

Fedora is not Fedora is not Fedora

Formalizing the Fedora API

Motivation
● Why spend time specifying the API? What are

the benefits?
● What do we mean when we say “Fedora”?
● What does the answer to the second question

tell us about how to answer the first?

Why specify the API?

Durability for content must be supported by durability
for the machinery that holds and processes it.

Why specify the API?

A well-specified API allows systems that use Fedora
to evolve carefully and without nasty surprises.

Don't we have a specified API?

No.

Don't we have a specified API?

We have extensive human-readable documentation,
but not formal specification.

● Documentation describes, but does not prescribe.
● That means expectations, but not guarantees, and

that means… trouble!

Don't we have a specified API?

What is the true “specification” of Fedora software?

Whatever a given version of the software actually
does!

What should we do?

If we want a durable repository API, we should think
about how we provide durability to other “kinds of

Fedora”.

Fedora themselves tell us a lot about that.

What is “Fedora”?

Three kinds of Fedora:
● Fedora, the information architecture

● The Fedora community
● Fedora Commons software

Fedora, the information architecture

● “Object”, “Datastream”, “Disseminator”
● Has evolved over the years

● Only well-understood by Fedora software

The Fedora community

● A “repository” of tested praxes, human and
institutional relationships

● Has also evolved over the years
● Centered on the information architecture and its

value of durability

Fedora Commons software

● Built by the community as the premier
implementation of the information architecture

Aspects of durability

● For the model
● For the community

● For the software

Durability in the model

Arises from clarifying and publishing ontological
claims (content modeling, relationships between

resources)

Durability in the community

Arises from sharing ontological claims and practices,
and engaging with larger communities

Durability in the software

Arises from well-known practices for good software
engineering

● Modularization
● Versioning

● Testing

We want these durabilities for our API.

What are we doing?

● The API specif ication comprises a core and
extension modules, organized in logical packages

● Each module will contain a formal specif ication and
automated test suite, versioned together

● Most modules will also include a formal ontology

What are we doing?

● Test suites will provide testability for any new Fedora
implementation, and

● guarantee interoperability

What are we doing?

● All of the APIs assume RDF over HTTP.
● The ontologies are being made available in

RDFS/OWL.

The Core

● LDP + the Core ontology
● Does CRUD with the Fedora model for content

Packages: Workflow APIs

● The Core Module
● Transactions

● Versioning
● Locking?

Packages: Administration APIs

● Backup/Restore

Packages: Other guys

● Fixity
● Your contributions

Where we are

https://wiki.duraspace.org/display/FF/API+review+and+discussion

https://wiki.duraspace.org/display/FF/API+Partitioning

