrary.org/obo/IAO_0000030
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation-Service-Api
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation-Service-Api

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.3.1 Overview

The directory structure below is for the VIVO source distribution. The binary distribution omits some directories.
These are noted below.

The Vitro source distribution has an analogous structure.

10.3.2 High Level Directories

Directory

. /api

. /home
./installer
./legacy

./selenium

. /webapp

Description

Java source for the webapp

RDF and other files needed to load the webapp
Files used by the Maven installer

Legacy directories and files

VIVO Selenium Tests. See http://docs.seleniumhg.org

Templates and other files for building the webapp

10.3.3 Directory Structure

Directory

./api/src/main

./api/src/test

Description

distribution

./api/target/generated-sources

./api/target/generated-test-

sources

./api/target/maven-archiver

./api/target/maven-status

./api/target/surefire-reports

./api/target/test-classes

./home/rdf/abox

VIVO source files. Will not be present in the binary distribution

VIVO source test files. Will not be present in the binary

Reference - 303


http://docs.seleniumhq.org

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Directory Description
./home/rdf/applicationMetadata
./home/rdf/auth
./home/rdf/display
./home/rdf/displayDisplay
./home/rdf/displayThox
./home/rdf/tbox
./home/solr/conf
./home/solr/data
./home/src/main

. /home/target/archive-tmp

. /home/upgrade/knowledgeBase
./home/uploads/file_storage_root
./installer/home/src
./installer/home/target
./installer/solr/src
./installer/solr/target
./installer/webapp/src
./installer/webapp/target
./legacy/config/licenser
./legacy/doc/licenses
./legacy/languages/es_GO

./legacy/utilities/acceptance-
tests

./legacy/utilities/ISF-transition

./legacy/utilities/languageSupport

Reference - 304



Directory Description
./legacy/utilities/LoadTesting

./legacy/utilities/orcid

./legacy/utilities/performance-
measurement

./legacy/utilities/pre-compiledSPs

./legacy/utilities/releasel.6.1-
scripts

./legacy/utilities/releaseScripts
./legacy/utilities/xslt
./selenium/src/test

./selenium/test-output/Command
line suite

./selenium/test-output/
junitreports

./selenium/test-output/old

. /webapp/src/main

. /webapp/target/maven-archiver

. /webapp/target/vivo-webapp-1.9.1

. /webapp/target/war

10.4 Graph Reference

o QOverview (see page 305)

« Listing the graphs used by VIVO (see page 306)
« The graphs used by VIVO (see page 306)

* Notes (see page 310)

10.4.1 Overview

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO stores its information in graphs - named collections of triples. Graphs keep data organized by kind, and
provide the opportunity for different access rights and management practices to be applied at the graph level. All
graphs are available to the VIVO SPARQL query interface. When using SPARQL to query the VIVO data, one does not

Reference - 305



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

need to know the graph the data is contained in. Triples in all graphs are available to the query. When updating
data in VIVO using CONSTRUCT or UPDATE, knowledge of the graph may be necessary.

Here we show how to list the graphs in a VIVO, and provide a reference for the purpose of each graph.

10.4.2 Listing the graphs used by VIVO

To list the graphs being used by your VIVO, you can run the SPARQL query shown below. Caution: If you have a
significant amount of data in your VIVO, the query may take quite a while to run. With tens of thousands of entities
in your VIVO, the query should complete in a few minutes.

SPARQL query to list the graphs in a VIVO

SELECT ?g
WHERE
{
GRAPH ?g {
?s ?p 70 .
}
}
GROUP BY ?g
ORDER BY ?g

To list the triples in a named graph, use the query below, substituting the name of the graph you wish to list.
Caution: listing the triples in larger graphs may take significant time.

SPARQL query to list the triples in a named graph

SELECT ?s ?p ?0
WHERE

{
GRAPH <http://vitro.mannlib.cornell.edu/filegraph/tbox/sameAs.n3> {
?s ?p %0 .

}

10.4.3 The graphs used by VIVO

Graph name Contents

http://vitro.mannlib.cornell.edu/default/asserted-tbox

http://vitro.mannlib.cornell.edu/default/inferred-tbox

http://vitro.mannlib.cornell.edu/default/vitro-kb-2

All ontology triples as asserted

Triples infered from the asserted ontology
triples

The main triple store for content

Reference - 306


http://vitro.mannlib.cornell.edu/default/asserted-tbox
http://vitro.mannlib.cornell.edu/default/inferred-tbox
http://vitro.mannlib.cornell.edu/default/vitro-kb-2

Graph name

http://vitro.mannlib.cornell.edu/default/vitro-kb-
applicationMetadata

http://vitro.mannlib.cornell.edu/default/vitro-kb-inf

http://vitro.mannlib.cornell.edu/filegraph/abox/
academicDegree.rdf

http://vitro.mannlib.cornell.edu/filegraph/abox/
continents.n3

http://vitro.mannlib.cornell.edu/filegraph/abox/
dateTimeValuePrecision.owl

http://vitro.mannlib.cornell.edu/filegraph/abox/
documentStatus.owl

http://vitro.mannlib.cornell.edu/filegraph/abox/
geopolitical.abox.ver1.1-11-18-11.owl

http://vitro.mannlib.cornell.edu/filegraph/abox/grid.n3

http://vitro.mannlib.cornell.edu/filegraph/abox/us-states.rdf

http://vitro.mannlib.cornell.edu/filegraph/abox/
validation.n3

http://vitro.mannlib.cornell.edu/filegraph/abox/
vocabularySource.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/agent.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
appControls-temp.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/bfo-
bridge.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/bfo.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/classes-
additional.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/clinical.owl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Contents

Triples controlling the application

Triples created by the inferencer

Controlled vocabulary for academic degrees

Data provided regarding the continents

Controlled vocabulary for dateTimePrecision

Controlled vocabulary for documentStatus

Data provided regarding geopolitical entities

Example of a data package. Grid data regarding
organizations

Data provided regarding US states and
territories

Data regarding validated ORCiD identifiers

Data regarding external vocabulary services

Ontology assertions regarding agents

?
Ontology assertions relating VIVO entities to
BFO

Ontology assertions regarding Basic Formal
Ontology (BFO)

Ontology assertions regarding classes used in
VIVO

Ontology assertions regarding clinical trials

Reference - 307


http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-inf
http://vitro.mannlib.cornell.edu/filegraph/abox/academicDegree.rdf
http://vitro.mannlib.cornell.edu/filegraph/abox/academicDegree.rdf
http://vitro.mannlib.cornell.edu/filegraph/abox/continents.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/continents.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/dateTimeValuePrecision.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/dateTimeValuePrecision.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/documentStatus.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/documentStatus.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/geopolitical.abox.ver1.1-11-18-11.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/geopolitical.abox.ver1.1-11-18-11.owl
http://vitro.mannlib.cornell.edu/filegraph/abox/grid.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/us-states.rdf
http://vitro.mannlib.cornell.edu/filegraph/abox/validation.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/validation.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/vocabularySource.n3
http://vitro.mannlib.cornell.edu/filegraph/abox/vocabularySource.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/agent.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/appControls-temp.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/appControls-temp.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/bfo-bridge.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/bfo-bridge.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/bfo.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/classes-additional.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/classes-additional.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/clinical.owl

Graph name

http://vitro.mannlib.cornell.edu/filegraph/tbox/contact-
vcard.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/contact.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/data-
properties.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
dataDomains.rdf

http://vitro.mannlib.cornell.edu/filegraph/tbox/dataset.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/date-
time.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
dateTimeValuePrecision.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
documentStatus.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
education.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/event.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/geo-
political.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/grant.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/
linkSuppression.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/location.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/object-
properties.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/object-
properties2.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/object-
properties3.owl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Contents

Ontology assertions regarding vcard

Ontology assertions regarding OBO classes

Ontology assertions regarding data properties

Ontology assertions regarding data domains

Ontology assertions to define Dataset class

Ontology assertions to define DateTimelnterval
class

Ontology assertions to define
DateTimeValuePrecision classes

Ontology assertions regarding document status
Ontology assertions regarding educational
processes, roles, and classes

Ontology assertioons regarding event
processes, roles, and classes

Ontology assertions required by geopolitical
data

Ontology assertions regarding grants, roles,
and classes

Ontology assertions regarding location classes

Ontology assertions to define object properties

Ontology assertions to define BFO properties

Ontology assertions to define more object

properties

Reference - 308


http://vitro.mannlib.cornell.edu/filegraph/tbox/contact-vcard.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/contact-vcard.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/contact.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/data-properties.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/data-properties.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/dataDomains.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/dataDomains.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/dataset.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/date-time.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/date-time.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/dateTimeValuePrecision.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/dateTimeValuePrecision.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/documentStatus.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/documentStatus.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/education.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/education.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/event.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/geo-political.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/geo-political.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/grant.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/linkSuppression.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/linkSuppression.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/location.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties2.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties2.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties3.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/object-properties3.owl

Graph name

http://vitro.mannlib.cornell.edu/filegraph/tbox/
objectDomains.rdf

http://vitro.mannlib.cornell.edu/filegraph/tbox/
objectRanges.rdf

http://vitro.mannlib.cornell.edu/filegraph/tbox/
ontologies.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/orcid-
interface.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/other.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
outreach.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
personTypes.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/process.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/
publication.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
relationship.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/
relationshipAxioms.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/research-
resource-iao.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/research-
resource.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/research.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/role.owl

http://vitro.mannlib.cornell.edu/filegraph/tbox/sameAs.n3

http://vitro.mannlib.cornell.edu/filegraph/tbox/skos-
vivo.owl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Contents

Ontology assertions to define object domains

Ontology assertions to define object ranges

Ontology assertions for ORCiD and confirmed
ORCiD

Ontological definitions of object properties

Ontological definitions of BFO object properties

Ontology assertions to define types of people

Ontology assertions to define miscelleaneous

processes

Ontology assertions to define publication types
and related roles

Ontology assertions to define relationships,
including positions

Ontology axioms regarding restrictions on
relationships

Ontology assertions to define elements of IAO
needed for research resources

Ontology assertions to define ERO research
resources

Ontology assertions to define clinical trials

Ontology assertions to define miscellaneous
roles

Ontology assertions defining sameAs

Ontology assertions to define various classes as
subtypes of skos:Concept

Reference - 309


http://vitro.mannlib.cornell.edu/filegraph/tbox/objectDomains.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/objectDomains.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/objectRanges.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/objectRanges.rdf
http://vitro.mannlib.cornell.edu/filegraph/tbox/ontologies.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/ontologies.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/orcid-interface.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/orcid-interface.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/other.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/outreach.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/outreach.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/personTypes.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/personTypes.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/process.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/publication.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/publication.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/relationship.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/relationship.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/relationshipAxioms.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/relationshipAxioms.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/research-resource-iao.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/research-resource-iao.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/research-resource.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/research-resource.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/research.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/role.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/sameAs.n3
http://vitro.mannlib.cornell.edu/filegraph/tbox/skos-vivo.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/skos-vivo.owl

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Graph name Contents

http://vitro.mannlib.cornell.edu/filegraph/tbox/teaching.owl = Ontology assertions for Course and
TeacherRole

http://vitro.mannlib.cornell.edu/filegraph/tbox/vitro-0.7.owl  Ontology assertions for the Vitro application,

internal
http://vitro.mannlib.cornell.edu/filegraph/tbox/ Ontology assertions for the Vitro application,
vitroPublic.owl public. Defines files and file types

10.4.4
Notes

1. Graphs named "default" are built and managed by the Vitro application. Graphs names "filegraph" are
loaded from files when VIVO starts. Graphs named "filegraph/abox" are data. Graphs named "filegraph/
tbox" are ontology.

2. filegraph graphs are named with the name of the file they were loaded from.

filegraph files may be in several formats. You will see graphs loaded from files with type n3, owl and rdf.

4. The contentin some of the filegraphs may repeat content found in other filegraphs. This does not impact
the application.

5. Data you load by placing a file in filegraph/abox will appear as a result of the graph listing query above. See
grid.n3 below for an example. grid.n3 is not distributed with VIVO.

w

10.5 Ontology Reference

« Overview (see page 310)
« Reference Materials (see page 310)
« Issue Tracking (see page 311)

10.5.1 Overview

VIVO uses a collection of ontologies to represent scholarship. The Integrated Semantic Framework ontology
modules for VIVO (the VIVO-ISF ontology) provide a set of types (classes) and relationships (properties) to represent
researchers and the full context in which they work. Content in any local VIVO installation may be maintained
manually, brought into VIVO in automated ways from local systems of record, such as HR, grants, course, and
faculty activity databases, or from database providers such as publication aggregators and funding agencies.
Additional ontologies provide context and meaning for attributes and entities defined in VIVO-ISF.

VIVO-ISF is maintained by OpenRIF®®, Other ontologies used in VIVO are maintained by the W3C!%® and other
groups.

10.5.2 Reference Materials

+ Source ontologies for VIVO (see page 311)

165 https://github.com/openrif
166 https://www.w3.org/standards/semanticweb/ontology

Reference - 310


http://vitro.mannlib.cornell.edu/filegraph/tbox/teaching.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/vitro-0.7.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/vitroPublic.owl
http://vitro.mannlib.cornell.edu/filegraph/tbox/vitroPublic.owl
https://github.com/openrif
https://github.com/openrif
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« VIVO Classes (see page 312)

« Ontology Overview : Object Properties (see page 313)
« Ontology Diagrams (see page 314)

+ Rich export SPARQL queries (see page 338)

+ VIVO-ISF deployment in VIVO (see page 358)

10.5.3 Issue Tracking

Improvements to the ontologies used in VIVO are treated like all other feature requests and are tracked in the VIVO
JIRA issue tracker®. Issues involving ontological development in VIVO-ISF are replicated in the OpenRIF GitHub
issue tracker6®,

10.5.4 Source ontologies for VIVO

+ Background (see page 311)
« Imports vs. modules (see page 311)
+ Ontologies Integrated into the Integrated Semantic Framework (see page 311)

10.5.4.1 Background

Source ontologies may be imported in their entirety or included selectively through the MIREOT*® approach -
minimum information to reference an external ontology term - used when importing an entire ontology would
include unnecessary classes, properties, or axioms.

Imports vs. modules

The Integrated Semantic Framework is maintained in a file repository on GitHub [full ISF]*™ [VIVO-ISF]*™}) that
reflects the source ontologies while creating distribution modules grouping classes and properties more by
function, such as grants, agents, education, etc.

10.5.4.2 Ontologies Integrated into the Integrated Semantic Framework
The ISF ontology leverages the following ontologies in a unified, semantic structure:

+ VIVO - http://vivoweb.org/ontology/core

+ eagle-i Resource Ontology (ERO) - http://code.google.com/p/eagle-i

« Basic Formal Ontology (BFO) - http://www.ifomis.org/bfo

« Bibliographic Ontology (BIBO) - http://code.google.com/p/bibotools

« Cell Ontology (CL) - http://cellontology.org/?q=download

« Event Ontology - http://motools.sourceforge.net/event/event.html

« Friend of a Friend (FOAF) - http://www.foaf-project.org/

« Gene Ontology (GO) - http://geneontology.sourceforge.net/#code

« Geopolitical.ow!'"?, from the U.N. Food and Agriculture Organization

« Information Artifact Ontology (IAO) - http://code.google.com/p/information-artifact-ontology/

167 https://jira.duraspace.org/projects/VIVO/summary

168 https://github.com/openrif/community/issues

169 http://obi-ontology.org/page/MIREOT

170 https://github.com/SEssaid/connect-isf

171 https://github.com/vivo-isf

172 http://www.fao.org/countryprofiles/geopol_v10/ontologies/geopolitical.owl.html

Reference - 311


https://jira.duraspace.org/projects/VIVO/summary
https://jira.duraspace.org/projects/VIVO/summary
https://jira.duraspace.org/projects/VIVO/summary
https://github.com/openrif/community/issues
https://github.com/openrif/community/issues
https://github.com/openrif/community/issues
http://obi-ontology.org/page/MIREOT
http://obi-ontology.org/page/MIREOT
https://github.com/SEssaid/connect-isf
https://github.com/SEssaid/connect-isf
https://github.com/vivo-isf
https://github.com/vivo-isf
http://vivoweb.org/ontology/core
http://code.google.com/p/eagle-i
http://www.ifomis.org/bfo
http://code.google.com/p/bibotools
http://cellontology.org/?q=download
http://motools.sourceforge.net/event/event.html
http://www.foaf-project.org/
http://geneontology.sourceforge.net/#code
http://www.fao.org/countryprofiles/geopol_v10/ontologies/geopolitical.owl.html
http://www.fao.org/countryprofiles/geopol_v10/ontologies/geopolitical.owl.html
http://code.google.com/p/information-artifact-ontology/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Ontology for Biomedical Investigations (OBI) - http://obi.sourceforge.net/ontologylnformation/
« Ontology of Clinical Research (OCRe) - http://code.google.com/p/ontology-of-clinical-research/
« Reagent Ontology (ReO) - http://code.google.com/p/reagent-ontology/

« Relations Ontology (RO) - http://obofoundry.org/ro/

« Software Ontology (SWO) - http://theswo.sourceforge.net/

« Sequence Ontology (SO) - http://www.sequenceontology.org/

« SKOS (Simple Knowledge Organization System) - http://www.w3.0rg/2004/02/skos/

« Uberon (Uber anatomy ontology) - http://obo.svn.sourceforge.net/viewvc/obo/uberon/releases/
 vCard - http://www.w3.org/TR/vcard-rdf/

10.5.5 VIVO Classes

10.5.5.1
« Overview
« Finding the Classes in your VIVO
« VIVO Classes

10.5.5.2 Overview

VIVO uses a large number of classes from several different ontologies to represent scholarship. See Source
ontologies for VIVO (see page 311). The classes and their ontologies are shown in the figure below. You may have
additional classes as a result of local extensions.

10.5.5.3 Finding the Classes in your VIVO
To find the classes in your VIVO, you can use the SPARQL query below.

SELECT ?s ?label
WHERE

{
?s a owl:Class .
FILTER(regex(?s, "http"))
?s rdfs:label ?label .

}
ORDER BY ?s

10.5.5.4 VIVO Classes

All classes delivered with VIVO should be included in the diagram below. Classes in the respective ontologies, but
not delivered in VIVO, are not included. For figures related to the ontologies on which VIVO is based, see the
corresponding ontology projects.

Reference - 312


http://obi.sourceforge.net/ontologyInformation/
http://code.google.com/p/ontology-of-clinical-research/
http://code.google.com/p/reagent-ontology/
http://obofoundry.org/ro/
http://theswo.sourceforge.net/
http://www.sequenceontology.org/
http://www.w3.org/2004/02/skos/
http://obo.svn.sourceforge.net/viewvc/obo/uberon/releases/
http://www.w3.org/TR/vcard-rdf/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO Classes

12 October 2016
| vivoRelationship .2 | geoarea .+ | 0bo:BFO_0000001 “Entity” ;| obolAO_0000030 .+ | bibo:Document o
-2 vivoiAdvisingRelationship -+ geoigroup. | 800000002 Cortuant” Information Content Entity’ ==
sorari 1T abBro_oou000s -+ biboCollection N =
vivorFacultyMentoringRelationshp| coreconomic_regon o ~. | boic
vivo:GraduateAdvisingRelatonship eoorganization e -] bloAcademiciric ]
VivoPost eospeca_grouw foatParson] ab01A0_0000013"Jourel ATl
VivoiUndergraduateAdvisingRelationship [plfGoip] vvoBlogPostng
—77 R | T Fagonesndpaper
ivoAuthorship = ors
VivoiAwardOrHonorReceipt oRevow
VivoAwardedDegree bboAusODment
vivo Contract | BboAudovisuaiDocument
=
ivorGrant
i - bhoBook
3 :m:\:um&:mmul R bboProceodings
__vol rification [oboARG/2000377 “FOAF Profie| o Casestudy
Raaliaie ety [vearaKing] oCaoy
+ vivarPosit 00016 Dio:
g i ::Ad s {1 | e 2| 0borlAD_0000027 Data fem” |
vivorFaculyAdministrtivePosi X
0_0d0000§ "Spatial Region" obo1A0_0000102 . Do ColecedDocument
VivoiFacultyPositon 220008 “Data About an Ontology Part” [VwoDatabass
. = Vivgiacatm— i \ <t gencontoiogy orgomatsoboOwADBXIet> [bboatesson|
5
=] vivo:NonFacultyhdademicPositon b0B70_0000003 “Oecurant it v geneontciogy orgfomatsioboinOwSynonym |
oy os0870_000015 Procor| o grsrtclogyorgformahon OISy
T S5oBFO_ 0000008 Temporal Regor” = obo1A0_0000108 “Measurament Datum|
VivoiPrimaryPosiyhn

-2 0ba:1A0 10000008 "Datum Labe"
. = 5 0bXIAC_0000003
.= | 0bo:BFO_0000015 "Process’ AT /
- | 0b0:BFO_0000023 "Role” vivo:AdvisingProcess [sbo U0, “Rate Unit

Vivo:AttendingProcess. o oS

)
*Directive Inforipatiop Entity"

vivo:EditorRole
0bo:ERO_0000225 "Educator Role”

= ‘ 0boERO_0000787 “Employee Roke"

vivo:ClinicalOrganization
vivo:College

fnalysis Service"

oer0 w02

[0bo:ERO_0000788 “Faculty Role'|
[0b0:ERO_0000789 “Staff Role”
-2 vivo:Company 0bo:ERO_0000224 “Funding Role”

[wemvmgomoen]|

oLooderioe |

Wocowsta] oMamberio |

ey oOganzamoe
ivoDopariment___

[oomeppoias] ==
e oo
Voot ]
s
[aronssa] < vioRembaos S
vivo:FundingOrganization Vs OrgeniziopTocees
e - o570, ot Tt s
vivoHospita L oorePhaso_1 [o00}A0_0000300 “Textual Entty” |
vivorinstitute g [t Reviews Roe) ocre:

+ vears:OrgarizationName

[vears-OrganizatonUniName

roWokegPa
[FivoPesrReviweriol | e}
g = \ =
e sebe ErowNGLED ab0/ERO_0000012 Senics Provider ol | )
[vivo:Core Laboratory .z 0bo:BFO_0000040
[ - | OOoERD_0000783 “Stdent ol = obo0BILO0U00T "Planned Process” S iy
oL ero:ER0_0000785 “Gracuato Studont Rl o0, 000245 g . -
— boERO_0000014 “Research Project| 0ba:ERO_0000020 .2 | skos:Concept
vivoMuseum Src-FRO 0000788 iHigh Scheol Siudent Rok; . "+ | vvoAcademicDegree veard:individual
[ob0:ER0 0000784 Undergraduate Role'| X =]
vivo:Program - [6bo:ERO_0000017 Technique” Deox%e] veard:Location
[0B0:ERO_ 0000750 PostBaccaaursat Tranee'| 007 Tacion” —
viva:Publsher [0bo:ERO_0000914 “Post-Graduate Student Trainee'] | -Topl Welght Wedaummeant Proces’ nstrument” [vivoAvardronor | Veard:Organization
YARG. |0b0:ARG_2000376
oTescrerioe | abo:£R0_0000006 Coninc et
vivo:School “"Reagent"

= | 0bo:ERO_0000776 "US Resident Role"

vivo:StudentOrganization il ©0bo:ERO_0000778 3 - — ‘

X bibo:Document Status
oroEr0_comses -+ oo [BoDosment S |
B N T
e o — opemenrm]
vivo:University

10.5.6 Ontology Overview : Object Properties

The diagram reflects a catalog of available object properties more than a diagram of how they may typically be
populated in a VIVO instance.

Faux properties are managed through the application ontology and provide contextual labeling for commonly used
properties when they are used in the context of different domain and range classes.

Reference - 313



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Updated 316114 VIVO-ISF Ontology Object Properties | version 1.6
cxom0 o S

oroR0.001018

T
w

veard:Organization |~ [ —"
R—
bfo:Independent Continuant viverproceedingsOr
oboRO_0002351 0
meriber of Toatorou o | N “prodiced by

ob0:R0_000053

0bo/BFO_000040 Material Enity

‘0bo:0BI_0000E35 Manufaciurer

ob0ERO_0000034
“manuficurer
ovliThing

obo:ERO_0000031
o convbufgele
onirbuissTo

uses - oboERO 0000872 [
b0ERO 000070 edtosoy
used by

boERO_0000776 US Resdent Ro” | [boRole [T
aboRo_doooist S
[swonavsingrasonsnis | revives rtocs! [

b0 ERO_0000775

Soosro. oot oSy ] 1
©0bo:ERO_0000595 Research Opportunity’

Tocate: eographicFocus
ool boRo.0001015 WogeogapHGFonsO!

3 \mmF ilit vivo:Geographic Region | | vivo:( yraphicLocation
—— ﬁ !_L e | o]

S0 1AG. 0000138 Weasuremen ot

0BOERO}0000029 oboA0_ 0000221
provi o 15 qual mentof

Ty N -y e

10.5.7 Ontology Diagrams

These diagrams shows the relationships between entities in VIVO. Diagrams for the primary entities of scholarship
such as people and publications have diagrams centered on the primary entity.

Diagrams are drawn using VUE (Visual Understanding of the Environment), open source software from Tufts

University. You can learn more about VUE at the VUE website!®, VUE versions of each diagram are attached to the
corresponding ontology diagram page.

These diagrams focus on the entity of interest. Related entities are not shown in complete detail.

These diagrams focus on common attributes and relationships. They are not comprehensive. Additional attributes
and relationships are available. See the VIVO interface, use SPARQL queries, and examine the ontology to discover
additional attributes and relationships.

+ Organization Model (see page 315)

« Concept Model (see page 316)

« DateTimeValue and DateTimelnterval Models (see page 318)
« Journal Model (see page 320)

« Person Model (see page 321)

+ Teaching Model (see page 323)

« Publication Model (see page 324)

« Grant Model (see page 325)

173 http://vue.tufts.edu

Reference - 314


http://vue.tufts.edu
http://vue.tufts.edu

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Education and Training Model (see page 331)
Advising Model (see page 333)

Award Model (see page 335)

Membership Model (see page 336)

Ontology Diagram Legend (see page 337)
Credential Model (see page 337)

10.5.7.1 Organization Model

Notes

1.

Organizations in VIVO are entities with rdf: type foaf:0rganization. vivo:overviewisused to
provide a text description of the organization typically displayed on its profile page. A vcard is used to record
contact information, URLs and geolocation.

. VIVO provides a controlled vocabulary of organization types as rdfs:subClassOf foaf:Organization.

To create a list of the available organization types, use the SPARQL query below:

SELECT ?s
WHERE
{

?s rdfs:subClassOf foaf:Organization .

. Organizations may have relationships to other organizations. The "part of" relationship describes an

organization as part of another in a hierarchical sense. For example, the History Department may be part of
a College of Liberal Arts. The "successor" relationship describes an organization which no longer exists, and
for which a successor organization now exists. The "affiliatedOrganization" organization describes an
organization affiliated with the primary organization. The relationship is not symmetric, that is, the inverse
is not inferred by the Inferencer. Assert the reverse affiliation as needed.

Many other attributes and relationships are available for organizations. The model shown here is typical for
VIVO implementations.

Reference - 315



Organization Model
2016-10-10

vcard:Address
rd:region
veard:country

_ [ vearduud
: vivorank

rdfs:label

veard:hasAddress

vivo:dateTimeValue

vivo:
_ DateTime
* Value

obo:ARG_2000029
"contact info for"

veard:hasURL veard-hasGeo

veard:hasEmail

. | veard:Email

veard:email

Ontology Diagram Legend

Dark blue - the entity being modeled

rdfs:label
vivo:abbreviation
vivo:overview

obo:ARG_2000028
"has contact info"

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

foaf:Organization

vivo:affiliatedOrganization

foaf:Organization

vivo:hasSuccessorOrganization

ivo:hasPredecessorOrganization

bfo:0000051

"has part" Organizations may be part of

of other organizations, or
have other organizations as
parts, or both. Here we show
the organizationbeing
modeled as part of a
pre-existing organization

bfo:0000050 foaf.Organization

"part of"

vitro:mainimage
rdf:type
R vitro:
.z  File

vitro:filename

Eg. Organizations optionally
have a type from one of more
than two dozen defined types

vivo:University

Expressed as a geo uri
"ge0:25.094190,102.772167"

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.7.2 Concept Model

Notes

1. Conceptsin VIVO are modeled using the SKOS (Simple Knowledge Organization System) ontology. SKOS is
quite simple, and is a good place to start for those learning about ontologies, and how VIVO uses ontologies

to represent information as triples in RDF. See The SKOS Primer!’®, a readable introduction to SKOS and
how it is represented in RDF.

174 https://www.w3.0rg/TR/skos-primer/

Reference - 316


https://www.w3.org/TR/skos-primer/
https://www.w3.org/TR/skos-primer/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

2. Aconceptis typically represented in VIVO as two triples, one declaring the URI of the concept as a
skos:Concept, and one providing a text label for the concept. A third triple may use the skos:prefLabel to
repeat the text label for those applications expecting the concept to have a preferred label. The triples
might look like those below:

<http://vivo.myschool.edu> rdf:type skos:Concept .
<http://vivo.myschool.edu> rdfs:label "Molecular Biology"""@en .
<http://vivo.myschool.edu> skos:prefLabel "Molecular Biology"""@en .

3. Concepts are used throughout VIVO to indicate research and subject areas for people and other entities.

Concept Model
11 October 2016

skos:Concept
skos:prefLabel

skos:Concept

rdfs:label
skos:prefLabel

skos:narrower skos:narrower

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 317



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.3 DateTimeValue and DateTimelnterval Models

Notes

1. VIVO uses DateTimeValue and DateTimelnterval to model dates and datetimes. These are objects, not literal
values. The object models are simple (see below). VIVO DateTimeValue supports the concept of a precision,
which indicates whether a particular DateTimeValue is accurate to the day, or perhaps only to the month, or
perhaps only to the year. Precision is an important idea - publication dates, for example, are often known
only to year precision, and sometimes to year and month.

2. The modelindicates that creating a DateTimeValue requires three triples - one to specify the type, one to
specify the literal value of the datetime, and one to indicate the precision.

<http://vivo.myschool.edu/individual/n123> rdf:type vivo:DateTimeValue .
<http://vivo.myschool.edu/individual/n123> vivo:dateTime "2010-11-12T12:00:00"" A xsd:datetime .

<http://vivo.myschool.edu/individual/n123> vivo:dateTimePrecision vivo:yearPrecision .

3. VIVO provides the precisions shown below:
e <http://vivoweb.org/ontology/core#yearMonthDayTimePrecision>
e <http://vivoweb.org/ontology/core#yearMonthPrecision>
e <http://vivoweb.org/ontology/core#yearPrecision>
e <http://vivoweb.org/ontology/core#yearMonthDayPrecision>

Reference - 318



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

DateTimeValue Model
11 October 2016

vivo:dateTimePrecision

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green -independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

DateTimelnterval

The DateTimelnterval is an entity that references one or two DateTimeValues. Either reference could be missing.
An interval might have a start date and no end date, for example. To create a DateTimeValue with a start and end
takes the statements below, where the start and end objects exist and have the URI as shown.

<http://vivo.mydomain.edu/individual/n456> rdf:type vivo:DateTimeInterval .
<http://vivo.mydomain.edu/individual/n456> vivo:start <http://vivo.mydomain.edu/individual/n123> .
<http://vivo.mydomain.edu/individual/n456> vivo:end <http://vivo.mydomain.edu/individual/n124> .

Reference - 319



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

DateTimelnterval Model
11 October 2016

vivo:dateTimePrecision

vivo:start

_ | vivo:dateTimeValue

'

vivo:yearPrecision

vivo:end _ | vivodateTimeValue

'

vivo:yearPrecision

vivo:dateTimePrecision

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.7.4 Journal Model

Notes

1. AjournalinVIVO is an entity of type bibo: Journal.
2. Thejournal has a series of attributes, all are literals. Journal entities are quite simple.

Reference - 320



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Journal Model
12 October 2016

rdfs:label

vivo:abbreviation

bibo:issn

bibo:eissn

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green -independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.7.5 Person Model

Notes

1. The Person entity has a large collection of literal values. The most common are shown in the Person entity
below.

2. People are associated with research areas represented by skos:Concept entities. See Concept Model (see
page 316).

Reference - 321



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

3. Positions are relationships between a person and an organization. See Organization Model (see page 315) for
detail regarding representation of organizations. The position may have an associated dateTimelnterval.
See DateTimeValue and DateTimelnterval Models (see page 318) for details regarding the representation of
these entities.

4. The ORCID of a person is represented as an entity. The URI of the entity is the ORCiD of the person.

See Managing Person Identifiers (see page 83) for additional details.

5. The photo of a person is stored in a file and referenced using triples associated with the person. See Image
storage (see page 384)

6. Vcards are used to store contact information, name parts, URLs, and geolocation. The general pattern is
that a person has a vcard, the vcard has a an intermediate related to the type of information to be stored,
and the intermediate has references to literal values.

7. Additional details regarding the person - teaching (see page 323), grants (see page 325), publications (see page 324),
advising (see page 333), educational training (see page 331), awards (see page 335), memberships (see page 336) — are
shown in their respective models.

Person Model
12 October 2016

. | skos:Concept

vivo:hasResearchArea

vivo:ResearchAreaOf

veard:Name
e

veard:hasURL

0b0:ARG_2000029
“contact info for"

rdfs:label ivo:relates.
_—
veard:hasEmail vivo:eraCommonslid

0b0:ARG_2000028

veard:hasGeo "has contact info"

vivo:
.z | Position

., | foaf:Organization

:

vivorrelatedBy
Vivorrelates

vivo:dateTimelnterval

veard:hasTitle
veard:hasTelephone

vitro:mainimage

vivo:
_ | DateTime
? | Value

vivo:orcidid
vivo:confirmedOrcidid

vivo:
DateTime

Interval

. | veard:Telephone

:

vitro:
-z File

The URI of this entity is the.
ORCID for the person. vivo:end

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 322



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.6 Teaching Model

Notes

1. Teachingis represented as a time limited role associating a person with a course.

2. The course may have optional concepts indicating subject area(s). See Concept Model (see page 316) for
details.

3. Therole typically has a DateTimelnterval. See DateTimeValue and DateTimelnterval Models (see page 318) for
details.

4. The Role may have a label such as "Instructor" or "Team Lead" or other to further indicate the nature of the
instructor's role.

5. Theinstructoris a person. See Person Model (see page 321) for details.

6. Any number of instructors may each have a role in a course. Each has their own role.

Teaching Model
12 October 2016

vivo:hasSubjectArea

obo:RO_000057

"has Participant
_ | foaf:Person

" | rdfs:label

obo:RO_000056,
"participates In"

obo:RO_000053

" obo:BFO_0000054
bearer of"

"realized in"

obo:BFO_0000055
"realizes”

obo:RO_000052
"inheres in"

vivo:dateTimelnterval

e.g. "Instructor” rdfs:label

Reference - 323



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.7.7 Publication Model

vivo:DateTime
ValuePrecision

Publication Model
15 September 2016

bibo:Journal

vivo:date TimePrecision

'veard:Name
veard:middieName

veard:famiyName

_ | vivo:DateTimeValue

:

vivo:publicationVenueFor

veard:hasName

vivo:dateTimeValue vivo:hasPublicationVenue

veard:Individual

it

biboiissue

vivo:relatedBy

vivo:relates
. | vivo:Authorship

vivorrank

bibo:start

_ | skos:Concept

" | [ retsiaber

vivo:relatedBy

0bo:ARG_2000028 vivo:relates
"has contact info"

vivo:supported InformationResource

foaf:Person
.z __vivn.nrdd
rdfs-abel

vivorinformationResourceSupportedBy

veard:Individual

veard:hasURL

veard:URL

_ | vivo:Grant

- rfs:label

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 324



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.8 Grant Model

Notes

1. The Grant entity has attributes to record funding amounts, label, abstract, loca award ID (the ID as assigned
by the administering organization), and sponsorAwardID (the ID of the grant as assigned by the funding
organization)

2. The FundingOrganization is related to the grant through vivo:assigns and vivo:assignedBy. For additional
details regarding modeling organizations, see Organization Model (see page 315)

3. An organization, often an academic department, typically has a role in administering the grant. This s
modeling using an AdminRole which associated the grant, the role and the organization administering the
grant.

4. The grant may have one or more subject areas, represented as skos:Concept. See Concept Model (see page
316).

5. One or more people will be associated with the grant through roles. There will be one role for each person.

The role associates the person with the grant. For additional detail regarding the modeling of people,

see Person Model (see page 321)
6. The grant has an associate dateTimelnterval. See DateTimeValue and DateTimelnterval Models (see page 318)

Grant Model
12-October-2016

vivo:
_ Funding
“* | Organization

vivo:
DateTime
b= vivo:assigns vivo:assignedBy

vivo:dateTimelnterval vivo:relatedBy

obo:RO_0000053

vivo:relates bearer of

vivorelatedB: :
vivo:relatedBy. :

obo:RO_0000052
"inheres in"

'

; foaf:Organization

Note that other people may have other roles
on the grant using the same properties but
differentrole classes such as vivo:CoPrincipal
InvestigatorRole and vivo:InvestigatorRole 0bo:RO 0000053
*bearer of'

obo::RO_0000052
"inheres in"

vivo:SubjectAreaFor

vivo:relates

vivorrelatedBy  vivothasSubjectArea

skos:

vivo: -z  Concept
Principal
Investigator

Role

Reference - 325



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Worked ontology example using Person, Role, and Project instead of Grant

A gquestion has come up in the VIVO community about using Project instead of Grants - when a VIVO institution may
not receive grants but does want to track projects.

In the VIVO-ISF ontology, a Grant is a subclass of vivo:Relationship, since it represents the agreement between a
funding organization and a receiving organization, with the investigator roles usually also specified.

A Project, however, is a subclass of Project, which in turn is a subclass of bfo:Process. The project is the activity
undertaken or the investigation, not just the agreement.

The properties used are therefore slightly different to connect a Person, Role, and Project vs. a Person, Role, and
Grant, as indicated on the Grant Model (see page 325) page.

Example

We have a researcher, Marie Curie, who has the Project Lead role on a Project. In the VIVO front end display, there
appears to be a direct relationship between the person and the project, and an inverse relationship in return. The
role and date information appear as modifiers to the direct relationship, but are maintained through the ontology
as an intermediate Role object bearing the title of the role ("Project Lead") and the date range.

Public display view

Reference - 326



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

v IVO | t « share « discover

Home People QOrganizations Research Events

Curie, Marie T. | Faculty Member

B

Research Contact View All

other research activities

Detecting Sequestered Carbon Project Project Lead 2012 - 2017

VIVO | t « share « discover

Home People QOrganizations Research Events

Detecting Sequestered Carbon Project | Project

Overview

participant

Curie, Marie T. Project Lead 2012 -2017

Site admin view
This can be seen more clearly in the back-end editors view (when logged in with Site Admin privileges):

Note in the listing of object property statements at the bottom of the image that the Person has a "bearer of"
relationship (http://purl.obolibrary.org/obo/RO_0000053) to the Role - and no direct relationship to the Project.

Reference - 327


http://purl.obolibrary.org/obo/RO_0000053

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Individual Control Panel

Name Curie, Marie T.

class Agent (foaf), Continuant (obo), Entity (obo), Faculty Member (vivo), Independent Continuant (obo), Person (foaf), Thing

display level unspecified
edit level unspecified
last updated
URI http:fivivo.vivoweb.orgfindividual/n4705

publish level unspecified

Display This Individual (public) Edit This Individual [ Faculty Member (vivo) j
Raw Statements with This Resource as Subject Add New Individual of above Type

Raw Statements with This Resource as Object Change URI
() _Faculty Member {vive)

Remove Checked Asserted Types

Add Type

Object (individual-to-individual) Property Statements

Subject Predicate Object actions

Curie, Mare T. has contact info n6538 Edit Delete
Curie, Marle T. bearer of Project Lead Edit Delete

On the intermediate Role page, the relationships in both directions may be seen: the Role "inheres in" (http://
purl.obolibrary.org/obo/RO_0000052) the Person and is "realized in" (http://purl.obolibrary.org/obo/BFO_0000054)
the Project.

Reference - 328


http://purl.obolibrary.org/obo/RO_0000052
http://purl.obolibrary.org/obo/RO_0000052
http://purl.obolibrary.org/obo/BFO_0000054

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Individual Control Panel

Name Project Lead

class Continuant (obo), Entity (obo), Realizable Entity (obo), Researcher Role (vivo), Role (obo), Specifically Dependent Continuant {obo),
Thing
display level unspecified
edit level unspecified
last updated
URI http:/ivivo.vivoweb.org/individual/in1674

publish level unspecified

Display This Individual (public) Edit This Individual [Rﬂsﬂarcher Role (vivo) ;l
Raw Statements with This Resource as Subject Add New Individual of above Type

Raw Statements with This Resource as Object Change URI
() Researcher Role {viva)

Remove Checked Asserted Types

Add Type

Object (individual-to-individual) Property Statements

add new statement m
Subject Pred|cate Object actions
Project Lead realized In Detecting Sequestered Carbon Project m Delete
Project Lead Inheres in Curie, Marie T, m Delete
Project Lead date/time Interval n33s? m Delete

Finally, from the Project perspective, only the return (inverse) relationship to the Role is seen: the Project
"realizes" (http://purl.obolibrary.org/obo/BFO_0000055) the Role.

Reference - 329


http://purl.obolibrary.org/obo/BFO_0000055

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Individual Control Panel

Name Detecting Sequestered Carbon Project

class Entity (obo), Occurrent (obo), Process (obo), Project (viva), Thing

display level unspecified
edit level unspecified

last updated

URI http:/ivivo.vivoweb.orgfin

publish level unspecified

Raw Statements with This Resource as Object
[ project (vivo)

ject (individual-to-individual) Property Statements

add new statement m

Subject Predicate Object actlons

Detecting Sequestered Carbon Project realizes Project Lead m Delete

The triples underneath
For the Person (http://vivo.vivoweb.org/individual/n4705):

| obj | graph |

://purl.obolibrary.org/obo/RRG_2000028>
/purl.obolibrary.org/obo/RO_0000053>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/01/rdf~schema#label>
<http://vitro.mannlib.cornell.edu/ns/vitro/0. T#mostSpecificType>
<http://www.w3.org/1999/02/22-rdf -syntax-ns#type>
<http://www.w3.org/1989/02/22-rdf -syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf -syntax-ns#type>
<http://ww.w3.org/1999/02/22-rdf -syntax-ns#type>
Jwn.w3.0rg/1988/02/22-rdf -syntax-ns#type>

Jwn . w3.0rg/1999/02/22-rdf -syntax-ns#type>

<http://vivo.vivoweb.org/individual/n6538>
<http://vivo.vivoweb.org/individual/nl674>
<http://vivoweb.org logy. 1
"Curie, Marie T."""<http://www.w3.org/2001/XMLSchena#string>
<http://vivoweb. 1

| <http://vitro.mannlib.cornell.edu/default/vitro-kb-2>

|

|

|

g ogy |
<http://purl.obolibrary.org/obo/BFO_0000001> | <http://vitro.mannlib.cornell.edu/default/vitro-

|

|

|

|

|

<http://vitro.mannlib.cornell.edu/default/vitro-kb-2>
<http://vitro.mannlib.cornell.edu/default/vitro-kb=-2>
<http://vitro.mannlib.cornell.edu/default/vitro-kb=-2>
<http://vitro.mannlib.cornell.edu/default/vitro-kb-inf>

<http://purl.obolibrary.org/obo/BFO_0000002> <http://vitro.mannlib.cornell.edu/default /vitro-
<http://purl.obolibrary.org/obo/BFO_0000004> <http://vitro.mannlib.cornell.edu/default /vitro-
<http://www.w3.0rg/2002/07/owl#Thing> <http://vitro.mannlib.cornell.edu/default /vitro-
<http://xmlns.con/foaf/0.1/Agent> <http://vitro.mannlib.cornell.edu/default/vitro-kb-i
<http://xmlns.com/foaf/0.1/Person> <http://vitro.mannlib.cornell.edu/default/vitro-kb-inf>

FEEEE

5
=3
v

For the Role (http://vivo.vivoweb.org/individual/n1674):

pred | obj | graph |

<http: //purl.cbolibrary.org/obo/BFO_0000054>
<http://purl.cbolibrary.org/obo/R0_0000052>

<http://vivoweb 1 imeInterval>

<http: / /waw w3 1999/02/22-rdf-syntax-ns#typ

<http: //wew.w3.org/2000/01/rdi-schema#label>
<http://vitro.mannlib.cornell.edu/ns/vitre/0. #mostSpecificType>
<http://wew.w3.org/1999/02/22-rdf-syntax-nsétype>

<http: / /waw w3 1999/02/22-rdf-syntax-ns#typ

<http: //www w3 1999/02/22-rdf-syntax-ns#typ

<http: //wew.w3.org/1889/02/22-rdf-syntax-ns#type>
<http://waw.w3.org/1999/02/22-rdf-syntax-nsitype>
<http://wew.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://vivo.vivoweb.org/individual/n3075>

://vivo.vivoweb.org/individual/n4705>
/vivo.vivoweb.org/individual/n3357>

/vivoweb.org/ontology/core#ResearcherRole>

| <http://vitro.mannlib.cornell.edu/default /vitro-kb-2>

| <http://vitro.mannlib.cornell.edu/default/vitro-kb-2>

| <http://vitro.mannlib.cornell.edu/default/vitro-kb-2>

| <http://vitro.mannlib.cornell.edu/default/vitro-kb-2>

"Project Lead"”*<http://www.w3.org/2001/XMLSchema#string> | <http://vitro.mannlib.cornell.edu/default/vitro-kb-2>
/vivoweb.org/ontology/core#ResearcherRole> | <http://vitro.mannlib.cornell.edu/default/vitro-kb-inf>
/purl.obolibrary.org/obo/BFO_0000001> | <http://vitro.mannlib.cornell.edu/default/vitro-kb:

i |

|

|

|

|

<http://vitro.mannlib.cornell.edu/default/vitre-kb
<http://vitre.mannlib.cornell.edu/default/vitro-kb-
<http://vitro.mannlib.cornell.edu/default/vitro-kb.
<http://vitro.mannlib.cornell.edu/default/vitro-kb-ii

<http://vitro.mannlib.cornell.edu/default/vitro-kb-inf>

/purl.obolibrary.org/obo/BFO_0000017>
/purl.obolibrary.org/obo/BFO_00000205
/purl.obolibrary.org/obo/BFO_0000023>
furwer w3 .0£g/2002/07 /owl#Thing>

And finally, for the Project (http://vivo.vivoweb.org/individual/n3075):

pred | obi

graph |

<http: //purl.obolibrary.org/obo/BFO_0000055>
<http: //wiw.w3.org/1999/02/22-rdf-syntax-nshtype>

<http: //www.w3.org/2000/01/rdf-schemaé Label>

<http: //vitro.mannlib.cornell.edu/ns/vitro/0.T#mostSpeci EicType>
<http: //www.w3.org/1999/02/22-rdf-syntax-nshtype>

<http: //www.w3.org/1999/02/22-rdf-syntax-nshtype>

<http: //www.w3.org/1999/02/22-rdf-syntax-nsitype>

<http: //www.w3.org/1999/02/22-rdf-syntax-nshtype>

<http: //vivo.vivoweb.org/individual/nl674>
<http: //vivoweb.org/ontology/core#Project>

"Detecting Sequestered Carbon Project’”"<htip://www.w3.org/2001/XMLSchema#string>
<http://vivoweb.org/ontology/core#Project>

<http: //purl.obolibrary.org/obo/BFO_0000001>

<http: //purl.obolibrary.org/obo/BFC_0000003>
<http://purl.obolibrary.org/obo/BFO_0000015>

<http: //www.w3.0rg/2002/07 /owl#Thing>

<http://vitro.mannlib.cornell.edu/default/vitro-kb-2>
.mannlib.cornell.edu/default/vitro-kb-2>
.mannlib.cornell.edu/default/vitro-kb-2>
.mannlib.cornell.edu/default/vitro-kb-inf>
.mannlib.cornell.edu/default/vitro-kb-inf>
.mannlib.cornell.edu/default/vitro-kb-inf>
.mannlib.cornell.edu/default/vitro-kb-inf>
<http://vitro.mannlib.cornell.edu/default/vitro-kb-inf>

Reference - 330



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.9 Education and Training Model

Notes

1. Theentity of interest here is the AwardedDegree (dark blue in the center of the figure). The AwardedDegree
is a relationship between a Person and an AcademicDegree. The AcademicDegree can be considered
"abstract." The AwardedDegree is concrete - a person received the degree from a university at a particular
time. VIVO provides a controlled vocabulary of AcademicDegrees. Note that the label for the degree is on
the AcademicDegree.

2. The AwardedDegree has an associated EducationalProcess, which contains attributes of the

AwardedDegree. The EducationalProcess has a DateTimelnterval. See DateTimeValue and

DateTimelnterval Models (see page 318) for detail.

See Organization Model (see page 315) for details regarding the modeling of organizations

4. For a list of AcademicDegrees, use the SPARQL query below

w

SELECT ?s ?name

WHERE {
?s a vivo:AcademicDegree .
?s rdfs:label ?name .

}
ORDER BY ?name

5. See Person Model (see page 321) for details regarding the modeling of people

Reference - 331



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Education and Training Model
12 October 2016

vivo:dateTimelnterval
vivo:

DateTime
Interval

vivo:
Educational Process

‘ vivo:departmentOrSchool |

‘ vivo:supplementallnformation ‘

obo:RO_0000057

"has participant" obo:RO_0000057

"has participant”
obo:RO_0000056
obo:RO_0000056 "participates in"
"participates in"
obo:RO_0002234 gho:RO 0002353
"has output” "output of"

foaf:

-z Person

vivoirelates

vivo:relatedBy

vivo:
_ | Academic

;| csdam

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Reference - 332



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.7.10 Advising Model

Notes

1. The label on the AdvisingRelationship is optional. VIVO constructs a label consisting of the Advisors label,
the Advisee's label, some text representing the type of relationship

2. The AdvisingRelationship can optionally have one of the types below:
http://vivoweb.org/ontology/core#FacultyMentoringRelationship
http://vivoweb.org/ontology/core#GaduateAdvisingRelationship
http://vivoweb.org/ontology/core#UndergraduateAdvisingRelationship
http://vivoweb.org/ontology/core#PostdocOrFellowAdvisingRelationship

3. The AdviseeRole relates the AdvisingRelationship to the Advisee. This pattern is common for modeling roles
and relationships.

4. The AcademicDegree is optional. It may be present for AdvisingRelationships leading to a degree.

5. The AdvisorRole relates the AdvisingRelationship to the Advisor. It uses the same pattern as the
AdviseeRole.

6. The AdvisingRelationship may have an associated DateTimelnterval. See DateTimeValue and
DateTimelnterval Models (see page 318) for details regarding modeling DateTimelntervals.

Reference - 333



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Advising Model

12 October 2016
vivo:
DateTime
Interval
vivo:dateTimelnterval vivo:relatedBy

obo:RO_0000053
"bearer of"

vivo:relates

obo:RO_0000052
"inheres in"

foaf:
.z | Person
rdfs:label

obo:RO_0000052
"inheres in" .
vivo:relates

obo:RO_0000053
"bearer of"

vivo:relatedBy vivo:degreeCandidacy

vivo:Academic
Degree

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 334



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.11 Award Model

Notes

1. The entity of interest here is the AwardReceipt. Itis a relationship between a Person and an Award. The
Award entity is generic, as in "The Nobel Prize in Physics." The AwardReceipt is specific, as in "Person x was
awarded The Nobel Prize in Physics by the Royal Swedish Academy of Sciences on 10 October 2016"

2. The foaf:Agent is the entity making the award.

Award Model
15 April 2018

vivo:
DateTime
Value

foaf:

.z Agent
rdfs:label

vivo:datetimeValue
vivo:assigns

vivo:assignedBy

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 335



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.12 Membership Model

Notes

1. Membership is represented by using a MembershipRole to associate a person with an organization (a

committee, or other organization).
2. The MembershipRole is associated with the organization using vivo:roleContributesTo and

vivo:contributingRole
3. The MembershipRole has an optional label. The label is used to indicate the whether the person is "Chair"
or "Member" or some other term that further describes the membership.

Membership Model
12 October 2016

vivo:dateTimelnterval

obo:RO_000052 vivo:roleContributesTo

"inheres in"

rdfs:label rdfs:label

obo:RO_000005
"bearer of"

vivo:contributingRole

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

Reference - 336



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.7.13 Ontology Diagram Legend
Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the entity
being modeled, and should be removed if the entity being modeled is removed.

Green -independent entities. These typically pre-exist in your VIVO when adding the entity being modeled. These
should not be removed if the entity being modeled is removed.

10.5.7.14 Credential Model

Notes

1. Theentity of interest here is the IssuedCredential. Itis a relationship between a Person and a Credential.
The Credential entity is generic, as in "Board Certified in Neurology." The IssuedCredential is specific, as in
"Person x was credentialed as Board Certified in Neurology in 2017"

2. The Credential may have a type of License or Certificate.

3. This modelis similar to the Award Model.

Credential Model
27 July 2017

vivo:
DateTime
Value

vivo:DateTimelnterval

foaf:
Organization

vivo:datetimeValue vivo:hasGoverningAuthori

vivo:dateTimelnterval

vivo:hasSubjectArea

vivo:
. = | Credential

rdf:label

skos:Concept

rdf:label

vivo:relatedBy vivo:relatedBy

vivo:validin

Reference - 337



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Ontology Diagram Legend

Dark blue - the entity being modeled

Light blue - entities dependent on the entity being modeled. These will typically be created along with the
entity being modeled, and should be removed if the entity being modeled is removed.

Green - independent entities. These typically pre-exist in your VIVO when adding the entity being modeled.
These should not be removed if the entity being modeled is removed.

10.5.8 Rich export SPARQL queries

VIVO's rich export queries are organized by typical sections of a curriculum vitae or CV.

They may be useful to supplement the examples of SPARQL queries*™ in the SPARQL Resourcest’® section of this
wiki.

Queries are grouped by directory in the /productMods/WEB-INF/rich-export section of the VIVO source code.

10.5.8.1 Rich export SPARQL queries: Address

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

address.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>

CONSTRUCT {
?address ?property ?object .

} WHERE {
PERSON_URI obo:ARG_2000028 ?vcard .
?vcard vcard:hasAddress ?address .

?address ?property ?object .

locationOfAddress.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>

175 https://wiki.duraspace.org/display/VIVO/Example+SPARQL+queries
176 https://wiki.duraspace.org/display/VIVO/SPARQL+Resources

Reference - 338


https://wiki.duraspace.org/display/VIVO/Example+SPARQL+queries
https://wiki.duraspace.org/display/VIVO/Example+SPARQL+queries
https://wiki.duraspace.org/display/VIVO/SPARQL+Resources
https://wiki.duraspace.org/display/VIVO/SPARQL+Resources

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

CONSTRUCT {
?geographiclLocation ?property ?object .
} WHERE {
PERSON_URI obo:ARG_2000028 ?vcard
?vcard vcard:hasAddress ?address .
?address obo:RO_0001025 ?geographiclLocation .

?geographiclLocation ?property ?object .

10.5.8.2 Rich export SPARQL queries: Advising

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

advisee.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?advisee ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship .
?advisingRelationship a core:AdvisingRelationship .
?advisingRelationship core:relates ?advisee .
?advisee a foaf:Person .
?advisee obo:RO_0000O53 ?adviseeRole .
?adviseeRole a core:AdviseeRole .
?adviseeRole core:relatedBy ?advisingRelationship .
?advisee ?property ?object .

adviseesDegreeAlt.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?degree ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship .
?advisingRelationship a core:AdvisingRelationship .
?advisingRelationship core:relates ?advisee .
?advisee a foaf:Person .
?advisee obo:RO_000OO53 ?adviseeRole .
?adviseeRole a core:AdviseeRole .
?adviseeRole core:relatedBy ?advisingRelationship .
?advisee core:relates ?educationalTraining .

?educationalTraining a core:EducationalProcess .

Reference - 339



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?educationalTraining obo:R0O_0002234 ?awardedDegree
?awardedDegree core:relates ?degree
?degree a core:AcademicDegree

?degree ?property ?object

adviseesEducationalinstitutionAlt.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

CONSTRUCT {
?educationalInstitution rdfs:label ?label

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship
?advisingRelationship a core:AdvisingRelationship
?advisingRelationship core:relates ?advisee .
?advisee a foaf:Person
?advisee obo:RO_0000O53 ?adviseeRole
?adviseeRole a core:AdviseeRole
?adviseeRole core:relatedBy ?advisingRelationship
?advisee core:relates ?educationalTraining
?educationalTraining a core:EducationalProcess
?educationalTraining obo:RO_0000057 ?educationalInstitution
?educationallnstitution a foaf:0Organization .
?educationalInstitution rdfs:label ?label

adviseesEducationalEndDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?dateTimeValue ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship
?advisingRelationship a core:AdvisingRelationship
?advisingRelationship core:relates ?advisee
?advisee a foaf:Person
?advisee obo:R0O_0000053 ?adviseeRole
?adviseeRole a core:AdviseeRole
?adviseeRole core:relatedBy ?advisingRelationship .
?advisee core:relates ?educationalTraining
?educationalTraining a core:EducationalProcess
?educationalTraining core:dateTimeInterval ?dateTimeInterval
?dateTimeInterval core:end ?dateTimeValue
?dateTimeValue ?property ?object

Reference - 340



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

associatedDegree.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?degree ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship
?advisingRelationship a core:AdvisingRelationship
?advisingRelationship core:degreeCandidacy ?degree
?degree ?property ?object

associatedEducationalTraining.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?educationalTraining ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship
?advisingRelationship a core:AdvisingRelationship

?advisingRelationship core:advisingContributionTo ?educationalTraining .

?educationalTraining ?property ?object

associatedEducationalTrainingAlt.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?educationalTraining ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?advisingRelationship
?advisingRelationship a core:AdvisingRelationship
?advisingRelationship core:relates ?advisee
?advisee a foaf:Person
?advisee obo:R0O_0000053 ?adviseeRole
?adviseeRole a core:AdviseeRole
?adviseeRole core:relatedBy ?advisingRelationship
?advisee core:relates ?educationalTraining .
?educationalTraining a core:EducationalProcess
?educationalTraining ?property ?object

Reference - 341



10.5.8.3 Rich export SPARQL queries: Award

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

award.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?award ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?awardReceipt .
?awardReceipt a core:AwardReceipt .
?awardReceipt core:relates ?award
?award a core:Award

?award ?property ?object .

conferringOrganization.sparql

PREFIX core: <http://vivoweb.org/ontology/coret#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?organization ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?awardReceipt .
?awardReceipt a core:AwardReceipt .

?awardReceipt core:assignedBy ?organization .

?organization a foaf:Organization .

?organization ?property ?object .

sponsoringOrganization.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?organization ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?awardReceipt .
?awardReceipt a core:AwardReceipt .
?awardReceipt core:relates ?award
?award a core:Award
?award core:sponsoredBy ?organization .

?organization ?property ?object .

Reference - 342



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.8.4 Rich export SPARQL queries: Credential

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

credential.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?credential ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential .
?issuedCredential a core:IssuedCredential .
?issuedCredential core:relates ?credential .
?credential a core:Credential .
?credential ?property ?object .

credentialGoverningAuthority.sparql

PREFIX core: <http://vivoweb.org/ontology/coret#>

CONSTRUCT {
?organization ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential .
?issuedCredential a core:IssuedCredential .
?issuedCredential core:relates ?credential .
?credential a core:Credential .
?credential core:hasGoverningAuthority ?organization .

?organization ?property ?object .

elibibleForCredential.sparql
PREFIX core: <http://vivoweb.org/ontology/core#>
CONSTRUCT {
?credential ?property ?object .
} WHERE {

PERSON_URI core:eligibleFor ?credential .

?credential ?property ?object .

issuedCredential.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

Reference - 343



CONSTRUCT {
?issuedCredential ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential
?issuedCredential a core:IssuedCredential
?issuedCredential ?property ?object

issuedCredentialExpirationDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?date ?property ?object
?precision ?property2 ?object2

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential
?issuedCredential a core:IssuedCredential
?issuedCredential core:expirationDate ?date
?date ?property ?object
?date core:dateTimePrecision ?precision

?precision ?property2 ?object2

issuedCredentiallssueDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?date ?property ?object
?precision ?property2 ?object2

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential
?issuedCredential a core:IssuedCredential
?issuedCredential core:dateIssued ?date
?date ?property ?object
?date core:dateTimePrecision ?precision
?precision ?property2 ?object2

issuedCredentialSubjectArea.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?subjectArea ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?issuedCredential
?issuedCredential a core:IssuedCredential
?issuedCredential core:hasSubjectArea ?subjectArea
?subjectArea ?property ?object

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 344



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.5.8.5 Rich export SPARQL queries: Educational Training

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

educationalTraining.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?educationalTraining ?property ?object .

} WHERE {
PERSON_URI obo:R0O_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess .
?educationalTraining ?property ?object .

educationalTrainingDegree.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?degree ?property ?object .

} WHERE {
PERSON_URI o0bo:R0O_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess
?educationalTraining obo:R0O_0002234 7awardedDegree .
?awardedDegree a core:AwardedDegree .
?awardedDegree core:relates ?degree .
?degree a core:AcademicDegree .

?degree ?property ?object .

educationalTrainingEndDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?dateTimeInterval core:end ?date .
?date ?property ?object .

} WHERE {
PERSON_URI 0bo:R0O_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess .
?educationalTraining core:dateTimeInterval ?dateTimeInterval .

?dateTimeInterval core:end ?date .

Reference - 345



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?date ?property ?object

educationalTrainingLocation.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?geographiclLocation ?property ?object

} WHERE {
PERSON_URI o0bo:R0O_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess
?educationalTraining obo:RO_0000057 ?organization
?organization a foaf:Organization
?organization obo:RO_0001025 ?geographiclLocation
?geographiclLocation a core:GeographicLocation
?geographiclLocation ?property ?object

educationalTrainingOrganization.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?organization ?property ?object

} WHERE {
PERSON_URI obo:RO_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess
?educationalTraining obo:RO_0000057 ?organization
?organization a foaf:Organization
?organization ?property ?object

educationalTrainingStartDate.sparql

PREFIX core: <http://vivoweb.org/ontology/coret#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?date ?property ?object

} WHERE {
PERSON_URI 0bo:R0O_0000056 ?educationalTraining .
?educationalTraining a core:EducationalProcess
?educationalTraining core:dateTimeInterval ?dateTimeInterval
?dateTimeInterval core:start ?date
?date ?property ?object

Reference - 346



10.5.8.6 Rich export SPARQL queries: Funding

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

grantAwardedBy.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#>

CONSTRUCT {

?awardingOrganization rdfs:label ?label
} WHERE {

{

{PERSON_URI core:relatedBy ?investigatorRole .
?investigatorRole a core:PrincipalInvestigatorRole

}

union

{PERSON_URI core:relatedBy ?investigatorRole .

?investigatorRole a core:CoPrincipallnvestigatorRole

}
}

?investigatorRole core:relatedBy ?grant .
?grant a core:Grant .

?grant core:assignedBy ?awardingOrganization .
?awardingOrganization a foaf:0Organization .

?awardingOrganization rdfs:label ?label

grants.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {
?grant ?property ?object .
?investigatorRole core:relatedBy ?grant .
} WHERE {
{

{ PERSON_URI core:relatedBy ?investigatorRole .

?investigatorRole a core:PrincipallnvestigatorRole

union

{ PERSON_URI core:relatedBy ?investigatorRole .

?investigatorRole a core:CoPrincipalInvestigatorRole

?investigatorRole core:relatedBy ?grant .

Reference - 347



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?grant a core:Grant .
?grant ?property ?object

10.5.8.7 Rich export SPARQL queries: Membership

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

memberRoleln.sparql

PREFIX core: <http://vivoweb.org/ontology/coret#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?endeavor ?property ?object .

} WHERE {
PERSON_URI o0bo:R0O_0000053 ?memberRole .
?memberRole a core:MemberRole .
?memberRole core:roleContributesTo ?endeavor .
?endeavor ?property ?object .

10.5.8.8 Rich export SPARQL queries: Outreach

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

outreachRoleln.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?endeavor ?property ?object .

} WHERE {
PERSON_URI obo:R0O_0000053 ?outreachRole .
?outreachRole a core:OutreachProviderRole .
?outreachRole core:roleContributesTo ?endeavor .
?endeavor ?property ?object .

10.5.8.9 Rich export SPARQL queries: Patent

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

Reference - 348



assignee.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX bibo: <http://purl.org/ontology/bibo/>

CONSTRUCT {
?assignee ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship .
?authorship core:relates ?patent
?patent rdf:type bibo:Patent
?patent core:assignee ?assignee .
?assignee ?property ?object

inventors.sparql

PREFIX core:
PREFIX rdf:

PREFIX bibo:
PREFIX foaf:

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
<http://purl.org/ontology/bibo/>
<http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?person

} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship

?property ?object

?authorship core:relates ?patent .
?patent rdf:type bibo:Patent
?authorship core:relates ?person
?person a foaf:Person .

?person ?property ?object

patent.sparql

PREFIX core:
PREFIX rdf:
PREFIX bibo:

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
<http://purl.org/ontology/bibo/>

CONSTRUCT {
?patent

} WHERE {
PERSON_URI core:relatedBy ?authorship

?authorship a core:Authorship .

?property ?object .

?authorship core:relates ?patent
?patent rdf:type bibo:Patent .
?patent ?property ?object

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 349



patentFiledDate.sparql

PREFIX core:
PREFIX rdf:
PREFIX bibo:

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
<http://purl.org/ontology/bibo/>

CONSTRUCT {
?date ?property ?object .
?precision ?property2 ?object2 .

} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship .
?authorship core:relates ?patent .
?patent rdf:type bibo:Patent .
?patent core:dateFiled ?date .
?date ?property ?object .
?date core:dateTimePrecision ?precision .
?precision ?property2 ?object2 .

patentissuedDate.sparql

PREFIX core:
PREFIX rdf:
PREFIX bibo:

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
<http://purl.org/ontology/bibo/>

CONSTRUCT {
?date ?property ?object .
?precision ?property2 ?object2 .

} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship .
?authorship core:relates ?patent .
?patent rdf:type bibo:Patent .
?patent core:dateIssued ?date .
?date ?property ?object .
?date core:dateTimePrecision ?precision .
?precision ?property2 ?object2 .

10.5.8.10 Rich export SPARQL queries: Position

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

locationForPosition.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

Reference - 350



PREFIX obo:

CONSTRUCT {

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://purl.obolibrary.org/obo/>

?organization core:hasGeographicLocation ?geographicLocation

?geographicLocation rdfs:label ?label

} WHERE {

PERSON_URI core:relatedBy ?position

?position a core:Position

?position core:relates ?organization

?organization a foaf:Organization

?organization obo:RO_0001025 ?geographiclLocation

?geographicLocation rdfs:label ?label .

organizationForPosition.sparql

PREFIX core:
PREFIX rdfs:
PREFIX foaf:

CONSTRUCT {

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/2000/01/rdf-schema#>
<http://xmlns.com/foaf/0.1/>

?position core:positionInOrganization ?organization

?organization rdfs:label ?label

} WHERE {

PERSON_URI core:relatedBy ?position

?position a core:Position

?position core:relates ?organization

?organization a foaf:Organization

?organization rdfs:label ?label

subOrganizationForPosition.sparql

PREFIX core:
PREFIX rdfs:
PREFIX foaf:

PREFIX obo:

CONSTRUCT {

<http://vivoweb.org/ontology/core#>
<http://www.w3.0rg/2000/01/rdf-schema#>
<http://xmlns.com/foaf/0.1/>

<http://purl.obolibrary.org/obo/>

?organization core:hasSubOrganization ?subOrganization

?subOrganization rdfs:label ?label

} WHERE {

PERSON_URI core:relatedBy ?position

?position a core:Position

?position core:relates ?organization

?organization a foaf:0Organization

?organization obo:BFO_0000050 ?subOrganization

?subOrganization rdfs:label ?label

Reference - 351



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

superOrganizationForPosition.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>

CONSTRUCT {
?superOrganization ?property ?object
} WHERE {
PERSON_URI core:relatedBy ?position
?position a core:Position
?position core:relates ?organization
?organization a foaf:Organization
?organization obo:BFO_0000051 ?superOrganization
?superOrganization ?property ?object

10.5.8.11 Rich export SPARQL queries: Presentation

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

meetingLocation.sparql

PREFIX vivo: <http://vivoweb.org/ontology/core#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?location rdfs:label ?locationName

} WHERE {
PERSON_URI o0bo:R0O_0000053 ?presenterRole
?presenterRole a core:PresenterRole
?presenterRole obo:BFO_0000054 ?presentation
?presentation obo:BF0O_0000050 ?containingEvent
?containingEvent obo:RO_0001025 ?location

?location rdfs:label ?locationName

meetingName.sparql

PREFIX vivo: <http://vivoweb.org/ontology/core#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat#>

CONSTRUCT {
?containingEvent rdfs:label ?containingEventName
} WHERE {
PERSON_URI obo:R0O_0000053 ?presenterRole
?presenterRole a core:PresenterRole .
?presenterRole obo:BFO_0000054 ?presentation
?presentation obo:BFO_0000050 ?containingEvent
?containingEvent rdfs:label ?containingEventName

Reference - 352



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

presenterRoleln.sparql

PREFIX vivo: <http://vivoweb.org/ontology/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#>

CONSTRUCT {
?presentation rdfs:label ?presentationTitle .
?presenterRole rdfs:label ?roleLabel .

} WHERE {
PERSON_URI obo:R0O_0000053 ?presenterRole .
?presenterRole a core:PresenterRole .
?presenterRole rdfs:label ?rolelLAbel .
?presenterRole obo:BFO_0000054 ?presentation .
?presentation rdfs:label ?presentationTitle .

10.5.8.12 Rich export SPARQL queries: Publication

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

associatedJournal.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?publicationVenue ?property ?object .
} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship .
?authorship core:relates ?publication .
?publication a obo:IA0_0000030 .
?publication core:hasPublicationVenue ?publicationVenue .
?publicationVenue ?property ?object .

authors.sparql

PREFIX core: <http://vivoweb.org/ontology/coret#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?coAuthorship ?propertyl ?objectl .
?person ?property2 ?object2 .

} WHERE {
PERSON_URI core:relatedBy ?authorship .

Reference - 353



PREFIX foaf:

?authorship a core:Authorship

?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication core:relatedBy ?coAuthorship
?coAuthorship a core:Authorship
?coAuthorship ?propertyl ?objectl
?coAuthorship core:relates ?person
?person a foaf:Person

?person ?property2 ?object2

presentedAtEvent.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX bibo: <http://purl.org/ontology/bibo/>

CONSTRUCT {

?event ?property ?object

} WHERE {

PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication bibo:presentedAt ?event
?event ?property ?object

presentedAtEventEndDate.sparql
PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

<http://xmlns.com/foaf/0.1/>PREFIX bibo:

CONSTRUCT {

?endDate ?property ?object
?precision ?property2 ?object2

} WHERE {

PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication bibo:presentedAt ?event

?event ?property ?object .

?event core:dateTimeInterval ?dateTimeInterval

?dateTimeInterval core:end ?endDate
?endDate core:dateTimePrecision ?precision

?precision ?property2 ?object2

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://purl.org/ontology/bibo/>

Reference - 354



presentedAtEventLocation.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX bibo: <http://purl.org/ontology/bibo/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemat#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?location rdfs:label ?locationName

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication bibo:presentedAt ?event
?event obo:RO_0001025 ?location

?location rdfs:label ?locationName

presentedAtEventStartDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX bibo: <http://purl.org/ontology/bibo/>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?startDate ?property ?object
?precision ?property2 ?object2

} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication bibo:presentedAt ?event
?event ?property ?object
?event core:dateTimeInterval ?dateTimeInterval
?dateTimeInterval core:start ?startDate
?startDate core:dateTimePrecision ?precision
?precision ?property2 ?object2

publication.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?publication ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship

?authorship core:relates ?publication

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 355



?publication a obo:IA0_0000030
?publication ?property ?object

publicationDate.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?date ?property ?object
?precision ?property2 ?object2

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication ?dateTimeValue ?date
?date ?property ?object
?date core:dateTimePrecision ?precision .
?precision ?property2 ?object2

publicationPartOfinfoResource.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?informationResource ?property ?object
} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication obo:BFO_0000050 ?informationResource

?informationResource ?property ?object

publicationReproducedin.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX bibo: <http://purl.org/ontology/bibo/>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?informationResource ?property ?object
} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 356



?publication a obo:IA0_0000030
?publication bibo:reproducedIn ?informationResource
?informationResource ?property ?object

publicationStatus.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX bibo: <http://purl.org/ontology/bibo/>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?publicationStatus ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication bibo:status ?publicationStatus

?publicationStatus ?property ?object

publicationURL.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>

CONSTRUCT {
2urllink ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication
?publication a obo:IA0_0000030
?publication obo:ARG_2000028 ?vcard
?vcard vcard:hasURL ?urllink .

2urllink ?property ?object

publisher_variantl.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?publisher ?property ?object

} WHERE {
PERSON_URI core:relatedBy ?authorship
?authorship a core:Authorship
?authorship core:relates ?publication

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Reference - 357



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

?publication a obo:IA0_0000030 .
?publication core:hasPublicationVenue ?publicationVenue .
?publicationVenue core:publisher ?publisher .

?publisher ?property ?object .

publisher_variant2.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?publisher ?property ?object .

} WHERE {
PERSON_URI core:relatedBy ?authorship .
?authorship a core:Authorship .
?authorship core:relates ?publication .
?publication a obo:IA0_0000030 .
?publication core:publisher ?publisher .
?publisher ?property ?object .

10.5.8.13 Rich export SPARQL queries: Teaching

Note that these are CONSTRUCT queries designed to create a small Jena model for export as a whole after a series
of queries has been run. The PERSON_URI variable is substituted by VIVO at runtime.

teacherRoleln.sparql

PREFIX core: <http://vivoweb.org/ontology/core#>
PREFIX obo: <http://purl.obolibrary.org/obo/>

CONSTRUCT {
?course ?property ?object .

} WHERE {
PERSON_URI obo:R0O_0000053 ?teacherRole .
?teacherRole a core:TeacherRole .
?teacherRole obo:BF0_0000054 ?course .

?course ?property ?object .

10.5.9 VIVO-ISF deployment in VIVO

10.5.9.1

Reference - 358



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

+ ISF Development Source
« ISFinVIVO

10.5.9.2 ISF Development Source
The VIVO-ISF files can be found in the OpenRif repositories on GitHub. https://github.com/openrif/vivo-isf-ontology

10.5.9.3 ISFin VIVO

» TBox filegraph directory largely mirrors /source directory from ISF repository
« selective (manual) removal of certain files and parts of files
« no anatomy.owl
« smaller clinical.owl
+ no research-resource-phenotype-mp.owl
+ no sharecenter.owl
« vastly smaller research-resource.owl
« smaller object-properties.owl and data-properties.owl
« additional VIVO-specific content:
» personTypes.n3
+ object-properties3.owl
« additional axioms primarily for application control purposes
appControls-temp.n3
classes-additional.owl
« dataDomains.rdf
+ objectDomains.rdf
+ objectRanges.rdf
« labels removed from ontology files and stored elsewhere for editing in the interface
« additional PropertyConfig.n3 file to set up "faux properties," e.g.:
+ "relatedBy" when used between a Person and Position is called "positions" and configured
separately
« "bearer of" when used between a Person and a ServiceProviderRole is called "has service provider
role" and configured separately

10.6 Freemarker Template Variables and Directives

Template variables are made available to render dynamic content within the application. To print a variable's value
in FreeMarker, use the following syntax:
${variableName}

Some variables have methods which can be used to return a value or perform a task such as adding a stylesheet or
script to the <head> element.

${stylesheets.add('<link rel="stylesheet" href=""mystylesheet.css" [>')}

${headScripts.add(<script type="text/javascript" src=""myscript.js"></script>)}

Special template directives provide debugging features that assist in template development.
<@describe var="stylesheets" />
(describe the methods callable on a template variable)

<@dump var ="stylesheets" [>
(dump the contents of a template variable)

Reference - 359


https://github.com/openrif/vivo-isf-ontology

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<@dumpAll />
(dump the contents of the template data model)

Asample page at*
http://yourLocalInstance.com/freemarkersamples

* demonstrates most of the methods and directives available within a template. The template file responsible for
this page is vitro-core/webapp/web/templates/freemarker/body/samples.ftl.

10.7 Architecture

o Overview (see page 360)

o Vitro (see page 360)

o VIVO (see page 360)

« Component View (see page 361)

« Additional Resources (see page 363)

10.7.1 Overview

VIVO is an enterprise class software system relying on numerous open source software components.
Fundamentally, VIVO relies on Vitro (see below). VIVO adds a collection of ontologies (see Ontology Reference (see
page 310)) to represent data about scholarship.

10.7.2 Vitro

Vitro is an open source, general purpose, semantic web engine. It is the application development platform
underlying VIVO. Vitro has no domain knowledge. Given ontologies regarding a domain, Vitro supports the editing
of the ontology, creation of individuals, management of individuals on "pages" which it generates, organization of
individuals into "class groups," indexing, search, faceted browsing, query, import, and export. Vitro has been used
to manage collections of clinical trials, spaceships, library catalogs, datasets, and many more.

VIVO is Vitro with an ontology for representing scholarship, and a set of displays and visualizations that support the
use of data for expert finding, team building, assessment, and other VIVO use cases.

Vitro can be built an operated independently of VIVO. VIVO is completely dependent on Vitro.

10.7.3VIVO

VIVO is a customized Vitro. The table below shows how VIVO compares to Vitro.

Vitro VIVO

Purpose General-purpose tool for working with Specialized tool for Research Networking
Semantic Data

Ontology = Noontology Includes an ontology (VIVO-ISF) for Research
Networking

Reference - 360



Vitro

Theme Minimal theme
Display Default display rules
Rules
Form Default editing forms
editing
Search Default search index
Index
Function  Default functionality
ality

10.7.4 Component View

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVO

Elaborate theme, display and editing are customized
for the ontology

Annotations are used to:

+ Assign data properties to groups
+ Arrange property groups on the page

Editing is customized to the ontology

Search index contains additional fields specific to
VIVO

Additional functionality: visualizations, interface to
Harvester, QR codes, etc.

VIVO, with Vitro, as "made" out of components, including other open source software components. The figure
below shows the various software components that are used in a VIVO/Vitro system.

Reference - 361



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

VIVONitro system architecture for
linked open data regarding scholarship

Ensures that only the VIVO/Vitro application, and not internal
S Apache _ v /Vitro application, and not
services such as Solr, are exposed to the public. Provides

l security filtering and a means to serve non-VIVO resources.
This layer is optional, but recommended.
Presentation

VIVO Visualizations VIVO Ul
Customizations

Vitro provides a default web presentation for all entities. VIVO Freemarker templates
override Vitro templates to provide presentation customized for
scholarship. D3 is used to create viz that run on all modern devices.

Business Logic Business |Ggil: and presentation services run as serviets
in a Tomcat container

User Access Ontology Editor

o

Simple
Loader

Vitro APls SPARQL

#LD $

Linked Data Fragments
Harvester —— . ——

Reasoner
External applications load data Apache JENA

through the Vitro APls

\?K Jfact

User access can be done with local credentials or external authentication services. An
ontology editor supports creation of new ontologies, and management of classes and
properties for ontologies loaded to Vitro. VIVO is pre-loaded with ontologies for
representing scholarship. The Vitro APls support SPARQL and LDF.

Persistence

Search Index | | Content | | Configuration

s i Y = T L o D = 7

P



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.7.5 Additional Resources

o Vitro (see page 363)

« VIVO and Vitro (see page 363)

« Software Architecture Overview (see page 364)

« VIVO Data Models (see page 368)

+ VIVO and the Solr search engine (*) (see page 378)
+ Image storage (see page 384)

10.7.6 Vitro

Vitro is an open source, general purpose, semantic web engine. It is the application development platform
underlying VIVO. Vitro has no domain knowledge. Given ontologies regarding a domain, Vitro supports the editing
of the ontology, creation of individuals, management of individuals on "pages" which it generates, organization of
individuals into "class groups," indexing, search, faceted browsing, query, import, and export. Vitro has been used
to manage collections of clinical trials, spaceships, library catalogs, datasets, and many more.

VIVO is Vitro with an ontology for representing scholarship, and a set of displays and visualizations that support the
use of data for expert finding, team building, assessment, and other VIVO use cases.

10.7.7 VIVO and Vitro

VIVO itself is a customization of a more generic product called Vitro. Here is how VIVO has been customized from
Vitro.

Vitro VIVO

Purpose General-purpose tool for working with Specialized tool for Research Networking
Semantic Data

Ontology = No ontology Includes an ontology (VIVO-ISF) for Research
Networking
Theme Minimal theme Elaborate theme, display and editing are customized

for the ontology

Display Default display rules Annotations are used to:

Rules + Assign data properties to groups

« Arrange property groups on the page

Form Default editing forms Editing is customized to the ontology

editing

Search Default search index Search index contains additional fields specific to
Index VIVO

Reference - 363



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Vitro VIVO
Function  Default functionality Additional functionality: visualizations, interface to
ality Harvester, QR codes, etc.

10.7.8 Software Architecture Overview

» Data (see page 365)
« Content RDF (see page 365)
+ Configuration RDF (see page 365)
+ Search Engine (see page 366)
« Uploaded Files (see page 366)
» Logic (see page 366)
+ Controllers and Editing Framework (see page 366)
o DAOs (see page 366)
« Filtering (see page 367)
+ Ontology Reasoners: ABox and TBox (see page 367)
« Search Indexer (see page 367)
« Image Processor (see page 367)
» Presentation (see page 367)
+ Template Engine and Templates (see page 367)
« JavaScript (see page 367)
o CSS (see page 367)
o JSPs (see page 368)
» APIs (see page 368)
« Security (see page 368)
« Authentication (see page 368)
« Authorization (see page 368)

Reference - 364



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

S JavaScript < ® Templates
=]
©
-
c —
[}]
3
& Template
Engine
—
Controllers and Editing Framework
Authentication
o
= L] ] |
3 DAOs
] ] - |
. =@ Authorization
Filtering o
Ontology Instance o B
Reasoner: Reasoner: Search o §
I I TBox ABox Indexer E&
- - | 1 1 1 [ | |
o] Configuration Content Search Uploaded
5 RDF RDF Engine e

10.7.8.1 Data

VIVO has four data stores. When copying, backing up, or restoring a VIVO installation, all four data stores should be
considered.

Content RDF

This is where most of VIVO's information is stored. Names of individuals, relationships between individuals, types of
individuals (for example, Person or Organization), are all stored in the Content RDF

Content RDF uses a triple-store or other SPARQL endpoint. Usually, the triple-store is a Jena SDB implementation,
with a MySQL database.

The interface is specified by RDFService.java.

Configuration RDF

This is where VIVO's parameters are stored, like which templates are used to display what types of data. Other
parameters describe how the custom editing screens are applied to complex data structures. The Configuration
RDF is also the storage for VIVO's user accounts.

Reference - 365



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Configuration RDF uses a triple-store or other SPARQL endpoint. The triple-store is a Jena TDB implementation,
with files kept in the home directory of the VIVO application.

The interface is specified by RDFService.java.

Search Engine

In theory, all of the search operations in VIVO could be performed using SPARQL queries against the RDF. In
practice, however, a dedicated search engine gives a much faster response. The search engine is available to VIVO's
users, to assist in finding pages of interest. The search engine is also used internally, to provide prompt response to
requests for auto-completion, indexes, counts, and other data.

The search engine permits queries that yield faceted results, for a more successful search. Usually, it is
implemented with a Solr web application. By default, Solr is installed in the same web server as VIVO. However, it is
easy to move Solr to a different web server, to improve performance.

The interface is specified by SearchEngine.java

Uploaded Files

VIVO allows individuals to upload images for their profile pages. VIVO also generates a thumbnail image for more
compact display. These images are kept in the Uploaded Files storage. Each file is assigned a URI, so it can be
distinguished from other files of the same name. Currently this is only used for images, but VIVO could be
customized to store other types of files here as well.

The default implementation uses a storage system similar to PairTreel’’,

The interface is specified by FileStorage.java

10.7.8.2 Logic

VIVO adds a layer of "business logic" to the data storage. It uses inference to add to the data. It applies policies to
determine which users are authorized to see which pieces of data.

Controllers and Editing Framework

The controllers contain the top-level logic, determining how to respond to web requests. This includes fetching
data, making decisions based on that data, and displaying the results.

The Editing Framework provides the user with the tools needed to edit the RDF data. In some cases, a simple
default screen will suffice. For more elaborate data structures, the Editing Framework creates related groups of
data objects, and enforces the relationships among them.

DAOs

The DAOs, or Data Access Objects, form a layer of secondary logic. They provide a large number of utility
subroutines, to take the repetitive processing tasks away from the Controllers and Editing Framework.

The DAOs also provide a framework for the filtering layer.

There are a large number of interfaces that define the DAO layer.

177 https://wiki.ucop.edu/display/Curation/PairTree

Reference - 366


https://wiki.ucop.edu/display/Curation/PairTree
https://wiki.ucop.edu/display/Curation/PairTree

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Filtering

Data within VIVO can be public or private, or shades of gray. The Filtering layer works with the Authentication
system to determine which pieces of data may be displayed to a particular user.

The Filtering layer means that the Controllers don't need to include logic for this sort of decision. The Controller
asks the Filtered DAOs for data, and receives as much data as the current user is authorized to see.

The interface is specified by VitroFilters.java

Ontology Reasoners: ABox and TBox

One of the principal strengths of RDF is that we can infer additional data from the data at hand. However, the logic
involved can be complicated and time-consuming.

Currently VIVO applies two different reasoners to the Content RDF. The TBOX - or Ontology models - are small
enough that extensive reasoning can be applied. Currently, the Pellet reasoner is used. Applying that same level of
inference to the ABOX - or Assertions models - would take a prohibitive amount of time. VIVO uses its own reasoner
for this, applying only those logical inferences that VIVO requires to function.

Search Indexer

The Search Indexer reacts to changes in the Content RDF, updating the search index to reflect those changes.
Several types of logic are employed to determine which individuals are affected by the RDF changes, and how to
build the search records for those individuals. Sometimes a single change requires that several search records be
rebuilt.

Image Processor

When images are uploaded through the GUI, the Image Processor creates a thumbnail image, cropped and sized as
the user requests. Currently, the image processor is based on the Java Advanced Imaging library.

10.7.8.3 Presentation

The presentation layer is where the web pages of VIVO are created. Most of the web pages are created using the
Freemarker template engine. However, a number of pages are still created by JSPs.

Template Engine and Templates
VIVO uses the Freemarker Template Engine to construct the HTML for its web pages. The templates describe the

format and structure of the pages, and the template engine inserts relevant data each time the template is used.

JavaScript

VIVO relies heavily on JQuery to create a rich and responsive user interface. Other scripts are used also.

CSS

Like any web application, VIVO uses CSS files to produce a consistent style across the user interface.

Reference - 367



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

JSPs

Early releases of VIVO were built almost entirely using JSPs. The change to Freemarker was an attempt to insure
better separation between the Logic layer and the Presentation layer.

Some JSPs are still used in VIVO. In general these are restricted to administrative pages, including advanced data
manipulation and "back-end editing".

APlIs

VIVO supports a collection APIs for importing and exporting data. The APIs have no presentation layer, per se. The
format of their responses is determined by the nature of the request, and usually does not involve HTML. Responses
to APl requests are constructed entirely by the Controllers.

10.7.8.4 Security

The security system determines what data a user may see, what data they may modify, and what functions they
may perform.

Authentication

VIVO includes its own authentication system, including user accounts with email addresses as identifiers and
passwords as credentials. VIVO can be configured to use an external authentication system also. In this case, VIVO
still maintains a user account for each user, but no passwords are stored. If the external authentication system
asserts that a user has properly logged in, VIVO accepts that assertion.

Authorization

The Authorization system relies on a list of Policy objects to determine what a user may do. Before the Controllers
or the Editing Framework or the Filtering layer take any action, they consult the Policy list to determine whether
that action is authorized for the current user.

This very flexible set of Policies permits VIVO to classify some data as public or private, while other data is private
except to the user who owns it.

10.7.9 VIVO Data Models

» Concepts (see page 369)
+ Divisions in the knowledge base (see page 370)
« Types of statements (see page 370)
« Source of statements (see page 370)
« "Content" vs. "Configuration" (see page 371)
+ Model scope (see page 371)
« Purpose vs. scope (see page 372)
« Filtering (see page 372)
« The Data Models (see page 372)
+ Increasing complexity (see page 373)
« Beyond the models (see page 373)
« Attributes on Context, Session, or Request (see page 373)
« The DAO layer (see page 374)
« OntModelSelectors (see page 374)

Reference - 368



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« The RDF Service (see page 375)
« Model makers and Model sources (see page 375)
« The ModelAccess class (see page 375)
« Initializing the Models (see page 375)

« Where are the RDF files? (see page 375)

o The "first time" (see page 375)

« Initializing Configuration models (see page 376)
« Application metadata (see page 376)
» User Accounts (see page 376)
« The Display model (see page 376)
« Display TBox (see page 377)
« DisplayDisplay (see page 377)

« Initializing Content models (see page 377)
+ base ABOX (see page 377)
+ base TBoX (see page 377)
« base Full (see page 378)
« inference ABOX (see page 378)
« inference TBoOX (see page 378)
« inference Full (see page 378)
o union ABOX (see page 378)
« union TBOX (see page 378)
« union Full (see page 378)

10.7.9.1 Concepts

Base (asserted) | Base (asserted) Base Full i
ABox TBox (ABox +TBox) Application Metadata

User Accounts

Inference Full
(ABox + TBox)

Inference ABox | Inference TBox

Display Model

Uni Full Display TBox
Union ABox Union TBox & n'fnf M ) I
i & ase T Inference isp ay isp ay
(base + inference) (base + inference) (ABox + TBox) I E |

Frequently, we talk about "the data model" in VIVO. But this is an over-simplification which can be useful at times,
but misleading at other times. In fact, VIVO contains a matrix of data models and sub-models, graphs, datasets and
other constructs.

It might be more accurate to talk about the union of these data models as "the knowlege base". However, the
terminology of "the data model" is firmly entrenched.

Reference - 369



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Beginning in VIVO release 1.6, we are attempting to simplify this complex collection of models, and to produce a
unified access layer. This is a work in progress. Regardless of how clean the design might eventually become, this
will remain an area with complex requirements which cannot be satisfied by simplistic solutions.

Divisions in the knowledge base

Depending on what you want to do with the data, it can be useful to sub-divide it by one or more of the following

criteria:

Types of statements

An RDF model is often divided into ABox (assertions) and TBox (terminology). In RDF, there is no technical
distinction between TBox and ABox data. They are stored separately because they are used for different purposes.
The combination of the two is informally called the Full model.

TB
ox

AB
oX

Ful

Data type

"Terminological data"

Defines classes, properties, and relationships in your
ontology.

"Assertion data"

Enumerates the individual instances of your classes and
describes them.

The TBox and the ABox together, treated as a single
model.

For example, when you use the RDF tools to remove
statements, you want them removed regardless of
whether they are found in the TBox or the ABox.

Source of statements

Example data

foaf:Person
a owl:Class ;
rdfs:subClassOf owl:Thing ;
rdfs:label "Person"@en .
ex:preferredName
a owl:DatatypeProperty ;
rdfs:subProperty0f
skos:preflLabel,
foaf:name,
rdfs:label ;
rdfs:domain foaf:Person ;
rdfs:label "preferred name"@en .

local: tobyink
a foaf:Person ;
ex:preferredName "Toby
Inkster"

An RDF model can also be divided into Assertions and Inferences. The combination of the two is informally called
the Union.

Reference - 370



Statement
type

Assertions

Inferences

Union

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Meaning

Statements that you explicitly add to the model, either
through setup, ingest, or editing.

Statements that the semantic reasoner adds to the
model, by reasoning about the assertions, or about other
inferences.

The combination of Assertions and Inferences.

For most purposes, this is the desired model. You want to
know what statements are available, without regard to
whether they were asserted or inferred.

"Content" vs. "Configuration"

Example data

local:tobyink!™ rdfs:typel™
core:FacultyMember .

local:tobyink
rdfs:type foaf:Person .

local:tobyink
rdfs:type foaf:Agent .

local:tobyink
rdfs:type owl:Thing .

We sometimes distinguish between the data that VIVO is serving (Content) and the data that VIVO itself uses
(Configuration). The Content is available for display, for searching, for serving as Linked Open Data. The
Configuration controls how the content is displayed, who can access the data, and what VIVO itself looks like.

Model type

Configuration

Content

Model scope

Purpose

Data about the VIVO application itself.

The payload - the data that VIVO is intended to distribute.

Examples

Application parameters
User Accounts

Display options

People data
Publications data
Grant data

etc.

The knowledge base exists for as long as VIVO is running. However, subsets or facets of the knowledge base are
often used to satisfy a particular HTTP request, or through the length of a VIVO session for a particular user. These

178 http://localtobyink
179 http://rdfstype

Reference - 371


http://localtobyink
http://localtobyink
http://rdfstype
http://rdfstype

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

subsets are created dynamically from the full knowledge base, used for as long as they are useful, and then
discarded.

Scope Purpose Example Discarded when...

Application Created for the life of Never discarded.

(Servlet VIVO.

Context)

Session Created for a particular Data that is filtered by what the When the user logs out, or the
logged-in user user is permitted to view. session times out.

Request Created for a single Data that is organized by the When the individual request
HTTP request languages that are preferred by has been satisfied.

the browser.

At present, the Session lifespan is almost never used. However, potential use cases do exist for it.

The Request lifespan is used extensively, since it provides a convenient way to manage database connections and
minimize contention for resources.

Purpose vs. scope

It is tempting to think of the models of the Servlet Context as equivalent to the unfiltered models of the Request.
They may even represent the very same data. However, they have different scope, which makes them very different
in practice.

The unfiltered models in the Request go out of scope when the Request has been satisfied. The resources required
by these models have short lifetimes and are very easily managed. The models of the Servlet Context never go out
of scope until VIVO is shut down. It is difficult to reclaim resources such as database connections or processor
memory from these models.

Filtering

& TBD: talk about language filters and policy filters. What do we mean by "unfiltered?"

10.7.9.2 The Data Models

This is a summary of the data models:

The basic Base ABox, Base TBox, Inferred ABox, Named graphs from the RDF Service
content Inferred TBox (optionally with sub-graphs).

Views of the Base Full, Inferred Full, Union ABox, Union Views of the 4 basic content graphsiin
content TBox, Union Full different combinations.

Reference - 372



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The Application Metadata, User Accounts, Named graphs from the application
configuration  Display Model, Display TBox, DisplayDisplay datasource.

10.7.9.3 Increasing complexity

The structure of the data models has grown as VIVO has developed. New models, new structures, and new means of
accessing the data have been added as required by the growing code. The resulting data layer has grown more
complex and more error-prone.

The RDFService interface, increases the flexibility of data sources, and promises to allow a more unified view of
the knowledge base. However, the transition to RDFService is not complete, and so this adds another layer of
complexity to the data issues. New structures have been added, but none removed.

Beyond the models

There is an incredible variety of ways to access all of these models. Some of this variety is because the models are
accessed in different ways for different purposes. Additional variety stems from the evolution of VIVO in which new
mechanisms were introduced without taking the time and effort to phase out older mechanisms.

Here are some of the ways for accessing data models:

Attributes on Context, Session, or Request

Previously, it was common to assign a model to the ServletContext, to the HTTP Session, or to the
HttpSessionRequest like this:

OntModel ontModel = (OntModel) getServletContext().getAttribute("jenaOntModel");

Object sessionOntModel = request.getSession().getAttribute("jenaOntModel");

ctx.setAttribute("jenaOntModel", masterUnion);

Occasionally, conditional code was inserted, to retrieve a model from the Request if available, and to fall back to
the Session or the Context as necessary. Such code was sporadic, and inconsistent. This sort of model juggling also
involved inversions of logic, with some code acting so a model in the Request would override one in the Session,
while other code would prioritize the Session model over the one in the Request. For example:

public OntModel getDisplayModel(){
if( _req.getAttribute("displayOntModel") != null ){
return (OntModel) _req.getAttribute(DISPLAY_ONT_MODEL);

} else {
HttpSession session = _req.getSession(false);
if( session != null ){

if( session.getAttribute(DISPLAY_ONT_MODEL) != null ){
return (OntModel) session.getAttribute(DISPLAY_ONT_MODEL);
}else{
if( session.getServletContext().getAttribute(DISPLAY_ONT_MODEL) != null){
return (OntModel)session.getServletContext().getAttribute(DISPLAY_ONT_MODEL);

Reference - 373



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

}
log.error("No display model could be found.");
return null;

This mechanism has been removed in 1.6, being subsumed into the ModelAccess class (see below). Now,

the ModelAccess attributes on Request, Session and Context are managed using code that is private to
ModelAccess itself. Similarly, the code which gives priority to a Request model over a Session model is uniformly
implemented across the models.

It remains to be seen whether this uniformity can satisfy the various needs of the application. If not, at least the
changes can all be made within a single point of access.

The DAO layer

This mechanism is pervasive through the code, and remains quite useful. In it, a WebappDaoFactory is created,
with access to particular data models. This factory then can be used to create DAO objects which satisfy interfaces
like IndividualbDao, OntologyDAO, or UserAccountsDAO. Each of these object implements a collection of
convenience methods which are used to manipulate the backing data models.

Because the factory and each of the DAOs is an interface, alternative implementations can be written which provide

« Optimization for Jena RDB models
« Optimization for Jena SDB models
« Filtering of restricted data

+ and more...

Initially, the WebappDaoFactory may have been used only with the full Union model. But what if you want to use
these DAOs only against asserted triples? Or only against the ABox? This led to the OntModelSelector.

OntModelSelectors

An OntModelSelector provides a way to collect a group of Models and construct a WebappDaoFactory. With
slots for ABox, TBox, and Full model, an OntModelSelector could provide a consistent view on assertions, or on
inferences, or on the union. The OntModelSelector also holds references to a display model, an application
metadata model, and a user accounts model, but these are more for convenience than flexibility.

Prior to release 1.6, OntModelSelectors, like OntModels, were stored in attributes of the Context, Session, and
Request. They have been subsumed into the ModelAccess class.

Further, the semantics of the "standard" OntModelSelectors have changed, so they only act as facades before
the Models store in ModelAccess. In this way, if we make this call:

ModelAccess.on(session).setOntModel(ModelID.BASE_ABOX, someWeirdModel)

Then both of the following calls would return the same model:

ModelAccess.on(session).getOntModel(ModelID.BASE_ABOX) ;
ModelAccess.on(session).getBaseOntModelSelector () .getABoxModel();

Again, this is a change in the semantics of OntModelSelectors. It insures a consistent representation of OntModels
across OntModelSelectors, but it is certainly possible that existing code relies on an inconsistent model instead.

Reference - 374



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The RDF Service

/A TBD

Model makers and Model sources

10.7.9.4 The ModelAccess class

/\ TBD -Show how it represents all of these distinctions. Describe the scope searching and masking, wrt set
and get. Include the OntModelSelectors and WADFs.

10.7.9.5 Initializing the Models

When VIVO starts up, OntModel objects are created to represent the various data models. The configuration models
are created from the datasource connection, usually to a MySQL database. The content models are created using
the new RDFService layer. By default this also uses the datasource connection, but it can be configured to use any
SPARQL endpoint for its data.

Some of the smaller models are "memory-mapped" for faster access. This means that they are loaded entirely into
memory at startup. Any changes made to the memory image will be replicated in the original model.

The data in each model persists in the application datasource (usually a MySQL database), or in the RDFService.
Also, data from disk files may be loaded into the models. This may occur:

« thefirst time that VIVO starts up,
« ifamodelis found to be empty,
« every time that VIVO starts up.

depending on the particular model.

Where are the RDF files?

In the distribution, the RDF files appearin [vivo]/rdf andin [vitro] /webapp/rdf. These directories are
merged during the build process in the usual way, with files in VIVO preferred over files in Vitro.

During the VIVO build process, the RDF files are copied to the VIVO home directory, and at runtime VIVO will read
them from there.

The "first time"

For purposes of initialization, "first time" RDF files are loaded if the relevant data model contains no statements.
Content models may also load "first time" files if the RDFService detects that its SDB-based datastore has not been
initialized.

Reference - 375



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Initializing Configuration models

Application metadata

Function: Describes the configuration of VIVO at this site. Many of the configuration options are obsolete.
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata

Source: the application Datasource (MySQL database) (memory-mapped)

If this is the first startup, read the files in rdf/applicationMetadata/firsttime.

« InVitro, there are none
* InVIVO, initialSiteConfig.rdf, classgroups.rdf and propertygroups.rdf

User Accounts

Contains login credentials and assigned roles for VIVO users.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
Source: the application Datasource (MySQL database) (memory-mapped)
If this model is empty, read the files in rdf/auth/firsttime.

« InVitro, there are none (except during Selenium testing)
« InVIVO, there are none

Every time, read the files in rdf/auth/everytime

« InVitro, permission_config.n3
« InVIVO, there are none.

The Display model

This is the ABox for the display model, and contains the RDF statements that define managed pages, custom short
views, and other items.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata
Source: the application Datasource (MySQL database) (memory-mapped)
If this model is empty, read the files in rdf/display/firsttime

« InVitro, application.owl, menu.n3, profilePageType.n3, pagelList_editableStatements.n3
« VIVO contains its own copy of menu.n3, which overrides the one in Vitro aboutPage.n3 menu.n3
PropertyConfig.n3 PropertyConfigSupp.n3

Every time, read the files in rdf/display/everytime

« inVitro,dataGetterLabels.n3 permissions.n3
displayModelListViews.rdf searchIndexerConfigurationVitro.n3
pagelList.n3 vitroSearchProhibited.n3

* InVIVO homePageDataGetters.n3 vivoConceptDataGetters.n3
localeSelectionGUI.n3 vivolListViewConfig.rdf
n3ModelChangePreprocessors.n3 vivoOrganizationDataGetters.n3
orcidInterfaceDataGetters.n3 vivoQrCodeDataGetter.n3
searchIndexerConfigurationVivo.n3 vivoSearchProhibited.n3

Reference - 376


http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Display TBox

The TBox for the display model.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX
Source: the application Datasource (MySQL database) (memory-mapped)
Every time, read the files in rdf/displayTbhox/everytime.

« InVitro,displayTBOX.n3
« InVIVO, there are none

DisplayDisplay

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel
Source: the application Datasource (MySQL database) (memory-mapped)

Every time, read the files in rdf/displayDisplay/everytime

« InVitro,displayDisplay.n3
« InVIVO, there are none.

Initializing Content models

base ABox

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-2
Source: named graph from the RDFService

If first setup, read the filesin rdf/abox/firsttime

« InVitro, there are none
* InVIVO, geopolitical.verl.1-11-18-11.individual-labels.rdf

Every time, read the files in rdf/abox/filegraph, and create named models in the RDFService. Add them as sub-
models to the base ABox. If these files are changed or deleted, update the RDFService accordingly.

« InVitro, there are none
« InVIVO documentStatus.owl
academicDegree.rdf geopolitical.abox.verl.1-11-18-11.owl us-states.rdf
continents.n3 validation.n3 dateTimeValuePrecision.owl vocabularySource.n3
+ Plus whatever data packages you may have added. See Managing Data Packages (see page 89)

base TBox

Name: http://vitro.mannlib.cornell.edu/default/asserted-tbox

Source: named graph from the RDFService (memory-mapped)

If first setup, read the files in rdf/tbox/firsttime (without subdirectories)

« InVitro, there are none
+ InVIVO, additionalHiding.n3 initialTBoxAnnotations.n3

Every time, read the files in rdf/tbox/filegraph, and create named models in the RDFService. Add them as sub-
models to the base TBox. If these files are changed or deleted, update the RDFService accordingly.

Reference - 377


http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel
http://vitro.mannlib.cornell.edu/default/vitro-kb-2
http://vitro.mannlib.cornell.edu/default/asserted-tbox

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

o InVitro,vitro-0.7.owl, vitroPublic.owl

* InVIVO education.owl personTypes.n3 agent.owl event.owl process.owl
appControls-temp.n3 geo-political.owl publication.owl bfo-
bridge.owl grant.owl relationship.owl
bfo.owl linkSuppression.n3 relationshipAxioms.n3 classes-
additional.owl Tlocation.owl research-resource-iao.owl clinical.owl object-
properties.owl research-resource.owl contact-vcard.owl object-
properties2.owl research.owl contact.owl object-properties3.owl role.owl data-
properties.owl objectDomains.rdf sameAs.n3
dataDomains.rdf  objectRanges.rdf service.owl
dataset.owl ontologies.owl skos-vivo.owl date-time.owl orcid-
interface.n3 teaching.owl dateTimeValuePrecision.owl other.owl vitro-0.7.owl
documentStatus.owl outreach.owl vitroPublic.owl

+ Plus whatever ontology extensions you may have added

base Full

Source: a combination of base ABox and base TBox

inference ABox
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-inf

Source: named graph from the RDFService

inference TBox
Name: http://vitro.mannlib.cornell.edu/default/inferred-tbox

Source: named graph from the RDFService (memory-mapped)

inference Full

Source: a combination of inference ABox and inference TBox

union ABox

Source: a combination of base ABox and inference ABox

union TBox

Source: a combination of base TBox and inference TBox

union Full

Source: a combination of union ABox and union TBox

10.7.10 VIVO and the Solr search engine (*)

o What is Solr? (see page 379)
+ How does VIVO use Solr? (see page 379)
 Solr for the end user (see page 379)

Reference - 378


http://vitro.mannlib.cornell.edu/default/vitro-kb-inf
http://vitro.mannlib.cornell.edu/default/inferred-tbox

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Solr within VIVO (see page 380)
» How is Solr created and configured? (see page 382)
« The search index (see page 382)
« Whatisin the index? (see page 382)
« Whatisin each record? (see page 382)
« When is the index updated? (see page 383)
« During normal operation (see page 383)
« On demand (see page 383)
« Customizing the index (see page 383)
« How does VIVO contact Solr? (see page 384)

10.7.10.1 What is Solr?

Solr is an open-source, enterprise level search platform, available from Apache. It is based on the popular Lucene
search engine. VIVO uses a standard instance of Solr, without modification. You can learn more about Solr at the
Apache Solr home page®®.

VIVO maintains its data in a semantic triple-store. A triple-store is very well suited for expressing a complex, flexible
web of data relationship. It is not very well suited for text-based searches. Solr provides fast searching with features
like

« weighted results by field,

« searching by the stems of words, rather than exact matches,
« faceted search results,

+ and much more.

Solr provides these features much more efficiently than a triple-store would.

Solr maintains its own index of data, which reflects the contents of the triple-store. As the data in VIVO changes, the
contents of the Solr index must change also. In most cases this happens automatically, but not always. Sometimes
the search index must be rebuilt to bring it into synchronization with the triple-store. See the section below called
"How is the index kept up to date" (see page 0) for more information.

Solr is implemented as a self-contained web application, separate from VIVO. At most VIVO sites, Solr and VIVO run
on the same machine, in the same instance of Tomcat, but this is not the only possible configuration. It is possible
to put Solr in a different servlet container or even on a different computer from VIVO.

In a typical VIVO installation, Solr is hidden behind VIVO, and the users cannot access it directly. In general, they
don't know that Solr exists as an application.

10.7.10.2 How does VIVO use Solr?
VIVO uses the Solr search engine in two ways:

« asaservice to the end user,
« as a tool within the structure of the application.

Solr for the end user

Like many web sites, VIVO includes a search box on every page. The person using VIVO can type a search term, and
see the results. This search is conducted by Solr, and the results are formatted and displayed by VIVO.

180 https://lucene.apache.org/solr/

Reference - 379


https://lucene.apache.org/solr/
https://lucene.apache.org/solr/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Index Log in

Search I’ESU'tS for 'OI"ICO|OQV' Not the results you expected?

oncolo Display only

Radiation Oncology | Clinical Section people

Gynecological Oncology | Journal activities
Gynecological Oncology Cyclooxygenase 1 and 2 mRNA and protein expression in the Gallus

domesticus model of ovarian cancer Collection Information Resource ... courses

Medical Oncology | Clinical Section events

Translational Oncology | Journal organizations
Translational Oncology Computed temography assessment of response to therapy: Tumor volume

change measurement, truth data, and error Collection Infermation .. research

Gynecologic Oncology | Journal topics

.. Gynecologic Oncology A phase |l trial of interleukin-12 in patients with advanced cervical cancer:
clinical and immunologic correlates. Eastern Cooperative ...

Radiation Oncology | Organization
.. Assistant Professor of Radiation Oncology Assistant Professor of Clinical Radiation Oncology Assistant Professor of Clinical Radiation Oncology
Professor ...

Solr allows for a "faceted" search, and VIVO displays the facets on the right side of the results page. These allow the
user to filter the search results, showing only entries for people, or for organizations, etc.

Solr within VIVO

VIVO is based around an RDF triple-store, which holds all of its data. However, there are some tasks that a search
engine can do much more quickly than a triple-store. Some of the fields in the Solr search index were put there
specifically to help with these tasks.

For example, the browse area on the home page shows how many individuals VIVO holds for each class group.

Reference - 380



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

)People (36,581) Cornell Academic Appointee

Activities (6,951) Cornell Academic staff

Courses (19,859 Cornell Affiliated Person

Events (30,035)
Cornell Emeritus Professor

Organizations (10,287)
Cornell Faculty Member

Equipment (101)
quip Faculty Member

Research (142,388) )
Faculty Member Emeritus

Topics (2,001)
Graduate Student

Locations (1,067)
Librarian
Non-Academic
Non-Faculty Academic
Person

Postdoc

Professor Emeritus

VIVO could produce this data by issuing a SPARQL query against its data model. However, this would take several
seconds for a large site, and we do not want the user to wait that long to see the home page. To avoid this delay,
the class group of each individual is stored in the Solr record for that individual. Solr can count these fields very
quickly, so VIVO issues a Solr query against the index, and displays the results on the home page.

Record counts on VIVO's index pages are obtained using the same type of Solr query.

Home ¥ People Organizations Research Events

People
» Cornell Faculty Member Cornell Faculty Member
(2.774) )AIA B CDEFGHI J KL M

page 1 2 3 4 56 7 8 9 10 11 12 13
25 26 27 28 29 30 31 32 33 34 35 36

Non-Faculty Academic (4,778)

Librarian (155)

Abawi, George Samuel

Non-Academic i4,496)
Professor, Plant Pathology at G

Faculty Member Emeritus
(693)

Abdul Razak, Intan Shameha Binti

Reference - 381



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.7.10.3 How is Solr created and configured?

The VIVO distribution includes a copy of Solr WAR file. When VIVO is installed the Solr WAR file is deployed to
Tomcat as a web application.

The behavior of Solr depends extensively on its configuration files. These are stored in a directory that is called the
Solr Home directory. In the standard VIVO installation, this is the solr sub-directory in the VIVO Home directory.
When VIVO is installed, the Solr configuration files are copied to the Solr Home directory. When VIVO runs, the Solr
search index is built inside the Solr Home directory.

If you are installing VIVO in a servlet container other than Tomcat, or if you are installing Solr in a separate servlet
container, you will need to tell Solr how to find its home directory. See the instructions in Building a VIVO
distribution for other servlet containers®®?,

10.7.10.4 The search index

What is in the index?

The Solr search index contains one record for each Individual in VIVO, unless that individual is explicitly excluded
from the index. Exclusions are usually made for individuals that represent "context nodes" in the VIVO data model.

For example, if a professor teaches a course, the search index will contain:

«+ arecord for the professor
« arecord for the course

The VIVO data model also contains an individual that represents this teaching activity. That individual will be
excluded from the index, since users would almost certainly prefer to find the teacher or the course in their search
results, rather than the concept that connects the two.

What is in each record?

Each record in the search index contains several fields (see the chart below). The most commonly used field

is alltext, In the record for a faculty member, alltext will contain her name, the name of her department, the
names of her classes, the names of her papers and grants, etc. So, if you search for "Carpenter", you might see
results for people named Carpenter, people in the Carpentry department, people who have written papers about
carpentry, or have worked on grants about carpentry. You would also see results for the department itself, for the
papers, and for the grants.

Solr index fields, VIVO 1.6

Docld nameRaw PREFERRED_TITLE
URI nameText siteURL
ALLTEXT namelLowercase siteName

181 https://wiki.duraspace.org/display/VIVOARC/Building+a+VIVO+distribution+for+other+servlet+containers

Reference - 382


https://wiki.duraspace.org/display/VIVOARC/Building+a+VIVO+distribution+for+other+servlet+containers
https://wiki.duraspace.org/display/VIVOARC/Building+a+VIVO+distribution+for+other+servlet+containers
https://wiki.duraspace.org/display/VIVOARC/Building+a+VIVO+distribution+for+other+servlet+containers

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

ALLTEXTUNSTEMMED namelLowercaseSingleValued = THUMBNAIL
classgroup nameUnstemmed THUMBNAIL_URL
type nameStemmed indexedTime
mostSpecificTypeURIs acNameUntokenized timestamp

BETA acNameStemmed etag

PROHIBITED_FROM_TEXT_RESULTS = NAME_PHONETIC

When is the index updated?

During normal operation

When an individual is added, edited, or delete through VIVO's user interface, Solr is given the new information and
the index is updated.

VIVO administrators may also make changes to the data using the Advanced Data Tools, which are accessible from
the Site Administration page. These tools also pass the data changes to Solr, so the index is kept current with the
data.

Finally, data can be modified using the The SPARQL Update API (see page 378). Again, Solr receives the changes and
the index remains current.

On demand

Some tools, such as the VIVO Harvester, bypass VIVO and write directly to the data store. Solr is not notified when
these tools are used, and the data becomes out of sync with the search index.

Other circumstances can cause issues with the search index. Perhaps a problem required you to restore your
database to a backup, but you did not restore your search index at the same time. Perhaps you are developing a
modification for VIVO, and you have emptied your database in order to test it. Perhaps VIVO crashed while data was
being ingested.

In any of these circumstances, the solution is to log in to VIVO as an administrator, navigate to the Site
Administration page and click on Rebuild search 1index.

The existing search index remains in place while the new index is being built. When the rebuild is complete, the new
index replaces the old one, and the old index is deleted.

Customizing the index

/\ Inprogress

« Building the record
+ Exclusions

Reference - 383



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.7.10.5 How does VIVO contact Solr?
/\ Inprogress

« Need to tell VIVO how to contact Solr
« Authorization tests, now obsolete
« VIVO may start before Solr does. Usually does.

10.7.11 Image storage

The uploaded image files are identified by a combination of URI and filename. The URI is used as the principal
identifier so we don't need to worry about collisions if two people each upload an image named "image.jpg". The
filename is retained so the user can use their browser to download their image from the system and it will be
named as they expect it to be.

We wanted a way to store thousands of image files so they would not all be in the same directory. We took our

inspiration from the PairTree® folks, and modified their algorithm to suit our needs. The general idea is to store
files in a multi-layer directory structure based on the URI assigned to the file.

Let's consider a file with this information:

URI http://vivo.mydomain.edu/individual/n3156

Filename lilyl.jpg

& In this example, we assume that VIVO's home directory is at /usr/local/vivo.

We want to turn the URI into the directory path, but the URI contains prohibited characters. Using a PairTree-like
character substitution, we might store it at this path:

/usr/local/vivo/uploads/file_storage_root/http+==vivo.mydomain.edu=individual=n3156/lilyl.jpg

Using that scheme would mean that each file sits in its own directory under the storage root. At a large institution,
there might be hundreds of thousands of directories under that root.

By breaking this into PairTree-like groupings, we insure that all files don't go into the same directory. Limiting to 3-
character names will insure a maximum of about 30,000 files per directory. In practice, the number will be
considerably smaller. So then it would look like this:

/usr/local/vivo/uploads/file_storage_root/htt/p+=/=vi/vo./myd/oma/in./edu/=in/div/idu/al=/n31/56/lilyl.jpg

182 https://wiki.ucop.edu/display/Curation/PairTree

Reference - 384


https://wiki.ucop.edu/display/Curation/PairTree
https://wiki.ucop.edu/display/Curation/PairTree
http://vivo.mydomain.edu/individual/n3156

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

But almost all of our URIs will start with the same namespace, so the namespace just adds unnecessary and
unhelpful depth to the directory tree. We assign a single-character prefix to that namespace, using the
file_storage_namespaces.properties filein the uploads directory, like this:

a = http://vivo.mydomain.edu/individual/

And our URI now looks like this:
a~n3156

Which translates to:
/usr/local/vivo/uploads/file_storage_root/a~n/315/6/lilyl.jpg

So what we hope we have implemented is a system where:

« Files are stored by URI and filename.
+ File paths are constructed to limit the maximum number of files in a directory.
+ "lllegal" characters in URIs or filenames will not cause problems.
« even if a characteris legal on the client and illegal on the server.
« Frequently-used namespaces on the URIs can be collapsed to short prefix sequences.
« URIs with unrecognized namespaces will not cause problems.

By the way, almost all of this is implemented in
edu.cornell.mannlib.vitro.webapp.filestorage.backend.FileStorageHelper

and illustrated in
edu.cornell.mannlib.vitro.webapp.filestorage.backend.FileStorageHelperTest

10.7.11.1 Access images after changing the default namespace

If you are moving images from one server to another, with no change in the URL, it should be sufficient to just move
the VIVO home directory with no changes. VIVO will find file_storage_namespaces.propertiesand
file_storage_rootin [home] /uploads,and everything still works.

If you are changing to a new URL, | presume that you are changing to a new default namespace. Have you used the
“Change Namespace of Resources" tool? (http://localhost:8082/vivo/ingest?action=renameResource)

So your file individual has changed from the old URI
http://localhost:8082/vivo/individual/nl187

to the new URI
http://logics.emap.fgv.br:8080/vivo/individual/n187

However, file_storage_namespaces.properties does not know how to translate this new namespace.

One way to cope with this is to edit file_storage_namespace.properties accordingly, adding this line:
b = http://logics.emap.fgv.br:8080/vivo/individual/

and rename your

[home] /uploads/file_storage_root/a~n

directory to

Reference - 385


http://vivo.mydomain.edu/individual/
http://localhost:8082/vivo/ingest?action=renameResource

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

[home] /uploads/file_storage_root/b~n

The new URI now translates to b~n187, and the file which is now stored at
[home] /uploads/file_storage_root/b~n/187/servletrecuperafoto.jpeg
is accessible by its new URI.

10.7.11.2 How are Images represented in the Model?

When an image file is uploaded via the GUI, the process is something along these lines:

upload the image file, and store in a temporary location.

ask the user for a cropping square to be used in producing the thumbnail.

create a URI for the image file surrogate object, and a URI for the image file bytestream object.

create a URI for the thumbnail surrogate object, and a URI for the thumbnail bytestream object.

hand the image file bytestream URI and the temporary file to the File Storage system, which will create a
permanent storage.

generate a 115 by 115 JPEG thumbnail image from the main image and the cropping square.

hand the thumbnail image stream and the thumbnail bytestream URI to the File Storage system, which will
create a permanent storage.

create a thumbnail bytestream object in the model.

create a thumbnail surrogate object in the model, storing the filename of the thumbnail, the mime type of
the thumbnail, and the URI of the thumbnail bytestream.

create a main image bytestream object in the model.

create a main image surrogate object in the model, storing the filename of the main image, the mime type of
the main image, and the URI of the main image bytestream.

link the main image surrogate object to the person object.

These are no more than a multitude of technical details, except: how do you find an appropriate region of the
image to use as the thumbnail?

Generating the thumbnail itself can be quite problematic if the initial image is a GIF or PNG with transparency.

For an individual on my test installation (in N3, if | remember how to write it)

INDIVIDUAL

<http://vivo.mydomain.edu/individual/n1451>

http://vitro.mannlib.cornell.edu/ns/vitro/public#mainimage
http://vivo.mydomain.edu/individual/n1674.

Reference - 386



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

IMAGE FILE SURROGATE

<http://vivo.mydomain.edu/individual/n1674>

http://vitro.mannlib.cornell.edu/ns/vitro/public#thumbnaillmage
http://vivo.mydomain.edu/individual/n5863;
http://vitro.mannlib.cornell.edu/ns/vitro/public#downloadLocation
http://vivo.mydomain.edu/individual/n3156;
http://vitro.mannlib.cornell.edu/ns/vitro/public#mimeType
"image/jpeg";
http://vitro.mannlib.cornell.edu/ns/vitro/public#filename
"lily1.jpg";
http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:51:58";
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#File;
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing.

IMAGE FILE BYTESTREAM

<http://vivo.mydomain.edu/individual/n3156>

http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:51:57";

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream;

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing.

Reference - 387



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

THUMBNAIL SURROGATE

<http://vivo.mydomain.edu/individual/n5863>
http://vitro.mannlib.cornell.edu/ns/vitro/public#downloadLocation
http://vivo.mydomain.edu/individual/n5889;
http://vitro.mannlib.cornell.edu/ns/vitro/public#mimeType
"image/jpeq";
http://vitro.mannlib.cornell.edu/ns/vitro/public#filename
"thumbnail_lily1.jpg";
http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:52:12";
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#File;
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing.

THUMBNAIL BYTESTREAM

<http://vivo.mydomain.edu/individual/n5889>
http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:52:12";
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream;
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing;

The file system looks something like this:

File storage properties file: /usr/local/vivo/uploads/file_storage_namespace.properties

a = http://vivo.mydomain.edu/individual/

Main image:

Reference - 388



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

/usr/local/vivo/uploads/file_storage_root/a~n/315/6/lilyl.jpg

Thumbnail:

/usr/local/vivo/uploads/file_storage_root/a~n/588/9/thumbnail _lily1l.jpg

Note: The file storage system does "laundering" on the filenames, in order to allow files with special characters to
be stored in a portable manner (e.g., Linux or Windows).

Jim

A summary from Eliza Chan
Excerpted from a message'® in the vivo-dev-all archive, by Eliza Chan, dated 2010-11-04 16:08

As an experiment tested on localhost, when the pictures were uploaded using a "non-traditional” method, i.e.
copying directly to the folder /usr/local/vivo/data/uploads/file_storage_root/a~n, the content under primary tab
became blank (see attachment localhost_vivo_mainTab.tiff). Pictures did show up but only when the primary tab
content was clicked (see attachment localhost_vivo_tabContent.tiff). The reason for copying directly to the folder
was to save the work for doing manual upload of about 1000 photos.

The way it was done was as follows:

1. Create RDF for images and add to the VIVO site, e.g.

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/cwid-gwa2001">
<j.2:mainlmage rdf:resource="http://localhost:8080/vivo/individual/mainimage-gwa2001"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<rdf:type rdf:resource="http://vivoweb.org/ontology/core#FacultyMember"/>

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>

</rdf:Description>

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/mainimage-gwa2001">

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

<j.2:downloadLocation rdf:resource="http://localhost:8080/vivo/individual/n1229119954939" />
<j.2:thumbnaillmage rdf:resource="http://localhost:8080/vivo/individual/thumbnaillmage-gwa2001"/>
<j.5:modTime xml:lang="en">2010-11-04T10:44:04</j.5:modTime>

<j.2:mimeType xml:lang="en">image/jpeg</j.2:mimeType>

<j.2:filename xml:lang="en">_main_image_gwa2001.jpg</j.2:filename>

<rdf:type rdf:resource="http://vitro.mannlib.cornell.edu/ns/vitro/public#File" />

</rdf:Description>

183 https://sourceforge.net/mailarchive/message.php?msg_id=26544669

Reference - 389


https://sourceforge.net/mailarchive/message.php?msg_id=26544669
https://sourceforge.net/mailarchive/message.php?msg_id=26544669

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n1229119954939">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

<j.5:modTime xml:lang="en">2010-11-04T10:44:04</j.5:modTime>

<rdf:type rdf:resource="http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream" />
</rdf:Description>

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/thumbnaillmage-gwa2001">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

<j.2:downloadLocation rdf:resource="http://localhost:8080/vivo/individual/n12291199549391" />
<j.5:modTime xml:lang="en">2010-11-04T10:44:04</j.5:modTime>

<j.2:mimeType xml:lang="en">image/jpeg</j.2:mimeType>

<j.2:filename xml:lang="en">gwa2001.jpg</j.2:filename>

<rdf:type rdf:resource="http://vitro.mannlib.cornell.edu/ns/vitro/public#File"/>
</rdf:Description>

<rdf:Description rdf:about="http://localhost:8080/vivo/individual/n12291199549391">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Thing" />

<j.5:modTime xml:lang="en">2010-11-04T10:44:04</j.5:modTime>

<rdf:type rdf:resource="http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream" />
</rdf:Description>

2. Copy images to the following folders:
/usr/local/vivo/data/uploads/file_storage_root/a~n/122/911/995/493/9/_main_image_gwa2001.jpg

/usr/local/vivo/data/uploads/file_storage_root/a~n/122/911/995/493/91/gwa2001.jpg

Update on "alias URL" and "directDownloadUrl" property

You can retrieve an image file by asking for the Individual page of its FileByteStream. For example,

http://localhost:8080/vivo/individual/n4898

VIVO will see that this particular individual is a FileByteStream, and will redirect your browser to the "alias URL" for
that image. In this case:

Reference - 390



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

http://localhost:8080/vivo/file/n4898/john_doe.jpg

This redirection means that the image shown in your browser has a name that you will recognize, with an

appropriate file type. If you choose "Save Image" in your browser, the default filename will be suitable for the
image.

However, this redirection implies additional overhead. Pages local to VIVO calculated the alias URL and used it as
the "src" property on the image, avoiding the redirection. But because the "alias URL" was not present in the RDF, it
was not available to external applications, which resulted in excessive load times for pages that displayed dozens
of images.

The directDownloadUrl" property of FileByteStream objects contains the "alias URL", is created when the image is
ingested, and is used both by VIVO and by external applications when displaying images.

Accordingly, the FileByteStream examples shown above must now look like this instead:

IMAGE FILE BYTESTREAM

<http://vivo.mydomain.edu/individual/n3156>

http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:51:57";

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream;

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing.

http://vitro.mannlib.cornell.edu/ns/vitro/public#directDownloadUrl
"/file/n3156/lily1.jpg"

THUMBNAIL BYTESTREAM

<http://vivo.mydomain.edu/individual/n5889>
http://vitro.mannlib.cornell.edu/ns/vitro/0.7#modTime
"2010-10-18T09:52:12";
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://vitro.mannlib.cornell.edu/ns/vitro/public#FileByteStream;
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.w3.0rg/2002/07/owl#Thing;

Reference - 391



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

http://vitro.mannlib.cornell.edu/ns/vitro/public#directDownloadUrl
"/file/n5889/thumbnail_lily1.jpg"

10.8 URL Reference

o Overview (see page 392)

+ sitemap.xml (see page 392)

o Searchindex (see page 392)

« Recomputelnferences (see page 392)
« revisionInfo (see page 392)

« freemarkersamples (see page 393)

« Vivosolr (see page 393)

10.8.1 Overview

VIVO has several pages that can be reached by adding one of the words below to the end of your VIVO URL. For
example, if the URL of your VIVO home pageis http://vivo.myschool.edu, then you can access a page
regarding revision information by accessing http://vivo.myschool.edu/revisionInfo.

10.8.2 sitemap.xml

See the XML VIVO generates for your site's sitemap.

10.8.3 SearchIndex

Show search index status and access to rebuild the VIVO search index

10.8.4 RecomputeInferences

Review all triples in the triple store and add inferences to the inference graph as needed.

10.8.5 revisionInfo

Show a page of version information including date and time of most recent build, as shown below.

Reference - 392



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Revision Information

Levels: Build date:
Thursday, October 6, 2016 5:00:03 PM EDT
name release revision
VIVO 1.9.1 066d5a0

10.8.6 freemarkersamples

Displays a page of Freemarker widget results. The template for this page can be found here vitro-core/webapp/
web/templates/freemarker/body/samples.ftl.

10.8.7 vivosolr

Display the VIVO Solr search index control panel

10.9 VIVO APIs

The VIVO APIs are HTTP end-points that can be used to read or write data, or to manage VIVO's operation. They
have no user interface, and are intended to be called by external applications that are cooperating with VIVO.

The end-points include:

Public Services « available without restriction
» provide filtered results, allowing restrictions on data

Linked Open Data (see Information about an individual, its types, its data values, incoming and outgoing
page 394) links.
ListRDF (see page 403) Lists of individuals that belong to a particular class in the ontology. For example, a list

of all People, or all Organizations.

Access Controlled ¢ require account credentials on each request
Services « credentials are for an internal VIVO with sufficient authorization
« results are not filtered, and may return data that should be kept private

SPARQL Query APl (see  Submit a SPARQL query to get information from VIVO.
page 406) Supports SELECT, ASK, CONSTRUCT, and DESCRIBE query types.

Reference - 393



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Access Controlled « require account credentials on each request
Services « credentials are for an internal VIVO with sufficient authorization
« results are not filtered, and may return data that should be kept private

SPARQL Update API Submit a SPARQL query to INSERT new triples or DELETE existing triples. Also, LOAD
(see page 411) triples from a web-accessible file.

Search Indexing API Submit a list of URIs that may have stale data in the search index. The search data for
(see page 416) each of these URIs will be rebuilt.

10.9.1 Linked Open Data - requests and responses

o Overview (see page 394)
« An example (see page 394)
» Requesting Linked Open Data from VIVO (see page 395)
« Available formats (see page 395)
« Types of requests (see page 396)
« Whatisincluded in the response? (see page 397)
+ An example response (see page 397)
» Agraphic summary (see page 400)
 Restricting properties (see page 401)
« Editing the property (see page 401)
« Setting triples in the display model (see page 402)
« An exception to the restrictions (see page 402)
 Error handling (see page 403)

10.9.1.1 Overview

Linked Open Data is one of the fundamental concepts of the Semantic Web. It consists of asking a server for the RDF
relating to an individual. If the response includes object properties that link to other individuals, those individuals
can be queried also. For more information on Linked Open Data, see Concept: Linked Data (see page 394).

VIVO accepts standard requests for Linked Open Data and some non-standard ones. The contents of the response
are in accordance with those suggested by the in their tutorial How to Publish Linked Data on the Web'®,

VIVO will provide Linked Open Data in several formats. The semantic content remains the same; only the syntax
differs among formats.

An example

The examples on this page are based on afictitious individual named "Able Baker", with a URl of http://
vivo.mydomain.edu/individual/n3639. To keep the examples simple, this person has just a few items in his
VIVO profile. His profile page looks like this:

184 http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/

Reference - 394


http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Index | Login

Home People Organizations Research Events

Baker, Able | Faculty Member oo Co-investigator
Network

Just an ordinary chap of simple means and simple desires.

Research Areas 222

What a concept! | botany

Affiliation Research View All

Affiliation

head of

The Band Lead Guitarist

has collaborator

Dog, Charlie Faculty Member

Research

research overview

Whatever strikes my fancy.

principal investigator on

Cosmogenic Lassitude in Phlegmatic Axolotls

keywords

Potrzehie, Chattanooga

02014 VIVO Project | Terms of Use | Powered by VIVO About Support

10.9.1.2 Requesting Linked Open Data from VIVO

Available formats

VIVO will serve Linked Open Data in these formats:

Reference - 395



« RDF/XML®
o Turtle!®”
« JSON-LD'88

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Specifications for each of the formats are provided by the World Wide Web Consortium (W3C).

Types of requests

The standard way of requesting Linked Open data is an HTTP request to the URI of the individual in question, with
the Accept header on the request indicating the desired format. If there is no Accept header, it is assumed to
be text/htm1, and the standard profile page is returned.

URL

http://vivo.mydomain.edu/
individual/n3639

http://vivo.mydomain.edu/
individual/n3639

http://vivo.mydomain.edu/
individual/n3639

http://vivo.mydomain.edu/
individual/n3639

Accept header

application/
rdf+xml

text/n3

text/turtle

application/
json

Response
format

RDF/XML

N3

Turtle

JSON-LD

Response MIME type

application/

rdf+xml

text/n3

text/turtle

application/json

The different responses may also be explicitly requested by URL. In fact, the requests listed above will simply

redirect the browser to these URLs:

URL

http://vivo.mydomain.edu/individual/n3639/

n3639.rdf

http://vivo.mydomain.edu/individual/n3639/

n3639.n3

http://vivo.mydomain.edu/individual/n3639/

n3639.ttl

185 http://www.w3.0rg/TR/REC-rdf-syntax/
186 http://www.w3.org/TeamSubmission/n3/
187 http://www.w3.org/TeamSubmission/turtle/

188 http://www.w3.0rg/TR/json-ld/

Response format

RDF/XML

N3

Turtle

Response MIME type

application/rdf+xml

text/n3

text/turtle

Reference - 396


http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

URL Response format
http://vivo.mydomain.edu/individual/n3639/ JSON-LD
n3639.jsonld

Response MIME type

application/json

Finally, VIVO allows you to request Linked Open Data in a way that is not specified by the standard. You can make
an HTTP GET request to the URI of the individual, and include a format parameter that specifies the format of the

response.
URL Response format
http://vivo.mydomain.edu/individual/n3639? RDF/XML

format=rdfxml

http://vivo.mydomain.edu/individual/n3639? N3
format=n3

http://vivo.mydomain.edu/individual/n3639? Turtle
format=ttl

http://vivo.mydomain.edu/individual/n3639? JSON-LD

format=jsonld

10.9.1.3 What is included in the response?

When you get request the public RDF about an individual in VIVO, the result is a set of RDF statements, or triples.

These triples state:

« The data properties of the individual.

+ The object properties that relate this individual to other individuals.

« The object properties of other individuals that relate to this individual
« The labels and types of these related individuals.

« Some triples that describe the RDF document itself.

Response MIME type

application/

rdf+xml

text/n3

text/turtle

application/json

This statement over-simplifies slightly. In VIVO, object properties and data properties can be public, or restricted to
some extent. The RDF for an individual will contain only public properties.

An example response

Here is the RDF produced for the example, in N3 format.

@prefix foaf: <http:
@prefix vcard: <http:
@prefix obo: <http:
@prefix rdfs: <http:
@prefix vitro: <http:
@prefix xsd: <http

@prefix owl: <http:

//xmlns.com/foaf/0.1/> .
//www.w3.0rg/2006/vcard/ns#> .
//purl.obolibrary.org/obo/> .
//www.w3.0rg/2000/01/rdf-schema#> .
//vitro.mannlib.cornell.edu/ns/vitro/0.7#> .

://www.w3.0rg/2001/XMLSchema#> .

//www.w3.0rg/2002/07/owl#> .

Reference - 397



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

@prefix vivo: <http://vivoweb.org/ontology/core#>

<http://vivo.mydomain.edu/individual/n3639>
a vivo:FacultyMember ,
foaf:Person ,
owl:Thing ,
foaf:Agent ,
obo:BFO_0000002 ,
obo:BF0O_0000001 ,
obo:BFO_0000004 ;
rdfs:label "Baker, Able "AAxsd:string ;
0bo:ARG_2000028 <http://vivo.mydomain.edu/individual/n3972> ;
0obo:RO_0000053 <http://vivo.mydomain.edu/individual/n475> ,
<http://vivo.mydomain.edu/individual/n7850> ;
vitro:mostSpecificType
vivo:FacultyMember ;
vivo:freetextKeyword
"Potrezebie, Chattanooga"
vivo:hasCollaborator
<http://vivo.mydomain.edu/individual/n7429> ;
vivo:relatedBy <http://vivo.mydomain.edu/individual/n3401> ,
<http://vivo.mydomain.edu/individual/n5855> ,
<http://vivo.mydomain.edu/individual/n2421> ;
vivo:researchOverview
"Whatever strikes my fancy."
vivo:scopusId "abaker"

<http://vivo.mydomain.edu/individual/n3972>

a vcard:Kind ,
obo:BF0O_0000031 ,
owl:Thing ,
obo:ARG_2000379 ,
obo:IA0_0000030 ,
obo:BF0O_0000002 ,
obo:BFO_0000001 ,
vcard:Individual ;

0obo:ARG_2000029 <http://vivo.mydomain.edu/individual/n3639>

<http://vivo.mydomain.edu/individual/n475>

a owl:Thing ,
obo:BF0O_0000023 ,
vivo:InvestigatorRole ,
obo:BFO_0000002 ,
obo:BF0O_0000017 ,
vivo:PrincipallnvestigatorRole ,
obo:BF0O_0000020 ,
obo:BF0O_0000001 ,
vivo:ResearcherRole ;

0bo:R0O_0000052 <http://vivo.mydomain.edu/individual/n3639>

<http://vivo.mydomain.edu/individual/n7850>
a owl:Thing ,
obo:BF0O_0000023 ,
obo:BF0O_0000017 ,

Reference - 398



<http:

<http:

<http:

<http:

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

obo:BF0O_0000002 ,
obo:BF0O_0000020 ,
obo:BFO_0000001 ,
vivo:LeaderRole ;
rdfs:label "Lead Guitarist"AAxsd:string ;
0bo:R0O_0000052 <http://vivo.mydomain.edu/individual/n3639>

//vivo.mydomain.edu/individual/n7429>

a foaf:Person ,
vivo:FacultyMember ,
foaf:Agent ,
owl:Thing ,
obo:BF0O_0000002 ,
obo:BF0O_0000001 ,
obo:BFO_0000004 ;

rdfs:label "Dog, Charlie"

//vivo.mydomain.edu/individual/n3401>
a owl:Thing ,
vivo:Relationship ,
obo:BFO_0000002 ,
obo:BF0O_0000020 ,
obo:BF0O_0000001 ,
vivo:Authorship ;
vivo:relates <http://vivo.mydomain.edu/individual/n3639>

//vivo.mydomain.edu/individual/n5855>
a vivo:FacultyPosition ,
owl:Thing ,
vivo:Relationship ,
obo:BF0O_0000002 ,
obo:BF0O_0000020 ,
obo:BF0O_0000001 ,
vivo:Position ;
rdfs:label "Functionary"AAxsd:string ;
vivo:relates <http://vivo.mydomain.edu/individual/n3639>

//vivo.mydomain.edu/individual/n2421>
a owl:Thing ,
vivo:Relationship ,
obo:BF0O_0000002 ,
obo:BF0O_0000020 ,
obo:BFO_0000001 ,
vivo:Grant ;
rdfs:label "Cosmogenic Lassitude in Phlegmatic Axolotls"
vivo:relates <http://vivo.mydomain.edu/individual/n3639>

obo:BFO_0000001

a owl:Class ;
rdfs:label "Entity"

obo:BFO_0000002

a owl:Class ;
rdfs:label "Continuant"

Reference - 399



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

obo:BFO_0000004
a owl:Class ;
rdfs:label "Independent Continuant"@en-US .

vivo:FacultyMember
a owl:Class ;
rdfs:label "Faculty Member'"@en-US .

foaf:Person
a owl:Class ;
rdfs:label "Person"@en-US .

foaf:Agent
a owl:Class ;
rdfs:label "Agent"@en-uUS .

owl:Thing

a owl:Class .

<http://vivo.mydomain.edu/individual/n3639/n3639.n3>
a foaf:Document ;
rdfs:label "RDF description of Baker, Able - http://vivo.mydomain.edu/individual/n3639"
<http://purl.org/dc/elements/1.1/date> "2014-03-10T11:08:39"""xsd:dateTime ;
<http://purl.org/dc/elements/1.1/publisher> <http://vivo.mydomain.edu> ;
<http://purl.org/dc/elements/1.1/rights> <http://vivo.mydomain.edu/termsOfUse>

A graphic summary

The RDF can be expressed graphically like this:

Reference - 400



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.9.1.4 Restricting properties

Editing the property

You can exclude a property from Linked Open Data, or include it, by editing the property within VIVO. Perhaps the
easiest way to edit a property is to log in as a VIVO administrator, navigate to an individual's profile page, and turn
on the verbose display:

LGINTLWEEL TN Edit this individual — Verbose property display is off | “@" Co-investigator
Network

Photo
Resource URI: http://vivo.mydomain.edu/individual /n3639

Baker, Able  »
Preferred Title @

Once the verbose display is turned on, scroll through the profile page to find the property you are interested in. You
can see what it's current restriction levels are for display, update, and publishing. You also have a link to the control
panel for that property:

Reference - 401



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

eRA Commons ID @

vivo:eRACommonsld { property); order in group: display level update level

publish level:

Note that all Linked Open Data requests are treated as public, so any setting other than all users, including
public will exclude the property.

Navigate to the control panel for the property, and then to the editing form for the property.

Edit this Data Property

Set the Publish level as you like, and submit the changes.

Publish level Publish level

all users, including public x| self-editor and above 7|

EDETS DN 28 TR

Setting triples in the display model

Properties in VIVO can be restricted from Linked Open Data, by attaching
the vitro:hiddenFromPublishBelowRoleLevelAnnot annotation to the property.

For example, this triple in VIVO's display model would mean that the eRACommonsId property would not be
published in Linked Open Data

<http://vivoweb.org/ontology/core#feRACommonsId>
<http://vitro.mannlib.cornell.edu/ns/vitro/0.7#hiddenFromPublishBelowRoleLevelAnnot>
<http://vitro.mannlib.cornell.edu/ns/vitro/role#nobody> .

Note, however, that the standard VIVO distribution includes this triple in the display model:

<http://vivoweb.org/ontology/coret:eRACommonsId>
<http://vitro.mannlib.cornell.edu/ns/vitro/0.7#:hiddenFromPublishBelowRoleLevelAnnot>
<http://vitro.mannlib.cornell.edu/ns/vitro/role#public> .

You would need to remove this triple in order for the more restrictive triple to take effect.

An exception to the restrictions

VIVO uses the same permissions model to restrict Linked Open Data that it uses to restrict displays or updates. So if
you are logged in to VIVO as the root user, and you request Linked Open Data, no restrictions would be applied.

This is consistent with VIVO's authorization model.

An external application could take advantage of this fact to obtain full RDF about individuals. Since there is no
authorization parameter on the Linked Open Data request, the client application would need to begin by logging in
to VIVO as an administrator, and then retain the session cookie to submit with subsequent requests.

Reference - 402



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.9.1.5 Error handling

If you ask for Linked Open Data for a non-existent individual, regardless of the form you use, VIVO will return a
response code of 404 not found.

If you ask for an unsupported format, either in the Accept header or the format parameter, VIVO will treat your
request as a request for HTML, and will return the standard profile page for the individual. The response code will
be 200 OK.

10.9.2 ListRDF API

o Overview (see page 403)
» Purpose (see page 403)
« Filtered results (see page 403)
o Use Cases (see page 404)
+ Harvesting data from VIVO (see page 404)
o Multi-site search index (see page 404)
« Specification (see page 404)
o URL (see page 404)
o HTTP Method (see page 404)
« Parameters (see page 404)
+ Response Codes (see page 404)
« Content of the response (see page 405)
« Available content types (see page 405)
« Examples (see page 405)
« Continents as N-Triples example (see page 405)
« Faculty Members as JSON-LD example (see page 406)

10.9.2.1 Overview

Purpose

Permits external applications to obtain a list of all Individuals in VIVO that belong to a specified class. For example,
a list of all Persons, or a list of all Organizations.

This APl complements the Linked Open Data API. The Linked Open Data standard describes a way to get data about
any Individual, but it does not provide a way to get a list of Individuals to begin with.

Filtered results

The results of this query is filtered by the same VIVO policies that control Linked Open Data. Individuals may be
omitted from the results, if those policies restrict access to those Individuals.

Reference - 403



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Use Cases

Harvesting data from VIVO

Data in VIVO is available to other applications via Linked Open Data - requests and responses*®, A list of
Individuals from this API may provide a starting point for such applications.

Multi-site search index

If an external application chooses to build a compendium from several VIVO sites, it will need to know what
Individuals are present in each site.

10.9.2.2 Specification

URL
[vivo]/listrdf

Examples:

http://vivo.cornell.edu/listrdf

http://localhost:8080/vivo/listrdf

HTTP Method
The APl supports HTTP GET or POST calls.

Parameters

name value

vclass the URI of the class to be listed.

Response Codes

Code Reason
200 OK SPARQL query was successful.
400 Bad Request HTTP request did not include a vclass parameter.

189 https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses

Reference - 404


https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses
https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Code Reason
406 Not Acceptable The Accept header does not include any available content types.

500 Internal Server Error VIVO could not execute the request;internal code threw an exception.

Content of the response

The response will contain RDF triples. Each triple asserts that an Individual is an instance of the requested class.
Available content types

The request may include an Accept header, to specify the preferred content type of the response. If no Accept
header is provided, the preferred content type is assumed to be text/plain.

MIME type in the Accept header Response format Format description

text/plain N-Triples http://www.w3.0rg/2001/sw/RDFCore/ntriples/
application/rdf+xml RDF/XML http://www.w3.org/TR/rdf-syntax-grammar/
text/n3 N3 http://www.w3.org/TeamSubmission/n3/
text/turtle Turtle http://www.w3.org/TeamSubmission/turtle/
application/json JSON-LD http://www.w3.0rg/TR/json-ld/

10.9.2.3 Examples

These examples use the UNIX curl command to issue queries to the API.

Continents as N-Triples example

This example requests a list of vivo: Continent Individuals, in N-triples format.

curl -i -d 'vclass=http://vivoweb.org/ontology/core#Continent' -H 'Accept:text/plain' 'http://localhost:
8080/vivo/listrdf!

The response looks like this:

<http://aims.fao.org/aos/geopolitical.owl#Africa> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Continent> .

<http://aims.fao.org/aos/geopolitical.owl#Europe> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Continent> .

<http://aims.fao.org/aos/geopolitical.owl#Antarctica> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Continent> .

Reference - 405


http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/json-ld/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

<http://aims.fao.org/aos/geopolitical.owl#northern_America> <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#type> <http://vivoweb.org/ontology/core#Continent> .
<http://aims.fao.org/aos/geopolitical.owl#South_America> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://vivoweb.org/ontology/core#Continent> .
<http://aims.fao.org/aos/geopolitical.owl#Australia_and_New_Zealand> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> <http://vivoweb.org/ontology/core#Continent> .
<http://aims.fao.org/aos/geopolitical.owl#Asia> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://

vivoweb.org/ontology/core#Continent> .

Faculty Members as JSON-LD example

This example requests a list of vivo: FacultyMember Individuals, in JSON.

curl -i -d 'vclass=http://vivoweb.org/ontology/coreffFacultyMember' -H 'Accept:application/json' 'http://
localhost:8080/vivo/listrdf!

The response (for a very small VIVO) looks like this:

[{"@id":"http://vivo.mydomain.edu/individual/n4295","@type":["http://vivoweb.org/ontology/
core#FacultyMember"]},{"@id":"http://vivo.mydomain.edu/individual/n5056","@type":["http://vivoweb.org/
ontology/core#FacultyMember"]},{"@id":"http://vivo.mydomain.edu/individual/n7630","@type":["http://
vivoweb.org/ontology/core#FacultyMember"]},{"@id":"http://vivoweb.org/ontology/core#FacultyMember"}]

10.9.3 SPARQL Query API

» Purpose (see page 406)
» Use Cases (see page 407)
+ Reusing data from VIVO (see page 407)
« Writing a VIVO "face" application (see page 407)
«+ Specification (see page 407)
» URL (see page 407)
o HTTP Method (see page 407)
+ Parameters (see page 407)
+ Response Codes (see page 408)
+ Available content types (see page 408)
« For SELECT or ASK queries (see page 408)
« For CONSTRUCT or DESCRIBE queries (see page 409)
« Limitation (see page 409)
« Examples (see page 409)
o SELECT to JSON example (see page 409)
« DESCRIBE to N3 example (see page 410)
+ Enabling the SPARQL Query API (see page 411)

10.9.3.1 Purpose

Permits external applications to obtain data from the VIVO data model.

Reference - 406



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

The results of the queries are not filtered, so access to the service should remain restricted if the VIVO instance
contains any data which should remain private. Queries can be performed against the entire data model, or against
specific graphs. .

& By default, the SPARQL Query APl is disabled in VIVO, for security reasons. See Enabling the API (see page 0)

10.9.3.2 Use Cases

Reusing data from VIVO

Data in VIVO is available to other applications via Linked Open Data - requests and responses!®. But some
applications may work better with the sort of data sets that can be obtained from SPARQL queries.

Writing a VIVO "face" application
Various VIVO sites have written applications, in Drupal or other such frameworks, that display data from VIVO, and

allow the user to edit their data. This API, used in conjunction with SPARQL Update API (see page 411), allows such an
application to freely read or modify VIVO data.

10.9.3.3 Specification

URL
[vivo]/api/sparqlQuery

Examples:

http://vivo.cornell.edu/api/sparqlQuery

http://localhost:8080/vivo/api/sparqlQuery

HTTP Method
The APl supports HTTP GET or POST calls.

Parameters
name value
email the email address of a VIVO administrator account

190 https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses

Reference - 407


https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses
https://wiki.duraspace.org/display/VIVOARC/Linked+Open+Data+-+requests+and+responses

name value

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

password  the password of the VIVO administrator account

query A SPARQL query

The syntax of the SPARQL query is described on the World Wide Web Consortium site at http://www.w3.0org/TR/
2013/REC-sparqll1-query-20130321/

Response Codes

Code

200 OK

400 Bad Request

403 Forbidden

406 Not Acceptable

500 Internal Server
Error

Available content types

Reason

SPARQL query was successful.

HTTP request did notinclude a query parameter.

The SPARQL query was syntactically incorrect.

The type of the SPARQL query was not SELECT, ASK, CONSTRUCT, or DESCRIBE
HTTP request did not include an email parameter.

HTTP request did not include a password parameter.

The combination of email and password is not valid.

The selected VIVO account is not authorized to use the SPARQL Query API.
The Accept header does not include any available content types.

VIVO could not execute the request; internal code threw an exception.

The request may include an Accept header, to specify the preferred content type of the response. If no Accept
header is provided, the preferred content type is assumed to be text/plain.

For SELECT or ASK queries

SELECT queries return rows of results, and each row may include an arbitrary number of values, depending on the

query.

ASK queries return a single result, which is either true or false.

MIME type in the Accept header

text/plain

Response format Format description

text

Reference - 408


http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

MIME type in the Accept header Response format Format description

text/csv Ccsv http://www.w3.0rg/TR/2013/REC-sparqlll-results-
csv-tsv-20130321

text/tab-separated-values TSV

application/sparql- XML http://www.w3.0rg/TR/2013/REC-rdf-sparql-

results+xml XMLres-20130321

application/sparqgl- JSON http://www.w3.0rg/TR/2013/REC-sparql1ll-results-

results+json json-20130321

For CONSTRUCT or DESCRIBE queries

CONSTRUCT and DESCRIBE queries return RDF.

MIME type in the Accept header Response format Format description

text/plain N-Triples http://www.w3.0rg/2001/sw/RDFCore/ntriples/
application/rdf+xml RDF/XML http://www.w3.org/TR/rdf-syntax-grammar/
text/n3 N3 http://www.w3.org/TeamSubmission/n3/
text/turtle Turtle http://www.w3.org/TeamSubmission/turtle/
application/json JSON-LD http://www.w3.org/TR/json-d/

Limitation

Queries can be performed against specific graphs. However, the graphs that hold application data are not
accessible to the API. "Application data" means data that controls the functioning of the VIVO application, such as
user accounts, page definitions, or display parameters.

10.9.3.4 Examples

These examples use the UNIX curl command to issue queries to the API.

SELECT to JSON example

This example reads 5 arbitrary triples from the data model, returning the result as JSON.

curl -i -d 'email=testAdmin@mydomain.edu' -d 'password=Password' -d 'query=SELECT ?s ?p 2?0 WHERE {?s ?p 2o}
LIMIT 5' -H 'Accept: application/sparql-results+json' 'http://localhost:8080/vivo/api/sparqlQuery’

The response looks like this:

Reference - 409


http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321
http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321
http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321
http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321
http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321
http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/json-ld/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

"head": {

"VaI"S": [ IISII , Ilpll , Iloll ]
o
"results": {

"bindings": [

{
"s": { "type": "bnode" , "value": "bo" } ,
"p": { "type": "uri" , "value": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#rest" } ,
"o": { "type": "bnode" , "value": "b1" }

} )

{
"s": { "type": "bnode" , "value": "bo" } ,
"p": { "type": "uri" , "value": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#first" } ,
"o": { "type": "uri" , "value": "http://purl.obolibrary.org/obo/ERO_0000006" }

} )

{
"s": { "type": "bnode" , "value": "b2" } ,
"p": { "type": "uri" , "value": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#rest" } ,
"o": { "type": "uri" , "value": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#nil" }

} )

{
"s": { "type": "bnode" , "value": "b2" } ,
"p": { "type": "uri" , "value": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#first" } ,
"o": { "type": "bnode" , "value": "b3" }

} 3

{

"s": { "type": "uri" , "value": "http://vivoweb.org/ontology/core#FacultyMember" }

"p": { "type": "uri" , "value": "http://vitro.mannlib.cornell.edu/ns/vitro/
0.7#hiddenFromDisplayBelowRoleLevelAnnot" } ,

"o": { "type": "uri" , "value": "http://vitro.mannlib.cornell.edu/ns/vitro/role#public" }

DESCRIBE to N3 example

This example reads all of the properties for a particular individual in the model, returning the result as N3.

curl -i -d 'email=vivo_root@mydomain.edu' -d 'password=Password' -d 'query=DESCRIBE <http://dbpedia.org/
resource/Connecticut>' -H 'Accept: text/n3' 'http://localhost:8080/vivo/api/sparqlQuery’

The response looks like this:

@prefix vitro: <http://vitro.mannlib.cornell.edu/ns/vitro/0.7#>
@prefix owl: <http://www.w3.0rg/2002/07/owl#>
eprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

<http://dbpedia.org/resource/Connecticut>

Reference - 410



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

a <http://vivoweb.org/ontology/core#StateOrProvince> ,
<http://purl.obolibrary.org/obo/BF0O_0000006> ,
<http://vivoweb.org/ontology/core#lLocation> ,
owl:Thing ,
<http://vivoweb.org/ontology/core#GeopoliticalEntity> ,
<http://purl.obolibrary.org/obo/BFO_0000002> ,
<http://vivoweb.org/ontology/core#fGeographicRegion> ,
<http://purl.obolibrary.org/obo/BFO_0000001> ,
<http://purl.obolibrary.org/obo/BFO_0000141> ,
<http://vivoweb.org/ontology/core#GeographicLocation> ,
<http://purl.obolibrary.org/obo/BFO_0000004> ;

<http://www.w3.0rg/2000/01/rdf-schemat#flabel>
"Connecticut"@en ;

<http://purl.obolibrary.org/obo/BFO_0000050>
<http://aims.fao.org/aos/geopolitical.owl#United_States_of_America> ;

vitro:mostSpecificType
<http://vivoweb.org/ontology/core#StateOrProvince> .

10.9.3.5 Enabling the SPARQL Query API

& Before enabling the SPARQL Query API, you should secure the URL api/sparqlQuery with HTTPS.
Otherwise, email/password combinations will be sent across the network without encryption. Methods for
securing the URL will depend on your site's configuration.

By default, the SPARQL Query APl is disabled in VIVO for all users except the root user. To enable it for non-root
users, you must edit the RDF file [vivo] /home/rdf/auth/everytime/permission_config.n3to authorize
your site administrators to use the API. Find the permissions for auth: ADMIN and include the following permission:

permission_config.n3

auth:hasPermission simplePermission:UseSparqlQueryApi;

After editing this file you need to restart tomcat.

10.9.4 SPARQL Update API

» Purpose (see page 412)
» Use Cases (see page 412)
» Harvester (see page 412)
+ Otheringest tools (see page 412)
« VIVO "face" applications (see page 412)
+ Specification (see page 412)
o URL (see page 412)
o HTTP Method (see page 413)
» Parameters (see page 413)
o Limitation (see page 413)
+ Response Codes (see page 413)
o Examples (see page 414)

Reference - 411



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Insert example (see page 414)
« Modify example (see page 414)
« Delete example (see page 415)
« Large Files (see page 415)
« Increase the default Tomcat maxPostSize (see page 415)
« Enabling the API (see page 416)

10.9.4.1 Purpose

Permits external applications to add or remove specific triples from the VIVO data model. These changes use the
standard data channels in VIVO, so the search index will be updated as appropriate, and the reasoner will add or
remove inferences as needed.

& By default, the SPARQL Update APl is disabled in VIVO, for security reasons. See Enabling the API (see page
416).

10.9.4.2 Use Cases

Harvester

Previous implementations of the Harvester and similar tools have written directly to the VIVO triple-store,
bypassing the usual data channels in VIVO. After ingesting, it was necessary to rebuild the search index, and to run
the reasoner to add or remove inferences. Since the search index and the reasoner were not aware of the exact
changes, the entire data model was re-indexed and re-inferenced.

When the Harvester and other tools have been modified to use the SPARQL Update API, VIVO will ensure that the
search index and inferences are kept in synchronization with the data.

Other ingest tools

This APl permits ingest tools such as Karma to programmatically insert data into VIVO without requiring knowledge
of VIVOs internal data structures.

VIVO "face" applications

Linked Open Data requests have permitted people to write Drupal applications (for example) that display data from
VIVO. This APl will permit such applications to accept user edits, and apply them back to VIVO.

10.9.4.3 Specification
URL

[vivo]/api/sparglUpdate

Examples:

Reference - 412



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

http://vivo.cornell.edu/api/sparqlUpdate

http://localhost:8080/vivo/api/sparqlUpdate

HTTP Method

The API supports only HTTP POST calls. GET, HEAD, and other methods are not supported, and will return a
response code of 405 Method Not Allowed.

Parameters
name value
email the email address of a VIVO adminstrator account

password the password of the VIVO administrator account

update A SPARQL Update request

The syntax for a SPARQL Update request is described on the World Wide Web Consortium site at http://
www.w3.0rg/TR/2013/REC-sparqll1l-update-20130321/

Limitation
The API requires that you specify a GRAPH in your SPARQL update request. Insertions or deletions to the default

graph are not supported.

Response Codes

Code Reason
200 OK SPARQL Update was successful.
400 Bad Request HTTP request did not include an update parameter.

The SPARQL Update request did not specify a GRAPH.
The SPARQL Update request was syntactically incorrect.
403 Forbidden HTTP request did not include an email parameter.
HTTP request did not include a password parameter.
The combination of email and password is not valid.

The selected VIVO account is not authorized to use the SPARQL Update API.

Reference - 413


http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Code Reason
405 Method Not Allowed Incorrect HTTP method; only POST is accepted.

500 Internal Server Error VIVO could not execute the request;internal code threw an exception.

10.9.4.4 Examples

These examples use the UNIX curl command to insert and delete data using the API.

Insert example

This example inserts a single RDF statement into the data model.

curl -i -d 'email=testAdmin@mydomain.edu' -d 'password=Password' -d '@insert.sparql' 'http://localhost:
8080/vivo/api/sparqlUpdate’

insert.sparql

update=INSERT DATA {
GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> {
<http://test.domain/ns#bookl>
<http://purl.org/dc/elements/1.1/title>
"Fundamentals of Compiler Design"

Modify example

This example removes the previous statement, and inserts a replacement.

curl -i -d 'email=testAdmin@mydomain.edu' -d 'password=Password' -d '@modify.sparql' 'http://localhost:
8080/vivo/api/sparqlUpdate’

modify.sparql

update=DELETE DATA {
GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> {
<http://test.domain/ns#bookl>
<http://purl.org/dc/elements/1.1/title>

"Fundamentals of Compiler Design"

}
INSERT DATA {
GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> {
<http://test.domain/ns#bookl>
<http://purl.org/dc/elements/1.1/title>

Reference - 414



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

"Design Patterns" .

Delete example

This example removes the modified statement.

curl -i -d 'email=testAdmin@mydomain.edu' -d 'password=Password' -d '@delete.sparql' 'http://localhost:
8080/vivo/api/sparqlUpdate’

delete.sparql

update=DELETE DATA {
GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> {
<http://test.domain/ns#bookl>
<http://purl.org/dc/elements/1.1/title>
"Design Patterns" .

Large Files

Dl9l

For large files one can also use the SPARQL LOA command.

For this, you have to first create the RDF file with the triples that you want to add, and make the file accessible at a
URL. In the example below, the RDF file containing the triples is called data. rdf, and is available in the root
directory of the web server at myserver.address. xxx.

Like the previous commands, this one references a data file, in this case called import.sparql. That file contains
the LOAD command which references the actual data.

curl -d 'email=USER' -d 'password=PASSWORD' -d '@import.sparql' 'http://localhost:8080/vivo/api/
sparglUpdate’

import.sparql

update=LOAD <http://myserver.address.xxx/data.rdf> into graph <http://vitro.mannlib.cornell.edu/default/
vitro-kb-2>

Increase the default Tomcat maxPostSize

By default, Tomcat sets the default maximum of a POST request to 2 megabytes. If you want to increase this to be
able to POST larger sets of triples to VIVO, you can use the maxPostS+ze attribute in server.xml. The example
below would increase the maximum to 10 MB. See the Tomcat documentation®? for more details.

191 http://www.w3.0rg/TR/sparqll1-update/#load
192 https://tomcat.apache.org/tomcat-7.0-doc/config/http.html

Reference - 415


http://www.w3.org/TR/sparql11-update/#load
http://www.w3.org/TR/sparql11-update/#load
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

server.xml

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
URIEncoding="UTF-8"
redirectPort="8443"
maxPostSize="10485760"/>

Enabling the API

Before enabling the SPARQL update handler, you should secure the URL api/sparqlUpdate with HTTPS.
Otherwise, email/password combinations will be sent across the network without encryption. Methods for
securing the URL will depend on your site's configuration.

By default, the SPARQL Update handler is enabled for only the root user in VIVO. To enable it for other user groups,
you can either:

« uncomment the line references "UseSparqUpdateAPI" in [vitro]/rdf/auth/everytime/permission_config.n3
or

« create an RDFfileinthe [vitro]/rdf/auth/everytime directory that will authorize your site
administrators to use the API. Below is an example of such a file, using N3 syntax.

authorizeSparqlUpdate.n3

@prefix auth: <http://vitro.mannlib.cornell.edu/ns/vitro/authorization#> .

@prefix simplePermission: <java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#> .

# Authorize the ADMIN role to use the SPARQL Update API

auth:ADMIN auth:hasPermission simplePermission:UseSparqlUpdateApi .

10.9.5 Search indexing service

» Purpose (see page 417)
» Use Cases (see page 417)
« Use with ingest tools (see page 417)
« Loading the triple-store (see page 417)
Indexing and Reasoning (see page 417)
« Specification (see page 418)
e URL (see page 418)
« Examples: (see page 418)
o HTTP Method (see page 418)
« Parameters (see page 418)
« Response Codes (see page 418)
« Examples (see page 419)

Reference - 416



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Securing the API (see page 419)

10.9.5.1 Purpose

Permits external applications to request specific updates to the VIVO search index, by providing a list of URIs whose
search records may be out of date.

When the VIVO triple-store is updated in a way that bypasses VIVO's internal data channels, the search index will
not reflect the updates.

With this service, you can provide a list of URIs whose contents have changed, and request that only those search
records be updated. This is usually faster than rebuilding the entire index.

10.9.5.2 Use Cases

Use with ingest tools

The Harvester and similar tools write directly to the VIVO triple-store, bypassing the usual data channels in VIVO.
After ingesting, it has been necessary to rebuild the search index so it will reflect the changes in the data. With this
service, you can rebuild only part of the index.

Note: when the Harvester and other tools have been modified to use the SPARQL Update API, VIVO will ensure that
the search index and inferences are kept in synchronization with the data.

Loading the triple-store

Some sites use two VIVO instances: a staging instance and a production instance. All ingests occur on the staging
instance. Periodically, the triple-store is copied from staging to production. When this is done, you have 3 options:

« Copy the search index files from staging to production to keep it consistent with the triple-store
« Rebuild the search index in production
« Use the Search Indexing service to update specific records in the search index.

10.9.5.3 Indexing and Reasoning

The concerns that apply to the search index will also apply to the state of the inferred triples in the data model.
When bypassing the data channels in VIVO, you bypass the semantic reasoner. To compensate for this, you must
either

« Request that the reasoner rebuild all of the inferences, using Recompute Inferencesfromthe Site
Administration page,or

« Ensure that the ingested RDF contains all of the triples that you want VIVO to contain, including those that
would be provided by the reasoner

In most cases, the time required to re-inference the model is greater than the time required to rebuild the search
index. Unfortunately, the reasoning process is not easy to partition. To date, VIVO has no service that would allow
you to update the inferences on a limited set of data.

Reference - 417



10.9.5.4 Specification

URL

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

[vivo]/searchService/updateUrisInSearch

Examples:

http://vivo.cornell.edu/searchService/updateUrisInSearch

http://localhost:8080/vivo/searchService/updateUrisInSearch

HTTP Method

The APl supports only HTTP POST requests with a content type of multipart/form-data.

If the request does not specify an encoding, UTF-8 is assumed.

Parameters
name value
email the email address of a VIVO administrator account

password the password of the VIVO administrator account

other One or more content parts, containing URIs to be indexed, separated by white space and/or

commas

The name of the file content is unimportant. The APl will examine all parts of the request and add any URIs to the
list to be indexed. It is common, however, to put the entire list of URIs into a single content part.

Response Codes

Code

200 OK

403 Forbidden

500 Internal Server Error

Reason

Search indexing request was successful.

HTTP request did not include an ema+i 1 parameter.

HTTP request did not include a password parameter.

The combination of email and password is not valid.

The selected VIVO account is not authorized to use the SPARQL Update API.

VIVO could not execute the request; internal code threw an exception.

Reference - 418



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

10.9.5.5 Examples

This example uses the UNIX curl command to request updates to the search records of 3 individuals.

curl -v --form 'email=testAdmin@mydomain.edu' --form 'password=Password' --form 'uris=@uriList.txt'
'http://localhost:8080/vivo/searchService/updateUrisInSearch'

uriList.txt

http://vivo.mydomain.edu/individual/n6724
http://vivo.mydomain.edu/individual/n90987
http://vivo.mydomain.edu/individual/n32

10.9.5.6 Securing the API

The Search Indexing service is enabled by default. However, it is
recommended that you secure the URL /searchService with HTTPS.
A Otherwise, email/password combinations will be sent across the network
& without encryption. Methods for securing the URL will depend on your
site's configuration.

10.10 Resource Links

The resources below should be helpful for anyone seeking additional information on topics related to VIVO, Vitro,
ontologies, and the Semantic Web.

VIVO website http://vivoweb.org/
VIVO project Wiki https://wiki.duraspace.org/display/VIVO
VIVO project Facebook page http://www.facebook.com/

VIVOcollaboration

VIVO project Twitter http://twitter.com/vivocollab
VIVO project LinkedIn group https://www.linkedin.com/groups/
2905369

Reference - 419


http://vivoweb.org/
https://wiki.duraspace.org/display/VIVO
http://www.facebook.com/VIVOcollaboration
http://www.facebook.com/VIVOcollaboration
http://twitter.com/vivocollab
https://www.linkedin.com/groups/2905369
https://www.linkedin.com/groups/2905369

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Semantic Web technologies and Standards published by W3C

Resource Description Framework is a standard model for data
interchange on the web, to learn more about RDF

More information on Web Ontology Language (OWL)

SPARQL Query Language for RDF

References to events, news, personal pages on the community

Semantic Web related conferences

Supporting the OWLED Workshop series and task forces

Semantic Web portal dedicated to ontology design patterns (ODPs)

Books available on the Semantic web development

Protégé is a lightweight web-based ontology editor supporting
OWL

193 http://semanticweb.org/
194 http://data.semanticweb.org/
195 http://ontologydesignpatterns.org/wiki/

http://www.w3.0rg/2001/sw/wiki/
Main_Page

http://www.w3.0rg/2001/sw/wiki/RDF

http://www.w3.0rg/2001/sw/wiki/OWL

http://www.w3.0rg/2001/sw/wiki/
SPARQL

Semanticweb.org!®3

the Semantic web “dogfood”!%4
http://webont.org/owled/

195

Ontology Design Pattern Wiki

http://www.w3.0rg/2001/sw/wiki/
Books#Books_on_Semantic_Web:_Intro

http://protege.stanford.edu

Reference - 420


http://www.w3.org/2001/sw/wiki/Main_Page
http://www.w3.org/2001/sw/wiki/Main_Page
http://www.w3.org/2001/sw/wiki/RDF
http://www.w3.org/2001/sw/wiki/OWL
http://www.w3.org/2001/sw/wiki/SPARQL
http://www.w3.org/2001/sw/wiki/SPARQL
http://semanticweb.org/
http://semanticweb.org/
http://data.semanticweb.org/
http://data.semanticweb.org/
http://webont.org/owled/
http://ontologydesignpatterns.org/wiki/
http://ontologydesignpatterns.org/wiki/
http://www.w3.org/2001/sw/wiki/Books#Books_on_Semantic_Web:_Intro
http://www.w3.org/2001/sw/wiki/Books#Books_on_Semantic_Web:_Intro
http://protege.stanford.edu

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

11 About This Documentation

VIVO documentation is created by the users of VIVO.

If you find something here that is incorrect or confusing or incomplete, please let us know by posting on vivo-
tech@googlegroups.com?!%

If you would like to write, rewrite or otherwise improve this documentation, please contact Graham Triggs!®’

11.1 Maintaining release-specific info on the Wiki

o Goals (see page 421)
» Two types of wiki pages (see page 421)
» Release-specific pages (see page 421)
+ Release-neutral pages (see page 422)
o Approach (see page 422)
+ VIVO (main wiki, also known as the project wiki, also known as the community wiki) (see page 422)
+ VIVO Release specific wikis, also known as the documentation (see page 422)
« Minimal documentation in the Git repository (see page 422)
+ Between releases (see page 422)

11.1.1 Goals

Recognize that some documentation applies only to a particular release, or set of releases.

Recognize that documentation will most likely be found by web searches, not by walking the wiki.
Information about the current release should be the easiest to find.

Information about older releases should be available somewhere.

There should be an area for documenting new features before they are included in a release.

It should be easy to tell whether the information you are viewing is correct for the code you are using.
Documentation should not be frozen at release time - It should remain available for improvements.
The most basic instructions should be included in the release.

Novice users should be able to find what they need; expert users should be able to find more
11.1.2 Two types of wiki pages

11.1.2.1 Release-specific pages

« Apply to a specific release, or range of releases.
« Incorrect if used with an inappropriate release.
« Examples: installation instructions, customization guides, ontology details

196 mailto:vivo-tech@googlegroups.com
197 https://wiki.duraspace.org/display/~grahamtriggs

About This Documentation - 421


mailto:vivo-tech@googlegroups.com
mailto:vivo-tech@googlegroups.com
mailto:vivo-tech@googlegroups.com
https://wiki.duraspace.org/display/~grahamtriggs
https://wiki.duraspace.org/display/~grahamtriggs

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

11.1.2.2 Release-neutral pages

« Equally relevant to all releases (or to none)
« Examples: tutorials, meeting agendas, glossary, outreach events and resources, presentations.
« Most wiki pages are not release specific

11.1.3 Approach

11.1.3.1 VIVO (main wiki, also known as the project wiki, also known as the community wiki)

+ Located at http://wiki.duraspace.org/display/VIVO

« The main wiki holds all sorts of information, as it does now.

« Includes governance, task forces, interest groups, background material, community support materials
« Does notinclude release specific information describing the product

11.1.3.2 VIVO Release specific wikis, also known as the documentation

+ The release-specific information will be collected in release specific wikis. These wikis will be copied
forward to create spaces for new releases. The next release wiki will be available before the release of the
software to document the next release.

« Contains release-specific pages for older releases.

+ The styling indicates that the wiki id documentation for a specific release

+ Release specific wikis exist for releases prior to the current release, for the current release and for the next
release

+ The release specific wikis use a documentation template and a documentation PDF export template
optimized for the production of a single PDF document from the documentation wiki.

11.1.3.3 Minimal documentation in the Git repository

+ The release specific documentation wiki is the definitive documentation for the current release
+ The project wiki is the definitive source of material regarding the project

« The Git README.md refers to the project wiki and the release specific wiki and describes each

11.1.4 Between releases

+ All community processes continue in the project wiki
 Release specific wikis are available for improvement
« A nextrelease wiki is created from the current release wiki when there are new features to document.

11.2 VIVO documentation style guide

« Page sizes (see page 423)

« Start with a Table of Contents (see page 423)
» Use all heading levels (see page 423)

o Code (see page 423)

About This Documentation - 422


http://wiki.duraspace.org/display/VIVO

VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

« Linking within the document (see page 424)
« End with a Children Display macro (see page 424)

Each VIVO document consists of a large number of wiki pages. These pages must work well together, both on the
wiki and when exported to a PDF file. Here are some suggestions to help that happen.

11.2.1 Page sizes

Keep each page to a manageable size, and focused on a particular topic. If you find that the page is too complex or
too diverse, break it into smaller pages. Within each group of pages, the parent should contain introductory
material or an overview, while the child pages explore individual topics.

11.2.2 Start with a Table of Contents

Start the page with a call to the "Table of Contents" macro. The Table of Contents will include all of the headings in
the current page. It will also include a top-level heading for each child page, thanks to the "Children Display"
macro.

= Table of Contents | outline = true | style = no...

1 Introduction
1.1 Where is VIVO on your computer?
1.2 After the installation, what next?

2 A simple installation

3 Installation options

When the document is exported to a PDF file, the "Table of Contents" macros are not included. Instead, the file
begins with a table of contents for the full document.

11.2.3 Use all heading levels

The major headings on all pages should be Heading 1. The second headings on all pages should be Heading 2. Use
the Heading styles only - do not format headings using bold, italics, etc. When the pages are combined into a PDF
file, the heading levels will be displayed properly and numbered correctly in the table of contents and in the
document.

Pagination in the PDF document is controlled by the PDF template, not by the author. Use page titles and page
headings consistently. The resulting PDF document will then be consistent.

Headings within the child pages are demoted accordingly, to keep the organization intact. So a level 2 heading in
the Table of Contents might represent:

+ alevel 2 heading in the parent page,
+ alevel 1 headingin a child page,
« thetitle of a grandchild page.

11.2.4 Code

Use a code block macro to represent code. Atitle for the code block is optional.

About This Documentation - 423



VIVO 1.10.x Documentation - VIVO 1.10.x Documentation

Use monospace in sentences to represent code.

11.2.5 Linking within the document

Links in the technical documentation wiki need to be checked to make sure they are referring to other parts of the
tech doc, or external sources. Links to pages in the project wiki are “okay” but need to be done carefully -- such
links are often red flags that the tech doc is drifting into content better suited for the project wiki. Links to the
archive should be avoided. Content from the archive that is relevant for the current version should be copied into
the documentation wiki.

11.2.6 End with a Children Display macro

The documentation wiki for VIVO includes a child display at the end of every page. There is no need to include a
children display macro explicitly. It will be added for you.

About This Documentation - 424



	Introduction
	What is VIVO?
	Release Notes
	Version 1.10.0

	Functional Overview
	Online Access
	Getting Data into VIVO
	Access Control

	System Requirements
	/*<![CDATA[*/ div.rbtoc1524428569932 {padding: 0px;} div.rbtoc1524428569932 ul {list-style: disc;margin-left: 0px;} div.rbtoc1524428569932 li {margin-left: 0px;padding-left: 0px;} /*]]>*/ Hardware Recommendations Minimum Specification Recommended Specification Software Requirements Operating System Java 8 Maven 3.0.3 or later Configuring a Proxy MySQL / MariaDB 5.5 or later (or any other supported by Jena SDB) Tomcat 7 or later 
	Hardware Recommendations
	Software Requirements


	Installing VIVO
	Installing from Distribution
	Overview
	Preparing the Installation Settings
	Installing VIVO

	Installing from GitHub
	Preparing the Repositories
	Preparing the Installation Settings
	Installing VIVO

	Completing the Installation
	Configure the Database Schema
	Configure the Home Directory
	Configure and Start Tomcat

	Verify Your Installation

	Upgrading VIVO
	Upgrading from 1.9.x to 1.10.x
	Java 8
	Jena 3.x
	UI Changes
	ORCiD API
	List View Configurations
	Vocabulary Services
	Servlet 3.0 Upgrade
	Java Dependencies

	Building VIVO in 3 tiers
	Development
	Deployment
	Project template


	Exploring VIVO
	Overview
	Logging in to VIVO
	Sample Data
	Overview
	Preparing Your VIVO
	Loading the Sample Data
	Exploring the Interface
	Exploring the Data
	Resetting Your Database

	Restoring VIVO to First Time State

	Preparing for Production
	Overview
	Minimum Configuration
	Email
	Namespace
	Additional Configuration

	Create, Assign, and Use an Institutional Internal Class
	Overview
	Create an Institutional Internal Class
	Assign your Institutional Internal Class
	Use your Institutional Internal Class

	Adding User Accounts

	Using VIVO
	Navigating VIVO
	Editing Your Profile (*)
	Using Search (*)
	Using the Capability Map
	Overview
	A Tour of the Capability Map

	Using Visualizations (*)
	VIVO for Data Analysts
	Background
	Getting Rectangles of Data
	Getting Graphs of Data
	References


	Managing Data in Your VIVO
	Importing Data to VIVO
	Using the Convert CSV to RDF ingest tool
	Data types for string and language

	Exporting Data from VIVO
	Exporting All Data
	Exporting Selected Data

	Managing Person Identifiers
	Notes

	Managing Organization Hierarchy
	Overview
	"hasPart, partOf"
	Your Organizational Data
	Making Triples
	Managing the Triples in VIVO
	Some Closing Observations

	Managing Data Packages
	Overview
	Add a data package
	Update a data package
	Delete a data package
	Available Data Packages

	SPARQL Queries
	Overview
	Running SPARQL queries
	Using SPARQL for reporting
	Using SPARQL to clean data
	DESCRIBE queries
	ASK Queries
	Additional SPARQL Resources

	How to remove data from a specific graph
	Removing Entities from VIVO
	General Method
	Examples


	Extending and Localizing VIVO
	Overview
	Internationalization
	VIVO Language Support
	Adding a language to your VIVO site
	Adding language support to your local modifications
	Tools you can use
	VIVO en Español
	VIVO in Mandarin

	Customizing the Interface
	Introduction
	Adding your own customizations
	Tool summary
	Home page customizations
	Menu and page management
	Annotations on the ontology
	Class-specific templates for profile pages
	Excluding Classes from the Search
	Custom List View Configurations
	Creating short views of individuals
	Creating a custom theme
	Creating custom entry forms
	Enhancing Freemarker templates with DataGetters
	Enriching profile pages using SPARQL query DataGetters
	Multiple profile types for foaf:Person
	Using OpenSocial Gadgets
	How VIVO creates a page
	Tips for Interface Developers

	Deploying additional ontologies with VIVO
	Filegraphs
	Namespace Prefixes

	Enable an external authentication system
	How User Accounts are Associated with Profile Pages
	Using a Tomcat Realm for external authentication

	Authorization
	Writing a controller for a secured page
	Creating a VIVO authorization policy - an example
	A more elaborate authorization policy
	The IdentifierBundle - who is requesting authorization?

	Linking to External Vocabularies
	Overview
	VIVO RDF statements referencing external concepts
	Adding a new external vocabulary service to VIVO

	Search Engine Optimization (SEO)
	Overview
	Citation Metatags
	Sitemap
	Additional SEO Considerations


	System Administration
	Background
	Creating and Managing User Accounts
	Overview
	Authentication
	What is a User Account?
	User Roles
	Profile Pages
	The Root User Account
	Managing User Accounts

	Backup and Restore
	Inferences and Indexing
	Recompute Inferences
	Re-building the search index

	The Site Administration Page
	Site Administration
	Data Input
	Ontology Editor
	Site Configuration
	Advanced Tools
	Site Maintenance

	The VIVO log file
	What does a log message look like?
	What is the right level for a log message?
	Setting the output levels
	Customizing the logging configuration
	Writing Exceptions to the Log

	Activating the ORCID integration
	Overview
	When applying for credentials
	Configuring VIVO

	Performance Tuning
	SDB - MySQL Tuning
	Additional Performance Tips
	MySQL tuning, and troubleshooting
	Use HTTP caching to improve performance
	HTTP Cache Awareness (*)

	Virtual Machine Templates
	Docker
	Vagrant

	Moving your VIVO Instance
	Step-by-step guide

	Regaining access to the root account
	Altmetrics Support
	Overview
	Display
	Configuration

	Troubleshooting
	Having problems with your VIVO installation?
	Can't find any individuals?
	Mail not working?
	Troubleshooting Tips

	High Availability
	Overview
	Session management
	Caching
	Solr
	Home directory
	Content triple store
	Configuration triple store

	Replicating Ontology Changes Across Instances
	Purpose
	Procedure
	Best Practice


	Reference
	Overview
	Configuration Reference
	Overview
	VIVO Runtime Properties

	Directories and Files
	Overview
	High Level Directories
	Directory Structure

	Graph Reference
	Overview
	Listing the graphs used by VIVO
	The graphs used by VIVO
	Notes

	Ontology Reference
	Overview
	Reference Materials
	Issue Tracking
	Source ontologies for VIVO
	VIVO Classes
	Ontology Overview : Object Properties
	Ontology Diagrams
	Rich export SPARQL queries
	VIVO-ISF deployment in VIVO

	Freemarker Template Variables and Directives
	Architecture
	Overview
	Vitro
	VIVO
	Component View
	Additional Resources
	Vitro
	VIVO and Vitro
	Software Architecture Overview
	VIVO Data Models
	VIVO and the Solr search engine (*)
	Image storage

	URL Reference
	Overview
	sitemap.xml
	SearchIndex
	RecomputeInferences
	revisionInfo
	freemarkersamples
	vivosolr

	VIVO APIs
	Linked Open Data - requests and responses
	ListRDF API
	SPARQL Query API
	SPARQL Update API
	Search indexing service

	Resource Links

	About This Documentation
	Maintaining release-specific info on the Wiki
	Goals
	Two types of wiki pages
	Approach
	Between releases

	VIVO documentation style guide
	Page sizes
	Start with a Table of Contents
	Use all heading levels
	Code
	Linking within the document
	End with a Children Display macro



