
VIVO

Setting up VIVO to use OpenSocial
Gadgets
Instructions for connecting VIVO and Open Research Networking Gadgets

This document contains instructions on how to configure your VIVO installation to use OpenSocial
gadgets.

VIVO uses an extension of the OpenSocial protocols called Open Research Networking Gadgets, or
ORNG. ORNG is a project of the Clinical & Translational Science Institute at the University of California,
San Francisco. You can find out more about the ORNG project at their web site,
http://www.opengadgets.org/index.html

ORNG supports gadgets using a modified version of Apache Shindig. These instructions tell you how to
install the Shindig-ORNG web application, and how to configure it to work with VIVO.

Table of Contents
1. Installing and Configuring

1. Create database tables and procedures
2. Create configuration directory and key file
3. Modify Tomcat settings
4. Configure VIVO
5. Run the deployment script
6. Does it work?

2. Changing the gadget configurations
1. The orng_apps database table
2. The orng_app_views database table

3. Additional Considerations
1. Re-running the deployment script
2. Resetting the gadget cache
3. Issues with Linked Open Data
4. Disabling the OpenSocial gadgets

I. Installing and Configuring
I.i. Create database tables and procedures

Shindig-ORNG uses several database tables in MySQL to store its data: which gadgets appear on which
pages, how large are the gadgets, what information applies to each individual, and more. Shindig-ORNG

also creates stored procedures in MySQL. These are small pieces of code that simplify the use of the
database tables.

In the VIVO distribution directory, a file called vitro-core/opensocial/shindig_orng_tables.sql contains
SQL commands that create the tables and stored procedures for Shindig-ORNG to use.

Tell MySQL to process this file with a command like this:

mysql -u username -p database < sql_file
So, if your current directory is the VIVO distibution directory, and your VIVO database is vivoDb and your
MySQL user account is vivoUser, then you might use the command this way:
mysql -u vivoUser -p vivoDb < vitro-
core/opensocial/shindig_orng_tables.sql
MySQL will prompt you for the password for your MySQL user account, and then process the file.

You may want to start your gadget collection with some example gadgets that have been developed by the
ORNG group. The file called vitro-core/opensocial/shindig_example_gadgets.sql contains SQL commands
that will add these gadgets to your system's configuration.

If you want to load these example gadgets, you can use a command similar to the previous one:

mysql -u vivoUser -p vivoDb < vitro-
core/opensocial/shindig_example_gadgets.sql
As before, MySQL will prompt you for the password for your MySQL user account, and then process the
file.

I.ii. Create configuration directory and key file

In your VIVO home directory, create a directory called shindig. Under that, create directories called conf
and openssl. Your VIVO home directory will look something like this:

 [VIVO home directory] | |--shindig | | |
|--conf | | | |--openssl | |--solr |
|--uploads

Shindig-ORNG uses an encryption key to insure that the communication between the gadget and the server
is secure. You should create a file that contains the encryption key, and store that file in the shindig/openssl
directory that you created.

On Unix-based systems (like Linux or Mac OS X), this command will create an encryption key from a
random seed:

dd if=/dev/random bs=32 count=1 | openssl base64 > [key-file]
For example, if your VIVO home directory is /usr/local/vivo/data, you might use the command this way:
dd if=/dev/random bs=32 count=1 | openssl base64 >
/usr/local/vivo/data/shindig/openssl/securitytokenkey.txt

If your VIVO installation is installed on a machine that runs Microsoft Windows, you will need to find
another way to create an encryption key. The easiest way might be to find a Unix-based machine, issue the
command above, and copy the resulting file to your Windows machine.

I.iii. Modify Tomcat settings

The Shindig-ORNG application must know where to find the configuration file that you created in Step I. It
must also know its own URL, so that URL can be inserted into the gadgets.

This information is provided through startup parameters in Tomcat. With most installations of Tomcat, the
"setenv.sh" or "setenv.bat" file in Tomcat's bin directory is a convenient place to set these parameters. If
this file does not exist in Tomcat's bin directory, you can create it.

Here is an example of the setenv.sh file, showing only the Shindig-ORNG requirements:

export CLASSPATH=/usr/local/vivo/data/shindig/conf export
CATALINA_OPTS="-Dshindig.host=localhost -Dshindig.port=8080"

Here is the equivalent file for an installation in Windows.

set CLASSPATH=C:\vivo\data\shindig\conf set CATALINA_OPTS=-
Dshindig.host=localhost -Dshindig.port=8080

This assumes that your setenv file was empty before starting this process, and that you used the default
location for the Shindig-ORNG configuration file in Step I. In fact, it's more common for the setenv file to
contain other parameters besides those used for Shindig-ORNG. In that case, it might look more like this:

export CLASSPATH=/usr/local/vivo/data/shindig/conf export
CATALINA_OPTS="-Dshindig.host=localhost -Dshindig.port=8080 -
Djava.awt.headless=true -Xms1024m -Xmx1024m -XX:MaxPermSize=128m"

Or, for Windows:

set CLASSPATH=C:\vivo\data\shindig\conf set CATALINA_OPTS=-
Dshindig.host=localhost -Dshindig.port=8080 -Djava.awt.headless=true -
Xms1024m -Xmx1024m -XX:MaxPermSize=128m

I.iv Configure VIVO

In the VIVO distribution directory, the file called deploy.properties contains configuration options for the
VIVO application. You must set some additional parameters so VIVO will be able to communicate with
Shindig-ORNG.

Property Name Example Value

The base URL that VIVO will use when contacting the Shindig-ORNG application. Usually, this is the
same host and port number as VIVO itself, with a context path of shindigorng

OpenSocial.shindigURL http://localhost:8080/shindigorng

The host name and port number of the Token Service that Shindig-ORNG creates. Note that a value of
localhost or 127.0.0.1 will not work. You must provide the actual host name of your machine, followed by
:8777

OpenSocial.tokenService myhost.mydomain.edu:8777

The path to a key file that will be used to generate security tokens. This is the file that was created in Step I
of this process.

OpenSocial.tokenKeyFile /usr/local/vivo/data/shindig/openssl/securitytokenkey.txt

I.v. Run the deployment script

At the command line, from the top level of the VIVO distribution directory, type:

 ant orng
to configure the Shindig-ORNG application and deploy it to Tomcat's webapps directory.

The main VIVO application must also be re-deployed in order to accept the new settings in
deploy.properties. At the command line, from the top level of the VIVO distribution directory, type:

 ant deploy
to re-deploy VIVO with the new settings.

I.vi Does it work?

Startup tests

Start VIVO, and verify that you can see VIVO's home page in a browser.

On startup, VIVO runs a series of self-diagnostics, or "smoke tests". If these tests find any problems with
the OpenSocial configuration, you will see a warning message instead of the VIVO home page.

Some of VIVO's "smoke tests" are run after the startup is finished, and may take up to a minute to
complete. If one of these tests fails, you will see the warning message as you navigate from one VIVO page
to the next.

If one of the OpenSocial tests fails, you may continue to use VIVO, but it is likely that no gadgets will be
shown. You can review the warning message by seleting the "Startup Status" link from the "Site Admin"
page.

Search page

If you loaded the example gadgets, you should be able to see the "Google Search" gadget on the Search
Results page in VIVO.

Every VIVO installation comes with a geographic data model, so type "Chile" in the search box, and view
the results. Near the bottom of the page, you should see the "OpenSocial" section heading, and beneath it, a
gadget offering "Full Text Search Results". This gadget does a google search at UCSF, using the search
term that you entered. Again, this gadget is just an example, to show what is possible with OpenSocial
gadgets and VIVO.

The first time you bring up the search page, it may take several seconds for the gadget to appear. After the
first time, the gadget response should be must faster.

Profile page

If your VIVO installation contains profiles of people, you can see several gadgets on their profile pages.
You must be logged in to VIVO, with authority to edit the profile you are viewing.

Go to a personal profile page in VIVO. If you loaded the example gadgets, you will see the "OpenSocial"
section heading above the property lists, with an assortment of example gadgets available for
experimentation.

As with the search page, the first appearance of the gadgets may be slow.

Troubleshooting

If the gadgets do not appear as you expect, look for these symptoms, and check for the corresponding
possible causes.

Symptoms Possible causes
• The "OpenSocial" heading does not appear on

Individual page or in search results.
• Tomcat log files do not contain errors.

• VIVO was not re-deployed with ant
deploy after the OpenSocial values
were set in deploy.properties

 • Gadgets do not appear on Individual page or in
search results.

• Tomcat "localhost" log file contains an error
message:

Unable to load properties:
shindigorng.properties

• Configuration file is not correctly
named.

• Tomcat's setenv file does not specify
the correct CLASSPATH

 • Dialog box appears in the browser with the message:
"Error 500 reading application data: internalError"

• Tomcat "catalina" log file contains an error message:

java.sql.SQLException: Access denied
for user

• Configuration file contains incorrect
value for one or more of these:

o orng.dbURL
o orng.dbUser
o orng.dbPassword

 • "Smoke tests" fail at startup.

Token key file for Shindig does not
exist

• Pages that display gadgets "hang" in the browser.
• Tomcat "localhost" log file contains error messages,

including:

com.google.inject.CreationException:
Guice creation errors

• OpenSocial.tokenKeyFile is not set in
deploy.properties, or the file does not
exist at the specified location.

 • Gadgets do not appear on Individual page or in
search results

• vivo.all.log contains an error message:

MySQLSyntaxErrorException: Table
'vivo.orng_apps' doesn't exist

• MySQL does not contain the shindig
tables.

shindig_orng_tables.sql

was not processed.
 • Gadgets do not appear on Individual page or in

search results
• In deploy.properties,

OpenSocial.tokenService is not set

• vivo.all.log contains an error message:

java.net.ConnectException:
Connection refused

correctly.

II. Changing the gadget configurations
VIVO will look at tables in MySQL to determine what gadgets should be made available, where they
should appear, how big they will be, and much more. At this time, VIVO doesn't provide a user interface to
edit the contents of these tables. Administrators will need to use a MySQL admin client, or SQL
commands, to set these parameters.

The tables are named orng_apps and orng_app_views, and are described in the following sections.

II.i The orng_apps database table

This table acts as a dictionary of the available gadgets. It includes the name and ID of the gadget and where
the source code is stored on the web.

Field Type Usage

appid int(11) Identifies the gadget. In particular, this will be used to determine which rows
in the orng_app_views table should apply to this gadget.

name varchar(255) A user-friendly name for the gadget. This will be displayed in the gadget's
"Title Bar".

url varchar(255) The location where the gadget's contents and behavior are defined.
PersonFilterID int(11) deprecated - usually set to NULL

enabled tinyint(1) If set to 0, this gadget will never be displayed. If set to 1, it is displayed
according to the rules in the orng_app_views table.

channels varchar(255) Keywords that identify the communication channels between the gadget and
VIVO.

II.ii The orng_app_views database table

This table tells how, where, and when to display the gadgets that are described in orng_apps. Each row in
this table is a "view", describing a single gadget and the rules that determine whether the gadget will be
displayed on a particular page.

Note: If a gadget is described and enabled in the orng_apps table, but has no records in the orng_app_views
table, the gadget will be displayed without restriction on all ORNG-enabled pages. This can be helpful
when developing a new gadget. To avoid this, either

• remove the gadget from orng_apps, or
• set the enabled flag in orng_apps to 0, or
• create a rule for the gadget in orng_app_views.

Field Type Usage
appid int(11) Determines which gadget in orng_apps is affected by this rule.
viewer_req char(1) What requirements must the viewer satisfy in order to see this view?

• NULL -- There are no requirements on the viewer.
• 'U' -- The viewer must be logged in to VIVO.
• 'R' -- The viewer must be logged in, and must be registered as a user of

this gadget.

owner_req char(1)

What requirements must the owner of this page satisfy in order to see this view?

• NULL -- There are no requirements on the owner of the page.
• 'R' -- The owner of the page must choose to display this gadget to the

public.
• 'S' -- The viewer must be the owner of the page being viewed.

page varchar(50)

What page does this rule apply to? A single gadget might have several views,
but no more than one view per page. Recognized values are

• individual -- The profile page of an individual, when it is not in "edit"
mode. This applies when the viewer is not logged in, or does not have
the right to edit the profile page.

• individual-EDIT-MODE -- The profile page of an individual, when it is
in "edit" mode. This applies when the viewer is logged in as an
administrator or other privileged user, or as the owner of the profile
page.

• search -- The search results page.
• gadgetDetails -- A page that contains only the selected gadget. This

usually occurs when the user clicks on an icon or a link that expands
the gadget to full-page mode.

view varchar(50)

What is the view-mode of the gadget? These are defined as part of the
OpenSocial standards.

• profile -- The "standard" view, commonly used on the profile page of
an individual

• small -- The "condensed" view.
• home -- The view which allows the user to change the gadget's settings.
• canvas -- The "expanded", commonly used when the gadget is the only

thing on a page.

closed_width int(11) How wide is the gadget when it is closed? (in pixels)
open_width int(11) How wide is the gadget when it is open? (in pixels)
start_closed tinyint(1) When the page is first loaded, is the gadget open or closed (1 = closed, 0 = open)

chromeId varchar(50)
The gadget will be displayed on the page inside a <div> with this id. Note: the
page must contain this <div> and its contents will be replaced with this gadget
(or gadgets).

display_order int(11) If more than one gadget has the same chromeId, they will be displayed in order
by this field.

III. Additional Considerations

Some things to be aware of when working with OpenSocial gadgets.

III.i. Re-running the deployment script

The OpenSocial framework relies on several of the settings in the
deploy.properties file, in addition to the ones that are explicitly linked to it.

Each time you change the settings in deploy.properties, you should re-
deploy the framework with

 ant orng

III.ii. Resetting the gadget cache

For efficiency, VIVO reads the gadget configuration only when it starts up.
VIVO keeps a copy of the database tables in memory, for efficiency.

This means that if you change the gadget configuration in the database
tables, you must either tell VIVO to read the tables again. Direct your
browser to the orng/clearcache page within VIVO. For example,

 http://localhost:8080/vivo/orng/clearcache

VIVO will re-read the gadget configuration, and display the VIVO home
page.

You can achieve the same effect by restarting VIVO.

III.iii. Issues with Linked Open Data

TBD

III.iv. Disabling the OpenSocial gadgets

If you decide not to use OpenSocial gadgets in your VIVO installation,
there are several ways to deactivate them, depending on how firm your
decision is, and how thorough you wish to be.

Disable the gadgets

You can disable any or all of the installed gadgets by setting the enabled
flag in orng_apps to zero (see section II.i. The orng_apps database table).

To make this change take effect, restart Tomcat, or clear the OpenSocial
cache (see section III.ii. Resetting the gadget cache).

Disable the connection

Disabling the gadgets, as above, will remove essentially all of the
OpenSocial processing within VIVO. To remove the remainder of it, you
can disable the connection between VIVO and the OpenSocial service. Do
this by removing or commenting the OpenSocial properties in
deploy.properties (see section I.iv. Configure VIVO).

To make this change take effect, re-deploy VIVO and restart Tomcat.

Remove the OpenSocial webapp from Tomcat

Disabling the connection, as above, will remove all of the OpenSocial
processing from your VIVO requests. However, you may still see that
Tomcat takes longer to start up, and requires more memory.

To remove the OpenSocial webapp from Tomcat,

• stop Tomcat;
• in the [tomcat]/webapps directory, delete shindigorng.war and the

shindigorng sub-directory;
• start Tomcat.

Clean up the remnants

To remove all traces of OpenSocial from your VIVO installation, you
should take the steps outlined above, and also:

• Remove the orng tables from your MySQL database.
• Remove the changes to Tomcat by restoring your setenv file to its

previous state.
• Remove the shindig directory and subdirectories from your VIVO

home directory.

These steps will have no appreciable effect on the operation of VIVO,
Tomcat, or MySQL. However, if these artifacts are not removed they could
be a source of puzzlement for future VIVO maintainers.

