
DSpace 8.x Documentation

1

Contents
1. Introduction . 5

1.1 Technology Overview . 6
1.2 Functional Overview . 7
1.3 Release Notes . 19

2. Installing DSpace . 23
3. Upgrading DSpace . 43

3.1 Migrating DSpace to a new server . 53
4. Using DSpace . 55

4.1 Authentication and Authorization . 56
4.1.1 Authentication Plugins . 57
4.1.2 Bulk Access Management . 75
4.1.3 Embargo . 78

4.1.3.1 Pre-3.0 Embargo Lifter Commands . 83
4.1.4 Managing User Accounts . 84

4.1.4.1 Email Subscriptions . 87
4.1.5 Request a Copy . 89

4.2 CAPTCHA Verification . 98
4.3 Configurable Entities . 100
4.4 Curation System . 110

4.4.1 Bundled Tasks . 116
4.4.1.1 Bitstream Format Profiler Task . 117
4.4.1.2 Link Checker Tasks . 118
4.4.1.3 MetadataWebService Task . 119
4.4.1.4 MicrosoftTranslator Task . 121
4.4.1.5 NoOp Task . 122
4.4.1.6 Required Metadata Task . 123
4.4.1.7 Virus Scan Task . 124

4.5 Exporting Content and Metadata . 126
4.5.1 Signposting . 127
4.5.2 OpenAIRE4 Guidelines Compliancy . 128
4.5.3 OAI . 130

4.5.3.1 OAI 2.0 Server . 136
4.5.3.2 OAI-PMH Data Provider 2.0 (Internals) . 143

4.5.4 Exchanging Content Between Repositories . 145
4.5.5 SWORDv1 Client . 146
4.5.6 Linked (Open) Data . 147
4.5.7 Rioxx v3 schema compliance . 157

4.6 Ingesting Content and Metadata . 158
4.6.1 Submission User Interface . 159

4.6.1.1 Basic Duplicate Detection for Submission/Workflow . 175
4.6.1.2 Live Import from external sources . 178
4.6.1.3 Set a bitstream as primary . 184
4.6.1.4 Simple HTML Fragment Markup . 186
4.6.1.5 Supervision Orders . 187

4.6.2 Configurable Workflow . 190
4.6.3 Importing and Exporting Content via Packages . 198
4.6.4 Importing and Exporting Items via Simple Archive Format . 202
4.6.5 Registering Bitstreams via Simple Archive Format . 210
4.6.6 Importing Items via basic bibliographic formats (Endnote, BibTex, RIS, CSV, etc) and online services (arXiv, PubMed,

 CrossRef, CiNii, etc) . 212
4.6.7 Exporting and Importing Community and Collection Hierarchy . 214
4.6.8 SWORDv1 Server . 216
4.6.9 SWORDv2 Server . 221
4.6.10 Ingesting HTML Archives . 229

4.7 Items and Metadata . 230
4.7.1 Authority Control of Metadata Values . 231

4.7.1.1 ORCID Authority . 234
4.7.2 Batch Metadata Editing . 244

4.7.2.1 Batch Metadata Editing Configuration . 250
4.7.3 DOI Digital Object Identifier . 251
4.7.4 Item Level Versioning . 260
4.7.5 Mapping/Linking Items to multiple Collections . 267
4.7.6 Metadata Recommendations . 268
4.7.7 Moving Items . 269
4.7.8 PDF Citation Cover Page . 270
4.7.9 Request Withdrawn and Reinstate of an item . 272
4.7.10 Updating Items via Simple Archive Format . 280

4.8 Managing Community Hierarchy . 282
4.9 ORCID Integration . 284
4.10 Researcher Profiles . 297
4.11 Statistics and Metrics . 300

4.11.1 Exchange usage statistics with IRUS . 301
4.11.2 DSpace Google Analytics Statistics . 303
4.11.3 SOLR Statistics . 306

4.11.3.1 SOLR Statistics Maintenance . 315
4.11.3.1.1 Testing Solr Shards . 320

4.12 User Interface . 323
4.12.1 Multilingual Support . 324

2

4.12.2 IIIF Configuration . 326
4.12.3 Contextual Help Tooltips . 330
4.12.4 Discovery . 332
4.12.5 Browse . 348
4.12.6 Accessibility . 350
4.12.7 User Interface Customization . 352
4.12.8 User Interface Configuration . 366

5. Learning DSpace . 378
5.1 Community and Collection management . 380

5.1.1 Collection Management . 381
5.1.1.1 Create Collection . 382
5.1.1.2 Delete Collection . 386
5.1.1.3 Edit Collection . 389
5.1.1.4 Export Collection . 415

5.1.2 Community Management . 420
5.1.2.1 Create a Community . 421
5.1.2.2 Delete Community . 426
5.1.2.3 Edit Community . 429

5.2 Content (Item) management . 445
5.2.1 Add item . 446
5.2.2 Delete item . 457
5.2.3 Edit Item . 460

5.2.3.1 Authorizations (Manage access to an item) . 464
5.2.3.2 Collection Mapper . 471
5.2.3.3 Edit Bitstream . 476
5.2.3.4 Edit Metadata . 484
5.2.3.5 Edit Relationship . 500
5.2.3.6 Make an item discoverable . 507
5.2.3.7 Make an item non-discoverable . 511
5.2.3.8 Move an Item . 516
5.2.3.9 Versioned Item . 520
5.2.3.10 Withdraw an item . 527

5.2.4 Embargo an item . 532
5.2.5 Lease an item . 541

5.3 DSpace Demo Quick Start . 551
5.4 Management sidebar . 552

5.4.1 Administrator Reports (Beta feature) . 555
5.4.2 COAR Notify . 561

5.4.2.1 COAR Notify - Dashboard . 563
5.4.2.2 COAR Notify - LDN Services . 572

5.4.3 Notifications . 581
5.4.3.1 Publication Claim . 582
5.4.3.2 Quality Assurance . 591

5.4.3.2.1 COAR Notify Integration . 597
5.4.3.2.2 OpenAIRE Integration . 598

5.5 Menus . 608
5.6 Registry management . 610

5.6.1 Metadata Registry Management . 611
5.7 Request-a-copy . 624
5.8 Search - Advanced . 625
5.9 Submitter actions . 626
5.10 User management . 627

5.10.1 Add or Manage an E-Person . 628
5.10.2 Create or manage a user group . 647

6. System Administration . 662
6.1 AIP Backup and Restore . 663

6.1.1 DSpace AIP Format . 678
6.2 Ant targets and options . 689
6.3 Command Line Operations . 691

6.3.1 Executing streams of commands . 693
6.3.2 Database Utilities . 694

6.4 Handle.Net Registry Support . 695
6.5 Logical Item Filtering and DOI Filtered Provider for DSpace . 698
6.6 Mediafilters for Transforming DSpace Content . 703

6.6.1 ImageMagick Media Filters . 707
6.7 Performance Tuning DSpace . 712
6.8 Ping or Healthcheck endpoints for confirming DSpace services are functional . 717
6.9 Scheduled Tasks via Cron . 718
6.10 Search Engine Optimization . 721

6.10.1 Google Scholar Metadata Mappings . 726
6.11 Troubleshooting Information . 727
6.12 Validating CheckSums of Bitstreams . 728

7. DSpace Development . 732
7.1 Advanced Customisation . 733

7.1.1 DSpace Service Manager . 734
7.2 Batch Processing . 736
7.3 Curation Tasks . 737

7.3.1 Curation tasks in Jython . 740
7.4 Development Tools Provided by DSpace . 742

3

7.5 REST API . 743
7.6 Services to support Alternative Identifiers . 746
7.7 User Interface Design Principles & Accessibility . 750
7.8 Workflow . 754

8. DSpace Reference . 759
8.1 Architecture . 760

8.1.1 Application Layer . 762
8.1.2 Business Logic Layer . 764
8.1.3 DSpace Services Framework . 781
8.1.4 Storage Layer . 785

8.2 Configuration Reference . 792
8.3 Directories and Files . 842
8.4 DSpace Item State Definitions . 845
8.5 Metadata and Bitstream Format Registries . 847
8.6 History . 852

8.6.1 Changes in 8.x . 853
8.6.2 Changes in Older Releases . 854

4

Introduction
DSpace is an open source software platform that enables organisations to:

capture and describe digital material using a submission workflow module, or a variety of programmatic ingest options
distribute an organisation's digital assets over the web through a search and retrieval system
preserve digital assets over the long term

This system documentation includes a , which is a good introduction to the capabilities of the system, and should be functional overview of the system
readable by non-technical folk. Everyone should read this section first because it introduces some terminology used throughout the rest of the
documentation.

For people actually running a DSpace service, there is an , and sections on and the . Support options are installation guide configuration directory structure
available in the .DSpace Support Guide

For those interested in the details of how DSpace works, and those potentially interested in modifying the code for their own purposes, there is a detailed ar
.chitecture section

Other good sources of information are:

The lists various places to ask for help, report bugs or security issues, etc.DSpace Support Guide
The DSpace which documents the REST API behavior, etc. If you want source code docs, we also provide JavaDocs for the REST API contract
Java API layer which can be built by running mvn javadoc:javadoc
The contains stacks of useful information about the DSpace platform and the work people are doing with it. You are strongly DSpace Wiki
encouraged to visit this site and add information about your own work. Useful Wiki areas are:

A list of DSpace resources (Web sites, mailing lists etc.)
Technical FAQ
Registry of projects using DSpace
Guidelines for contributing back to DSpace

www.dspace.org has announcements and contains useful information about bringing up an instance of DSpace at your organization.
The . Join DSpace-Community to ask questions or join discussions about non-technical aspects of building and running a DSpace Community List
DSpace service. It is open to all DSpace users. Ask questions, share news, and spark discussion about DSpace with people managing other
DSpace sites. Watch DSpace-Community for news of software releases, user conferences, and announcements about DSpace.
The . DSpace developers & fellow community members help answer installation and technology questions, share DSpace Technical List
information and help each other solve technical problems through the DSpace-Tech mailing list. Post questions or contribute your expertise to
other developers working with the system.
The . Join Discussions among DSpace Developers. The DSpace-Dev listserv is for DSpace developers working on the DSpace Development List
DSpace platform to share ideas and discuss code changes to the open source platform. Join other developers to shape the evolution of the
DSpace software. The DSpace community depends on its members to frame functional requirements and high-level architecture, and to facilitate
programming, testing, documentation and to the project.

5

https://wiki.lyrasis.org/display/DSPACE/Support
https://wiki.lyrasis.org/display/DSPACE/Support
https://github.com/DSpace/Rest7Contract/blob/main/README.md
http://wiki.dspace.org/
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceResources
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=TechnicalFAQ
http://registry.duraspace.org/registry/dspace
https://wiki.lyrasis.org/display/DSPACE/Code+Contribution+Guidelines
http://www.dspace.org/
https://groups.google.com/d/forum/dspace-community
https://groups.google.com/d/forum/dspace-tech
https://groups.google.com/d/forum/dspace-devel

1.

a.

2.

3.

a.

Technology Overview
DSpace open source software is free to use, and community supported.

DSpace consists of both a frontend (User Interface) and a backend (REST API & other machine interfaces). A brief overview of the technologies used for
each is provided below.

DSpace Frontend (UI) Technologies
DSpace Backend (REST API) Technologies
How the Frontend and Backend interact

DSpace Frontend (UI) Technologies

The DSpace Frontend provides the which allows people to interact with DSpace. It requires a DSpace backend, and cannot be run User Interface
standalone.

The DSpace Frontend is built on the platform, written in the language.Angular Typescript It uses & HTML5 for theming/styling & strives Bootstrap
for WCAG 2.1 AA alignment. The frontend also uses for "server-side rendering", which allows it to function even when Javascript is Angular Universal
unavailable in the browser. For more information on Angular Universal, see the the .Angular University guide

More information on installing the DSpace Frontend can be found in the guide.Installing DSpace

DSpace Backend (REST API) Technologies

The DSpace Backend provides the , which is required by the DSpace Frontend. It also provides additional machine interfaces for interacting with REST API
data in DSpace, such as , , and various command-line (CLI) tools. The DSpace backend can be run OAI-PMH SWORDv2 Server SWORDv1 Server
standalone, but it doesn't provide a user friendly web interface (which is why the DSpace frontend is recommended).

The DSpace Backend is built on , written in Java.Spring Boot The REST API portion of the backend is built on Spring Technologies, including Spring
, , and aligns with . The REST API uses the as a basic web interface for REST Spring HATEOAS Spring Data REST Spring Data REST Hal Browser

exploring the REST API. All REST API responses are returned in JSON format.

The DSpace Backend requires a relational database (usually), used to store all the metadata and relationships between objects. All files PostgreSQL
uploaded into DSpace are stored on the filesystem (any operating system is supported). is also required, and is used to index all objects for Apache Solr
searching/browsing.

More information on installing the DSpace Backend can be found in the guide. More information on the REST API specifically can be Installing DSpace
found in our .REST Contract

How the Frontend and Backend interact

Here is a high level overview of what happens when a user interacts with DSpace when the user interface is running in mode:production

Initial static page via server-side rendering (SSR): When a user initially visits any page in the DSpace user interface (UI), this triggers server-side
rendering (SSR) via . This means that the UI (Javascript) application is run by Node.js. The result is that a Angular Universal on the server static
HTML page is generated, which will be sent back to the user.

This process of rendering the static HTML page will result in Node.js making requests to REST API to gather all the data necessary to
build the HTML page.static

Static page is dynamically replaced by UI application: The user briefly sees the generated static HTML page while the UI (Javascript) application
 . This allows the user to immediately see the DSpace User Interface even before it becomes interactive. As soon is downloading to their browser

as the UI application finishes downloading, it dynamically replaces that static HTML page, making the User Interface interactive to the user. (The
time between the UI page appearing and becoming interactive is usually unnoticeable to a user.) This entire process is handled by Angular

.Universal
Interactions with the UI application send requests to the REST API (client-side rendering): As soon as the UI becomes interactive, it runs entirely
in the user's browser (as any other Javascript application). This means that when the user interacts with the application (by clicking links/buttons
or typing in fields, etc), this will send requests from the user's browser to the REST API (backend). This is called client-side rendering (CSR) as
all HTML is generated within the user's browser.

At this point, every action in the User Interface will generate one or more requests to the REST API to gather necessary data. These
requests are all visible in the user's browser (in the "Network" tab of the browser's "Developer tools").

Keep in mind, SSR can be potentially taxing for very large pages with a lot of objects or data display. This is because Node.js has to make requests to the
REST API to gather all the data for the page before rendering the static HTML. Because of this, we do also document some Performance Tuning
suggestions for the User Interface (e.g. there is an option to cache these SSR generated static pages in order to generate them less frequently).

Some bots and clients may use server-side rendering at all times

For bots or clients , every page request will trigger SSR (server-side rendering). This is because the static HTML page without the ability to run Javascript
can never be dynamically replaced by the User Interface application (in step 2 above). However, this behavior is necessary to support Search Engine

. Some search engine bots cannot run Javascript & therefore cannot index sites which do not generate static HTML pages.Optimization
Running the user interface in development mode disables SSR and may impact SEO

Running the user interface (frontend) in mode will only utilize client-side rendering (CSR) (as described in step 3 above). This means server-development
side rendering (SSR) will never occur, and all HTML will be generated in the user's browser. The result is that bots or clients without the ability to run

 will be unable to interact with the site (which can negatively impact)Javascript Search Engine Optimization

6

https://angular.io/
https://www.typescriptlang.org/
https://getbootstrap.com/
https://angular.io/guide/universal
https://blog.angular-university.io/angular-universal/
https://spring.io/projects/spring-boot
https://spring.io/guides/tutorials/rest/
https://spring.io/guides/tutorials/rest/
https://spring.io/projects/spring-hateoas
https://spring.io/projects/spring-data-rest
https://docs.spring.io/spring-data/rest/docs/current/reference/html/#_the_hal_browser
https://www.postgresql.org/
https://solr.apache.org/
https://github.com/DSpace/RestContract/blob/main/README.md
https://angular.io/guide/universal
https://angular.io/guide/universal
https://angular.io/guide/universal
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138

Functional Overview
The following sections describe the various functional aspects of the DSpace system.

1 Online access to your digital assets
1.1 Full-text search
1.2 Navigation
1.3 Supported file types
1.4 Optimized for Google Indexing
1.5 OpenURL Support
1.6 Support for modern browsers

2 Metadata Management
2.1 Metadata
2.2 Choice Management and Authority Control

3 Licensing
3.1 Collection and Community Licenses
3.2 License granted by the submitter to the repository
3.3 Creative Commons Support for DSpace Items

4 Persistent URLs and Identifiers
4.1 Handles
4.2 Bitstream 'Persistent' Identifiers

5 Getting content into DSpace
5.1 The Manual DSpace Submission and Workflow System

5.1.1 Workflow Steps
5.1.2 Submission Workflow in DSpace

5.2 Command line import facilities
5.3 Registration for externally hosted files
5.4 SWORD Support

6 Getting content out of DSpace
6.1 OAI Support
6.2 Signposting
6.3 Command Line Export Facilities
6.4 Packager Plugins
6.5 Crosswalk Plugins
6.6 Supervision and Collaboration

7 User Management
7.1 User Accounts (E-Person)
7.2 Subscriptions
7.3 Groups

8 Access Control
8.1 Authentication
8.2 Authorization

9 Usage Metrics
9.1 Item, Collection and Community Usage Statistics
9.2 System Statistics

10 Digital Preservation
10.1 Checksum Checker

11 System Design
11.1 Data Model
11.2 Amazon S3 Support

Online access to your digital assets

The online presentation of your content in an organized tree of Communities and Collections is a main feature of DSpace. Users can access pages for
individual items, these are metadata descriptions together with files available for download. The structure is summarised in this diagram (click to see the
image at full size).

7

Full-text search

DSpace can process uploaded text based contents for full-text searching. This means that not only the metadata you provide for a given file will be
searchable, but all of its contents will be indexed as well. This allows users to search for specific keywords that only appear in the actual content and not in
the provided description.

Navigation

DSpace allows users to find their way to relevant content in a number of ways, including:

Searching for one or more keywords in metadata or extracted full-text
Faceted browsing through any field provided in the item description.
Through , such as a Handleexternal reference
By clicking on Community and Collection titles to explore their contents

Another important mechanism for discovery in DSpace is the browse. This is the process whereby the user views a particular index, such as the title index,
and navigates around it in search of interesting items. The browse subsystem provides a simple API for achieving this by allowing a caller to specify an
index, and a subsection of that index. The browse subsystem then discloses the portion of the index of interest. Indices that may be browsed are item title,
item issue date, item author, and subject terms. Additionally, the browse can be limited to items within a particular collection or community.

For more information on Search/Browse functionality in DSpace, see .Discovery

Supported file types

DSpace can accommodate any type of uploaded file. While DSpace is most known for hosting text based materials including scholarly communication and
electronic theses and dissertations (ETDs), there are many stakeholders in the community who use DSpace for multimedia, data and learning objects.
While some restrictions apply, DSpace can even serve as a store for .HTML Archives

Files that have been uploaded to DSpace are often referred to as "Bitstreams". The reason for this is mainly historic and tracks back to the technical
implementation. After ingestion, files in DSpace are stored on the file system as a stream of bits without the file extension.

By default, DSpace only recognizes specific file types, as defined in its Bitstream Format Registry. The default recognizes Bitstream Format Registry
many common file formats, but it can be enhanced at your local institution via the Admin User Interface.

Optimized for Google Indexing

The Duraspace community fosters a close relation with Google to ensure optimal indexing of DSpace content, primarily in the Google Search and Google
Scholar products. For the purpose of Google Scholar indexing, DSpace added specific metadata in the page head tags facilitating indexing in Scholar.
More information can be retrieved on the . Popular DSpace repositories often generate over 60% of their visits Google Scholar Metadata Mappings page
from Google pages.

OpenURL Support

DSpace supports the in a rather simple fashion. If your institution has an , DSpace will display an OpenURL link on every OpenURL protocol SFX server
item page, automatically using the Dublin Core metadata. Additionally, DSpace can respond to incoming OpenURLs. Presently it simply passes the
information in the OpenURL to the search subsystem. A list of results is then displayed, which usually gives the relevant item (if it is in DSpace) at the top
of the list.

Support for modern browsers

8

https://en.wikipedia.org/wiki/OpenURL
http://www.exlibrisgroup.com/category/SFXOverview

1.

2.

3.

4.

1.

2.

The DSpace developer community aims to rely on modern web standards and well tested libraries where possible. As a rule of thumb, users can expect
that the DSpace web interfaces work on modern web browsers. DSpace developers routinely test new interface developments on recent versions of
Firefox, Safari, Chrome and Microsoft Edge. Because of fast moving, automatic, incremental updates to these browsers, support is no longer targeted at
specific versions of these browsers. (Please note that we do not recommend or support using Internet Explorer as it is considered "end of life" by
Microsoft.)

Metadata Management

Metadata

Broadly speaking, DSpace holds three sorts of metadata about archived content:

Descriptive Metadata: DSpace can support multiple flat metadata schemas for describing an item. A qualified Dublin Core metadata schema
loosely based on the set of elements and qualifiers is provided by default. This default schema is described in more Library Application Profile
detail in . However, you can configure multiple schemas and select metadata fields from a mix of Metadata and Bitstream Format Registries
configured schemas to describe your items. Other descriptive metadata about items (e.g. metadata described in a hierarchical schema) may be
held in serialized bitstreams.
Administrative Metadata: This includes preservation metadata, provenance and authorization policy data. Most of this is held within DSpace's
relational DBMS schema. Provenance metadata (prose) is stored in Dublin Core records. Additionally, some other administrative metadata (for
example, bitstream byte sizes and MIME types) is replicated in Dublin Core records so that it is easily accessible outside of DSpace.
Structural Metadata: This includes information about how to present an item, or bitstreams within an item, to an end-user, and the relationships
between constituent parts of the item. As an example, consider a thesis consisting of a number of TIFF images, each depicting a single page of
the thesis. Structural metadata would include the fact that each image is a single page, and the ordering of the TIFF images/pages. Structural
metadata in DSpace is currently fairly basic; within an item, bitstreams can be arranged into separate bundles as described above. A bundle may
also optionally have a . This is currently used by the HTML support to indicate which bitstream in the bundle is the first HTML file primary bitstream
to send to a browser. In addition to some basic technical metadata, a bitstream also has a 'sequence ID' that uniquely identifies it within an item.
This is used to produce a 'persistent' bitstream identifier for each bitstream. Additional structural metadata can be stored in serialized bitstreams,
but DSpace does not currently understand this natively.

Choice Management and Authority Control

This is a configurable framework that lets you define plug-in classes to control the choice of values for specified DSpace metadata fields. It also lets you
configure fields to include "authority" values along with the textual metadata value. The choice-control system includes a user interface in both the
Configurable Submission UI and the Admin UI (edit Item pages) that assists the user in choosing metadata values.

Introduction and Motivation

Definitions

Choice Management

This is a mechanism that generates a list of choices for a value to be entered in a given metadata field. Depending on your implementation, the exact
choice list might be determined by a proposed value or query, or it could be a fixed list that is the same for every query. It may also be closed (limited to
choices produced internally) or open, allowing the user-supplied query to be included as a choice.

Authority Control

This works in addition to choice management to supply an authority key along with the chosen value, which is also assigned to the Item's metadata field
entry. Any authority-controlled field is also inherently choice-controlled.

About Authority Control

The advantages we seek from an authority controlled metadata field are:

There is a simple and positive way to test whether two values are identical, by comparing authority keys.
Comparing plain text values can give false positive results e.g. when two different people have a name that is written the same.
It can also give false negative results when the same name is written different ways, e.g. "J. Smith" vs. "John Smith".

Help in entering correct metadata values. The submission and admin UIs may call on the authority to check a proposed value and list possible
matches to help the user select one.
Improved interoperability. By sharing a name authority with another application, your DSpace can interoperate more cleanly with other
applications.

For example, a DSpace institutional repository sharing a naming authority with the campus social network would let the social network
construct a list of all DSpace Items matching the shared author identifier, rather than by error-prone name matching.
When the name authority is shared with a campus directory, DSpace can look up the email address of an author to send automatic email
about works of theirs submitted by a third party. That author does not have to be an EPerson.

Authority keys are normally invisible in the public web UIs. They are only seen by administrators editing metadata. The value of an authority key is
not expected to be meaningful to an end-user or site visitor.

Authority control is different from the controlled vocabulary of keywords already implemented in the submission UI:

Authorities are external to DSpace. The source of authority control is typically an external database or network resource.
Plug-in architecture makes it easy to integrate new authorities without modifying any core code.

This authority proposal impacts all phases of metadata management.
The keyword vocabularies are only for the submission UI.

9

http://www.dublincore.org/documents/library-application-profile/

2.

Authority control is asserted everywhere metadata values are changed, including unattended/batch submission, SWORD package
submission, and the administrative UI.

Some Terminology

Authority An authority is a source of fixed values for a given domain, each unique value identified by a key.

. For example, the OCLC LC Name Authority Service.

Authority
Record

The information associated with one of the values in an authority; may include alternate spellings and equivalent forms of the value,
etc.

Authority Key An opaque, hopefully persistent, identifier corresponding to exactly one record in the authority.

Licensing

DSpace offers support for licenses on different levels

Collection and Community Licenses

Each community and collection in the hierarchy of a DSpace repository can contain its own license terms. This allows an institution to use the repository
both for collections where certain rights are reserved and others from which the content may be accessed and distributed more freely.

License granted by the submitter to the repository

At the end of the manual submission process, the submitter is asked to grant the repository service an appropriate distribution license. This license can be
easily customized on a per collection basis. In its most common form, the submitter grants to the repository service a non-exclusive distribution license,
meaning that he officially gives the repository service the right to share his or her work with the world.

Creative Commons Support for DSpace Items

DSpace provides support for Creative Commons licenses to be attached to items in the repository. They represent an alternative to traditional copyright.
To learn more about Creative Commons, visit . Support for license selection is controlled by a site-wide configuration option, and since license their website
selection involves interaction with the Creative Commons website, additional parameters may be configured to work with a proxy server. If the option is
enabled, users may select a Creative Commons license during the submission process, or select to don't assign a Creative Commons license at all. If a
selection is made, metadata and a copy of the license in the RDF format is stored along with the item in the repository. There is also an indication - text
and a Creative Commons icon - in the item display page of the web user interface when an item is licensed under Creative Commons. The RDF license is
embedded in the html page of the item to allow machine understanding of the licensing terms. For specifics of how to configure and use Creative
Commons licenses, .see the configuration section

Persistent URLs and Identifiers

Handles

Researchers require a stable point of reference for their works. The simple evolution from sharing of citations to emailing of URLs broke when Web users
learned that sites can disappear or be reconfigured without notice, and that their bookmark files containing critical links to research results couldn't be
trusted in the long term. To help solve this problem, a core DSpace feature is the creation of a persistent identifier for every item, collection and community
stored in DSpace. To persist identifiers, DSpace requires a storage- and location- independent mechanism for creating and maintaining identifiers. DSpace
uses the for creating these identifiers. The rest of this section assumes a basic familiarity with the Handle system.CNRI Handle System

DSpace uses Handles primarily as a means of assigning globally unique identifiers to objects. Each site running DSpace needs to obtain a unique Handle
'prefix' from CNRI, so we know that if we create identifiers with that prefix, they won't clash with identifiers created elsewhere.

Presently, Handles are assigned to communities, collections, and items. Bundles and bitstreams are not assigned Handles, since over time, the way in
which an item is encoded as bits may change, in order to allow access with future technologies and devices. Older versions may be moved to off-line
storage as a new standard becomes de facto. Since it's usually the that is being preserved, rather than the particular bit encoding, it only makes item
sense to persistently identify and allow access to the item, and allow users to access the appropriate bit encoding from there.

Of course, it may be that a particular bit encoding of a file is explicitly being preserved; in this case, the bitstream could be the only one in the item, and the
item's Handle would then essentially refer just to that bitstream. The same bitstream can also be included in other items, and thus would be citable as part
of a greater item, or individually.

The Handle system also features a global resolution infrastructure; that is, an end-user can enter a Handle into any service (e.g. Web page) that can
resolve Handles, and the end-user will be directed to the object (in the case of DSpace, community, collection or item) identified by that Handle. In order to
take advantage of this feature of the Handle system, a DSpace site must also run a 'Handle server' that can accept and resolve incoming resolution
requests. All the code for this is included in the DSpace source code bundle.

Handles can be written in two forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

10

http://creativecommons.org/
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-ConfiguringCreativeCommonsLicense
http://www.handle.net/

The above represent the same Handle. The first is possibly more convenient to use only as an identifier; however, by using the second form, any Web
browser becomes capable of resolving Handles. An end-user need only access this form of the Handle as they would any other URL. It is possible to
enable some browsers to resolve the first form of Handle as if they were standard URLs using , but since the first form can CNRI's Handle Resolver plug-in
always be simply derived from the second, DSpace displays Handles in the second form, so that it is more useful for end-users.

It is important to note that DSpace uses the CNRI Handle infrastructure only at the 'site' level. For example, in the above example, the DSpace site has
been assigned the prefix '1721.123'. It is still the responsibility of the DSpace site to maintain the association between a full Handle (including the '4567'
local part) and the community, collection or item in question.

Bitstream 'Persistent' Identifiers

Similar to handles for DSpace items, bitstreams also have 'Persistent' identifiers. They are more volatile than Handles, since if the content is moved to a
different server or organization, they will no longer work (hence the quotes around 'persistent'). However, they are more easily persisted than the simple
URLs based on database primary key previously used. This means that external systems can more reliably refer to specific bitstreams stored in a DSpace
instance.

Each bitstream has a sequence ID, unique within an item. This sequence ID is used to create a persistent ID, of the form:

dspace url/bitstream/handle/sequence ID/filename

For example:

https://dspace.myu.edu/bitstream/123.456/789/24/foo.html

The above refers to the bitstream with sequence ID 24 in the item with the Handle . The is really just there as a hint to browsers: hdl:123.456/789 foo.html
Although DSpace will provide the appropriate MIME type, some browsers only function correctly if the file has an expected extension.

Getting content into DSpace

The Manual DSpace Submission and Workflow System

Rather than being a single subsystem, ingesting is a process that spans several. Below is a simple illustration of the current ingesting process in DSpace.

DSpace Ingest Process

The batch item importer is an application, which turns an external SIP (an XML metadata document with some content files) into an "in progress
submission" object. The Web submission UI is similarly used by an end-user to assemble an "in progress submission" object.

Depending on the policy of the collection to which the submission in targeted, a workflow process may be started. This typically allows one or more human
reviewers or 'gatekeepers' to check over the submission and ensure it is suitable for inclusion in the collection.

When the Batch Ingester or Submission UI completes the InProgressSubmission object, and invokes the next stage of ingest (be that workflow or item
installation), a provenance message is added to the Dublin Core which includes the filenames and checksums of the content of the submission. Likewise,
each time a workflow changes state (e.g. a reviewer accepts the submission), a similar provenance statement is added. This allows us to track how the
item has changed since a user submitted it.

Once any workflow process is successfully and positively completed, the InProgressSubmission object is consumed by an "item installer", that converts the
InProgressSubmission into a fully blown archived item in DSpace. The item installer:

Assigns an accession date
Adds a "date.available" value to the Dublin Core metadata record of the item

11

http://www.handle.net/resolver/index.html
http://hdl:123.456

Adds an issue date if none already present
Adds a provenance message (including bitstream checksums)
Assigns a Handle persistent identifier
Adds the item to the target collection, and adds appropriate authorization policies
Adds the new item to the search and browse index

Workflow Steps

By default, a collection's workflow may have up to three steps. Each collection may have an associated e-person group for performing each step; if no
group is associated with a certain step, that step is skipped. If a collection has no e-person groups associated with any step, submissions to that collection
are installed straight into the main archive. Keep in mind, however, that this is only the behavior, and the workflow process can be configureddefault
/customized easily, see .Configurable Workflow

In other words, the default sequence is this: The collection receives a submission. If the collection has a group assigned for workflow step 1, that step is
invoked, and the group is notified. Otherwise, workflow step 1 is skipped. Likewise, workflow steps 2 and 3 are performed if and only if the collection has a
group assigned to those steps.

When a step is invoked, the submission is put into the 'task pool' of the step's associated group. One member of that group takes the task from the pool,
and it is then removed from the task pool, to avoid the situation where several people in the group may be performing the same task without realizing it.

The member of the group who has taken the task from the pool may then perform one of three actions:

Workflow
Step

Possible actions

review (step
1)

Can accept submission for inclusion, or reject submission.

edit (step 2) Can edit metadata provided by the user with the submission, but cannot change the submitted files. Can accept submission for
inclusion, or reject submission.

finaledit
(step 3)

Can edit metadata provided by the user with the submission, but cannot change the submitted files. Must then commit to archive; may
not reject submission.

Submission Workflow in DSpace

If a submission is rejected, the reason (entered by the workflow participant) is e-mailed to the submitter, and it is returned to the submitter's 'My DSpace'
page. The submitter can then make any necessary modifications and re-submit, whereupon the process starts again.

If a submission is 'accepted', it is passed to the next step in the workflow. If there are no more workflow steps with associated groups, the submission is
installed in the main archive.

One last possibility is that a workflow can be 'aborted' by a DSpace site administrator. This is accomplished using the Administration UI.

Command line import facilities

DSpace includes batch tools to import items in a simple directory structure, where the Dublin Core metadata is stored in an XML file. This may be used as
the basis for moving content between DSpace and other systems. For more information see .Item Importer and Exporter

DSpace also includes various package importer tools, which support many common content packaging formats like METS. For more information see Packa
. Additionally, DSpace can import/export Archival Information Packages (AIPs), see .ge Importer and Exporter AIP Backup and Restore

Registration for externally hosted files

12

https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-ItemImporterandExporter
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-PackageImporterandExporter
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-PackageImporterandExporter

Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace by taking advantage of the bitstreams already
being in accessible computer storage. An example might be that there is a repository for existing digital assets. Rather than using the normal interactive
ingest process or the batch import to furnish DSpace the metadata and to upload bitstreams, registration provides DSpace the metadata and the location
of the bitstreams. DSpace uses a variation of the import tool to accomplish registration.

SWORD Support

SWORD (Simple Web-service Offering Repository Deposit) is a protocol that allows the remote deposit of items into repositories. SWORD was further
developed in SWORD version 2 to add the ability to retrieve, update, or delete deposits. DSpace supports the SWORD protocol via the 'sword' web
application and SWord v2 via the swordv2 web application. The specification and further information can be found at . See also http://swordapp.org SWOR

 and .Dv1 Server SWORDv2 Server

Getting content out of DSpace

OAI Support

The has developed a . This allows sites to programmatically retrieve or 'harvest' the metadata Open Archives Initiative protocol for metadata harvesting
from several sources, and offer services using that metadata, such as indexing or linking services. Such a service could allow users to access information
from a large number of sites from one place.

DSpace exposes the Dublin Core metadata for items that are publicly (anonymously) accessible. Additionally, the collection structure is also exposed via
the OAI protocol's 'sets' mechanism. OCLC's open source framework is used to provide this functionality.OAICat

You can also configure the OAI service to make use of any crosswalk plugin to offer additional metadata formats, such as MODS.

DSpace's OAI service does support the exposing of deletion information for withdrawn items, but not for items that are 'expunged' (see above). DSpace
also supports OAI-PMH resumption tokens. See for more information.OAI

Signposting

DSpace supports FAIR Signposting Profile at Level 2: By supporting the FAIR Signposting Profile at Level 2, your platform demonstrates a commitment to
improving the machine accessibility, interoperability, and reusability of scholarly resources. It ensures that the information you provide is standardized,
consistent, and easily navigable by both human users and machine agents, contributing to a more efficient and FAIR scholarly web ecosystem. For more
information see .Signposting

Command Line Export Facilities

DSpace includes batch tools to export items in a simple directory structure, where the Dublin Core metadata is stored in an XML file. This may be used as
the basis for moving content between DSpace and other systems. For more information see .Item Importer and Exporter

DSpace also includes various package exporter tools, which support many common content packaging formats like METS. For more information see Packa
. Additionally, DSpace can import/export Archival Information Packages (AIPs), see .ge Importer and Exporter AIP Backup and Restore

Packager Plugins

Packagers are software modules that translate between DSpace Item objects and a self-contained external representation, or "package". A Package
 interprets, or , the package and creates an Item. A writes out the contents of an Item in the package format.Ingester ingests Package Disseminator

A package is typically an archive file such as a Zip or "tar" file, including a document which contains metadata and a description of the package manifest
contents. The is a typical packaging standard. A package might also be a single document or media file that contains its own IMS Content Package
metadata, such as a PDF document with embedded descriptive metadata.

Package ingesters and package disseminators are each a type of named plugin (see), so it is easy to add new packagers specific to the Plugin Manager
needs of your site. You do not have to supply both an ingester and disseminator for each format; it is perfectly acceptable to just implement one of them.

Most packager plugins call upon to translate the metadata between DSpace's object model and the package format.Crosswalk Plugins

More information about calling Packagers to ingest or disseminate content can be found in the section of the System Package Importer and Exporter
Administration documentation.

Crosswalk Plugins

Crosswalks are software modules that translate between DSpace object metadata and a specific external representation. An interpretsIngestion Crosswalk
the external format and crosswalks it to DSpace's internal data structure, while a does the opposite.Dissemination Crosswalk

For example, a MODS ingestion crosswalk translates descriptive metadata from the MODS format to the metadata fields on a DSpace Item. A MODS
dissemination crosswalk generates a MODS document from the metadata on a DSpace Item.

Crosswalk plugins are named plugins (see), so it is easy to add new crosswalks. You do not have to supply both an ingester and Plugin Manager
disseminator for each format; it is perfectly acceptable to just implement one of them.

13

http://swordapp.org/
http://www.openarchives.org/
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.oclc.org/research/software/oai/cat.shtm
https://wiki.lyrasis.org/display/DSDOC7x/Signposting
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-ItemImporterandExporter
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-PackageImporterandExporter
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-PackageImporterandExporter
http://www.imsglobal.org/content/packaging/
https://wiki.lyrasis.org/display/DSDOC8x/System+Administration#SystemAdministration-PackageImporterandExporter

There is also a special pair of crosswalk plugins which use XSL stylesheets to translate the external metadata to or from an internal DSpace format. You
can add and modify XSLT crosswalks simply by editing the DSpace configuration and the stylesheets, which are stored in files in the DSpace installation
directory.

The Packager plugins and OAH-PMH server make use of crosswalk plugins.

Supervision and Collaboration

In order to facilitate, as a primary objective, the opportunity for thesis authors to be supervised in the preparation of their e-theses, a supervision order
system exists to bind groups of other users (thesis supervisors) to an item in someone's pre-submission workspace. The bound group can have system
policies associated with it that allow different levels of interaction with the student's item; a small set of default policy groups are provided:

Full editorial control
View item contents

Once the default set has been applied, a system administrator may modify them as they would any other policy set in DSpace

This functionality could also be used in situations where researchers wish to collaborate on a particular submission, although there is no particular
collaborative workspace functionality.

See for more details.Supervision Orders

User Management

Although many of DSpace's functions such as document discovery and retrieval can be used anonymously, some features (and perhaps some documents)
are only available to certain "privileged" users. E-People and Groups are the way DSpace identifies application users for the purpose of granting privileges.
This identity is bound to a session of a DSpace application such as the Web UI or one of the command-line batch programs. Both E-People and Groups
are granted privileges by the authorization system described below.

User Accounts (E-Person)

DSpace holds the following information about each e-person:

E-mail address
First and last names
Whether the user is able to log in to the system via the Web UI, and whether they must use an X509 certificate to do so;
A password (encrypted), if appropriate
A list of collections for which the e-person wishes to be notified of new items
Whether the e-person 'self-registered' with the system; that is, whether the system created the e-person record automatically as a result of the
end-user independently registering with the system, as opposed to the e-person record being generated from the institution's personnel database,
for example.
The network ID for the corresponding LDAP record, if LDAP authentication is used for this E-Person.

Subscriptions

Not yet been implemented. This listed in Tier 3 (see #6 in Tier 3): DSpace Release 7.0 Status#Tier3:MediumPriority

As noted above, end-users (e-people) may 'subscribe' to collections in order to be alerted when new items appear in those collections. Each day, end-
users who are subscribed to one or more collections will receive an e-mail giving brief details of all new items that appeared in any of those collections the
previous day. If no new items appeared in any of the subscribed collections, no e-mail is sent. Users can unsubscribe themselves at any time. RSS feeds
of new items are also available for collections and communities.

Groups

Groups are another kind of entity that can be granted permissions in the authorization system. A group is usually an explicit list of E-People; anyone
identified as one of those E-People also gains the privileges granted to the group.

However, an application session can be assigned membership in a group being identified as an E-Person. For example, some sites use this without
feature to identify users of a local network so they can read restricted materials not open to the whole world. Sessions originating from the local network
are given membership in the "LocalUsers" group and gain the corresponding privileges.

Administrators can also use groups as "roles" to manage the granting of privileges more efficiently.

Access Control

Authentication

Authentication is when an application session positively identifies itself as belonging to an E-Person and/or Group. In DSpace, it is implemented by a
mechanism called : the DSpace configuration declares a "stack" of authentication methods. An application (like the Web UI) calls Stackable Authentication
on the Authentication Manager, which tries each of these methods in turn to identify the E-Person to which the session belongs, as well as any extra

14

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status#DSpaceRelease7.0Status-Tier3:MediumPriority

Groups. The E-Person authentication methods are tried in turn until one succeeds. Every authenticator in the stack is given a chance to assign extra
Groups. This mechanism offers the following advantages:

Separates authentication from the Web user interface so the same authentication methods are used for other applications such as non-interactive
Web Services
Improved modularity: The authentication methods are all independent of each other. Custom authentication methods can be "stacked" on top of
the default DSpace username/password method.
Cleaner support for "implicit" authentication where username is found in the environment of a Web request, e.g. in an X.509 client certificate.

For more information see Authentication Plugins

Authorization

DSpace's authorization system is based on associating actions with objects and the lists of EPeople who can perform them. The associations are called
Resource Policies, and the lists of EPeople are called Groups. There are two built-in groups: 'Administrators', who can do anything in a site, and
'Anonymous', which is a list that contains all users. Assigning a policy for an action on an object to anonymous means giving everyone permission to do
that action. (For example, most objects in DSpace sites have a policy of 'anonymous' READ.) Permissions must be explicit - lack of an explicit permission
results in the default policy of 'deny'. Permissions also do not 'commute'; for example, if an e-person has READ permission on an item, they might not
necessarily have READ permission on the bundles and bitstreams in that item. Currently Collections, Communities and Items are discoverable in the
browse and search systems regardless of READ authorization.

The following actions are possible:

Collection

ADD/REMOVE add or remove items (ADD = permission to submit items)

DEFAULT_ITEM_
READ

inherited as READ by all submitted items

DEFAULT_BITSTR
EAM_READ

inherited as READ by Bitstreams of all submitted items. Note: only affects Bitstreams of an item at the time it is initially submitted.
If a Bitstream is added later, it does get the same default read policy.not

COLLECTION_AD
MIN

collection admins can edit items in a collection, withdraw items, map other items into this collection.

Item

ADD/REMOVE add or remove bundles

READ can view item (item metadata is always viewable)

WRITE can modify item

Bundle

ADD/REMOVE add or remove bitstreams to a bundle

Bitstream

READ view bitstream

WRITE modify bitstream

Note that there is no 'DELETE' action. In order to 'delete' an object (e.g. an item) from the archive, one must have REMOVE permission on all objects (in
this case, collection) that contain it. The 'orphaned' item is automatically deleted.

Policies can apply to individual e-people or groups of e-people.

Usage Metrics

DSpace is equipped with SOLR based infrastructure to log and display pageviews and file downloads.

Item, Collection and Community Usage Statistics

Usage statistics can be retrieved from individual item, collection and community pages. These Usage Statistics pages show:

Total page visits (all time)
Total Visits per Month
File Downloads (all time)*
Top Country Views (all time)
Top City Views (all time)

15

*File Downloads information is only displayed for item-level statistics. Note that downloads from separate bitstreams are also recorded and represented
separately. DSpace is able to capture and store File Download information, even when the bitstream was downloaded from a direct link on an external
website.

System Statistics

Various statistical reports about the contents and use of your system can be automatically generated by the system. These are generated by analyzing
DSpace's log files. Statistics can be broken down monthly.

The report includes following sections

A customizable general overview of activities in the archive, by default including:
Number of items archived
Number of bitstream views
Number of item page views
Number of collection page views
Number of community page views
Number of user logins
Number of searches performed
Number of license rejections
Number of OAI Requests

Customizable summary of archive contents
Broken-down list of item viewings
A full break-down of all performed actions
User logins
Most popular searches
Log Level Information
Processing information!stats_genrl_overview.png!
The results of statistical analysis can be presented on a by-month and an in-total report, and are available via the user interface. The reports can
also either be made public or restricted to administrator access only.

Digital Preservation

Checksum Checker

The purpose of the checker is to verify that the content in a DSpace repository has not become corrupted or been tampered with. The functionality can be
invoked on an ad-hoc basis from the command line, or configured via cron or similar. Options exist to support large repositories that cannot be entirely
checked in one run of the tool. The tool is extensible to new reporting and checking priority approaches.

System Design

Data Model

16

Data Model Diagram

The way data is organized in DSpace is intended to reflect the structure of the organization using the DSpace system. Each DSpace site is divided into com
, which can be further divided into reflecting the typical university structure of college, department, research center, or laboratory.munities sub-communities

Communities contain , which are groupings of related content. A collection may only appear in one community at this time.collections

Each collection is composed of , which are the basic archival elements of the archive. Each item is owned by one collection. Additionally, an item may items
appear in additional collections; however every item has one and only one owning collection.

Items are further subdivided into named of . Bitstreams are, as the name suggests, streams of bits, usually ordinary computer files. bundles bitstreams
Bitstreams that are somehow closely related, for example HTML files and images that compose a single HTML document, are organized into bundles.

In practice, most items tend to have these named bundles:

ORIGINAL – the bundle with the original, deposited bitstreams
THUMBNAILS – thumbnails of any image bitstreams
TEXT – extracted full-text from bitstreams in ORIGINAL, for indexing
LICENSE – contains the deposit license that the submitter granted the host organization; in other words, specifies the rights that the hosting
organization have
CC_LICENSE – contains the distribution license, if any (a license) associated with the item. This license specifies what end users icenommons
downloading the content can do with the content

Each bitstream is associated with one . Because preservation services may be an important aspect of the DSpace service, it is important Bitstream Format
to capture the specific formats of files that users submit. In DSpace, a bitstream format is a unique and consistent way to refer to a particular file format. An
integral part of a bitstream format is an either implicit or explicit notion of how material in that format can be interpreted. For example, the interpretation for
bitstreams encoded in the JPEG standard for still image compression is defined explicitly in the Standard ISO/IEC 10918-1. The interpretation of
bitstreams in Microsoft Word 2000 format is defined implicitly, through reference to the Microsoft Word 2000 application. Bitstream formats can be more
specific than MIME types or file suffixes. For example, and span multiple versions of the Microsoft Word application, each of application/ms-word .doc
which produces bitstreams with presumably different characteristics.

17

http://www.creativecommons.org/

Each bitstream format additionally has a , indicating how well the hosting institution is likely to be able to preserve content in the format in the support level
future. There are three possible support levels that bitstream formats may be assigned by the hosting institution. The host institution should determine the
exact meaning of each support level, after careful consideration of costs and requirements. MIT Libraries' interpretation is shown below:

Suppo
rted

The format is recognized, and the hosting institution is confident it can make bitstreams of this format usable in the future, using whatever
combination of techniques (such as migration, emulation, etc.) is appropriate given the context of need.

Known The format is recognized, and the hosting institution will promise to preserve the bitstream as-is, and allow it to be retrieved. The hosting
institution will attempt to obtain enough information to enable the format to be upgraded to the 'supported' level.

Unsup
ported

The format is unrecognized, but the hosting institution will undertake to preserve the bitstream as-is and allow it to be retrieved.

Each item has one qualified Dublin Core metadata record. Other metadata might be stored in an item as a serialized bitstream, but we store Dublin Core
for every item for interoperability and ease of discovery. The Dublin Core may be entered by end-users as they submit content, or it might be derived from
other metadata as part of an ingest process.

Items can be removed from DSpace in one of two ways: They may be 'withdrawn', which means they remain in the archive but are completely hidden from
view. In this case, if an end-user attempts to access the withdrawn item, they are presented with a 'tombstone,' that indicates the item has been removed.
For whatever reason, an item may also be 'expunged' if necessary, in which case all traces of it are removed from the archive.

Object Example

Community Laboratory of Computer Science; Oceanographic Research Center

Collection LCS Technical Reports; ORC Statistical Data Sets

Item A technical report; a data set with accompanying description; a video recording of a lecture

Bundle A group of HTML and image bitstreams making up an HTML document

Bitstream A single HTML file; a single image file; a source code file

Bitstream Format Microsoft Word version 6.0; JPEG encoded image format

Amazon S3 Support

DSpace offers two means for storing bitstreams. The first is in the file system on the server. The second is using Amazon S3. For more information, see St
orage Layer

18

Release Notes
Upgrade from any past version of DSpace!

Installing DSpace provides an overview of the DSpace 8 installation process and all prerequisite software. You should review this before attempting an
upgrade, in order to ensure you are running the required versions of Java, Node, etc.

Upgrading DSpace provides a guide for upgrading from any old version of DSpace to v8. As in the past, your data migrates automatically, no matter which
older version you are running. However, as the old XMLUI and JSPUI user interfaces are no longer supported, you must switch to using the new User
Interface.

8.0 Release Notes
Security Fixes
New User Features
Breaking Changes
Major Updates and Improvements
New/Updated Language support

8.0 Acknowledgments
Frontend / User Interface Acknowledgments
Backend / REST API Acknowledgments
Additional Thanks

8.0 Release Notes
DSpace 8.0 was released on June 21, 2024

To try out DSpace 8 immediately, see . This includes instructions for a quick-install via Docker, as well as information on our Try out DSpace 8 Sandbox
.Site

To test an upgrade to DSpace 8.0 from 7.x , see or any prior version Upgrading DSpace

To upgrade to 8.0, you MUST upgrade the backend and frontend (user interface).both

To install DSpace 8.0, see .Installing DSpace

Download DSpace 8.0 Backend: https://github.com/DSpace/DSpace/releases/tag/dspace-8.0
Download DSpace 8.0 User Interface: https://github.com/DSpace/dspace-angular/releases/tag/dspace-8.0

DSpace 8.0 is a major release of the DSpace platform. It provides new features and improvements, along with bug fixes. You should be aware that all
major releases may provide some "breaking changes" (major changes that may impact your local customizations).

Security Fixes

Fix by disabling the ability to . SeeCVE-2024-38364 (low severity) open HTML/XML bitstreams in a user's browser https://github.com/DSpace
 (or mailing list announcements) for more details & configuration workaround./DSpace/pull/9638

New User Features

this feature provides a basic integration with the via the . OpenAIRE : Data Correction OpenAIRE Content Provider Dashboard Notification Broker
It allows repositories who have subscribed to the OpenAIRE Notification Broker to import JSON data from OpenAIRE in order to enhance or
correct the metadata of Items in the repository. (Made possible thanks to the OpenAIRE Call Innovation funded project "Enrich local data via the

)OpenAIRE Graph” .awarded to 4Science
: this featureOpenAIRE Publication Claim provides a closer integration between DSpace and the OpenAIRE Publication REST API. It allows

DSpace to import possible publications from OpenAIRE for users having a in DSpace. (Researcher Profile Made possible thanks to the
)OpenAIRE Call Innovation funded project "Enrich local data via the OpenAIRE Graph” .awarded to 4Science

: DSpace now supports the for sending & receiving Linked Data Notifications (LDN) messages from COAR Notify Protocol COAR Notify Protocol
external systems. DSpace is able to register external LDN services to send or receive messages from. This allows users to request review
/endorsement from an external service (supporting COAR Notify) during the Item submission process. It also allows these external services to
send event notifications into DSpace's tool.Quality Assurance (Donated by COAR & 4Science)

Optionally, all logged-in users are able to request that a specific Item be withdrawn or reinstated using : Request Withdrawal or Reinstatement
the DSpace tool (also used by Data Correction, Publication Claim and COAR Notify). These requests can be reviewed by an Quality Assurance
Administrator where they can either accept or reject the request. The request may also be cancelled by the user who submitted it. (Backend
Donated by 4Science, funded by the University of California - California Digital Library;) Donated by 4ScienceFrontend

: tBasic Duplicate Detection in submission and workflow his feature introduces basic duplicate detection into DSpace submission and
workflow, using Solr's ability to search by levenshtein distance. When enabled, all new submissions or items in workflow will be checked against
similar items already in DSpace & the user will be notified of any possible duplicate items. (Developed by The Library Code with support of TU
Berlin, FHNW and ZHAW.)

T"Processes" page has been reorganized: o simplify process management through the Administrator UI, the "Processes Overview" page has
been restructured to group processes into separate sections for "running", "scheduled", "completed" and "failed". These sections update
automatically. (Donated by Atmire)

: SImproved "Primary Bitstream" management ubmitters can now define if a bitstream is a "primary" bitstream directly on the submission page
after a file has been uploaded. On the Item page, the primary bitstream now has a badge. The primary bitstream is the file that will be listed first
in the download list, and its thumbnail will be displayed on the Item page. (Developed by 4Science, funded by the University of California -
California Digital Library)

All Community and Collection pages now include a "Search" tab which displays the Recent Search Tab on Community/Collection pages:
Submissions by default. This tab also provides a search box allowing users to search within that Community or Collection. (Donated by Atmire)

19

https://wiki.lyrasis.org/display/DSPACE/Try+out+DSpace+8
https://sandbox.dspace.org/
https://sandbox.dspace.org/
https://github.com/DSpace/DSpace/releases/tag/dspace-8.0
https://github.com/DSpace/dspace-angular/releases/tag/dspace-8.0
https://github.com/DSpace/DSpace/pull/9638
https://github.com/DSpace/DSpace/pull/9638
https://provide.openaire.eu/home
https://catalogue.openaire.eu/service/openaire.broker/overview
https://www.openaire.eu/open-call-winner-phase-1-4science
https://www.openaire.eu/open-call-winner-phase-1-4science
https://www.coar-repositories.org/notify/

 Optionally, search facets/filters can now be displayed on home page and all Search Facets on Homepage, Community/Collection pages:
Community, and Collection pages. By default, they are not displayed on the homepage (see "showDiscoverFilters" in), but Homepage settings
always displayed on Community/Collection pages (see "showSidebar" in and settings). Community Collection (Donated by DSquare Technologies
and Atmire)

 Optionally, a new "Advanced Search" filter can be enabled on the Search page to provide advanced search Advanced Search options:
capabilities. This "Advanced Search" filter allows supports the searching within fields using the following operators by default: Contains, Not
Contains, Equals, and Not Equals. See the "advancedFilters" in the for more details. Search settings (Donated by DSquare Technologies)

When editing an , on the "Relationships" tab you can now click Lookup via external sources from the Edit Item page (Relationship tab): Entity
the "+Add" button to lookup and import related entities from (e.g. CrossRef, ORCID, PubMed, etc). supported external sources (Donated by
Atmire)
Import via DOI searches multiple sources at once (CrossRef, DataCite): a new external source has been added which can be configured to
query multiple existing sources simultaneously, returning results from either. By default, this external source is configured for a new "DOI" lookup
which will search CrossRef and DataCite simultaneously. (Donated by University of Bamberg)

 User are now able to in Edit Metadata using Authority Control lookup: edit metadata controlled by vocabularies in item's metadata edit form
the same way that is done in submission form. (Donated by Toni Prieto)
Rioxx v3 OAI profile support: DSpace can now expose metadata in the OAI module in the RIOXX) Research Outputs Metadata Schema (
Application Metadata Profile Version 3. See for details. Rioxx v3 schema compliance (Donated by Agustina Martinez, Cambridge University)
OAI now can expose embargo information & access rights: access rights for bitstreams is available in the OAI XOAI format and has been
added to the following OAI formats: OpenAIRE and UKETD/EthOS. (Donated by Agustina Martinez, Cambridge University)
Creative Commons licenses now appear on Item page. See https://github.com/DSpace/dspace-angular/pull/3010 (Donated by Alfeu U.
Tavares)

: When using , ROR can be used as an Research Organization Registry (ROR) Integration Configurable Entities Data Organization
Provider. New "Organizational Unit" entities can be imported via the ROR API (from the existing MyDSpace import tool). When imported, the RO
R icon is displayed on the "Organization Unit" page, linking back to its entry in ROR (as suggested by the). ROR information is ROR-ID guidelines
also shareable via OAI-PMH and ORCID. (Donated by 4Science)

: In the "item-submission.xml" configuration, it is Item submission process can be c at community levelonfigured now possible to map a
. This will cause all descendant collections to use the mapped item submission process. This can be useful for submission form to a Community

repositories where top-level communities represent different document types or scopes and descendant collections should share the same
submission process. (Donated by Toni Prieto)

: The b (beta)Administrator Reports eta release of the provides the ability to run the reports and display the results in the Administrator Reports
User Interface (similar to the "DSpace REST Quality Control Reports" from version 6.x). Two reports are provided: Filtered Collection and
Metadata Query. It is not yet possible to export these reports. At this time, running large reports with many results may result in site performance

 issues. Therefore, this feature is disabled by default and should be used with caution. (Donated by Université Laval)

Breaking Changes

The following major changings may negatively impact or "break" your local customizations to prior versions of DSpace. Please be aware of them before
upgrading.

Java 17 (or later) and Tomcat 10 (or later) is required for the backend. The DSpace 8 backend can no longer be run on Java 11 or Tomcat 9
as it has been updated to Spring 6 / Spring Boot v3 to support 9+. You must upgrade these dependencies in order to Jakarta Enterprise Edition
run DSpace 8. If you are using a different servlet engine, you must ensure it is compatible with Jakarta EE 9+ (e.g. Jetty must be version 11 or
later)

If you have any custom Java code or custom plugins, they must all be migrated to use "jakarta.*" dependencies instead of "javax.*"
dependencies. It is not possible to use older "javax.*" dependencies in DSpace 8.

Node 18 or 20 is required for the frontend. The DSpace 8 User Interface has been upgraded to Angular 17, and Node 16 is no longer
supported. (Donated by 4Science)
The User Interface has been migrated to Angular standalone components. This means that a large number of Angular components were
refactored to use standalone components. This migration was mostly automated using the . Angular process to migrate to standalone components
If you have custom Angular components, you may need to migrate them as well. See also https://github.com/DSpace/dspace-angular/pull/2750
for more details on this migration process. (Donated by 4Science)
The deprecated REST API v6 ("dspace-rest" module) was removed. All custom code must be migrated to the new (first released REST API
in 7.x). Any custom code which depends on the older REST API v6 must be rewritten, as the new REST API is not backwards compatible. For
more information on the removed REST API v6, .see the DSpace 7.x documentation
"Type" field (dc.type) is now required by default. In all submission form configurations (in "submission-forms.xml" as described in Submission

), the "dc.type" field is now required. This was changed to better support integrations with DataCite and other systems that expect a User Interface
"type" for every resource. If you do not want this change, you can . undo the changes in your local copy of "submission-forms.xml" (Donated by
The Library Code)
The "dc.date.available" field is no longer set by DSpace during submission. DSpace has had two fields which represented when an object
was added/available in DSpace: "dc.date.accessioned" and "dc.date.available". The Accessioned Date (dc.date.accessioned) has always
represented the date the object was deposited into DSpace, while the Available Date (dc.date.available) represented the date the object was first
available (which may be the accessioned date if the item had an embargo). Since information is now stored on the item's later than Embargo
authorization policy, the "dc.date.available" date is no longer useful or accurate. Therefore, DSpace no longer will automatically set a "dc.date.
available", as any embargo date can be retrieved via the item's policies. See .#9103

If you have any custom code that relied on the "dc.date.available" metadata field, we recommend updating it to use "dc.date.
accessioned". Alternatively, you could use the REST API to obtain embargo information from an Item's resource policies.

In User Interface, the service which generates HTML "<meta>" tags in the "<head>" tag has been renamed from "MetadataService" to
. If you have generated custom "<meta>" tags, then you will need to migrate them to the new "/src/app/core/metadata/head-"HeadTagService"

tag.service.ts" file.

Major Updates and Improvements

Apache Tomcat is now OPTIONAL for the backend. A new Runnable JAR exists for the DSpace backend which embeds the latest version of
Tomcat within it. This Runnable JAR can be used to run the DSpace Backend installing Tomcat. See the guide for without Installing DSpace
more details (Donated by 4Science)

DSpace Docker images also now use this Runnable JAR instead of a Tomcat image.
Performance Improvements

20

https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-HomepageSettings
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-CommunityPageSettings
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-CollectionPageSettings
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-Searchsettings
https://wiki.lyrasis.org/pages/viewpage.action?pageId=315720684#ImportingItemsviabasicbibliographicformats(Endnote,BibTex,RIS,CSV,etc)andonlineservices(arXiv,PubMed,CrossRef,CiNii,etc)-SupportedExternalSources
https://wiki.lyrasis.org/display/DSDOC8x/Edit+Metadata#EditMetadata-Addoreditauthoritycontrolledmetadatafields
https://github.com/DSpace/dspace-angular/pull/3010
https://ror.readme.io/docs/ror-id-display-guidelines-and-logos#full-ror-id
https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-AssigningacustomSubmissionProcesstoaCollection
https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-AssigningacustomSubmissionProcesstoaCollection
https://en.wikipedia.org/wiki/Jakarta_EE
https://angular.io/guide/standalone-migration
https://github.com/DSpace/dspace-angular/pull/2750
https://wiki.lyrasis.org/pages/viewpage.action?pageId=104566810
https://github.com/DSpace/DSpace/pull/9440
https://github.com/DSpace/DSpace/pull/9103

Disabled Angular "inlineCriticalCSS" in all Server Side Rendering (SSR). This provides a performance improvement to all SSR
generated pages. See https://github.com/DSpace/dspace-angular/pull/2067 (Donated by 4Science)
Indexing script performance improvements when reindexing a large number of items (Donated by Toni Prieto)
Media filter performance improvements when filtering a large number of bitstreams (for thumbnail creation or full text indexing). (Donated
by 4Science)
Group/EPerson management User Interface performance improvements for Groups with many EPerson or SubGroup Members. Added
better pagination of group members.
Submission form performance improvements. The submission form has been updated to ensure it no longer loads all related objects. (D
onated by Atmire)
Workflow tasks page performance improvements (Donated by Atmire)
Submission configuration reloading performance improvements. This also improves performance of creating a new Collection. (Donated
by Toni Prieto)
Checksum checker performance improvements (Donated by 4Science)
Sitemap generation performance improvements (Donated by 4Science)
Updated robots.txt to stop crawlers from accessing search facets ()Donated by Atmire

Accessibility improvements in User Interface
Hidden "Skip to main content" button now exists on all pages. (Donated by Atmire)
Header / Navbar / Admin Sidebar accessibility fixes (Donated by 4Science)
Community list accessibility fixes (Donated by Hrafn Malmquist)
Color contrast fixes to "dspace" theme (Donated by Maciej Kleban)
Search results / MyDSpace / Item Edit / Browse by / Login menu accessibility fixes (Donated by Atmire)
Community/Collection Homepage accessibility fixes (Donated by Atmire)
Additional keyboard controls in Submission form (Donated by Atmire)
Browse by Author accessibility fixes (Donated by Neki-it)
"Loading" message accessibility improvements (Donated by Neki-it)
Fixing issue with header menu being keyboard accessible on small screens (Donated by Eike Löhden)

See Google Analytics 4 updated to only count file downloads from ORIGINAL bundle. https://github.com/DSpace/DSpace/pull/8944
(Donated by Atmire)

: change both header and footer structure to make easier to handle DSpace and base themes. These refactors Header and navbar refactoring
also improve accessibility. (See) https://github.com/DSpace/dspace-angular/pull/2676 (Donated by 4Science)
Submission form bug fixes / stability improvements. Fixed caching issues and instability of PATCH commands (Donated by 4Science)
Update the DataCite metadata schema to version 4.5: When DSpace , it has to send metadata to the DOI registry. register DOIs via DataCite
The used by DSpace was updated to version 4.5.DataCite metadata schema (Donated by The Library Code)
Option to disable "Forgot Password" link: When using Authentication by Password, it is now possible to disable the "Forgot Password" link via
the new "user.forgot-password" backend configuration. See documentation. "Authentication by Password" (Donated by 4Science)

A new "-t" flag is added to the "index-discovery" Alteration to index-discovery script to only (re-)index specific type of IndexableObject:
script which allows you to only reindex specific object types (E.g. Item, Collection, Community). See Discovery#DiscoverySolrIndexMaintenance

See Add HTML support to System Wide Alert. https://github.com/DSpace/dspace-angular/pull/3028 (Donated by Abel Gomez)
Item Counts (webui.strengths) are now updating automatically again.

 as required by Migrate from Joda-Time to java.time Joda-Time website (Donated by Mark Wood)
 See UI Translation (i18n) files are now hashed to ensure they reload when updated: https://github.com/DSpace/dspace-angular/issues/2461

(Donated by Atmire)
: Having standalone components, directives and pipes makes it easier to UI Migration to Angular standalone components, directives, pipes

think about the dependencies of the components and are easier to refactor. See and https://github.com/DSpace/dspace-angular/issues/2370 https
 ://angular.io/guide/standalone-migration (Donated by 4Science)

UI should have a ProcessPollingService for common polling activities (feature process polling): should have adspace-angular Proce
which can be used to check if a specific activity has completedssPollingService

: Standardized REST objects to use plural names. Embedding data didn't work for REST API objects ending in "s" (see https://github.com
) /DSpace/DSpace/issues/9240 (Donated by Atmire)

Expose 'creationTime' property on Process object and add it to '/search/byProperty' sort options in REST API: As startTime and endTi
me are nullable, processes with these properties set to null can't be sorted properly. Every process does have a creationTime however,
making for a more reliable sorting mechanism. (Donated by Atmire)

: there is no longer a separate operation to check for spiders solely by IP address. Options to do this are Consolidated spider detection
removed or replaced, and the configuration property is removed.solr-statistics.query.filter.spiderIp (Donated by Mark Wood)

 See the new Option to hide submitter details from dc.description.provenance metadata field. "metadata.privacy.dc.description.provenance"
 in dspace.cfg setting (Donated by PCG Academia)

 See New ESLint rules for User Interface codebase to enforce better coding practices & reduce merge conflicts. https://github.com
 /DSpace/dspace-angular/pull/2343 (Donated by Atmire)

Fixed bug where UI would often request "/api" root endpoint multiple times for every page (Donated by Atmire)
Fixed bug where Amazon S3 data store was always enabled. (Donated by 4Science)
Fixed bug where Amazon S3 data store would sometimes leave around temp files during download process. See https://github.com/DSpace

 /DSpace/pull/9477 (Donated by 4Science)
Fixed bug where MathJAX code would be displayed twice on item page. (Donated by Atmire)
Fixed bug where subject was missing from system emails (Donated by Mark Wood)
Fixed bug where "git" was required as a build dependency of the backend (Donated by Hrafn Malmquist)
Fixed bug where some Item Edit pages could be viewable anonymously (but could not be interacted with). (Donated by 4Science)
Fixed bug where first hit to repository was often not counted in because of a CSRF token mismatch.SOLR Statistics
Fixed SEO bug where legacy bitstream URLs were redirecting with a 302 instead of a 301. See https://github.com/DSpace/dspace-angular/pull

 /3062 (Donated by Atmire)
Fixed a large number of other small bugs. See for a list of all changes.Changes in 8.x

 Backend updated to Spring Boot 3, Spring 6, Spring Security 6, Hibernate 6, Flyway 10. Frontend updated to Major Dependency updates:
Angular 17.

New/Updated Language support

(NEW) Arabic () translation added by KnowledgeWare Technologies Est. and updated by Ahmad Mostafa (ahmadmostafa1976)
Czech (eština) translation updates donated by NTK
Finnish (Suomi) translation updates donated by Reeta Kuukoski (reetagithub)

21

https://github.com/DSpace/dspace-angular/pull/2067
https://github.com/DSpace/DSpace/pull/8944
https://github.com/DSpace/dspace-angular/pull/2676
https://schema.datacite.org
https://wiki.lyrasis.org/display/DSDOC8x/Authentication+Plugins#AuthenticationPlugins-AuthenticationbyPassword
https://wiki.lyrasis.org/display/DSDOC8x/Discovery#Discovery-DiscoverySolrIndexMaintenance
https://github.com/DSpace/dspace-angular/pull/3028
https://www.joda.org/joda-time/
https://github.com/DSpace/dspace-angular/issues/2461
https://github.com/DSpace/dspace-angular/issues/2370
https://angular.io/guide/standalone-migration
https://angular.io/guide/standalone-migration
https://github.com/DSpace/DSpace/issues/9240
https://github.com/DSpace/DSpace/issues/9240
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-HidingSubmitterinProvenanceMetadata
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-HidingSubmitterinProvenanceMetadata
https://github.com/DSpace/dspace-angular/pull/2343
https://github.com/DSpace/dspace-angular/pull/2343
https://github.com/DSpace/DSpace/pull/9477
https://github.com/DSpace/DSpace/pull/9477
https://github.com/DSpace/dspace-angular/pull/3062
https://github.com/DSpace/dspace-angular/pull/3062

French (Français) language updates donated by Pierre Lasou (pilasou)
German (Deutsch) language updates donated by Mirko Scherf (mirkoscherf), Sascha Szott (saschaszott), and Janne Jensen (mugraph)
Italian (Italiano) language updates donated by 4Science
Polish (Polski) language updates donated by PCG Academia
Portuguese (Português) language updates donated by Ricardo Saraiva (rsaraivac) and José Carvalho (j-n-c)
Portuguese - Brazilian (Português do Brasil) updates donated by Marco Aurelio Cardoso (marcoaureliocardoso) and Thiago Rodrigues (t-
rodrigues)
Serbian Cyrillic () language updates donated by Milos Ivanovic (imilos)
Serbian Latin (Srpski (lat)) language updates donated by Milos Ivanovic (imilos)
Spanish (Español) language updates donated by Arvo Consultores y Tecnología. S.L

8.0 Acknowledgments

DSpace 8.0 had 312,960 lines of code changed and 94 unique individuals contributing to either the frontend or backend.

Frontend / User Interface Acknowledgments

The following 72 individuals have contributed directly to the new DSpace (Angular) User Interface in this release (ordered by number of GitHub commits):
Alexandre Vryghem (alexandrevryghem), Andrea Barbasso (AndreaBarbasso), Francesco Molinaro (FrancescoMolinaro), EneaGiuseppe Digilio (atarix83),
Jahollari (enea4science), Mattia Vianelli (Sondissimo), Tim Donohue (tdonohue), Yury Bondarenko (ybnd), Alisa Ismailati, Andreas Awouters (AAwouters),
Davide Negretti (davide-negretti), Vladzislav Novski (vNovski), Francesco Bacchelli (frabacche), Kim Shepherd (kshepherd), Jean-Art Lowel (artlowel),
François Morin (jeffmorin), Kuno Vercammen, Simone Ramundi, Jens Vannerum (jensvannerum), Michele Boychuk (Micheleboychuk), Vincenzo Mecca
(vins01-4science), Zahraa Chreim (ZahraaChreim-Atmire), Sascha Szott (saschaszott), Hugo Daniel Lotte Hofstede (LotteHofstede), Alan Orth (alanorth),
Dominguez de la Cruz (hugo-escire), Koen Pauwels (KoenP), Toni Prieto (toniprieto), Mark Wood (mwoodiupui), Paulo Graça Eike Löhden (Leano1998),
(paulo-graca), Ricardo Saraiva (rsaraivac), Stefano Maffei (steph-ieffam), Max Nuding (hutattedonmyarm), Hrafn Malmquist (J4bbi), Oscar Chacón, Pierre
Lasou (pilasou), Sergio Fernández Celorio (sergius02), Thiago Rodrigues, William Welling (wwelling), Alfeu Uzai Tavares, Kristof De Langhe (Atmire-
Kristof), Marie Verdonck (MarieVerdonck), Micha Dykas (michdyk), Nona Luypaert (nona-luypaert), Michael Spalti (mspalti), Mirko Scherf (mirkoscherf),
Thomas Misilo (misilot), Victor Hugo Duran Santiago, Yana De Pauw (YanaDePauw), Abel Gómez (abelgomez), Agustina Martinez (amgciadev), Florian
Gantner (floriangantner), Milos Ivanovic (imilos), Hardy Pottinger (hardyoyo), Marco Aurelio Cardoso, Gaurav Patel (GauravD2t), Reeta Kuukoski
(reetagithub), Maciej Kleban (Dawnkai), Andrea Bollini (abollini), Andreas Mahnke (mahnkong), Bram Luyten (bram-atmire), IgorBaptist4, Janne Jensen
(mugraph), José Carvalho (josekarvalho), Mohamed Ali, NTK, Pascal-Nicolas Becker (pnbecker), Philipp Rumpf (philipprumpf), Nagy Akos (akoscomp),
Milan Majchrak (milanmajchrak), Ahmad Nasser.

The above contributor list was determined based on contributions to the "DSpace" project in GitHub between 7.6 (after June 23, 2023) and 8.0 using "git
shortlog" on the branch and excluding all merge commits: main
git shortlog -s -n -e --no-merges --since 2023-06-23

Backend / REST API Acknowledgments

The following 56 individuals have contributed directly to the DSpace backend (REST API, Java API, OAI-PMH, etc) in this release (ordered by number of
): Tim Donohue (tdonohue), Francesco Bacchelli (frabacche), Michele Boychuk (Micheleboychuk), Mohamed Eskander (eskander17), Mark Wood commits

(mwoodiupui), Kim Shepherd (kshepherd), Stefano Maffei (steph-ieffam), Agustina Martinez (amgciadev), Toni Prieto (toniprieto), Alexandre Vryghem
(alexandrevryghem), Alan Orth (alanorth), Paulo GraAndrea Bollini (abollini), Sascha Szott (saschaszott), Vincenzo Mecca (vins01-4science), ça (paulo-
graca), Koen Pauwels , Yana De Pauw (YanaDePauw), Adán Román Ruiz (aroman-arvo), Mattia Vianelli (Sondissimo), (KoenP) Christian Bethge
(ChrisBethgster), Nicholas Woodward (nwoodward), Florian Gantner (floriangantner), Kristof De Langhe (Atmire-Kristof), Marie Verdonck (MarieVerdonck),

Andrei Alesik (AndrewAlesik), Michael Spalti (mspalti), Nona Luypaert (nona-luypaert), Damian Jozefowski (damian-Pascal-Nicolas Becker (pnbecker),
joz), Francesco Molinaro (FrancescoMolinaro), Jens Vannerum (jensvannerum), Xiqinger, Jean-François Morin (jeffmorin), Philipp Rumpf (philipprumpf), R

David Steelman, oy Brushini (Bezkup), Thomas Misilo (misilot), (hutattedonmyarm), Max Nuding Eike Löhden (Leano1998), Hrafn Malmquist (J4bbi), Luca
Giamminonni (LucaGiamminonni), Martin Walk (MW3000), William Welling (wwelling), Marsa Haoua (marsaoua), wwuck, Christian Clauss (cclauss),
Damiano Fiorenza, John Abrahams (jabrah), Marie-Hélène Vézina (mhvezina), Mark Cooper (mark-cooper), Mirko Scherf Sean Kalynuk (mirkoscherf),
(uofmsean), Shankeerthan Kasilingam, Milan Majchrak (milanmajchrak).Yannick Paulsen (YPaulsen-TLC), Corrado Lombardi (corrad82-4s),

The above contributor list was determined based on contributions to the "DSpace" project in GitHub between 7.6 (after June 23, 2023) and 8.0 using "git
shortlog" on the branch and excluding all merge commits: main
git shortlog -s -n -e --no-merges --since 2023-06-23

Additional Thanks

Additional thanks to our and for their ongoing DSpace support and advice. Thanks also to for DSpace Leadership Group DSpace Steering Group Lyrasis
your leadership, collaboration & support in helping to speed up the development process of DSpace 8.

Thanks also to the various developer & community Working Groups who have worked diligently to help make DSpace 8 a reality. These include:

DSpace Developers Team - This volunteer-based team leads the development of new releases. Anyone is welcome to join the Developer
Meetings
DSpace Community Advisory Team (DCAT) - This team helped organize/lead the (to bang on the system to find any last DSpace 8.0 Testathon
bugs), and they also provided us with advice on features, etc.

We apologize to any contributor accidentally left off this list. DSpace has such a large, active development community that we sometimes lose track of all
our contributors. Acknowledgments to those left off will be made in future releases.

22

https://duraspace.org/dspace/community/leadership-group/
https://duraspace.org/dspace/community/dspace-steering-group/
https://www.lyrasis.org/
https://wiki.lyrasis.org/display/DSPACE/Developer+Meetings
https://wiki.lyrasis.org/display/DSPACE/Developer+Meetings
https://wiki.lyrasis.org/display/cmtygp/DSpace+Community+Advisory+Team
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+8.0+Testathon+Page

Installing DSpace

Installation Overview
Installing the Backend (Server API)

Backend Requirements
Backend Installation

Installing the Frontend (User Interface)
Frontend Requirements
Frontend Installation

What Next?
Common Installation Issues

Troubleshoot an error or find detailed error messages
User Interface never appears (no content appears) or "Proxy server received an invalid response"
User Interface partially load but then spins (never fully loads or some content doesn't load)
"500 Service Unavailable" from the User Interface
"No _links section found at..." error from User Interface
"RangeError: Maximum call stack size exceeded"
"XMLHttpRequest.. has been blocked by CORS policy" or "CORS error" or "Invalid CORS request"
Cannot login from the User Interface with a password that I know is valid
"403 Forbidden" error with a message that says "Access is denied. Invalid CSRF Token"
Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend
My REST API is running under HTTPS, but some of its "link" URLs are switching to HTTP
My User Interface's robots.txt has incorrect sitemap URLs
Cannot upload file from User Interface
Javascript heap out of memory
Solr responds with "Expected mime type application/octet-stream but got text/html" (404 Not Found)
Database errors occur when you run ant fresh_install

Installation Overview
Try out DSpace before you install

If you'd like to quickly try out DSpace 8 before a full installation, see for instructions on a quick install via Docker.Try out DSpace 7

As of version 7 (and later), the DSpace application is split into a "frontend" (User Interface) and a "backend" (Server API). Most institutions will want to
install BOTH. However, you can decide whether to run them on the same machine or separate machines.

The DSpace Frontend consists of a User Interface built on . It is a Node.js web application, i.e. once it is built/compiled, it only require Angular.io
Node.js to run. It cannot be run "standalone", as it a valid DSpace Backend to function. The frontend provides all user-facing requires
functionality.
The DSpace Backend consists of a Server API ("server" webapp), built on . It is a Java web application. It can be run standalone, Spring Boot
however it has no user interface. The backend provides all machine-based interfaces, including the REST API, OAI-PMH, SWORD (v1 and v2)
and RDF.

We recommend installing the Backend , as the Frontend requires a valid Backend to run properly.first

Installing the Backend (Server API)

Backend Requirements

UNIX-like OS or Microsoft Windows
Java JDK 17 (OpenJDK or Oracle JDK)
Apache Maven 3.8.x or above (Java build tool)

Configuring a Maven Proxy
Apache Ant 1.10.x or later (Java build tool)
Relational Database (PostgreSQL)

PostgreSQL 12.x, 13.x, 14.x or 15.x (with pgcrypto installed)
Apache Solr 8.x (full-text index/search service)
(Optional) Servlet Engine (Apache Tomcat 10, Jetty, Caucho Resin or equivalent)
(Optional) IP to City Database for Location-based Statistics

UNIX-like OS or Microsoft Windows

UNIX-like operating system (Linux, HP/UX, Mac OSX, etc.) : Many distributions of Linux/Unix come with some of the dependencies below pre-
installed or easily installed via updates. You should consult your particular distribution's documentation or local system administrators to
determine what is already available.
Microsoft Windows: While DSpace can be run on Windows servers, most institutions tend to run it on a UNIX-like operating system.

Java JDK 17 (OpenJDK or Oracle JDK)

OpenJDK download and installation instructions can be found here . Most operating systems provide an easy path http://openjdk.java.net/install/
to install OpenJDK. Just be sure to install the full JDK (development kit), and not the JRE (which is often the default example).

23

https://wiki.lyrasis.org/display/DSPACE/Try+out+DSpace+7
https://angular.io/
https://spring.io/projects/spring-boot
http://openjdk.java.net/install/

Oracle's Java can be downloaded from the following location: . Make sure to http://www.oracle.com/technetwork/java/javase/downloads/index.html
download the appropriate version of the Java SE JDK.

Make sure to install the JDK and not just the JRE

DSpace requires the full JDK (Java Development Kit) be installed, rather than just the JRE (Java Runtime Environment). So, please be sure that you are
installing the full JDK and not just the JRE.

Prior versions of Java are not supported

Older versions of Java are unsupported. This includes JDK v11-v16. You MUST be running JDK v17+

We highly recommend running only Java LTS (Long Term Support) releases in Production, as non-LTS releases may not receive ongoing security fixes.
As of this DSpace release, JDK 17 and JDK 21 are the two most recent Java LTS releases. As soon as the next Java LTS release is available, we will
analyze it for compatibility with this release of DSpace. For more information on Java releases, see the Java roadmaps for and/or .Oracle OpenJDK

Apache Maven 3.8.x or above (Java build tool)
We recommend using the most recent version of Maven that you can, as newer releases may include performance improvements and security updates.
We recommend avoiding any that are "end of life" per https://maven.apache.org/docs/history.html

Maven is necessary in the first stage of the build process to assemble the installation package for your DSpace instance. It gives you the flexibility to
customize DSpace using the existing Maven projects found in the directory or by adding in your own Maven project to [dspace-source]/dspace/modules
build the installation package for DSpace, and apply any custom interface "overlay" changes.

Maven can be downloaded from It is also provided via many operating system package managers.http://maven.apache.org/download.html

Configuring a Maven Proxy

You can configure a proxy to use for some or all of your HTTP requests in Maven. The username and password are only required if your proxy requires
basic authentication (note that later releases may support storing your passwords in a secured keystore‚ in the meantime, please ensure your settings.xml
file (usually) is secured with permissions appropriate for your operating system).${user.home}/.m2/settings.xml

Example:

<settings>
 .
 .
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.somewhere.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>www.google.com|*.somewhere.com</nonProxyHosts>
 </proxy>
 </proxies>
 .
 .
</settings>

Apache Ant 1.10.x or later (Java build tool)

Apache Ant is required for the second stage of the build process (deploying/installing the application). First, Maven is used to construct the installer ([dspa
), after which Ant is used to install/deploy DSpace to the installation directory.ce-source]/dspace/target/dspace-installer

Ant can be downloaded from the following location: It is also provided via many operating system package managers.http://ant.apache.org

Relational Database (PostgreSQL)

PostgreSQL 12.x, 13.x, 14.x or 15.x (with pgcrypto installed)

PostgreSQL can be downloaded from . It is also provided via many operating system package managers.http://www.postgresql.org/
Make sure to select a version of PostgreSQL that is still .under support from the PostgreSQL team
If the version of Postgres provided by your package manager is outdated, you may wish to use one of the official PostgreSQL provided
repositories:

24

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://adoptopenjdk.net/support.html#roadmap
https://maven.apache.org/docs/history.html
http://maven.apache.org/download.html
http://ant.apache.org/
http://www.postgresql.org/
https://www.postgresql.org/support/versioning/

1.

2.

Linux users can select their OS of choice for detailed instructions on using the official PostgreSQL apt or yum repository: http://w
ww.postgresql.org/download/linux/
Windows users will need to use the windows installer: http://www.postgresql.org/download/windows/
Mac OSX users can choose their preferred installation method: http://www.postgresql.org/download/macosx/

Install the It will also need to be enabled on your DSpace Database (see Installation instructions below for more info). The pgcrypto extension.
pgcrypto extension allows DSpace to create UUIDs () for all objects in DSpace, which means that (internal) object universally unique identifiers
identifiers are now globally unique and no longer tied to database sequences.

On most Linux operating systems (Ubuntu, Debian, RedHat), this extension is provided in the "postgresql-contrib" package in your
package manager. So, ensure you've installed "postgresql-contrib".
On Windows, this extension should be provided automatically by the installer (check your "[PostgreSQL]/share/extension" folder for files
starting with "pgcrypto")

Unicode (specifically UTF-8) support must be enabled (but this is enabled by default).
Once installed, you need to enable TCP/IP connections (DSpace uses JDBC):

In : uncomment the line starting: . This is the default, in recent PostgreSQL postgresql.conf listen_addresses = 'localhost'
releases, but you should at least check it.
Then tighten up security a bit by editing and adding this line:pg_hba.conf

host dspace dspace 127.0.0.1 255.255.255.255 md5

This should appear any lines matching databases, because the first matching rule governs.before all
Then restart PostgreSQL.

Apache Solr 8.x (full-text index/search service)
Solr 8.11.1 or above is recommended as all prior 8.x releases are vulnerable to CVE-2021-44228 (log4j critical vulnerability). If you must use a prior
version of 8.x, make sure to add "-Dlog4j2.formatMsgNoLookups=true" to your SOLR_OPTS environment variable, see https://solr.apache.org/security.
html#apache-solr-affected-by-apache-log4j-cve-2021-44228
Solr 9 is not yet fully supported, but can be used provided that you make minor modification to the out-of-the-box "search/conf/solrconfig.xml" that
comes with DSpace. See for details.this below comment
Make sure to install Solr with Authentication disabled (which is the default). DSpace does not yet support authentication to Solr (see https://github.com

). Instead, we recommend placing Solr behind a firewall and/or ensuring port 8983 (which Solr runs on) is not available for /DSpace/DSpace/issues/3169
public/anonymous access on the web. Solr only needs to be accessible to requests from the DSpace backend.

Solr can be obtained at . You may wish to read portions of to make yourself familiar the Apache Software Foundation site for Solr the quick-start tutorial
with Solr's layout and operation. Unpack a Solr .tgz or .zip archive in a place where you keep software that is not handled by your operating system's
package management tools, and arrange to have it running whenever DSpace is running. You should ensure that Solr's index directories will have plenty
of room to grow. You should also ensure that port 8983 is not in use by something else, or configure Solr to use a different port.

If you are looking for a good place to put Solr, consider or . You can simply unpack Solr in one place and use it. Or you can configure /opt /usr/local
Solr to keep its indexes elsewhere, if you need to – see the Solr documentation for how to do this.

It is not necessary to dedicate a Solr instance to DSpace, if you already have one and want to use it. Simply copy DSpace's cores to a place where they
will be discovered by Solr. See below.

(Optional) Servlet Engine (Apache Tomcat 10, Jetty, Caucho Resin or equivalent)
Tomcat is optional depending on the installation approach you choose

As of DSpace 8, two deployment options exist for the backend:

The WAR installation (traditional approach) still requires installing Tomcat and deploying the DSpace backend ("server") WAR into your Tomcat
installation. This approach is the same as DSpace 7 and below.
(NEW) A new Runnable JAR is available for the DSpace backend which embeds Tomcat within it and is fully executable on its own (see step 11:
"Deploy the application" below for more details).

If you choose the first approach, Tomcat is required. If you choose the second, you no longer need to install Tomcat.

Older versions of Tomcat or Jetty are not supported

The DSpace backend can no longer be run on Tomcat 9 as it has been updated to Spring 6 / Spring Boot v3 to support Jakarta Enterprise Edition 9+.

If you are using a different servlet engine, you must ensure it is compatible with Jakarta EE 9+ (e.g. Jetty must be version 11 or later)

Apache Tomcat 10. Tomcat can be downloaded from the following location: . It is also provided via many operating http://tomcat.apache.org
system package managers.

The Tomcat owner (i.e. the user that Tomcat runs as) (i.e.)to the DSpace installation directorymust have read/write access [dspace]
There are a few common ways this may be achieved:.

One option is to specifically give the Tomcat user (often named "tomcat") ownership of the [dspace] directories, for example:

Change [dspace] and all subfolders to be owned by "tomcat"
chown -R tomcat:tomcat [dspace]

25

http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/macosx/
http://www.postgresql.org/docs/9.4/static/pgcrypto.html
https://solr.apache.org/security.html#apache-solr-affected-by-apache-log4j-cve-2021-44228
https://solr.apache.org/security.html#apache-solr-affected-by-apache-log4j-cve-2021-44228
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace?focusedCommentId=246284451#comment-246284451
https://github.com/DSpace/DSpace/issues/3169
https://github.com/DSpace/DSpace/issues/3169
https://solr.apache.org/
https://solr.apache.org/guide/solr/latest/getting-started/introduction.html
https://en.wikipedia.org/wiki/Jakarta_EE
http://tomcat.apache.org/whichversion.html

1.
2.

3.

4.

a.

Another option is to have Tomcat itself a new user named "dspace" (see installation instructions below). Some operating run as
systems make modifying the Tomcat "run as" user easily modifiable via an environment variable named TOMCAT_USER. This
option may be more desirable if you have multiple Tomcat instances running, and you do not want all of them to run under the
same Tomcat owner.

On Debian systems, you may also need to modify or override the "tomcat.service" file to specify the DSpace installation directory in the
list of ReadWritePaths. For example:

Replace [dspace] with the full path of your DSpace install
ReadWritePaths=[dspace]

You need to ensure that Tomcat a) has enough memory to run DSpace, and b) uses UTF-8 as its default file encoding for international
character support. So ensure in your startup scripts (etc) that the following environment variable is set: JAVA_OPTS="-Xmx512M -
Xms64M -Dfile.encoding=UTF-8"
Modifications in : You also need to alter Tomcat's default configuration to support searching and browsing of [tomcat]/conf/server.xml
multi-byte UTF-8 correctly. You need to add a configuration option to the element in : <Connector> [tomcat]/config/server.xml URIEncodin

e.g. if you're using the default Tomcat config, it should read:g="UTF-8"

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080"
 minSpareThreads="25"
 enableLookups="false"
 redirectPort="8443"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8"/>

You may change the port from 8080 by editing it in the file above, and by setting the variable in . You CONNECTOR_PORT server.xml
should set the URIEncoding even if you are running Tomcat behind a reverse proxy (Apache HTTPD, Nginx, etc.) via AJP.

Jetty 11+ or Caucho Resin
NOTE: DSpace is not actively tested on these servlet engines. That said, DSpace be able to run on a Tomcat-equivalent servlet should
Engine, such as Jetty () or Caucho Resin (). If you choose to use a different servlet https://www.eclipse.org/jetty/ http://www.caucho.com/
container, please ensure that it supports Jakarta EE 9+ (e.g. Jetty must be version 11 or later)
Jetty and Resin are configured for correct handling of UTF-8 by default.

(Optional) IP to City Database for Location-based Statistics

Optionally, if you wish to record the geographic locations of clients in DSpace usage statistics records, you will need to install (and regularly update) one of
the following:

Either, a copy of MaxMind's GeoLite City database (in MMDB format)
NOTE: Installing MaxMind GeoLite2 is However, you sign up for a (free) MaxMind account in order to obtain a license key to free. must
use the GeoLite2 database.
You may download GeoLite2 directly from MaxMind, or many Linux distributions provide the tool directly via their geoipupdate
package manager. You will still need to configure your license key prior to usage.
Once the "GeoLite2-City.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City Database with DSpace.

Or, you can alternatively use/install (in MMDB format)DB-IP's City Lite database
This database is also free to use, but does require an account to download.not
Once the "dbip-city-lite.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City Database with DSpace.

Backend Installation

Install all the listed above.Backend Requirements
Create a DSpace operating system user (optional) . As noted in the prerequisites above, Tomcat (or Jetty, etc) an operating must run as
system user account that has full read/write access to the DSpace installation directory (i.e.). Either you must ensure the Tomcat [dspace]
owner also owns , OR you can create a new "dspace" user account, and ensure that Tomcat also runs as that account:[dspace]

useradd -m dspace

The choice that makes the most sense for you will probably depend on how you installed your servlet container (Tomcat/Jetty/etc). If you
installed it from source, you will need to create a user account to run it, and that account can be named anything, e.g. 'dspace'. If you used your
operating system's package manager to install the container, then a user account should have been created as part of that process and it will be
much easier to use that account than to try to change it.
Download the from the DSpace GitHub Repository. You can choose to either download the zip or tar.gz file provided by latest DSpace release
GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch.dspace-8.0
Unpack the DSpace software. After downloading the software, based on the compression file format, choose one of the following methods to
unpack your software:

Zip file. If you downloaded do the following:dspace-8.0.zip

26

https://www.eclipse.org/jetty/
http://www.caucho.com/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://db-ip.com/db/download/ip-to-city-lite
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://github.com/DSpace/DSpace/releases

4.

a.

b.

5.

6.

unzip dspace-8.0.zip

.gz file. If you downloaded do the following:dspace-8.0.tar.gz

gunzip -c dspace-8.0.tar.gz | tar -xf -

For ease of reference, we will refer to the location of this unzipped version of the DSpace release as in the remainder of [dspace-source]
these instructions. After unpacking the file, the user may wish to change the ownership of the dspace-8.x folder to the "dspace" user.
(And you may need to change the group).

Database Setup for PostgreSQL:
Create a database user (this user can have any name, but we'll assume you name it "dspace"). This is entirely separate from dspace
the operating-system user created above:dspace

createuser --username=postgres --no-superuser --pwprompt dspace

You will be prompted (twice) for a password for the new user. Then you'll be prompted for the password of the PostgreSQL dspace
superuser ().postgres
Create a database, owned by the PostgreSQL user. Similar to the previous step, this can only be done by a dspace dspace
"superuser" account in PostgreSQL (e.g.):postgres

createdb --username=postgres --owner=dspace --encoding=UNICODE dspace

You will be prompted for the password of the PostgreSQL superuser ().postgres
Finally, you MUST enable the on your new dspace database. Again, this can only be enabled by a "superuser" pgcrypto extension
account (e.g.)postgres

Login to the database as a superuser, and enable the pgcrypto extension on this database
psql --username=postgres dspace -c "CREATE EXTENSION pgcrypto;"

The "CREATE EXTENSION" command should return with no result if it succeeds. If it fails or throws an error, it is likely you are missing
the required pgcrypto extension (see above).Database Prerequisites

 Alternative method: How to enable pgcrypto via a separate database schema. While the above method of enabling
pgcrypto is perfectly fine for the majority of users, there may be some scenarios where a database administrator would prefer to
install extensions into a database schema that is the DSpace tables. Developers also may wish to install separate from
pgcrypto into a separate schema if they plan to "clean" (recreate) their development database frequently. Keeping extensions in
a separate schema from the DSpace tables will ensure developers would NOT have to continually re-enable the extension each
time you run a " ". If you wish to install pgcrypto in a separate schema here's how to do that:./dspace database clean

Login to the database as a superuser
psql --username=postgres dspace
Create a new schema in this database named "extensions" (or whatever you want to name it)
CREATE SCHEMA extensions;
Enable this extension in this new schema
CREATE EXTENSION pgcrypto SCHEMA extensions;
Grant rights to call functions in the extensions schema to your dspace user
GRANT USAGE ON SCHEMA extensions TO dspace;

Append "extensions" on the current session's "search_path" (if it doesn't already exist
in search_path)
The "search_path" config is the list of schemas that Postgres will use
SELECT set_config('search_path',current_setting('search_path') || ',extensions',false)
WHERE current_setting('search_path') !~ '(^|,)extensions(,|$)';
Verify the current session's "search_path" and make sure it's correct
SHOW search_path;
Now, update the "dspace" Database to use the same "search_path" (for all future sessions)
as we've set for this current session (i.e. via set_config() above)
ALTER DATABASE dspace SET search_path FROM CURRENT;

Initial Configuration (local.cfg): Create your own configuration file. You may wish to [dspace-source]/dspace/config/local.cfg
simply copy the provided . This local.cfg file can be used to store [dspace-source]/ local.cfg.EXAMPLEdspace/config/ any
configuration changes that you wish to make which are local to your installation (see documentation). ANY setting may local.cfg configuration file
be copied into this local.cfg file from the dspace.cfg or any other *.cfg file in order to override the default setting (see note below). For the initial

27

http://www.postgresql.org/docs/9.4/static/pgcrypto.html
https://wiki.duraspace.org/display/DSDOC6x/Installing+DSpace#InstallingDSpace-RelationalDatabase:(PostgreSQLorOracle)
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-Thelocal.cfgConfigurationPropertiesFile

6.

7.

8.

9.

10.

a.

11.

installation of DSpace, there are some key settings you'll likely want to override. Those are provided in the [dspace-source]/dspace
. (NOTE: Settings followed with an asterisk (*) are highly recommended, while all others are optional during local.cfg.EXAMPLE/config/

initial installation and may be customized at a later time.)
dspace.dir* - must be set to the (installation) directory ([dspace] NOTE: On Windows be sure to use forward slashes for the directory

 For example: " " is a valid path for Windows.)path! C:/dspace
dspace.server.url* - complete URL of this DSpace backend (including port and any subpath). . For example: Do not end with '/'
http://localhost:8080/server
dspace.ui.url* - complete URL of the DSpace frontend (including port and any subpath). REQUIRED for the REST API to fully trust
requests from the DSpace frontend. . For example: http://localhost:4000Do not end with '/'
dspace.name - Human-readable, "proper" name of your server, e.g. "My Digital Library".
solr.server* - complete URL of the Solr server. DSpace makes use of for indexing purposes. unless Solr http://localhost:8983/solr
you changed the port or installed Solr on some other host.
default.language - Default language for all metadata values (defaults to "en_US")
db.url* - The full JDBC URL to your database (examples are provided in the)local.cfg.EXAMPLE
db.driver* - Which database driver to use for PostgreSQL (default should be fine)
db.dialect* - Which database dialect to use for PostgreSQL (default should be fine)
db.username* - the database username used in the previous step.
db.password* - the database password used in the previous step.
db.schema* - the database schema to use (examples are provided in the local.cfg.EXAMPLE)
mail.server - fully-qualified domain name of your outgoing mail server.
mail.from.address - the "From:" address to put on email sent by DSpace.
feedback.recipient - mailbox for feedback mail.
mail.admin - mailbox for DSpace site administrator.
alert.recipient - mailbox for server errors/alerts (not essential but very useful!)
registration.notify- mailbox for emails when new users register (optional)

Your local.cfg file can override ANY settings from other *.cfg files in DSpace

The provided only includes a small subset of the configuration settings available with DSpace. It provides a local.cfg.EXAMPLE
good starting point for your own file.local.cfg

However, you should be aware that ANY configuration can now be copied into your to override the default settings. This local.cfg
includes ANY of the settings/configurations in:

The primary dspace.cfg file ()[dspace]/config/dspace.cfg
Any of the module configuration files (files)[dspace]/config/modules/*.cfg
Any of the Spring Boot settings ([dspace-src]/dspace-server-webapp/src/main/resources/application.

)properties

Individual settings may also be commented out or removed in your , in order to re-enable default settings.local.cfg

See the section for more details.Configuration Reference
DSpace Directory: Create the directory for the DSpace backend installation (i.e.). As (or a user with appropriate permissions), [dspace] root
run:

mkdir [dspace]
chown dspace [dspace]

(Assuming the UNIX username.)dspace
Build the Installation Package: As the UNIX user, generate the DSpace installation package.dspace

cd [dspace-source]
mvn package

Install DSpace Backend: As the UNIX user, install DSpace to :dspace [dspace]

cd [dspace-source]/dspace/target/dspace-installer
ant fresh_install

To see a complete list of build targets, run: ant help The most likely thing to go wrong here is the test of your database connection. See the Co
. mmon Installation Issues Section below for more details

Initialize your Database: While this step is optional (as the DSpace database should auto-initialize itself on first startup), it's always good to
verify one last time that your database connection is working properly. To initialize the database run:

[dspace]/bin/dspace database migrate

After running this script, it's a good idea to run "./dspace database info" to check that your database has been fully initialized. A fully
initialized database should list the state of all migrations as either "Success" or "Out of Order". If any migrations have failed or are still
listed as "Pending", then you need to check your "dspace.log" for possible "ERROR" messages. If any errors appeared, you will need to
resolve them before continuing.

28

http://lucene.apache.org/solr/
http://localhost:8983/solr

11.

12.

a.

b.

Deploy web application
We have different possibilities in this case:

Deploy WAR application to Tomcat (traditional installation): The DSpace backend consists of a single "server" webapp (in
). You need to deploy this webapp into your Servlet Container (e.g. Tomcat). Generally, there are two [dspace]/webapps/server

options (or techniques) which you could use...either configure Tomcat to find the DSpace "server" webapp, or copy the "server" webapp
into Tomcat's own webapps folder.

Technique A. Tell your Tomcat/Jetty/Resin installation where to find your DSpace web application(s). As an example, in the
directory you could add files similar to the following (but replace with [tomcat]/conf/Catalina/localhost [dspace]
your installation location):

DEFINE A CONTEXT PATH FOR DSpace Server webapp: server.xml

<?xml version='1.0'?>
<Context
 docBase="[dspace]/webapps/server"/>

The name of the file (not including the suffix ".xml") will be the name of the context, so for example defines the server.xml
context at . To define the (), name that context's file http://host:8080/server root context http://host:8080/ ROOT.

. Optionally, you can also choose to install the old, deprecated "rest" webapp if youxml
Technique B. Simple and complete. You copy only (or all) of the DSpace Web application(s) you wish to use from the [dspace]
/webapps directory to the appropriate directory in your Tomcat/Jetty/Resin installation. For example:

 (This will copy all the web applications to Tomcat). cp -R [dspace]/webapps/* [tomcat]/webapps
 (This will copy only the Server web application to Tomcat.)cp -R [dspace]/webapps/server [tomcat]/webapps

To define the (), name that context's directory .root context http://host:8080/ ROOT
Deploy Runnable JAR application (NEW) : The DSpace backend now builds a Runnable JAR application made with . AftSpringBoot
er building DSpace, a new "server-boot.jar" will be available at . This JAR file contains the [dspace]/webapps/server-boot.jar
entire "server" webapp, embedded Tomcat, and the "dspace.dir" configuration made during the build phase. You can execute this JAR
with the following command:

Server-boot execution

java -jar [dspace]/webapps/server-boot.jar

By running it, the server will boot with the configuration that you've made during the build phase. There are optional parameters that you
can use to override the build values:

spring.config.location - reference to the application.properties file to use

--spring.config.location=file:///path/to/target/application.properties

dspace.dir - reference to the installation directory of the application, (default value in)application.properties

--dspace.dir=/path/to/install/folder

logging.config - log configuration file of the project (default value in application.properties)

--logging.config=file:///path/to/target/file/log2.xml

These are only the main ones, obviously , you can override every property that can be found inside the configuration files just
by appending it as argument of the execution command, just like this: . Or you may choose to use --[prop]=[value]
Environment Variable overriding as described in the Configuration Reference

Copy Solr cores: DSpace installation creates a set of six empty Solr cores already configured.

Copy them from /solr to the place where your Solr instance will discover them. For example:[dspace]

[solr] is the location where Solr is installed.
NOTE: On Debian systems the configsets may be under /var/solr/data/configsets
cp -R [dspace]/solr/* [solr]/server/solr/configsets

Make sure everything is owned by the system user who owns Solr
Usually this is a 'solr' user account
See https://solr.apache.org/guide/8_1/taking-solr-to-production.html#create-the-solr-user
chown -R solr:solr [solr]/server/solr/configsets

29

http://host:8080/server
http://host:8080/
http://host:8080/

12.

b.

c.

i.

13.

14.
a.
b.
c.

15.

16.

a.

b.
i.
ii.

1.

iii.

iv.
v.

vi.

Start (or re-start) Solr. For example:

[solr]/bin/solr restart

You can check the status of Solr and your new DSpace cores by using its administrative web interface. Browse to (e.${solr.server}
g. to see if Solr is running well, then look at the cores by selecting (on the left) Core Admin or http://localhost:8983/solr/)
using the Core Selector drop list.

For example, to test that your "search" core is setup properly, try accessing the URL ${solr.server}/search/select. It sh
ould run an empty query against the "search" core, returning an empty JSON result. If it returns an error, then that means your
"search" core is missing or not installed properly.

Create an Administrator Account: Create an initial administrator account from the command line:

[dspace]/bin/dspace create-administrator

Initial Startup! Now the moment of truth! Start up (or restart) Tomcat/Jetty/Resin.
REST API Interface - (e.g.) http://dspace.myu.edu:8080/server/
OAI-PMH Interface - (e.g.) http://dspace.myu.edu:8080/server/oai/request?verb=Identify
For an example of what the default backend looks like, visit the Demo Backend: https://demo.dspace.org/server/

Setup scheduled tasks for behind-the-scenes processes: For all features of DSpace to work properly, there are some scheduled tasks you
MUST setup to run on a regular basis. Some examples are tasks that help create thumbnails (for images), do full-text indexing (of textual content)
and send out subscription emails. See the for more details.Scheduled Tasks via Cron
Production Installation (adding HTTPS support): Running the DSpace Backend on HTTP & port 8080 is only usable for local development

 environments (where you are running the UI and REST API from the same machine, and only accessing them via localhost URLs). If you want
 (otherwise logins will not work outside of your local domain).to run DSpace in Production, you MUST run the backend with HTTPS support

For HTTPS support, we recommend installing either or , configuring SSL at that level, and proxying all requests to Apache HTTPD Nginx
your Tomcat installation (or Runnable JAR). Keep in mind, if you want to host both the DSpace Backend and Frontend on the same
server, you can use one installation of Apache HTTPD or NGinx to manage HTTPS/SSL and proxy to both.
Apache HTTPD: These instructions are specific to Apache HTTPD, but a similar setup can be achieved with NGinx (see below)

Install , e.g. Apache HTTPD sudo apt install apache2
Install , and (or mod_proxy_http) modules, e.g. mod_headers mod_proxy mod_proxy_ajp sudo a2enmod headers; sudo
a2enmod proxy; sudo a2enmod proxy_ajp

Alternatively, you can choose to use to create an http proxy. A separate example is commented out mod_proxy_http
below

For mod_proxy_ajp to communicate with Tomcat, you'll need to enable Tomcat's AJP connector in your Tomcat's server.xml:

<Connector protocol="AJP/1.3" port="8009" redirectPort="8443" URIEncoding="UTF-8" />

Restart Apache to enable these modules
Obtain an SSL certificate for HTTPS support. If you don't have one yet, you can use Let's Encrypt (for free) using the "certbot"
tool: https://certbot.eff.org/
Now, setup a new VirtualHost for your site (using HTTPS / port 443) which proxies all requests to Tomcat's AJP connector
(running on port 8009)

<VirtualHost _default_:443>
 # Add your domain here. We've added "my.dspace.edu" as an example
 ServerName my.dspace.edu
 .. setup your host how you want, including log settings... .. setup your host how
you want, including log settings...

 # Most installs will need these options enabled to ensure DSpace knows its hostname and
scheme (http or https)
 # Also required to ensure correct sitemap URLs appear in /robots.txt for User Interface.
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto https

 SSLEngine on
 SSLCertificateFile [full-path-to-PEM-cert]
 SSLCertificateKeyFile [full-path-to-cert-KEY]
 # LetsEncrypt certificates (and possibly others) may require a chain file be specified
 # in order for the UI / Node.js to validate the HTTPS connection.
 #SSLCertificateChainFile [full-path-to-chain-file]

 # Proxy all HTTPS requests to "/server" from Apache to Tomcat via AJP connector
 ProxyPass /server ajp://localhost:8009/server
 ProxyPassReverse /server ajp://localhost:8009/server

 # If you would rather use mod_proxy_http as an http proxy to port 8080

30

http://dspace.myu.edu:8080/server/
http://dspace.myu.edu:8080/server/oai/request?verb=Identify
https://demo.dspace.org/server/
https://httpd.apache.org/
https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_headers.html
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://httpd.apache.org/docs/current/mod/mod_proxy_ajp.html
https://httpd.apache.org/docs/current/mod/mod_proxy_http.html
https://certbot.eff.org/

16.

b.

vi.

c.
i.
ii.

d.

 # then use these settings instead
 #ProxyPass /server http://localhost:8080/server
 #ProxyPassReverse /server http://localhost:8080/server
</VirtualHost>

NGinx: These instructions are specific to NGinx.
Install/Setup NGinx
Sample NGinx "server block" configuration. Keep in mind we are only providing basic example settings.

Setup HTTP to redirect to HTTPS
server {
 listen 80;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;
 rewrite ^ https://my.dspace.edu permanent;
}

Setup HTTPS access
server {
 listen 443 ssl;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;

 # Add your SSL certificate/key path here
 # NOTE: For LetsEncrypt, the certificate should be the full certificate chain file
 ssl_certificate my.dspace.edu.crt (or PEM);
 ssl_certificate_key my.dspace.edu.key;

 # Proxy all HTTPS requests to "/server" from NGinx to Tomcat on port 8080
 location /server {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;
 proxy_pass http://localhost:8080/server;
 }
}

After switching to HTTPS, make sure to go back and update the URLs (primarily) in your local.cfg to match the dspace.server.url
new URL of your backend (REST API). This will require briefly rebooting Tomcat.

Installing the Frontend (User Interface)

Frontend Requirements

UNIX-like OS or Microsoft Windows
Node.js (v18.x or v20.x)
Yarn (v1.x)
PM2 (or another Process Manager for Node.js apps) (optional, but recommended for Production)
DSpace Backend (see above)

UNIX-like OS or Microsoft Windows

UNIX-like operating system (Linux, HP/UX, Mac OSX, etc.) : Many distributions of Linux/Unix come with some of the dependencies below pre-
installed or easily installed via updates. You should consult your particular distribution's documentation or local system administrators to
determine what is already available.
Microsoft Windows: While DSpace can be run on Windows servers, most institutions tend to run it on a UNIX-like operating system.

Node.js (v18.x or v20.x)

Node.js can be found at . It may be available through your Linux distribution's package manager. We recommend running a https://nodejs.org/ Lo
 (even numbered releases). Non-LTS versions (odd numbered releases) are not recommended.ng Term Support (LTS) version

Node.js is a Javascript runtime that also provides (Node Package Manager). It is used to both build and run the frontend.npm

Yarn (v1.x)

Yarn v1.x is available at . It can usually be install via NPM (or through your Linux distribution's package manager). https://classic.yarnpkg.com/ W
e do NOT currently support Yarn v2.

You may need to run this command using "sudo" if you don't have proper privileges
npm install --global yarn

31

https://www.nginx.com/
https://nodejs.org/
https://nodejs.org/en/about/releases/
https://nodejs.org/en/about/releases/
https://www.npmjs.com/
https://classic.yarnpkg.com/

1.

a.
2.

3.

a.

4.

a.

b.

Yarn is used to build the frontend.

PM2 (or another Process Manager for Node.js apps) ()optional, but recommended for Production

In Production scenarios, we starting/stopping the User Interface using a Node.js process manager. There are several highly recommend
available, but our current favorite is . The rest of this installation guide assumes you are using PM2.PM2
PM2 is very easily installed via NPM

You may need to run this command using "sudo" if you don't have proper privileges
npm install --global pm2

DSpace Backend (see above)

The DSpace User Interface (Frontend) cannot function without an installed DSpace Backend. Follow the instructions above.
The Frontend and Backend . They may be installed on separate machines as long as the do not need to be installed on the same machine/server
two machines can connect to one another via HTTP or HTTPS.

Frontend Installation

Download Code (to [dspace-angular]): Download the from the DSpace GitHub repository. You can choose to latest dspace-angular release
either download the zip or tar.gz file provided by GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch.dspace-8.0

NOTE: For the rest of these instructions, we'll refer to the source code location as [dspace-angular].
Install Dependencies: Install all required local dependencies by running the following from within the unzipped directory[dspace-angular]

change directory to our repo
cd [dspace-angular]

install the local dependencies
yarn install

NOTE: Some dependencies occasionally get overly strict over exact versions of Node & Yarn.
If you are running a supported version of Node & Yarn, but see a message like
`The engine "node" is incompatible with this module.`, you can disregard it using this flag:
yarn install --ignore-engines

 Build the User Interface for Production. This builds source code (under Build/Compile: [dspace-angular]/src/) to create a compiled
version of the User Interface in the folder. This folder is what we will deploy & run to start the UI.[dspace-angular]/dist /dist

yarn build:prod

You only need to rebuild the UI application if you change source code (under). Simply changing the [dspace-angular]/src/
configurations (e.g. config.prod.yml, see below) do not require a rebuild, but only require restarting the UI.

Choose/Create a directory on your server where you wish to Deployment (to [dspace-ui-deploy]): (Only recommended for Production setups)
run the compiled User Interface. We'll call this [dspace-ui-deploy].

[dspace-ui-deploy] vs [dspace-angular]

[dspace-angular] is the directory where you've downloaded and built the UI source code (per the instructions above). For deployment
/running the UI, we recommend creating an entirely separate directory. This keeps your running, production User [dspace-ui-deploy]
Interface separate from your source code directory and also minimizes downtime when rebuilding your UI. You may even choose to deploy to a [

directory on a different server (and copy the directory over via FTP or similar).dspace-ui-deploy] /dist

If you are installing the UI for the first time, or just want a simple setup, you can choose to have [dspace-ui-deploy] and [dspace-angular] be the sa
This would mean you don't have to copy your /dist folder to another location. However, the downside is that your running site will me directory.

become unresponsive whenever you do a re-build/re-compile (i.e. rerun "yarn build:prod") as this build process will first delete the [dspace-
 directory before rebuilding it.angular]/dist

Copy the entire [dspace-angular]/dist/ folder to this location. For example:

cp -r [dspace-angular]/dist [dspace-ui-deploy]

WARNING: At this time, you MUST copy the entire "dist" folder and make sure NOT to rename it. Therefore, the directory structure
should look like this:

Contents of [dspace-ui-deploy] folder

32

https://pm2.keymetrics.io/
https://pm2.keymetrics.io/
https://github.com/DSpace/dspace-angular/releases

4.

b.

c.

5.

a.

b.

i.

c.

i.

[dspace-ui-deploy]
 /dist
 /browser (compiled client-side code)
 /server (compiled server-side code, including "main.js")
 /config (Optionally created in the "Configuration" step below)
 /config.prod.yml (Optionally created in the "Configuration" step below)

NOTE: the OS account which runs the UI via Node.js (see below) MUST have write privileges to the directory [dspace-ui-deploy]
(because on startup, the runtime configuration is written to)[dspace-ui-deploy]/dist/browser/assets/config.json

You have two options for , Environment Variables or YAML-based configuration ()Configuration: User Interface Configuration config.prod.yml
. Choose one!

 Create a "config.prod.yml" at . You may wish to use the YAML configuration: [dspace-ui-deploy]/config/config.prod.yml [ds
as a starting point. This file can be used to override any of pace-angular]/config/config.example.yml config.prod.yml

the default configurations listed in the (in that same directory). this file MUST include a "rest" config.example.yml At a minimum
section (and may also include a "ui" section), similar to the following (keep in mind, you only need to include settings that you need to
modify).

Example config.prod.yml

The "ui" section defines where you want Node.js to run/respond. It often is a *localhost* (non-
public) URL, especially if you are using a Proxy.
In this example, we are setting up our UI to just use localhost, port 4000.
This is a common setup for when you want to use Apache or Nginx to handle HTTPS and proxy
requests to Node on port 4000
ui:
 ssl: false
 host: localhost
 port: 4000
 nameSpace: /

This example is valid if your Backend is publicly available at https://api.mydspace.edu/server/
The REST settings MUST correspond to the primary/public URL of the backend. Usually, this means
they must be kept in sync
with the value of "dspace.server.url" in the backend's local.cfg
rest:
 ssl: true
 host: api.mydspace.edu
 port: 443
 nameSpace: /server

Every configuration in the UI may be specified via an Environment Variable. See in the Environment variables: Configuration Override Us
 documentation for more details. For example, the below environment variables provide the same setup as the er Interface Configuration

config.prod.yml example above.

Example Environment Variables

All environment variables MUST
(1) be prefixed with "DSPACE_"
(2) use underscores as separators (no dots allowed), and
(3) use all uppercase

"ui" section
DSPACE_UI_SSL = false
DSPACE_UI_HOST = localhost
DSPACE_UI_PORT = 4000
DSPACE_UI_NAMESPACE = /

"rest" section
DSPACE_REST_SSL = true
DSPACE_REST_HOST = api.mydspace.edu
DSPACE_REST_PORT = 443
DSPACE_REST_NAMESPACE = /server

NOTE: When using PM2, some may find it easier to use Environment variables, as it allows you to specify DSpace UI configs
within your PM2 configuration. See PM2 instructions below.

Configuration Hints:

33

https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-ConfigurationOverride

5.

c.

i.
ii.

iii.

1.

2.

3.
4.

6.

a.

b.

i.

1.
2.

3.

4.

See the documentation for a list of all available configurations.User Interface Configuration
In the "ui" section above, you may wish to start with "ssl: false" and "port: 4000" just to be certain that everything else is working
properly adding HTTPS support. KEEP IN MIND, we highly recommend always using HTTPS for Production. (See before
section on HTTPS below)
(Optionally) This is not required, but it can Test the connection to your REST API from the UI from the command-line.
sometimes help you discover immediate configuration issues if the test fails.

If you are using YAML configs, copy your config.prod.yml back into your source code folder at [dspace-angular]
/config/config.prod.yml
From , run This script will attempt a basic Node.js connection to the REST [dspace-angular] yarn test:rest
API that is configured in your "config.prod.yml" file and validate the response.
A successful connection should return a 200 Response and all JSON validation checks should return "true"
If you receive a connection error or different response code, you MUST fix your REST API before the UI will be able to
work. See also the " " below. If you receive an SSL error, see "Common Installation Issues Using a Self-Signed SSL

"Certificate causes the Frontend to not be able to access the Backend
Start up the User Interface: The compiled User Interface only requires to run. However, most users may want to use (or a similar Node.js PM2
Node.js process manager) in Production to provide easier logging and restart tools.

To quickly startup / test the User Interface, you can just use Node.js. This is only recommended for quickly testing the UI is Quick Start:
working, as no logs are available.

You MUST start the UI from within the deployment directory
cd [dspace-ui-deploy]

Run the "server/main.js" file to startup the User Interface
node ./dist/server/main.js

Stop the UI by killing it via Ctrl+C

 Using PM2 (or a different Node.js process manager) is highly recommended for Production scenarios. Here's an example Run via PM2:
of a Production setup of PM2.

First you need to create a PM2 JSON configuration file which will run the User Interface. This file can be named anything &
placed where ever you like, but you may want to save it to your deployment directory (e.g. [dspace-ui-deploy]/dspace-

). ui.json

dspace-ui.json

{
 "apps": [
 {
 "name": "dspace-ui",
 "cwd": "/full/path/to/dspace-ui-deploy",
 "script": "dist/server/main.js",
 "instances": "max",
 "exec_mode": "cluster",
 "env": {
 "NODE_ENV": "production"
 }
 }
]
}

NOTE: The "cwd" setting MUST correspond to your folder path.[dspace-ui-deploy]
NOTE #2: The "exec_mode" and "instances" settings are optional but highly recommended. Setting "exec_mode" to
"cluster" enable's . This will provide better performance in production as it allows PM2 to scale PM2's cluster mode
your site across multiple CPUs. The "instances" setting tells PM2 how many CPUs to scale across ("max" means all
CPUs, but you can also specify a number.)
NOTE #3: If you wanted to configure your UI using Environment Variables, specify those Environment Variables under
the "env" section. For example:

Configuration via Environment Variables

"env": {
 "NODE_ENV": "production",
 "DSPACE_REST_SSL": "true",
 "DSPACE_REST_HOST": "demo.dspace.org",
 "DSPACE_REST_PORT": "443",
 "DSPACE_REST_NAMESPACE": "/server"
}

34

https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-CommonInstallationIssues
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-UsingaSelf-SignedSSLCertificatecausestheFrontendtonotbeabletoaccesstheBackend
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-UsingaSelf-SignedSSLCertificatecausestheFrontendtonotbeabletoaccesstheBackend
https://nodejs.org/en/
https://pm2.keymetrics.io/
https://pm2.keymetrics.io/docs/usage/cluster-mode/

6.

b.

i.

4.

ii.

iii.
iv.
v.

vi.

7.
a.
b.

c.

8.
a.

i.

1.
2.
3.
4.

ii.

1.

NOTE #4: If you are using Windows, there are two other rules to keep in mind in this JSON configuration. First, all
(e.g. "C:\\dspace-ui-deploy"). Second, "cluster" mode is . Here's an paths must include double backslashes required

example configuration for Windows:

dspace-ui.json (for Windows)

{
 "apps": [
 {
 "name": "dspace-ui",
 "cwd": "C:\\full\\path\\to\\dspace-ui-deploy",
 "script": "dist\\server\\main.js",
 "instances": "max",
 "exec_mode": "cluster",
 "env": {
 "NODE_ENV": "production"
 }
 }
]
}

Now, start the application using PM2 using the configuration file you created in the previous step

In this example, we are assuming the config is named "dspace-ui.json"
pm2 start dspace-ui.json

To see the logs, you'd run
pm2 logs

To stop it, you'd run
pm2 stop dspace-ui.json

If you need to change your PM2 configs, delete the old config and restart
pm2 delete dspace-ui.json

For more PM2 commands see https://pm2.keymetrics.io/docs/usage/quick-start/
HINT: You may also want to install/configure to ensure that PM2's log folder doesn't fill up over time.pm2-logrotate
Did PM2 It's likely that something in your UI installation or configuration is not work or throw an immediate error?
incorrect. Check the PM2 logs ("pm2 logs") first for errors. If the problem is not obvious, try to see if you can run the UI using
the "Quick Start" method (using just Node.js) instead. Once "Quick Start" is working, try PM2 again.
If neither PM2 nor the "Quick Start" method works for you: then see the "User Interface never appears (no content appears)"
section in the belowCommons Installation Issues

 At this point, the User Interface should be available at the URL you configured!Test it out:
For an example of what the default frontend looks like, visit the Demo Frontend: https://demo.dspace.org/
If the UI fails to start or throws errors, it's likely a configuration issue. See below for common error Commons Installation Issues
messages you may see and how to resolve them.
If you have an especially difficult issue to debug, you may wish to PM2. Instead, try running the UI via the "Quick Start" method stop
(using just Node.js). This command might provide a more specific error message to you, if PM2 is not giving enough information back.

Add HTTPS support: For HTTPS (port 443) support, you have two options
(Recommended) Install either or to act as a "reverse proxy" for the frontend (and backend). This allows you to Apache HTTPD Nginx
manage HTTPS (SSL certificates) in either Apache HTTPD or Nginx, and proxy all requests to the frontend (running on port 4000) and
backend (running on port 8080). This is our current recommended approach. These instructions are specific to Apache, but a similar
setup can be achieved with Nginx.

If you already have Apache / Nginx installed for the backend, you can use the same Apache / Nginx. You can also choose to
install a separate one (either approach is fine).

Install , e.g. Apache HTTPD sudo apt install apache2
Install the and modules, e.g. mod_proxy mod_proxy_http sudo a proxy; sudo a2enmod proxy_http2enmod
Restart Apache to enable
Obtain an SSL certificate for HTTPS support. If you don't have one yet, you can use Let's Encrypt (for free) using the
"certbot" tool: https://certbot.eff.org/

Apache HTTPD sample configuration:

Now, setup (or update) the new for your UI site (preferably using HTTPS / port 443) which proxies all VirtualHost
requests to PM2 running on port 4000.

<VirtualHost _default_:443>
 # Add your domain here. We've added "my.dspace.edu" as an example
 ServerName my.dspace.edu
 .. setup your host how you want, including log settings...

 # Most installs will need these options enabled to ensure DSpace knows its

35

https://pm2.keymetrics.io/docs/usage/quick-start/
https://github.com/keymetrics/pm2-logrotate
https://demo.dspace.org/
https://httpd.apache.org/
https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://httpd.apache.org/docs/current/mod/mod_proxy_http.html
https://certbot.eff.org/
https://httpd.apache.org/docs/2.4/vhosts/name-based.html

8.
a.

ii.

1.

iii.
1.

hostname and scheme (http or https)
 # Also required to ensure correct sitemap URLs appear in /robots.txt for User
Interface.
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto https

 # These SSL settings are identical to those for the backend installation (see
above)
 # If you already have the backend running HTTPS, just add the new Proxy settings
below.
 SSLEngine on
 SSLCertificateFile [full-path-to-PEM-cert]
 SSLCertificateKeyFile [full-path-to-cert-KEY]
 # LetsEncrypt certificates (and possibly others) may require a chain file be
specified
 # in order for the UI / Node.js to validate the HTTPS connection.
 #SSLCertificateChainFile [full-path-to-chain-file]

 # These Proxy settings are for the backend. They are described in the backend
installation (see above)
 # If you already have the backend running HTTPS, just append the new Proxy
settings below.
 # Proxy all HTTPS requests to "/server" from Apache to Tomcat via AJP connector
 # (In this example: https://my.dspace.edu/server/ will display the REST API)
 ProxyPass /server ajp://localhost:8009/server
 ProxyPassReverse /server ajp://localhost:8009/server

 # [NEW FOR UI:] Proxy all HTTPS requests from Apache to PM2 on localhost, port
4000
 # NOTE that this proxy URL must match the "ui" settings in your config.prod.yml
 # (In this example: https://my.dspace.edu/ will display the User Interface)
 ProxyPass / http://localhost:4000/
 ProxyPassReverse / http://localhost:4000/
</VirtualHost>

NGinx sample configuration
Sample NGinx "server block" configuration. Keep in mind we are only providing basic example settings.

Setup HTTPS access
server {
 listen 443 ssl;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;

 # Add your SSL certificate/key path here
 # NOTE: For LetsEncrypt, the certificate should be the full certificate chain file
 # These SSL settings are identical to those for the backend installation (see
above)
 # If you already have the backend running HTTPS, just add the new Proxy settings
below.
 ssl_certificate my.dspace.edu.crt (or PEM);
 ssl_certificate_key my.dspace.edu.key;

 # Proxy all HTTPS requests to "/server" from NGinx to Tomcat on port 8080
 # These Proxy settings are for the backend. They are described in the backend
installation (see above)
 location /server {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;
 proxy_pass http://localhost:8080/server;
 }

 # [NEW FOR UI:] Proxy all HTTPS requests from NGinx to PM2 on localhost, port 4000
 # NOTE that this proxy URL must match the "ui" settings in your config.prod.yml
 # (In this example: https://my.dspace.edu/ will display the User Interface)
 location / {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;

36

8.
a.

iii.
1.

iv.

v.

vi.

b.

i.

ii.
1.
2.

a.

iii.
iv.

1.

2.

3.
4.

 proxy_pass http://localhost:4000/;
 }
}

HINT#1: Because you are using a proxy for HTTPS support, in your , your "ui" settings will still User Interface Configuration
have "ssl: false" and "port: 4000". This is perfectly OK!
HINT#2: to force the UI to connect to the backend using HTTPS, you should verify your "rest" settings in your User Interface

 the "dspace.server.url" in your backend's "local.cfg" and both use the HTTPS URL. So, if your backend Configuration match
(REST API) is proxied to both those settings should specify that HTTPS URL.https://my.dspace.edu/server/,
HINT#3: to force the backend to recognize the HTTPS UI, make sure to update your "dspace.ui.url" in your backend's "local.
cfg" is updated to use the new HTTPS UI URL (e.g. https://my.dspace.edu).

(Alternatively) You can use the basic HTTPS support built into our UI and Node server. (This may currently be better for non-Production
environments as it has not been well tested)

Create a folder and add a and to that folder (they must have [dspace-ui-deploy]/config/ssl/ key.pem cert.pem
those exact names)
In your , go back and update the following:User Interface Configuration

Set "ui > ssl" to true
Update "ui > port" to be 443

In order to run Node/PM2 on port 443, you also will likely need to provide node with special permissions, like i
.n this example

Restart the UI
Keep in mind, while this setup is simple, you may not have the same level of detailed, Production logs as you would with
Apache HTTPD or Nginx

What Next?

After a successful installation, you may want to take a closer look at

Performance Tuning DSpace: If you are noticing any slowness in your Production site, we have a guide for how you might speed things up.
User Interface Customization: Documentation on customizing the User Interface with your own branding / theme(s)
User Interface Configuration: Additional configurations available in the User Interface.
Submission User Interface: Options to configure/customize the default Submission (deposit) process
Configurable Workflow: Options to configure/customize the default Workflow approval process
Scheduled Tasks via Cron : Several DSpace features that a command-line script is run regularly via cron.require
Configuration Reference : Details on the configuration options available to the Backend
Handle Server installation: Optionally, you may wish to enable persistent URLs for your DSpace site using CRNI's Handle.Net Registry
Statistics and Metrics: Optionally, you may wish to configuration one (or more) Statistics options within DSpace, including and Google Analytics
(internal) Solr Statistics
Multilingual Support: Optionally, you may wish to enable multilingual support in your DSpace site.
Using DSpace : Various other pages which describe usage and additional configurations related to other DSpace features.
System Administration: Various other pages which describe additional backend installation options/configurations.

If you've run into installation problems, you may want to...

Visit the guide for tips on locating the cause of the errorTroubleshoot an error
Review (see below)Commons Installation Issues
Ask for via one of the support options documented on that pageSupport

Common Installation Issues

Troubleshoot an error or find detailed error messages

See the guide, look for the section on "DSpace 7.x or 8.x". This will provide you hints on locating error messages both in the User Troubleshoot an error
Interface (frontend) and in the REST API (backend)

User Interface never appears (no content appears) or "Proxy server received an invalid response"

Chances are your User Interface (UI) is throwing a severe error or not starting properly. The best way to debug this issue would be to start the User
Interface in development mode to see if it can give you a more descriptive error.

First, create a configuration file for development. This file supports the same configs as [dspace-ui-deploy]/config/config.dev.yml
your existing config.prod.yml. So, you can copy over any settings you want to test out.
Start the UI in development mode (this doesn't require a proxy like Apache or Nginx)

yarn start:dev

This will boot up the User Interface on whatever port you specified in "config.dev.yml"
At this point, attempt to access the UI from your web browser. Even if it isn't fully working, you should be able to still get more information from
your browser's DevTools regarding the underlying error. See the page, look for the section on "DSpace 7.x or 8.x". It has a Troubleshoot an error
guide for locating UI error messages in your browser's Developer Tools.

Once you've found the underlying error, it may be one of the "common installation issues" listed below.

37

https://my.dspace.edu/server/,
https://levelup.gitconnected.com/tws-004-how-to-configure-nodejs-to-use-port-443-86f1ca801c5f
https://levelup.gitconnected.com/tws-004-how-to-configure-nodejs-to-use-port-443-86f1ca801c5f
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Support
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error

User Interface partially load but then spins (never fully loads or some content doesn't load)

Chances are your User Interface (UI) is throwing an error or receiving an unexpected response from the REST API backend. Since the UI is Javascript
based, it runs entirely in your browser. That means the error it's hitting is most easily viewed in your browser (and in fact the error may never appear in log
files).

See the page, look for the section on "DSpace 7.x or 8.x". It has a guide for locating UI error messages in your browser's Developer Troubleshoot an error
Tools.

"500 Service Unavailable" from the User Interface

This error is saying that the frontend is working, but it is unable to communicate with your backend. It's the same as the "No _links section found at..." error
described in the next section. Please follow the troubleshooting details in that section.

"No _links section found at..." error from User Interface

When starting up the User Interface for the first time, you may see an error that looks similar to this...

No _links section found at [rest-api-url]
ERROR Error: undefined doesn't contain the link sites
 at MapSubscriber.project

This error means that the UI is unable to contact the REST API listed at and/or the response from that is [rest-api-url] [rest-api-url]
unexpected (as it doesn't contain the "_links" to the endpoints available at that REST API). A valid DSpace will respond with JSON [rest-api-url]
similar to our demo API at https://demo.dspace.org/server/api

First, test the connection to your REST API from the UI from the command-line.

This script will attempt a basic Node.js connection to the REST API
configured in your "[dspace-angular]/config/config.prod.yml" and
validate the response.(NOTE: config.prod.yml MUST be copied to
to [dspace-angular]/config/ for this script to find it!)
yarn test:rest

A successful connection should return a 200 Response and all JSON validation checks should return "true".
If you receive a connection error or different response code, you MUST fix your REST API before the UI will be able to work (see additional hints
below for likely causes).

Usually, the core problem is caused by one of the following scenarios:

A possible configuration issue in the frontend or backend.
Check the "rest" section of your config.*.yml configuration file for the User Interface. That configuration section defines which REST
API the UI will attempt to use. If the settings do NOT map to a valid DSpace REST API, then you will see this "No _links section found.."
error. Keep in mind, (the only exception is if both the frontend and backend are running on "localhost"-the REST API must use HTTPS
based URLs)
Check the "dspace.ui.url" configuration of your backend & verify it corresponds to the public URL of the User Interface (i.e. the exact
same URL you use in your browser)
Verify the backend "trusts" the frontend via the "rest.cors.allowed-origins" configuration (in rest.cfg or local.cfg). This setting must list all
web-based clients which are trusted by the backend (REST API). By default, "dspace.ui.url" should be listed... but you should verify it
has not been modified.

. A possible SSL certificate issue This issue may also appear if the REST API's SSL Certificate is either untrusted (by the frontend) or expired.
If you are using a style certificate, you may need to modify your backend's Apache settings to also provide a Chain File as Let's Encrypt
follows:

For example: /etc/letsencrypt/live/[domain]/cert.pem
SSLCertificateFile [full-path-to-PEM-cert]
For example: /etc/letsencrypt/live/[domain]/privkey.pem
SSLCertificateKeyFile [full-path-to-cert-KEY]
For example: /etc/letsencrypt/live/[domain]/chain.pem
SSLCertificateChainFile [full-path-to-chain-file]

Per the , you can also use the SSLCertificateFile setting to specify intermediate CA certificates along with the main cert.Apache docs
For self-signed certs, see also "Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend" common
issue listed below.

 This may be a proxy issue, a firewall issue, or something else generally blocking the port (e.g. port Something blocking access to the REST API.
443 for SSL).

Verify that you can access the REST API from the machine where Node.js is running (i.e. your UI is running). For example try a simple
"wget" or "curl" to verify the REST API is returning expected JSON similar to our demo API at https://demo.dspace.org/server/api

38

https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://demo.dspace.org/server/api
https://letsencrypt.org/
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatechainfile
https://demo.dspace.org/server/api

1.

a.

2.

a.

i.

Attempt to access the REST API via HTTPS from command-line on the machine where Node.js is
running.
If this fails or throws a SSL cert error, you must fix it.
wget https://[rest.host]/server/api

 , unless you are guaranteed that all your In most production scenarios, your REST API should be publicly accessible on the web
DSpace users will access the site behind a VPN or similar. So, this "No _links section found" error may also occur if you are accessing
the UI from a client computer/web browser which is unable to access the REST API.

If none of the above suggestions helped, you may want to look closer at the request logs in your browser (using browser's Dev Tools) and server-side logs,
to be sure that the requests from your UI are going where you expect, and see if they appear also on the backend. Tips for finding these logs can be
found in the "DSpace 7.x or 8.x" section of our guide.Troubleshoot an error

"RangeError: Maximum call stack size exceeded"

When starting up the User Interface for the first time, you may see an error that looks similar to this...

ERROR RangeError: Maximum call stack size exceeded

This error means that the UI is trying to contact your REST API, but is having issues doing so (possibly because either a proxy or an HTTPHTTPS redirect
is causing issues or a redirect loop).

Double check your " " setting in your local.cfg on the backend. Is it the same URL you use in your browser to access the backend? dspace.server.url
Keep in mind the mode (http vs https), domain, port, and subpath(s) all must match, and it must not end in a trailing slash.

Also double check the "rest" section of your config.*.yml configuration file for the User Interface. Make sure it's also pointing to the exact same URL as
that " " setting. Again, check the mode, domain, port and paths all match exactly. dspace.server.url

"XMLHttpRequest.. has been blocked by CORS policy" or "CORS error" or "Invalid CORS request"

If you are seeing a CORS error in your browser, this means that you are accessing the REST API via an "untrusted" client application. To fix this error,
you must change your REST API / Backend configuration to trust the application.

By default, the DSpace REST API / Backend will only trust the application at . Therefore, you should first verify that your dspace.ui.url dspac
 setting (in your local.cfg) exactly matches the of your User Interface (i.e. the URL you see in the browser). This must be e.ui.url primary URL

an exact match: mode (http vs https), domain, port, and subpath(s) all must match.
If you need to trust client applications / URLs, those MUST be added to the configuration. See additional rest.cors.allowed-origins REST

 for details on this configuration.API
Also, check your Tomcat (or servlet container) log files. If Tomcat throws a syntax or other major error, it may return an error response that
triggers a CORS error. In this scenario, the CORS error is only a side effect of a larger error.

If you modify either of the above settings, you will need to restart Tomcat for the changes to take effect.

Cannot login from the User Interface with a password that I know is valid

If you cannot login via the user interface with a valid password, you should check to see what underlying error is being returned by the REST API. The
easiest way to do this is by using your web browser's Dev Tools as described in our guide (see the "Try this first" section for DSpace Troubleshoot an error
7).

If the password is valid, more than likely you'll see the underlying error is "403 Forbidden" error with a message that says "Access is denied. Invalid CSRF
 (see hints on solving this in the very next section)Token"

"403 Forbidden" error with a message that says "Access is denied. Invalid CSRF Token"

First, double check that you are seeing that exact error message. A error may be thrown in a variety of scenarios. For example, a 403 403 Forbidden
may be thrown if a page requires a login, if you have entered an invalid username or password, or even sometimes when there is a CORS error (see
previous installation issue for how to solve that).

If you are seeing the message "Invalid CSRF Token" message (especially on every login), this is usually the result of a configuration / setup issue.

Here's some things you should double check:

If you site had been working, and this error seems random, it is possibly that cookie in your browser just got "out of sync" DSPACE-XSRF-COOKIE
(this can occur if you are logging into the REST API and UI separately in the same browser).

Logout and login & try the same action again. If it works this time, then that cookie was just "out of sync". If it fails a second time, then
there is a likely configuration issue...see suggestions below.

Make sure your backend is running HTTPS! This is the most common cause of this error. The only scenario where you can run the backend
in HTTP is when both the frontend & backend URLs are "localhost"-based URLs.

The reason for this HTTPS requirement is that most modern browsers will automatically block cross-domain cookies when using HTTP.
Cross-domain cookies are for successful authentication. The only is when both the frontend and backend are using required exception
localhost URLs (as in that scenario the cookies no longer need to be sent cross-domain). A more technical description of this behavior is
in the sub-bullets below.

39

https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error

2.

a.

i.

ii.

3.

4.

5.

6.

7.

If the REST API Backend is running HTTP, then it will always send the required cookie with a value of DSPACE-XSRF-COOKIE
. This setting means that the cookie will be sent (by your browser) to any other domains. Effectively, this SameSite=Lax not

will block all logins from any domain that is not the same as the REST API (as this cookie will not be sent back to the REST API
as required for CSRF validation). In other words, running the REST API on HTTP is only possible if the User Interface is
running on the exact same domain. For example, running both on 'localhost' with HTTP is a common development setup, and
this will work fine.
In order to allow for cross-domain logins, you MUST enable HTTPS on the REST API. This will result in the DSPACE-XSRF-

 cookie being set to . This setting means the cookie will be sent cross domain, but only for COOKIE SameSite=None; Secure
HTTPS requests. It also allows the user interface (or other client applications) to be on any domain, provided that the domain is
trusted by CORS (see setting in)rest.cors.allowed-origins REST API

Verify that your User Interface's "rest" section matches the value of " " configuration on the Backend. This simply ensures dspace.server.url
your UI is sending requests to the correct REST API. Also pay close attention that both specify HTTPS when necessary (see previous bullet).
Verify that your " " configuration on the Backend matches the primary URL of the REST API (i.e. the URL you see in the dspace.server.url
browser). This must be an exact match: mode (http vs https), domain, port, and subpath(s) all must match, and it must not end in a trailing slash
(e.g. "https://demo.dspace.org/server" is valid, but " /" may cause problems)https://demo.dspace.org/server .
Verify that your " " configuration on the Backend matches the primary URL of your User Interface (i.e. the URL you see in the dspace.ui.url
browser). This must be an exact match: mode (http vs https), domain, port, and subpath(s) all must match, and it (emust not end in a trailing slash
.g. "https://demo.dspace.org" is valid, but " " may cause problems)https://demo.dspace.org/ .
Verify that nothing (e.g. a proxy) is blocking Cookies and HTTP Headers from being passed between the UI and REST API. DSpace's CSRF
protection relies on the client (User Interface) being able to return both a valid cookie and a matching DSPACE-XSRF-COOKIE X-XSRF-TOKEN
header back to the REST API for validation. See our REST Contract for more details https://github.com/DSpace/RestContract/blob/main/csrf-
tokens.md
If you are running a custom application, or accessing the REST API from the command-line (or other third party tool like), you MUST Postman
ensure you are sending the CSRF token on every modifying request. See our REST Contract for more details https://github.com/DSpace
/RestContract/blob/main/csrf-tokens.md

For additional information on how DSpace's CSRF Protection works, see our REST Contract at https://github.com/DSpace/RestContract/blob/main/csrf-
tokens.md

Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend

If you setup the backend to use HTTPS with a self-signed SSL certificate, then Node.js (which the frontend runs on) may not "trust" that certificate by
default. This will result in the Frontend not being able to make requests to the Backend.

One possible workaround (untested as of yet) is to try setting the (which tells Node.js to trust additional NODE_EXTRA_CA_CERTS environment variable
CA certificates).

May be necessary for self-signed certificates.
export NODE_EXTRA_CA_CERTS="/etc/ssl/my.dspace.pem"

Another option is to avoid using a self-signed SSL certificate. Instead, create a real, issued SSL certificate using something like (or similar Let's Encrypt
free services)

My REST API is running under HTTPS, but some of its "link" URLs are switching to HTTP

This scenario may occur when you are running the REST API behind an HTTP proxy (e.g. Apache HTTPD's , Ngnix's or mod_proxy_http proxy_pass
any other proxy that is forwarding from HTTPS to HTTP).

The fix is to ensure the DSpace REST API is sent the header (by your proxying service), telling it that the forwarded protocol is X-Forwarded-Proto
HTTPS

X-Forwarded-Proto: https

In general, when running behind a proxy, the DSpace REST API depends on accurate X-Forwarded-* headers to be sent by that proxy.

My User Interface's robots.txt has incorrect sitemap URLs

This scenario may occur when you are running the User Interface behind an HTTP proxy (e.g. Apache HTTPD's , Ngnix's mod_proxy_http proxy_pass
or any other proxy that is forwarding from HTTPS to HTTP).

The fix is to ensure the DSpace User Interface (frontend) is sent the correct and (or X-Forwarded-Host) headers to tell it the X-Forwarded-Proto Host
correct hostname and scheme (HTTP or HTTPS)

Apache HTTPD example

ProxyPreserveHost on
RequestHeader set X-Forwarded-Proto https

Cannot upload file from User Interface

40

https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://www.postman.com/
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://nodejs.org/api/cli.html#cli_node_extra_ca_certs_file
https://letsencrypt.org/

1.

2.

3.

4.

If everything seems to be working, but you cannot upload files, it's important to first check your logs for any possible backend errors. See the Troubleshoot
 page.an error

If you are running DSpace on a Debian-based system (e.g. Ubuntu), that it's grant "ReadWrite" access to Apache some users have reported required
Tomcat (where the backend is running) via the service file (e.g. /lib/systemd/system/tomcat9.service). In the section you need to add [Service]
something like this:

Give Tomcat read/write on the DSpace installation
Make sure to update the "/PATH/TO" to be the full path of your DSpace install
ReadWritePaths=/PATH/TO/dspace

NOTE: If you don't want to give Tomcat read/write to all of DSpace,
you could limit this further to just these folders
dspace/assetstore
dspace/solr
dspace/log

Javascript heap out of memory

On some versions of Node.js or some operating systems, sites have reported seeing a "Javascript heap out of memory" error when trying to run the User
Interface (`yarn start:dev`). This does not seem to occur on every system, but the fix is always the same. You should ensure that in development mode
Node.js is given 4GB of memory via the "NODE_OPTIONS" environment variableat least

Set the "NODE_OPTIONS" environment variable on your system. This example will work for Linux/macOS
Ensure the "max-old-space-size" is set to 4GB (4096MB) or greater.
export NODE_OPTIONS=--max-old-space-size=4096

NOTE: More discussion on this issue can be found in It appears to only occur on systems where https://github.com/DSpace/dspace-angular/issues/2259
the default memory allocated for Node isn't sufficient to build DSpace in development mode.

This same setting may also be used in production scenarios to give Node.js more memory to work with. See for more details.Performance Tuning DSpace

Solr responds with "Expected mime type application/octet-stream but got text/html" (404 Not Found)

This error occurs when Solr is either not initialized properly, or your DSpace backend is unable to find/communicate with Solr. Here's a few things you
should double check:

Verify that Solr is running and/or check for errors in its logs. Try to restart it (usually via a command like), and [solr]/bin/solr restart
verify it's accessible via wget or a web browser (usually at a URL like)http://localhost:8983/solr
Verify that your setting (in local.cfg) is correct for your Solr installation. This should correspond to the main URL of your Solr site solr.server
(usually something like). If you use or a browser from the machine running your DSpace backend, you http://localhost:8983/solr wget
should get a response from that URL (it should return the Solr Admin UI).
Verify that the required DSpace Solr cores have been properly installed/configured (per installation instructions above). When properly installed,
you should be able to get a response from them. For example, the URL should run an empty query against ${solr.server}/search/select
the "search" core, returning an empty JSON result.
If Solr is running & you are sure is set properly, double check that nothing else could be blocking the DSpace backend from solr.server
accessing Solr. For instance, if Solr is on a separate machine, verify that there is no firewall or proxy that could be blocking access between the
DSpace backend machine and the Solr machine.

Database errors occur when you run ant fresh_install

There are two common errors that occur.

If your error looks like this:

[java] 2004-03-25 15:17:07,730 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 15:17:08,816 FATAL
 org.dspace.storage.rdbms.InitializeDatabase @ Caught exception:
[java] org.postgresql.util.PSQLException: Connection refused. Check
 that the hostname and port are correct and that the postmaster is
 accepting TCP/IP connections.
[java] at
 org.postgresql.jdbc1.AbstractJdbc1Connection.openConnection(AbstractJd
bc1Connection.java:204)
[java] at org.postgresql.Driver.connect(Driver.java:139)

41

https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://groups.google.com/g/dspace-tech/c/r7XfFn7k7ps/m/9CHRvI18AgAJ
https://github.com/DSpace/dspace-angular/issues/2259

it usually means you haven't yet added the relevant configuration parameter to your PostgreSQL configuration (see above), or perhaps you
haven't restarted PostgreSQL after making the change. Also, make sure that the and properties are correctly set in db.username db.password [ds

. An easy way to check that your DB is working OK over TCP/IP is to try this on the command line:pace]/config/dspace.cfg

psql -U dspace -W -h localhost

Enter the database password, and you should be dropped into the psql tool with a prompt.dspace dspace=>
Another common error looks like this:

[java] 2004-03-25 16:37:16,757 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 16:37:17,139 WARN
 org.dspace.storage.rdbms.DatabaseManager @ Exception initializing DB
 pool
[java] java.lang.ClassNotFoundException: org.postgresql.Driver
[java] at java.net.URLClassLoader$1.run(URLClassLoader.java:198)
[java] at java.security.AccessController.doPrivileged(Native
 Method)
[java] at
 java.net.URLClassLoader.findClass(URLClassLoader.java:186)

This means that the PostgreSQL JDBC driver is not present in . See above.[dspace]/lib

42

Upgrading DSpace
These instructions are valid for any of the following upgrade paths:

Upgrading ANY prior version (1.x.x, 3.x, 4.x, 5.x, 6.x, 7.x or 8.x) of DSpace to DSpace 8.x (latest version)

For more information about new features or major changes in previous releases of DSpace, please refer to following:

Releases - Provides links to release notes for all prior releases of DSpace
Version History - Provides detailed listing of all changes in all prior releases of DSpace

Upgrading database structure/data is now automated!

The underlying DSpace database structure changes and data migrations are now AUTOMATED (using). This means that you no longer need to FlywayDB
manually run SQL scripts. Instead, the first time you run DSpace, it will auto-update your database structure (as needed) and migrate all your data to be
compatible with the installed version of DSpace. This allows you to concentrate your upgrade efforts on customizing your site without having to worry
about migrating your data!

For example, if you were running DSpace 5, and you wish to upgrade to DSpace 8, you can follow the simplified instructions below. As soon as you point
your DSpace 8 installation against the older DSpace 5-compatible database, your database tables (and data) will automatically be migrated to be
compatible with DSpace 8.

See below for a specific note on troubleshooting "ignored" migrations (a rare circumstance, but known to happen if you upgrade from DSpace 5 to a later
version of DSpace).
Please refrain from customizing the DSpace database tables. It will complicate your next upgrade!

With the addition of our automated database upgrades, we highly recommend AGAINST customizing the DSpace database tables/structure or backporting
. Doing so will often cause the automated database upgrade process to fail (and therefore will any features that change the DSpace tables/structure

complicate your next upgrade).

If you must add features requiring new database tables/structure, we recommend creating new tables (instead of modifying existing ones), as that is
usually much less disruptive to our automated database upgrade.

Test Your Upgrade Process

In order to minimize downtime, it is always recommended to first perform a DSpace upgrade using a Development or Test server. You should note any
problems you may have encountered (and also how to resolve them) before attempting to upgrade your Production server. It also gives you a chance to
"practice" at the upgrade. Practice makes perfect, and minimizes problems and downtime. Additionally, if you are using a version control system, such as
git, to manage your locally developed features or modifications, then you can do all of your upgrades in your local version control system on your
Development server and commit the changes. That way your Production server can checkout your well tested and upgraded code.
In the notes below refers to the install directory for your existing DSpace installation, and to the source directory for [dspace] [dspace-source]
DSpace. Whenever you see these path references, be sure to replace them with the actual path names on your local system.

1 Release Notes / Significant Changes
2 Upgrading the Backend (Server API)

2.1 Backup your DSpace Backend
2.2 Update Backend Prerequisite Software
2.3 Upgrading the Backend Steps

3 Upgrading the Frontend (User Interface)
4 Troubleshooting Upgrade Issues

4.1 See all "Common Installation Issues"
4.2 Database migrate errors: "Migration V5.7_2017.04.11__DS-3563_Index_metadatavalue_resource_type_id_column.sql failed" or
"Migration V5.7_2017.05.05__DS-3431.sql failed"
4.3 Database migrate errors because of custom database tables/columns
4.4 Running "Ignored" Flyway Migrations
4.5 Manually updating the Metadata Registries

Release Notes / Significant Changes

DSpace 8.0 features some breaking changes which you may wish to be aware of before beginning your upgrade:

"Breaking Changes" section of Release Notes
Keep in mind, if you are skipping any 7.x releases, you should also check the "Release Notes / Significant Changes" section of the DSpace 7

.Upgrade Guide

Upgrading the Backend (Server API)

Backup your DSpace Backend

43

https://wiki.lyrasis.org/display/DSPACE/Releases
https://flywaydb.org/
https://wiki.lyrasis.org/display/DSDOC8x/Release+Notes#ReleaseNotes-BreakingChanges
https://wiki.lyrasis.org/display/DSDOC7x/Upgrading+DSpace
https://wiki.lyrasis.org/display/DSDOC7x/Upgrading+DSpace

1.

a.

b.

2.

a.

i.
1.

a.

b.

2.

ii.

b.

Before you start your upgrade, it is strongly recommended that you create a backup of your DSpace content. Backups are easy to recover from; a botched
install/upgrade is very difficult if not impossible to recover from. The DSpace specific things to backup are: configs, source code modifications, database,
and assetstore. On your server that runs DSpace, you might additionally consider checking on your cron/scheduled tasks, servlet container, and database.

Make a complete backup of your system, including:

Database: Make a snapshot/dump of the database. For the PostgreSQL database use Postgres' command. For example:pg_dump

pg_dump -U [database-user] -f [backup-file-location] [database-name]

Assetstore: Backup the directory (by default, and any other assetstores configured in [dspace]/assetstore [dspace]/config/spring
)/api/bitstore.xml

Configuration: Backup the entire directory content of .[dspace]/config
Customizations: If you have custom code, such as themes, modifications, or custom scripts, you will want to back them up to a safe location.
Statistics data: what to back up depends on what you were using before: the options are the default , or the legacy statistics. SOLR Statistics
Legacy stats utilizes the dspace.log files, while SOLR Statistics stores data in . A simple copy of the logs or the [dspace]/solr/statistics
Solr core directory tree should give you a point of recovery, should something go wrong in the update process. We can't stress this enough: your
users depend on these statistics more than you realize. You need a backup.
Authority data: stored in . As with the statistics data, making a copy of the directory tree should enable recovery [dspace]/solr/authority
from errors.

Update Backend Prerequisite Software

DSpace 8.x requires the following updated versions of prerequisite software.

Updated: Java 17 (Oracle or OpenJDK)
Updated: Apache Maven 3.8.x or above
Updated: PostgreSQL 12.x - 15.x (with pgcrypto installed)
Updated: Tomcat is now OPTIONAL. You may instead choose to use the Runnable JAR approach to deploying the DSpace backend.8

Refer to the Backend Requirements section of "Installing DSpace " for more details around configuring and installing these prerequisites.

Upgrading the Backend Steps
Migration guide also available

If during the upgrade you are migrating your DSpace backend to a new server/machine, see guide for hints/tips.Migrating DSpace to a new server

Download the from the DSpace GitHub Repository. You can choose to either download the zip or tar.gz file provided by latest DSpace release
GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch.dspace-7.2

Unpack it using "unzip" or "gunzip". If you have an older version of DSpace installed on this same server, you may wish to unpack it to a
different location than that release. This will ensure no files are accidentally overwritten during the unpacking process, and allow you to
compare configs side by side.
For ease of reference, we will refer to the location of this unzipped version of the DSpace release as in the remainder of [dspace-source]
these instructions.

If upgrading from 6.x or below, a few extra steps are required you install DSpace 8.x. before If you are upgrading from 7.x or a prior
version of 8.x, skip this and move along.

Ensure that your database is compatible: Starting with DSpace 6.x, there are new database requirements for DSpace (refer to the Bac
 for full details). kend Requirements section of "Installing DSpace "

PostgreSQL databases: The "pgcrypto" extension MUST be installed.
Notes on installing pgcrypto

On most Linux operating systems (Ubuntu, Debian, RedHat), this extension is provided in the "postgresql-
contrib" package in your package manager. So, ensure you've installed "postgresql-contrib".
On Windows, this extension should be provided automatically by the installer (check your "[PostgreSQL]/share
/extension" folder for files starting with "pgcrypto")

Enabling pgcrypto on your DSpace database. (Additional options/notes in the)Installation Documentation

Login to your "dspace" database as a superuser
psql --username=postgres dspace
Enable the pgcrypto extension on this database
CREATE EXTENSION pgcrypto;

Oracle databases: See for more Oracle support no longer exists in DSpace. https://github.com/DSpace/DSpace/issues/8214
details.

From your old version of DSpace, dump your (Only necessary if you want to keep both authority and statistics Solr cores.
your authority records and/or)SOLR Statistics

[dspace]/bin/dspace solr-export-statistics -i authority
[dspace]/bin/dspace solr-export-statistics -i statistics

44

http://www.postgresql.org/docs/8.4/static/app-pgdump.html
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace#InstallingDSpace-BackendRequirements
https://github.com/DSpace/DSpace/releases
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace#InstallingDSpace-BackendRequirements
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace#InstallingDSpace-BackendRequirements
https://github.com/DSpace/DSpace/issues/8214

2.

b.

c.

3.

4.

a.

5.
a.

i.

ii.

iii.

b.
i.

ii.

iii.

iv.

1.

2.
3.

4.
a.
b.

The dumps will be written to the directory . In [dspace]/solr-export This may take a long time and require quite a lot of storage.
particular, the statistics core is likely to be huge, perhaps double the size of the content of . You should solr/statistics/data
ensure that you have sufficient free storage.

This is not the same as the disaster-recovery backup that was done above. These dumps will be reloaded into new, reconfigured cores l
.ater

If you were your statistics data, sharding you will need to dump each shard separately. The index names for prior years will be statist
 (for example: etc.) The current year's statistics shard is named and ics-YYYY statistics-2017 statistics-2018 statistics

you should dump that one too.
Move your old Solr cores to a safe location in case of trouble with the upgrade procedure. If you leave them in place, you will get a
mixture of old and new files that the new Solr will refuse to load.

Build DSpace Backend. Run the following commands to compile DSpace :

cd [dspace-source]
mvn -U clean package

The above command will re-compile the DSpace source code and build its "installer". You will find the result in [dspace-source]/dspace
/target/dspace-installer
Stop Tomcat (or servlet container). Take down your servlet container.

For Tomcat, use the script. (Many Unix-based installations will have a startup/shutdown script in the $CATALINA_HOME/shutdown.sh /
 or directories.)etc/init.d /etc/rc.d

Update your DSpace Configurations. Depending on the version of DSpace you are upgrading from, not all steps are required.
If you are upgrading from DSpace 7.x, you will need to perform the following steps.

As of DSpace 8, the "db.dialect" configuration has changed from "org.hibernate.dialect.PostgreSQL94Dialect" to "org.dspace.
util.DSpacePostgreSQLDialect". Therefore, MAKE SURE that your dspace.cfg or local.cfg has this setting:

db.dialect = org.dspace.util.DSpacePostgreSQLDialect

You may wish to review the for details about new features. There may be new configurations you may wish to Release Notes
tweak to enable/disable those features.
Make sure your existing local.cfg is in the source directory (e.g.). That [dspace-source]/dspace/config/local.cfg
way your existing configuration gets reinstalled alongside the new version of DSpace.

If you are upgrading from DSpace 6.x or below, you will need to perform these steps.
Review your customized configurations (recommended to be in local.cfg): As mentioned above, we recommend any local
configuration changes be placed in a . With any major upgrade some configurations may have local.cfg Configuration File
changed. Therefore, it is recommended to review all configuration changes that exist in the directory, and its config
subdirectories, concentrating on configurations your previously customized in your local.cfg. See also the Configuration

.Reference
Remove obsolete configurations. With the removal of the JSPUI and XMLUI, a large number of server-side (backend)
configurations were made obsolete and were therefore removed between the 6.x and 7.0 release. A full list can be found in the

.Release Notes
Remove BTE Spring configuration: If it exists, remove the Spring [dspace]/config/spring/api/bte.xml
Configuration. This file is no longer needed as the BTE framework was removed in favor of .Live Import from external sources
Migrate or recreate your Submission configuration. As of DSpace 7, the submission configuration has changed. The
format of the "item-submission.xml" file has been updated, and the older "input-forms.xml" has been replaced by a new
"submission-forms.xml". You can choose to either start fresh with the new v7 configuration files, or you can use the steps
below to migrate your old configurations into the new format. See the for more informationSubmission User Interface

 First, create a temporary folder to copy your old v6 configurations into

Example of creating a [dspace]/config/temp folder for this migration
You must replace [dspace] with the full path of your DSpace 7 installation.
cd [dspace]/config
mkdir temp

Copy your old (v5 or v6) "item-submission.xml" and "input-forms.xml" into that temporary folder
Run the command-line migration script to migrate them to v7 configuration files

This example uses [dspace] as a placeholder for all paths.
Replace it with either the absolute or relative path of these files
[dspace]/bin/dspace submission-forms-migrate -s [dspace]/config/temp/item-submission.
xml -f [dspace]/config/temp/input-forms.xml

The result will be two files. These are valid v7 configurations based on your original submission configuration files.
[dspace]/config/item-submission.xml.migrated
[dspace]/config/submission-forms.xml.migrated

45

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-Thelocal.cfgConfigurationPropertiesFile
https://wiki.lyrasis.org/display/DSDOC8x/Release+Notes#ReleaseNotes-7.0ConfigurationsRemoved

5.

b.

iv.

5.

v.

vi.

vii.

1.
2.
3.
4.

viii.

1.

c.
i.

ii.

iii.

6.

7.

a.

b.

These "*.migrated" files have , so you may want to edit them further before installing them (by no inline comments
removing the ".migrated" suffix). Alternatively, you may choose to copy sections of the *.migrated files into the default
configurations in the folder, therefore retaining the inline comments in those default files.[dspace]/config/

City IP Database file for Solr Statistics has been renamed. The old file is no [dspace]/config/GeoLiteCity.dat
longer maintained by its provider. You can delete it. The new file is named by default. If you have GeoLite2-City.mmdb
configured a different name and/or location for this file, you should check the setting of in usage-statistics.dbfile [dspa

 (and perhaps move your custom setting to).ce]/config/modules/usage-statistics.cfg local.cfg
tm-extractors media filtering (WordFilter) no longer exists: the PoiWordFilter plugin now fulfills this function. If you still
have WordFilter configured, remove from and/or all lines referencing dspace.cfg local.cfg org.dspace.app.

 and uncomment all lines referencing .mediafilter.WordFilter org.dspace.app.mediafilter.PoiWordFilter
Re-configure Solr URLs: change the value of to point at your new Solr external service. It will probably solr.server
become something like . Solr only needs to be accessible to the solr.server = https:// :8983/solrlocalhost
DSpace backend, and should not be publicly available on the web. It can either be run on localhost or via a hostname (if run on
a separate server from the backend). Also review the values of

discovery.search.server
oai.solr.url
solr.authority.server
solr-statistics.server

Sitemaps are now automatically generated/updated: A new setting exists in the dspace.cfg which controls sitemap.cron
when Sitemaps are generated. By default they are enabled to update once per day, for optimal SEO. See Search Engine

 docs for more detailOptimization
Because of this change, if you had a system cron job which ran " ", this system cron ./dspace generate-sitemaps
job can be removed in favor of the new setting.sitemap.cron

If you are upgrading from DSpace 5.x or below, there are a few additional configuration changes to be aware of .
Replace your old build.properties file with a local.cfg : As of DSpace 6.0, the configuration file has build.properties
been replaced by an enhanced configuration file. Therefore, any old file (or similar local.cfg build.properties [dspace

 files) WILL BE IGNORED. Instead, you should create a new file, based on the -source]/*.properties local.cfg
provided and use it to specify all of your locally customized [dspace-source]/dspace/config/local.cfg.EXAMPLE
DSpace configurations. See the documentation and the section on that Configuration Reference local.cfg Configuration File
page.
Search/Browse requires Discovery: As of DSpace 6, only (Apache Solr) is supported for search/browse. Support Discovery
for Legacy Search (using Apache Lucene) and Legacy Browse (using database tables) has been removed, along with all their
configurations.
XPDF media filtering no longer exists: XPDF media filtering, deprecated in DSpace 5, has been removed. If you used this,
you will need to reconfigure using the remaining (e.g. PDF Text Extractor and/or ImageMagick PDF Thumbnail alternatives
Generator).

Update DSpace Installation. Update the DSpace installation directory with the new code and libraries. Issue the following commands:

cd [dspace-source]/dspace/target/dspace-installer
ant update

Upgrade your database (). The DSpace code will automatically upgrade your database (required for all upgrades from any prior version of
). By default, this database upgrade occurs automatically when you restart Tomcat (or your servlet container). However, if you have a DSpace

large repository or are upgrading across multiple versions of DSpace at once, you may wish to manually perform the upgrade (as it could take
some time, anywhere from 5-15 minutes for large sites).

(Optional) If desired, you can optionally verify which migrations have not yet been run on your database. You can use this to double
check that DSpace is recognizing your database version appropriately

[dspace]/bin/dspace database info

If you are upgrading from 5.x or later, then this will list all migrations
which were previously run, along with any which are "PENDING" or "IGNORED"
that need to be run to upgrade your database.
If you are upgrading from 4.x or earlier, this will attempt to detect which
version of DSpace you are upgrading from. Look for a line at the bottom
that says something like:
"Your database looks to be compatible with DSpace version ___"

(Optional) In some rare scenarios, if your database's "sequences" are outdated, inconsistent or incorrect, a database migration error may
occur (in your DSpace logs). While this is seemingly a rare occurrence, you may choose to run the "update-sequences" command
PRIOR to upgrading your database. If your database sequences are inconsistent or incorrect, this "update-sequences" command will
auto-correct them (otherwise, it will do nothing).

This command only works if upgrading from DSpace 7.0 or later
[dspace]/bin/dspace database update-sequences

If upgrading from DSpace 6 or below, this script had to be run via psql from [dspace]/etc
/postgres/update-sequences.sql
For example:
psql -U [database-user] -f [dspace]/etc/postgres/update-sequences.sql [database-name]

NOTE: It is important to run the "update-sequences" script which came with the OLDER version of

46

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-Thelocal.cfgConfigurationPropertiesFile

7.

b.

c.

d.

e.

8.

a.

b.

9.

a.

b.

c.

DSpace (the version you are upgrading from)! If you've misplaced # this older version of the
script, you can download it from our codebase & run it via the "psql" command above.
DSpace 6.x version of "update-sequences.sql": https://github.com/DSpace/DSpace/blob/dspace-6_x
/dspace/etc/postgres/update-sequences.sql
DSpace 5.x version of "update-sequences.sql": https://github.com/DSpace/DSpace/blob/dspace-5_x
/dspace/etc/postgres/update-sequences.sql

(REQUIRED) Then, you can upgrade your DSpace database to the latest version of DSpace. (NOTE: check the DSpace log, [dspace]
, for any output from this command)/log/dspace.log.[date]

If upgrading from DSpace 6.x or below
[dspace]/bin/dspace database migrate ignored

If upgrading from DSpace 7.x or an earlier version of 8.x
[dspace]/bin/dspace database migrate

If you are upgrading from DSpace 6.x or below be sure you include the "ignored" parameter! There are database changes which
were previously optional but now are mandatory (specifically database changes).Configurable Workflow
If the database upgrade process fails or throws errors, then look at the "Troubleshooting Upgrade Issues" section below for possible tips
/hints.
More information on the "database" command can be found in documentation.Database Utilities

By default, your site will be automatically reindexed after a database upgrade

If any database migrations are run (even during minor release upgrades), then by default DSpace will automatically reindex all content in your
site. This process is run automatically in order to ensure that any database-level changes are also immediately updated within the search/browse
interfaces. See the notes below under " " for more information.Restart Tomcat (servlet container)

However, you may choose to Some sites choose to run the reindex process manually in order to better control whenskip automatic reindexing.
/how it runs.

To disable automatic reindexing, set in or .= false discovery.autoReindex config/local.cfg config/modules/discovery.cfg

As you have disabled automatic reindexing, make sure to manually reindex your site by running [dspace]/bin/dspace index-discovery -
 b (This must be run after restarting Tomcat)

WARNING: It is not recommended to skip automatic reindexing, unless you will at a later time, or have verified that a reindex is manually reindex
not necessary. Forgetting to reindex your site after an upgrade may result in unexpected errors or instabilties.
Deploy Server web application: Two deployment options are now available for the DSpace backend.

(traditional approach): In this approach, you have Tomcat (or a different servlet container) installed WAR Deployment via Tomcat must
locally. You will need to deploy the "server" webapp (in [dspace]/webapps/server) into your Servlet Container (e.g.
Tomcat). Generally, there are two options (or techniques) which you could use...either configure Tomcat to find the DSpace "server"
webapp, or copy the "server" webapp into Tomcat's own webapps folder. For more information & example commands, see the Installatio
n Guide
Runnable JAR deployment (NEW in v8): In this approach, you can any existing Tomcat installation. Instead you would run the remove
DSpace backend from the "server-boot" JAR as described in the .Installation Guide

Server-boot execution

java -jar [dspace]/webapps/server-boot.jar

Update/Install the Solr cores and rebuild your indexes. This may be done after starting the backend (e.g. via Tomcat), but is required for
some features to function properly.

Copy the new, empty Solr cores to your new Solr instance.

cp -R [dspace]/solr/* [solr]/server/solr/configsets
chown -R solr:solr [solr]/server/solr/configsets

Start Solr, or restart it if it is running, so that these new cores are loaded.

[solr]/bin/solr restart

You can check the status of Solr and your new DSpace cores by using its administrative web interface. Browse to (e.${solr.server}
g. to see if Solr is running well, then look at the cores by selecting (on the left) Core Admin or)http://localhost:8983/solr/
using the Core Selector drop list.

47

http://localhost:8983/solr/

9.

c.

i.

10.
a.

i.

ii.

b.

i.

c.

i.

ii.

11.

a.

12.

a.

b.

For example, to test that your "search" core is setup properly, try accessing the URL ${solr.server}/search/select. It sh
ould run an empty query against the "search" core, returning an empty JSON result. If it returns an error, then that means your
"search" core is missing or not installed properly.

If upgrading from 6.x or below, a few extra steps are required to before starting Tomcat.
Reload Solr Statistics

Load and from the CSV that you made earlier in Step 2 above.authority statistics dumps

[dspace]/bin/dspace solr-import-statistics -i authority
[dspace]/bin/dspace solr-import-statistics -i statistics

This could take quite some time.

If you had sharded your statistics, you will need to load the dump of each shard separately into the "statistics" core. DSpace 7
does not support Solr shards at this time. Unfortunately, this will involve renaming all CSV export files to remove the year (e.g.
rename "statistics-2012_export_2013-12_5.csv" to "statistics_export_2013-12_5.csv") and rerunning "[dspace]/bin/dspace solr-
import-statistics -i statistics". More advice on this process can be found in this .dspace-tech mailing list thread

For Statistics shards only, upgrade legacy DSpace Object Identifiers (pre-6.4 statistics) to UUID Identifiers.

[dspace]/bin/dspace solr-upgrade-statistics-6x -i statistics

Again If you had sharded your statistics, you will need to run this for each shard separately. See also SOLR Statistics
Maintenance#UpgradeLegacyDSpaceObjectIdentifiers(pre-6xstatistics)toDSpace6xUUIDIdentifiers

Update Handle Server Configuration. (Required when upgrading from 6.x or below) Because we've updated to Handle Server v9, if
you are using the built-in Handle server (most installations do), you'll need to add the follow to the end of the section of server_config
your file (the only new line is the "enable_txn_queue" line)[dspace]/handle-server/config.dct

"case_sensitive" = "no"
"storage_type" = "CUSTOM"
"storage_class" = "org.dspace.handle.HandlePlugin"
"enable_txn_queue" = "no"

Alternatively, you could re-run the script, which is in charge of updating this ./dspace make-handle-config config.dct
file.

(Optional) Set up IP to City database for location-based statistics. If you wish to (continue to) record the geographic origin of client
activity, you will need to install () one of the following:and regularly update

Either, a copy of (in MMDB format)MaxMind's GeoLite City database
NOTE: Installing MaxMind GeoLite2 is However, you sign up for a (free) MaxMind account in order to free. must
obtain a license key to use the GeoLite2 database.
You may download GeoLite2 directly from MaxMind, or many Linux distributions provide the tool geoipupdate
directly via their package manager. You will still need to configure your license key prior to usage.
Once the "GeoLite2-City.mmdb" database file is installed on your system, you will need to configure its location as the
value of usage-statistics.dbfile in your configuration file local.cfg .
You can discard any old GeoLiteCity.dat database(s) found in the directory (if they exist).config/
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City
Database with DSpace.

Or, you can alternatively use/install (in MMDB format)DB-IP's City Lite database
This database is also free to use, but does require an account to download.not
Once the "dbip-city-lite.mmdb" database file is installed on your system, you will need to configure its location as the
value of usage-statistics.dbfile in your configuration file local.cfg .
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City
Database with DSpace.

Restart Tomcat (servlet container) or Runnable JAR. Now restart your servlet container (Tomcat/Jetty/Resin) or Runnable JAR and test out
the upgrade.

Upgrade of database: If you didn't manually upgrade your database in the previous step, then your database will be automatically
upgraded to the latest version. This may take some time (seconds to minutes), depending on the size of your repository, etc. Check the
DSpace log () for information on its status.[dspace]/log/dspace.log.[date]

Reindexing of all content for search/browse: If your database was just upgraded (either manually or automatically), all the content in your
DSpace will be automatically re-indexed for searching/browsing. As the process can take some time (minutes to hours, depending on the size of
your repository), it is performed in the background; meanwhile, DSpace can be used as the index is gradually filled. But, keep in mind that not all

 Again, check the DSpace log () for content will be visible until the indexing process is completed. [dspace]/log/dspace.log.[date]
information on its status. If you wish to skip automatic reindexing, please see the Note above under the "Upgrade your Database" step.

To reindex manually, just run:

[dspace]/bin/dspace index-discovery -b

You may also wish to reindex OAI-PMH content at this time:

[dspace]/bin/dspace oai import

48

https://groups.google.com/g/dspace-tech/c/FuhWNSQqzx4
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-UpgradeLegacyDSpaceObjectIdentifiers(pre-6xstatistics)toDSpace6xUUIDIdentifiers
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-UpgradeLegacyDSpaceObjectIdentifiers(pre-6xstatistics)toDSpace6xUUIDIdentifiers
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://db-ip.com/db/download/ip-to-city-lite
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics

13.

a.

14.

1.

a.

2.
a.
b.

i.

ii.
c.

d.

e.

i.
ii.
iii.

f.

i.

ii.

g.
i.

h.

i.

Review / Update your scheduled tasks (e.g. cron jobs). For all features of DSpace to work properly, there are some scheduled tasks you
MUST setup to run on a regular basis. Some examples are tasks that help create thumbnails (for images), do full-text indexing (of textual content)
and send out subscription emails. See the for more details. Scheduled Tasks via Cron

If upgrading from 7.4 (or earlier) , you will want to make sure the new "subscription-send" task is added to your existing scheduled tasks
(in cron or similar). This new task is in charge of sending for any users who have subscribed to updates. (NOTE: Email Subscriptions
"subscription-send" the older "sub-daily" task from 6.x or below). See the for more details.replaces Scheduled Tasks via Cron

Install or Upgrade the new User Interface (see below)

Upgrading the Frontend (User Interface)

If upgrading from 6.x or below, install the new User Interface per the guide. Installing DSpace The JSPUI and XMLUI are no longer
supported and cannot work with the DSpace 7 backend. You will need to install the new (Angular.io) User Interface.

JSPUI or XMLUI based themes cannot be migrated. That said, since the new Angular UI also uses Bootstrap, you may be able to
borrow some basic CSS from your old themes. But any HTML-level changes will need to be reimplemented in the new UI.

If upgrading from 7.x or a prior version of 8.x, upgrading requires installing the latest version of the User Interface code
Upgrade Node.js if necessary
Download the from the DSpace GitHub repositorylatest dspace-angular release . You can choose to either download the zip or tar.
gz file provided by GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch. dspace-8.0

If you've cloned or copied this code into your own GitHub or GitLab repository, you may wish to simply pull the latest tagged
code into your codebase using Git. That will allow you to more easily address any "code conflicts" between your local changes
and the new version of DSpace (if any are found).
NOTE: For the rest of these instructions, we'll refer to the source code location as [dspace-angular].

Install any updated local dependencies using Yarn in the source code directory:[dspace-angular]

change directory to our repo
cd [dspace-angular]

install/update the local dependencies
yarn install

Build the latest User Interface code for Production: This rebuilds the latest code into the directory[dspace-angular]/dist

yarn build:prod

If upgrading from 7.0 or 7.1, read the updated . version 7 Installation documentation We now recommend deploying the compiled
User Interface (in) to a different directory (which we refer to as) in order to keep [dspace-angular]/dist [dspace-ui-deploy]
your running UI separate from the source code. While it's still possible to run the UI using "yarn start" or "yarn run serve:ssr" (both of
which use), that older approach will mean that your site goes down / becomes unavailable anytime you [dspace-angular]/dist
rebuild (yarn build:prod). To solve this issue:

Create a separate location as described in the Installation documentation.[dspace-ui-deploy]
Copy the folder to that location, as described in the Installation documentation.[dspace-angular]/dist
Update your PM2 configuration or local startup scripts to use Node.js instead of Yarn. Again, see the Installation
documentation.

If upgrading from 7.0 or 7.1, migrate your UI Configurations to YAML. In 7.2, the format of the UI configuration file changed from
Typescript to YAML to support runtime configuration. This means that customization of the older ./src/environment

 build-time configuration files has been superseded by corresponding configuration /environment.*.ts ./config/config.*.yml
files (e.g. environment.prod.ts config.prod.yml).

Either, manually convert your "environment.prod.ts" configurations to a new "./config/config.prod.yml" file, using the "./config
/config.example.yml" as a guide, along with the documentation.User Interface Configuration
OR, you can migrate your configurations using the provided "yarn env:yaml" migration script. For detailed instructions, see the

 second of the documentation.Migrate environment file to YAML User Interface Configuration
(Optional) Review Configuration changes to see if you wish to update any new configurations

See the Release Notes
Update your theme (if necessary), if you've created a custom theme in "src/themes" (or modified the existing "custom" or "dspace"
themes in that location). Pay close attention to the following...

As of 7.3, a new "eager-theme.module.ts" and "lazy-theme.module.ts" has been added to both the "custom" and "dspace"
themes to improve performance. Make sure to copy those to your custom theme. Additionally, this new "eager-theme.module.
ts" for your theme MUST be imported/enabled in "src/themes/eager-themes.module.ts". For example, for a local theme under
"src/theme/my-theme":

src/themes/eager-themes.module.ts

import { EagerThemeModule as MyThemeEagerThemeModule } from './my-theme/eager-theme.module';
...
@NgModule({
 imports: [
 MyThemeEagerThemeModule,
],
})

49

https://wiki.lyrasis.org/display/DSDOC7x/Scheduled+Tasks+via+Cron
https://wiki.lyrasis.org/display/DSDOC7x/Scheduled+Tasks+via+Cron
https://github.com/DSpace/dspace-angular/releases
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-FrontendInstallation
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-MigrateenvironmentfiletoYAML

2.

h.

i.

ii.

1.

2.

iii.

1.

iv.
1.

2.

3.
4.

v.
1.

2.

3.
4.

i.
i.

ii.

j.

i.

As of 8.0, you must migrate to standalone components. To migrate your theme to DSpace 8, you need to convert its
components to the standalone architecture. To do so, simply follow the following steps:

Fix any errors in all "<...>.module.ts" files in your theme folder. These errors may be mostly caused by importing old
modules that are now deleted: simply delete any lines that refer to such modules;
Run the command "ng generate @angular/core:standalone --path src/themes/<theme-folder>" to migrate the theme
components to the standalone architecture, replacing <theme-folder> as necessary. WARNING: running the command
while there are still errors on any <...>.module.ts will not produce the correct result, so make sure you have remedied
those errors as mentioned in the previous step.

Additional minor changes may have been made. It's usually best to look for changes to whichever theme you started from. If
you started your theme from the "custom" theme, look for any new changes made under "/src/themes/custom". If you started
your theme from the "dspace" theme, look for any new changes made under "/src/themes/dspace".

Using a tool like "git diff" from the commandline is often an easy way to see changes that occurred only in that
directory.

Example which will show all the changes to "src/themes/dspace" (and all subfolders)
between dspace-7.4 (tag) and dspace-8.0 (tag)
git diff dspace-7.4 dspace-8.0 -- src/themes/dspace/

For the "custom" theme, the largest changes are often:
New themeable components (subdirectories) may be added under "src/themes/custom/app", allowing you the ability to
now change the look & feel of those components.
The "src/themes/custom/theme.module.ts" file will likely have minor updates. This file registers any new themeable
components (in the " " section), and also registers new Modules, i.e. new UI features, (in the "const DECLARATIONS @

" "imports" section). Make sure those sections are updated in your copy of this file!NgModule
Sometimes, new styles may be added in the "styles" folder, or new imports to "styles/theme.scss"
If you have locally customized the styles or look & feel of any component, you should also verify that the component
itself (in src/app) hasn't had updates.

For the "dspace" theme, the largest changes are often:
Existing customized components (subdirectories) under "src/themes/dspace/app/" may have minor updates, if
improvements were made to that component.
The "src/themes/custom/theme.module.ts" file will likely have minor updates. This file registers any new themeable
components (in the " " section), and also registers new Modules, i.e. new UI features, (in the "const DECLARATIONS @

" "imports" section). Make sure those sections are updated in your copy of this file!NgModule
Sometimes, new styles may be added in the "styles" folder, or new imports to "styles/theme.scss"
If you have locally customized the styles or look & feel of any additional component, you should also verify that the
component itself (in src/app) hasn't had updates.

Restart the User Interface.
If you are using PM2 as described in the instructions, you'd stop it and then start it back up as followsInstalling DSpace

Stop the running UI
pm2 stop dspace-ui.json

If you had to update your PM2 configs, you may need to delete your old configuration from
PM2
pm2 delete dspace-ui.json

Start it back up
pm2 start dspace-ui.json

If you are using a different approach, you simply need to , and re-run:stop the running UI

First stop the running UI process by killing it (or similar)

You MUST restart the UI from within the deployment directory
See Installation Instructions for more info on this directory
cd [dspace-ui-deploy]

Then restart the UI via Node.js
node ./dist/server/main.js

Verify the UI and REST API are both working properly.

If you hit errors, see the "Troubleshooting Upgrade Issues" section below. Additionally, check the "Common Installation Issues"
section of the documentation for other common misconfiguration or setup issues.Installing DSpace

Troubleshooting Upgrade Issues

50

1.
2.

3.

See all "Common Installation Issues"

At times the upgrade process may involve configuration changes which could result in one of our "Common Installation Issue" error messages. So, make
sure to check that section of the documentation, especially if you find your UI is no longer connecting to your REST API.Installing DSpace

Database migrate errors: "Migration V5.7_2017.04.11__DS-
3563_Index_metadatavalue_resource_type_id_column.sql failed" or "Migration V5.7_2017.05.05__DS-
3431.sql failed"

If you are upgrading to DSpace 7.x and receive of the two following errors after running "./dspace database migrate ignored":either

Migration V5.7_2017.04.11__DS-3563_Index_metadatavalue_resource_type_id_column.sql failed

[or]

Migration V5.7_2017.05.05__DS-3431.sqln failed

This means your database never ran those older migrations during a past upgrade from 5.x6.x (or similar).

Luckily, though, these migrations are both obsolete in DSpace 7.x (and later). This means .you can skip these migration safely

As of DSpace 7.5, a new "./dspace database skip" command is provided to easily skip one (or both) of these failing migrations as follows:

If you need to skip "V5.7_2017.04.11__DS-3563_Index_metadatavalue_resource_type_id_column.sql", run this:
./dspace database skip "5.7.2017.04.11"

If you need to skip "V5.7_2017.05.05__DS-3431.sql", run this:
./dspace database skip "5.7.2017.05.05"

For more information on the "./dspace database skip" command see .Database Utilities

Database migrate errors because of custom database tables/columns

If you have modified your database structure directly (or installed custom plugins which do so), then it is possible a "./dspace database migrate" will fail if it
encounters an unexpected database structure. In this scenario, you may need to do some manual migrations before the automatic migrations will succeed.
The general process would be something like this:

Revert back to your current DSpace database
Manually upgrade just your database the failing migration. For example, if you are current using DSpace 1.5 and the "V1.6" migration is past
failing, you may need to first manually upgrade your database to 1.6 compatibility. This may involve either referencing the upgrade documentation
for that older version of DSpace, or running the appropriate SQL script from under [dspace-src]/dspace-api/src/main/resources/org

)/dspace/storage/rdbms/sqlmigration/
Then, re-run the migration process from that point forward (i.e. re-run)./dspace database migrate

Running "Ignored" Flyway Migrations

During some upgrades, a Flyway database migration will be "ignored." One known instance of this is documented in https://github.com/DSpace/DSpace
. If you are upgrading from DSpace 5.x to a later version of DSpace, the migration put in place to address /issues/6762 https://github.com/DSpace/DSpace

 will be "ignored" because it is not necessary. There is a special command you can run which will un-flag this migration as "ignored."/pull/1128

 dspace database migrate ignored

Manually updating the Metadata Registries

The database migration (./dspace database migrate) should your metadata/file registries to be updated (based on the config files in automatically trigger [d
). However, if this update was NOT triggered, you can also manually run these registry updates (they will not harm space]/config/registries/

existing registry contents) as follows:

cd [dspace]/bin/
./dspace registry-loader -metadata ../config/registries/dcterms-types.xml
./dspace registry-loader -metadata ../config/registries/dublin-core-types.xml
./dspace registry-loader -metadata ../config/registries/eperson-types.xml
./dspace registry-loader -metadata ../config/registries/local-types.xml
./dspace registry-loader -metadata ../config/registries/sword-metadata.xml
./dspace registry-loader -metadata ../config/registries/workflow-types.xml

51

https://github.com/DSpace/DSpace/issues/6762
https://github.com/DSpace/DSpace/issues/6762
https://github.com/DSpace/DSpace/pull/1128
https://github.com/DSpace/DSpace/pull/1128

52

1.

2.

1.
2.

a.

i.

ii.

3.

4.

5.

1.

Migrating DSpace to a new server

These instructions are meant as a general guideline to how you can migrate your DSpace site/data to a new server while also to the Upgrading DSpace
latest release. Keep in mind that you MUST also review the and guides when performing a migration (e.g. you must Installing DSpace Upgrading DSpace
ensure you have correct dependencies installed and you must ensure you perform all upgrade steps).

Overview of migration approaches

There are two main approaches to migrating your DSpace to a new server.

Install a fresh copy of DSpace & migrate the database/files into it - This is the approach documented on this page. It is the recommended
approach as it ensures zero data loss. However, it does involve more steps to complete the migration.
Install a fresh copy of DSpace & use the - This is an alternative approach where you can use the AIP export tools to AIP Backup and Restore
export AIPs from your old site, and then import them into the new site. While this also works, keep in mind that not all DSpace data can be
exported to AIPs, so you will lose some data during this migration (namely any submissions not yet completed or still in workflow approval will be
lost, see the documentation for more details on what data is currently missing from AIPs).AIP Backup and Restore

Step 1: Install a fresh copy of DSpace

On your new server, follow the instructions and install a fresh (empty) copy of the latest version of DSpace. , Installing DSpace BEFORE PROCEEDING
ensure that this fresh copy of DSpace is correctly installed and shows no errors when you startup the site. (The site will obviously appear empty though,
and that's OK)

You can also use this time to get your basic configurations setup properly for both the backend (local.cfg) and the frontend (config.prod.yml).

Step 2: Prepare your data to copy from the old DSpace to the new one

There are three main areas of data you need to migrate in order to ensure no data loss.

Perform these steps on the old server

First, you should STOP tomcat on the old server. These steps require the site to be down.
Update sequences When migrating content, sometimes sites will find that database sequences will be outdated or incorrect. This can (optional) -
result in "duplicate key" errors during the database migration to the latest version. To avoid this, you export your data, run this older copy before
of the "update-sequences" command on your database. This should ensure your database sequences are updated before you dump your data.

If upgrading from DSpace 6 or below, run this on your old database
psql -U [database-user] -f [dspace]/etc/postgres/update-sequences.sql [database-name]
e.g. psql -U dspace -f [dspace]/etc/postgres/update-sequences.sql dspace

NOTE: It is important to run the "update-sequences" script which came with the OLDER version of DSpace (the version you are
migrating from)! If you've misplaced this older version of the script, you can download it from our codebase & run it via the "psql"
command above.

DSpace 6.x version of "update-sequences.sql": https://github.com/DSpace/DSpace/blob/dspace-6_x/dspace/etc/postgres
/update-sequences.sql
DSpace 5.x version of "update-sequences.sql": https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/etc/postgres
/update-sequences.sql

The database data - Make sure to export the database data from your old DSpace site using a tool like " " (for PostgresSQL). If you use pg_dump
"pg_dump", you'll end up with a large SQL file which contains all the data from your old database.

Example of using pg_dump to export a database to an output file
pg_dump -U [db_username] [db_name] > [output_file.sql]

The "assetstore" folder - This folder is in your DSpace installation directory and it contains all the files stored in your DSpace. You will need all
 of this folder (including all subdirectories), so you could choose to zip it up or you could copy it over directly.the contents

The Solr data - Both DSpace authority and statistics are stored in Solr. If you want to keep these, you will want to export them from the (optional)
old Solr and move them over. Use the "solr-export-statistics" tool provided with DSpace: see "Export SOLR Statistics" in the Solr Statistics

. Maintenance guide (Requires Solr to be running. Keep in mind, this may require you to start Tomcat back up if Solr is running in Tomcat.)

Step 3: Copy over the prepared data and import it into the new DSpace

Copy the data you've prepared in Step 2 over to the new server.

Now, you'll import this data into your new installation of DSpace (created in Step 1).

Perform these steps on the new server.

53

https://github.com/DSpace/DSpace/blob/dspace-6_x/dspace/etc/postgres/update-sequences.sql
https://github.com/DSpace/DSpace/blob/dspace-6_x/dspace/etc/postgres/update-sequences.sql
https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/etc/postgres/update-sequences.sql
https://github.com/DSpace/DSpace/blob/dspace-5_x/dspace/etc/postgres/update-sequences.sql
https://www.postgresql.org/docs/current/backup-dump.html
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-ExportSOLRstatistics,forbackupandmovingtoanotherserver
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-ExportSOLRstatistics,forbackupandmovingtoanotherserver

1.
2.

a.

i.

b.

3.

4.

1.

2.

3.

First, you must STOP Tomcat on the new server.
The database data - Before you can import the data, you must delete the new, empty database.

Delete/Clean the new, empty database (created in step 1) as you will have empty tables created during the installation. The easiest way
to achieve this is to run the "./dspace database clean" command. Keep in mind it requires temporarily enabling it via "db.
cleanDisabled=false" in your local.cfg. (After the "clean" command succeeds, make sure to remove this configuration.)

Delete everything in your database
Requires temporarily setting "db.cleanDisabled=false" in your local.cfg
./dspace database clean

Alternatively, PostgreSQL users could delete the entire database (using , e.g. "dropdb -U [db_username] dropdb command
[db_name]") and recreate it based on the "Database Setup" instructions in .Installing DSpace

Import the database dump you created in Step 2 (above), which will recreate this database with all your old data in it. For Postgres, you
can use the " " command.psql

Example of using psql to import data from a SQL file into a database
psql -U [db_username] [db_name] < [output_file.sql]

(NOTICE the direction of the angle character... in this command you are telling Postgres to execute all the commands contained in your
"output_file.sql", which will cause it to recreate all the database data in your new database.)

The "assetstore" folder - Delete the assetstore folder on the new server. Copy the entire assestore folder (and all subdirectories) from the empty
old server to the new one. In the end, you should have a several subdirectory hierarchies (containing your files) under the [dspace]

 folder on the new server./assetstore/
The Solr data (optional) - If you exported the statistics or authority data in Step 2, then you can import this data from the exported files using the
"solr-import-statistics" tool provided with DSpace, see . "Import SOLR Statistics" in the Solr Statistics Maintenance guide (Requires Solr to be
running)

Step 4: Update the database, Start DSpace & Reindex

Now that all the data is copied over, you need to ensure it's updated and reindexed properly (for the new version of DSpace).

Perform these steps on the new server.

Migrate/Upgrade the database to the latest version - Now that your old data is migrated, you MUST ensure it's using the latest database updates
based on the new DSpace you've installed. Review the database steps in and follow the instructions there. Upgrading DSpace

Migrate your old data to the latest DSpace version
WARNING: You must review the Upgrading DSpace docs to see if there are any additional database steps
listed there!
./dspace database migrate ignored

NOTE: You should check the logs (dspace.log) for errors. Additional steps may be documented in the guide.Upgrading DSpace
Start Tomcat. This will bring your new DSpace back up, with the migrated data in place. Check the backend logs (dspace.log and Tomcat log) to
ensure no errors occur on startup.
Reindex all content - This will ensure all search/browse functionality works in the DSpace site. Optionally, if you use OAI-PMH, you will want to
reindex content into there as well.

Reindex all your content in DSpace
./dspace index-discovery -b

(Optionally) also reindex everything into OAI-PMH endpoint
./dspace oai import

NOTE: Until this command completes (it may take a while for large sites), you will not be able to fully browse/search the content from the User
Interface. To check the progress of the reindex, check your dspace.log file.

Step 5: Review the Upgrade Instructions and final cleanup

If you've changed the version of DSpace you are running, you should review the guide for instructions related to necessary Upgrading DSpace
configuration changes or other necessary updates. You should perform any upgrade steps that you have NOT yet performed above (keep in mind you
already should have upgraded your database, and reindexed your content).

At this time, you also may wish to review your configurations on your DSpace site, and see if there are any configurations that you wish to copy over old
into your new DSpace site. This step is optional, as you can also choose to start "fresh" with a new local.cfg file.

FINALLY, test the new site and verify that all the content, user accounts, etc. have moved over successfully. If you encounter any issues, see our Troubles
 guide for hints/tips on finding the underlying error message & reporting it to lists/channels. Also make sure to check our list of hoot an error Support Comm

 in the Installing DSpace guide.on Installation Issues

54

https://www.postgresql.org/docs/current/app-dropdb.html
https://www.postgresql.org/docs/current/app-psql.html
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-ImportSOLRstatistics,forrestoringlostdataormovingtoanotherserver
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Support
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace#InstallingDSpace-CommonInstallationIssues
https://wiki.lyrasis.org/display/DSDOC8x/Installing+DSpace#InstallingDSpace-CommonInstallationIssues

Using DSpace
This page offers access to all aspects of the documentation relevant to using DSpace after it has been properly installed or upgraded. These pages
assume that DSpace is functioning properly. Please refer to the section on if you are looking for information on diagnosing DSpace System Administration
issues and measures you can take to restore your DSpace to a state in which it functions properly.

55

Authentication and Authorization
Authentication Plugins
Bulk Access Management
Embargo
Managing User Accounts
Request a Copy

56

Authentication Plugins

1 Stackable Authentication Method(s)
1.1 Authentication by Password

1.1.1 Enabling Authentication by Password
1.1.2 Configuring Authentication by Password

1.2 Open ID Connect (OIDC) Authentication
1.2.1 Enabling OIDC Authentication
1.2.2 Configuring OIDC Authentication

1.2.2.1 Sample/Test OIDC Configuration
1.3 Shibboleth Authentication

1.3.1 Enabling Shibboleth Authentication
1.3.2 Configuring Shibboleth Authentication

1.3.2.1 Apache "mod_shib" Configuration (required)
1.3.2.2 Sample shibboleth2.xml Configuration
1.3.2.3 Sample attribute-map.xml Configuration (for samltest.id)
1.3.2.4 DSpace Shibboleth Configuration Options

1.4 LDAP Authentication
1.4.1 Introduction to LDAP specific terminology
1.4.2 Enabling LDAP Authentication
1.4.3 Configuring LDAP Authentication
1.4.4 Debugging LDAP connection and configuration
1.4.5 Enabling Hierarchical LDAP Authentication
1.4.6 Configuring Hierarchical LDAP Authentication

1.5 ORCID Authentication
1.5.1 Enabling ORCID Authentication

1.6 IP Authentication
1.6.1 Enabling IP Authentication
1.6.2 Configuring IP Authentication

1.7 X.509 Certificate Authentication
1.7.1 Enabling X.509 Certificate Authentication
1.7.2 Configuring X.509 Certificate Authentication

1.8 Example of a Custom Authentication Method

Stackable Authentication Method(s)

Since many institutions and organizations have existing authentication systems, DSpace has been designed to allow these to be easily integrated into an
existing authentication infrastructure. It keeps a series, or "stack", of , so each one can be tried in turn. This makes it easy to add authentication methods
new authentication methods or rearrange the order without changing any existing code. You can also share authentication code with other sites.

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
PasswordAuthentication

The configuration property defines the authentication stack. It is a plugin.sequence.org.dspace.authenticate.AuthenticationMethod
comma-separated list of class names. Each of these classes implements a different , or way of determining the identity of the authentication method
user. They are invoked in the order specified until one succeeds.

Existing Authentication Methods include

Authentication by Password (class:) (DEFAULT)org.dspace.authenticate.PasswordAuthentication
Open ID Connect (OIDC) Authentication (class: org.dspace.authenticate.OidcAuthentication)
Shibboleth Authentication (class:)org.dspace.authenticate.ShibAuthentication
LDAP Authentication (class:)org.dspace.authenticate.LDAPAuthentication
ORCID Authentication (class:)org.dspace.authenticate.OrcidAuthentication
IP Address based Authentication (class:)org.dspace.authenticate.IPAuthentication
X.509 Certificate Authentication (class:)org.dspace.authenticate.X509Authentication

An authentication method is a class that implements the interface . It a user org.dspace.authenticate.AuthenticationMethod authenticates
by evaluating the (e.g. username and password) he or she presents and checking that they are valid.credentials

Authentication by Password

Enabling Authentication by Password

By default, this authentication method is enabled in DSpace.

57

However, to enable Authentication by Password, you must ensure the class is listed as one org.dspace.authenticate.PasswordAuthentication
of the AuthenticationMethods in the following configuration:

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
PasswordAuthentication

Configuring Authentication by Password

The default method has the following properties:org.dspace.authenticate.PasswordAuthentication

Use of inbuilt e-mail address/password-based log-in. This is achieved by sending login information to the of the REST "/api/authn/login" endpoint
API, in order to obtain a JSON Web Token. This JSON Web token must be sent on every later request which requires authentication.
Users can register themselves (i.e. add themselves as e-people without needing approval from the administrators), and can set their own
passwords when they do this
Users are not members of any special (dynamic) e-person groups
You can restrict the domains from which new users are able to register. To enable this feature, uncomment the following line from dspace.cfg: aut

 Example options might be ' ' to restrict registration to users with hentication.password.domain.valid = example.com @example.com
addresses ending in @example.com, or ' ' to restrict registration to users with addresses ending in @example.com or @example.com, .ac.uk
with addresses in the .ac.uk domain.

A full list of all available Password Authentication Configurations:

Configuration File: [dspace]/config/modules/authentication-password.cfg

Property: user.registration

Example Value: user.registration = false

Informational Note: This option allows you to disable all self-registration. When set to "false", no one will be able to register new accounts with your
system. Default is "true".

Property: user.forgot-password

Example Value: user.forgot-password = false

Informational Note: This option allows you to disable the forgot password link inside the login page. When set to " ", no one will be able to false
reset the password related to its account.

Default is " ".true

Property: authentication-password.domain.valid

Example Value: authentication-password.domain.value = @mit.edu, .ac.uk

Informational Note: This option allows you to limit self-registration to email addresses ending in a particular domain value. The above example
would limit self-registration to individuals with "@mit.edu" email addresses and all ".ac.uk" email addresses. (This setting only
works when user.registration=true)

Property: authentication-password.login.specialgroup

Example Value: authentication-password.login.specialgroup = My DSpace Group

Informational Note: This option allows you to automatically add all password authenticated user sessions to a specific DSpace Group (the group
must exist in DSpace) for the remainder of their logged in session.

Property: authentication-password.digestAlgorithm

Example Value: authentication-password.digestAlgorithm = SHA-512

Informational Note: This option specifies the hashing algorithm to be used in converting plain-text passwords to more secure password digests.
The example value is the default. You may select any digest algorithm available through java.security.MessageDigest on your
system. At least MD2, MD5, SHA-1, SHA-256, SHA-384, and SHA-512 should be available, but you may have installed others.
Most sites will not need to adjust this.

Property: authentication-password.regex-validation.pattern

Example Value: authentication-password.regex-validation.pattern = ^.{8\,}$

58

https://github.com/DSpace/RestContract/blob/main/authentication.md

Informational Note: This option specifies a regular expression which all new passwords MUST validate against. By default, DSpace just requires a
new password to be 8 or more characters (see above example value). However, sites can modify this regex in order to require
more robust passwords of all users. One example of a complex rule is:

authentication-password.regex-validation.pattern = ^(?=.*?[a-z])(?=.*?[A-Z])(?=\\S*?[0-9])(?
=\\S*?[!?$@#$%^&+=]).{8\,15}$

This example requires all users to adopt a more complex password:

(?=.*?[a-z]) - the password must contain at least one lowercase character
(?=.*?[A-Z]) - the password must contain at least one uppercase character
(?=\\S*?[0-9]) - the password must contain at least one numeric character
(?=\\S*?[!?$@#$%^&+=]) - the password must contain at least one of the following special character: !?$@#$%^&+=
.{8\,15} - the password must be at least 8 and at most 15 characters long (NOTE: the "\," is required to escape the
comma, which is a special character)

Open ID Connect (OIDC) Authentication
Open ID Connect (OIDC) Authentication is only available in DSpace 7.2 or above.

Enabling OIDC Authentication

To enable OIDC Authentication, you must ensure the class is listed as one of the org.dspace.authenticate.OidcAuthentication
AuthenticationMethods in the following configuration:

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
OidcAuthentication

()NOTE: This setting may be repeated to support multiple AuthenticationMethods

(WARNING: it's easy to miss, the "camel case" for might catch you off guard. It's important to use OidcAuthentication not OIDC
 in this line, because that class does not exist. .Authentication Case matters

Configuring OIDC Authentication

OpenID Connect is an identity layer on top of the OAuth 2.0 protocol. It allows Clients to verify the identity of the End-User based on the authentication
performed by an Authorization Server, as well as to obtain basic profile information about the End-User in an interoperable and REST-like manner. There
are many of OpenID Connect, including and . server implementations Keycloak AWS Cognito

Configuration
File:

[dspace]/config/modules/authentication-oidc.cfg

Property: authentication-oidc.auth-server-url

Example Value: authentication-oidc.auth-server-url = https://auth.example.com

Informational
Note:

(Optional) The root URL of the OpenID Connect server. This is optional, as it's only used to fill out each of the "-endpoint" configs
below (see below).
So, for some setups, it may be easier to configure the "-endpoint" configs directly INSTEAD OF the "auth-server-url" and "auth-
server-realm"

Property: authentication-oidc.auth-server-realm

Example Value: authentication-oidc.auth-server-realm = dspace-realm

Informational
Note:

(Optional) The realm to authenticate against on the OpenID Connect server. This is optional, as it's only used to fill out each of the "-
endpoint" configs below (see below).
So, for some setups, it may be easier to configure the "-endpoint" configs directly INSTEAD OF the "auth-server-url" and "auth-
server-realm"

Property: authentication-oidc.token-endpoint

Example Value: = ${authentication-oidc.auth-server-url}/auth/realmsauthentication-oidc.token-endpoint
/${authentication-oidc.auth-server-realm}/protocol/openid-connect/token

Informational
Note:

(Required) The URL of the OIDC Token endpoint. This defaults to using the configured "auth-server-url" and "auth-server-realm" to
determine the likely OIDC path for this endpoint (see example above for the default value). However, if that default path is incorrect,
you may choose to hardcode the correct URL in this field.

59

https://openid.net/connect/
https://openid.net/developers/certified/#OPServices
https://www.keycloak.org/
https://aws.amazon.com/cognito/
https://auth.example.com

Property: authentication-oidc.authorize-endpoint

Example Value: authentication-oidc.authorize-endpoint = ${authentication-oidc.auth-server-url}/auth/realms
/${authentication-oidc.auth-server-realm}/protocol/openid-connect/auth

Informational
Note:

(Required) The URL of the OIDC Authorize endpoint. This defaults to using the configured "auth-server-url" and "auth-server-realm"
to determine the likely OIDC path for this endpoint (see example above for the default value). However, if that default path is
incorrect, you may choose to hardcode the correct URL in this field.

Property: authentication-oidc.user-info-endpoint

Example Value: authentication-oidc.user-info-endpoint = ${authentication-oidc.auth-server-url}/auth/realms
/${authentication-oidc.auth-server-realm}/protocol/openid-connect/userinfo

Informational
Note:

(Required) The URL of the OIDC Userinfo endpoint. This defaults to using the configured "auth-server-url" and "auth-server-realm"
to determine the likely OIDC path for this endpoint (see example above for the default value). However, if that default path is
incorrect, you may choose to hardcode the correct URL in this field.

Property: authentication-oidc.client-id

Example Value: authentication-oidc.client-id = our-dspace

Informational
Note:

(Required) The registered OIDC client id for our DSpace server's use. No default value.

Property: authentication-oidc.client-secret

Example Value: authentication-oidc.client-secret = some-sort-of-hash

Informational
Note:

(Required) The registered OIDC client secret for our DSpace server's use. No default value.

Property: authentication-oidc.redirect-url

Example Value: authentication-oidc.redirect-url = ${dspace.server.url}/api/authn/oid

Informational
Note:

The URL users will be redirected to after a successful login. The example above is the default value, and it usually does not need to
be updated.

Property: authentication-oidc.scopes

Example Value: authentication-oidc.scopes = openid,email,profile

Informational
Note:

The to request from the OIDC server. The example above is the default value scopes

Property: authentication-oidc.can-self-register

Example Value: authentication-oidc.can-self-register = true

Informational
Note:

Specify if the user can self register using OIDC (true|false). If not specified, true is assumed.

If this is set to false, then only users with an existing EPerson in DSpace will be able to authenticate through OIDC. When set to
true, an EPerson will be automatically created for each person who successfully authenticates through OIDC.

Property: authentication-oidc.user-info.email

Example Value: authentication-oidc.user-info.email = email

Informational
Note:

Specify the attribute present in the user info json related to the user's email. The default value is "email"

Property: authentication-oidc.user-info.first-name

Example Value: authentication-oidc.user-info.first-name = given_name

Informational
Note:

Specify the attribute present in the user info json related to the user's first/given name. The default value is "given_name"

Property: authentication-oidc.user-info.last-name

Example Value: authentication-oidc.user-info.last-name = family_name

Informational
Note:

Specify the attribute present in the user info json related to the user's last/family name. The default value is "family_name"

Sample/Test OIDC Configuration

60

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

1.

2.

One way to easily test OIDC Authentication is to use the PhantAuth test site at . This site allows you to create a random OIDC https://www.phantauth.net/
client & a random OIDC user to authenticate as. So, it can be used to verify that DSpace's OIDC authentication is working in your system, but obviously is
only meant for development/testing purposes.

To configure DSpace to use PhantAuth for authentication just requires the following updates to your local.cfg:

local.cfg updates for PhantAuth

Enable OIDC
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.OidcAuthentication

Settings for OIDC authentication
Based on instructions at https://www.phantauth.net/doc/integration
authentication-oidc.authorize-endpoint = https://phantauth.net/auth/authorize
authentication-oidc.token-endpoint = https://phantauth.net/auth/token
authentication-oidc.user-info-endpoint = https://phantauth.net/auth/userinfo

Obtain a random client-id and client-secret via https://phantauth.net/client
Find the "client_id" and "client_secret" returned, and place those values in these next two configs.
authentication-oidc.client-id =
authentication-oidc.client-secret =

Because PhantAuth uses random users, you MUST ensure self registration is enabled
(This is the default setting though, which is why it's commented out)
authentication-oidc.can-self-register = true

Shibboleth Authentication

Enabling Shibboleth Authentication

To enable Shibboleth Authentication, you must ensure the class is listed as one of the org.dspace.authenticate.ShibAuthentication
AuthenticationMethods in the following configuration:

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
ShibAuthentication

()NOTE: This setting may be repeated to support multiple AuthenticationMethods

Configuring Shibboleth Authentication

Shibboleth is a distributed authentication system for securely authenticating users and passing attributes about the user from one or more identity
providers. In the Shibboleth terminology DSpace is a Service Provider which receives authentication information and then based upon that provides a
service to the user. To use Shibboleth, DSpace that you use Apache installed with the mod_shib module acting as a proxy for all HTTP requests requires
for your servlet container (typically Tomcat). DSpace will receive authentication information from the mod_shib module through HTTP headers.

Before DSpace will work with Shibboleth, you have the following:must

An Apache web server with the "mod_shib" module installed. As mentioned, this mod_shib module acts as a proxy for all HTTP requests for your
servlet container (typically Tomcat). Any requests to DSpace that require authentication via Shibboleth should be redirected to 'shibd' (the
shibboleth daemon) by this "mod_shib" module. Details on installing/configuring mod_shib in Apache are available at: https://wiki.shibboleth.net

 We also have a sample Apache + mod_shib configuration provided below./confluence/display/SHIB2/NativeSPApacheConfig
An external Shibboleth IdP (Identity Provider). Using mod_shib, DSpace will only act as a Shibboleth SP (Service Provider). The actual
Shibboleth Authentication & Identity information must be provided by an external IdP. If you are using Shibboleth at your institution already, then
there already should be a Shibboleth IdP available. More information about Shibboleth IdPs versus SPs is available at: https://wiki.shibboleth.net
/confluence/display/SHIB2/UnderstandingShibboleth

For more information on installing and configuring a Shibboleth Service Provider see: https://wiki.shibboleth.net/confluence/display/SHIB2/Installation

Note about Shibboleth Active vs Lazy Sessions:

61

https://www.phantauth.net/
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
https://wiki.shibboleth.net/confluence/display/SHIB2/UnderstandingShibboleth
https://wiki.shibboleth.net/confluence/display/SHIB2/UnderstandingShibboleth
https://wiki.shibboleth.net/confluence/display/SHIB2/Installation

When configuring your Shibboleth Service Provider there are two Shibboleth paradigms you may use: Active or Lazy Sessions. Active sessions is where
the mod_shib module is configured to product an entire URL space. No one will be able to access that URL without first authenticating with Shibboleth.
Using this method you will need to configure shibboleth to protect the URL: "/shibboleth-login". The alternative, Lazy Session does not protect any specific
URL. Instead Apache will allow access to any URL, and when the application wants to it may initiate an authenticated session.

The Lazy Session method is preferable for most DSpace installations, as you usually want to provide public access to (most) DSpace content, while
restricting access to only particular areas (e.g. administration UI/tools, private Items, etc.). When Active Sessions are enabled your DSpace site will entire
be access restricted. In other words, when using Active Sessions, Shibboleth will require everyone to first authenticate before they can access any part of
your repository (which essentially results in a "dark archive", as anonymous access will not be allowed).

Apache "mod_shib" Configuration (required)

As mentioned above, you must have Apache with the "mod_shib" module installed in order for DSpace to be able to act as a Shibboleth Service Provider
(SP). The mod_shib module acts as a proxy for all HTTP requests for your servlet container (typically Tomcat). Any requests to DSpace that require
authentication via Shibboleth should be redirected to 'shibd' (the shibboleth daemon) by this "mod_shib" module. Details on installing/configuring
mod_shib in Apache are available at: General information about installinghttps://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
/configuring Shibboleth Service Providers (SPs) can be found at: https://wiki.shibboleth.net/confluence/display/SHIB2/Installation

A few extra notes/hints when configuring mod_shib & Apache:

In Debian based environments, "mod_shib" tends to be in a package named something like "libapache2-mod-shib2"
The Shibboleth setting "ShibUseHeaders" is no longer required to be set to "On", as DSpace will correctly utilize attributes instead of headers.

When "ShibUseHeaders" is set to "Off" (which is recommended in the), proper configuration of Apache to pass mod_shib documentation
attributes to Tomcat (via either mod_jk or mod_proxy) can be a bit tricky, SWITCH has on exactly what you some great documentation
need to do. We will eventually paraphrase/summarize this documentation here, but for now, the SWITCH page will have to do.

When initially setting up Apache & mod_shib, provides a great testing ground for your configurations. This site provides a https://samltest.id/
sample/demo Shibboleth IdP (as well as a sample Shibboleth SP) which you can test against. It acts as a "sandbox" to get your configurations
working properly, before you point DSpace at your production Shibboleth IdP.
You also may wish to review the Shibboleth setup in our which the development team uses for testing (and it "dspace-shibboleth" Docker setup
uses as the IdP). It may provide you with good examples/hints on getting everything setup. However, keep in mind this code https://samltest.id
has not been tested in Production scenarios.

Below, we have provided a sample Apache configuration. However, as every institution has their own specific Apache setup/configuration, it is highly likely
that you will need to tweak this configuration in order to get it working properly. Again, see the official mod_shib documentation for much more detail about
each of these settings: These configurations are meant to be added to an https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
Apache <VirtualHost> which acts as a proxy to your Tomcat (or other servlet container) running DSpace. More information on Apache VirtualHost settings
can be found at: https://httpd.apache.org/docs/2.2/vhosts/

SAMPLE MOD_SHIB CONFIGURATION FOR APACHE2 (it may require local modifications based on your Apache setup)
####
While this sample VirtualHost is for HTTPS requests (recommended for Shibboleth, obviously),
you may also need/want to create one for HTTP (*:80)
<VirtualHost *:443>
 ...
 # PLEASE NOTE: We have omitted many Apache settings (ServerName, LogLevel, SSLCertificateFile, etc)
 # which you may need/want to add to your VirtualHost

 # As long as Shibboleth module is installed, enable all Shibboleth/mod_shib related settings
 <IfModule mod_shib>
 # Shibboleth recommends turning on UseCanonicalName
 # See "Prepping Apache" in https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
 UseCanonicalName On

 # Most DSpace instances will want to use Shibboleth "Lazy Session", which ensures that users
 # can access DSpace without first authenticating via Shibboleth.
 # This section turns on Shibboleth "Lazy Session". Also ensures that once they have authenticated
 # (by accessing /Shibboleth.sso/Login path), then their Shib session is kept alive
 <Location />
 AuthType shibboleth
 ShibRequireSession Off
 require shibboleth
 # If your "shibboleth2.xml" file specifies an <ApplicationOverride> setting for your
 # DSpace Service Provider, then you may need to tell Apache which "id" to redirect Shib requests to.
 # Just uncomment this and change the value "my-dspace-id" to the associated @id attribute value.
 #ShibRequestSetting applicationId my-dspace-id
 </Location>

 # If a user attempts to access the DSpace shibboleth endpoint, force them to authenticate via Shib.
 <Location "/server/api/authn/shibboleth">
 Order deny,allow
 Allow from all
 AuthType shibboleth
 ShibRequireSession On

62

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
https://wiki.shibboleth.net/confluence/display/SHIB2/Installation
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig#NativeSPApacheConfig-AuthConfigOptions
https://www.switch.ch/de/aai/support/serviceproviders/sp-access-rules.html#javaapplications
https://samltest.id/
https://github.com/DSpace/DSpace/tree/main/dspace/src/main/docker/dspace-shibboleth
https://samltest.id
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
https://httpd.apache.org/docs/2.2/vhosts/

 # Please note that setting ShibUseHeaders to "On" is a potential security risk.
 # You may wish to set it to "Off". See the mod_shib docs for details about this setting:
 # https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig#NativeSPApacheConfig-
AuthConfigOptions
 # Here's a good guide to configuring Apache + Tomcat when this setting is "Off":
 # https://www.switch.ch/de/aai/support/serviceproviders/sp-access-rules.html#javaapplications
 ShibUseHeaders On
 Require shibboleth
 </Location>

 # If a user attempts to access the DSpace login endpoint, ensure Shibboleth is supported but other auth
methods can be too.
 <Location "/server/api/authn/login">
 Order deny,allow
 Allow from all
 AuthType shibboleth
 # For DSpace, this is required to be off otherwise the available auth methods will be not visible
 ShibRequireSession Off
 # Please note that setting ShibUseHeaders to "On" is a potential security risk.
 # You may wish to set it to "Off". See the mod_shib docs for details about this setting:
 # https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig#NativeSPApacheConfig-
AuthConfigOptions
 # Here's a good guide to configuring Apache + Tomcat when this setting is "Off":
 # https://www.switch.ch/de/aai/support/serviceproviders/sp-access-rules.html#javaapplications
 ShibUseHeaders On
 </Location>

 # Ensure /Shibboleth.sso path (in Apache) can be accessed
 # By default it may be inaccessible if your Apache security is tight.
 <Location "/Shibboleth.sso">
 Order deny,allow
 Allow from all
 # Also ensure Shibboleth/mod_shib responds to this path
 SetHandler shib
 </Location>

 # Finally, you may need to ensure requests to /Shibboleth.sso are NOT redirected
 # to Tomcat (as they need to be handled by mod_shib instead).
 # NOTE: THIS SETTING IS LIKELY ONLY NEEDED IF YOU ARE USING mod_proxy TO REDIRECT
 # ALL REQUESTS TO TOMCAT (e.g. ProxyPass /server ajp://localhost:8009/server)
 ProxyPass /Shibboleth.sso !
 </IfModule>

 ...

 # You will likely need Proxy settings to ensure Apache is proxying requests to Tomcat for the DSpace REST API
 # The below is just an example of proxying for REST API only. It requires installing & enabling "mod_proxy"
and "mod_proxy_ajp"
 ## Proxy / Forwarding Settings ##
 <Proxy *>
 AddDefaultCharset Off
 Order allow,deny
 Allow from all
 </Proxy>

 # Proxy all requests to /server to Tomcat via AJP
 ProxyPass /server ajp://localhost:8009/server
 ProxyPassReverse /server ajp://localhost:8009/server

 # Optionally, also proxy Angular UI (if on same server). This requires "mod_proxy_http"
 #ProxyPass / http://localhost:4000/
 #ProxyPassReverse / http://localhost:4000/
</VirtualHost>

Sample shibboleth2.xml Configuration

63

In addition, here's a sample "ApplicationOverride" configuration for "shibboleth2.xml". This particular "ApplicationOverride" is configured to use the Test IdP
provided by and is just meant as an example. In order to enable it for testing purposes, you specify https://samltest.id/ must ShibRequestSetting

 in your Apach configuration (see above). An additional, more detailed example is provided in our "dspace-applicationId samltest mod_shib
shibboleth" Docker configurations at https://github.com/DSpace/DSpace/blob/main/dspace/src/main/docker/dspace-shibboleth/shibboleth2.xml

 <!-- *** Sample Shibboleth Settings for https://samltest.id/ *** -->
 <!-- This provides a simple sample of how you could configure -->
 <!-- shibboleth2.xml for DSpace sites. -->
 <!-- TO ENABLE: You'd need to specify "applicationId" as "samltest" in -->
 <!-- your mod_shib settings, e.g. -->
 <!-- <Location /> -->
 <!-- ... -->
 <!-- ShibRequestSetting applicationId samltest -->
 <!-- </Location> -->
 <ApplicationOverride id="samltest" entityID="http://[mydspace.edu]/shibboleth" REMOTE_USER="eppn
persistent-id targeted-id">

 <!-- We'll use a TEST IdP, hosted by the awesome https://samltest.id/ testing service. -->
 <!-- See also: https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPServiceSSO -->
 <!-- DSPACE 7 requires Shibboleth to use "SameSite=None" property for its Cookies -->
 <Sessions lifetime="28800" timeout="3600" checkAddress="false" relayState="ss:mem" handlerSSL="
true" cookieProps="; path=/; SameSite=None; secure; HttpOnly">
 <SSO entityID="https://samltest.id/saml/idp">
 SAML2 SAML1
 </SSO>
 </Sessions>

 <!-- Loads and trusts a metadata file that describes the IdP and how to communicate with it. -->
 <!-- By default, metadata is retrieved from the TEST IdP at https://samltest.id/ -->
 <!-- and is cached in a local file named "samltest-metadata.xml". -->
 <!-- See also: https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPMetadataProvider -->
 <MetadataProvider type="XML" uri="https://samltest.id/saml/idp"
 backingFilePath="samltest-metadata.xml" reloadInterval="180000"/>
 </ApplicationOverride>

Sample attribute-map.xml Configuration (for samltest.id)

In order to use the above example for , you may also need to modify your attribute-map.xml to support their attributes. Again, a more https://samltest.id/
complete example is in our "dspace-shibboleth" Docker configurations at https://github.com/DSpace/DSpace/blob/main/dspace/src/main/docker/dspace-
shibboleth/attribute-map.xml

64

https://samltest.id/
https://github.com/DSpace/DSpace/blob/main/dspace/src/main/docker/dspace-shibboleth/shibboleth2.xml
https://samltest.id/
https://github.com/DSpace/DSpace/blob/main/dspace/src/main/docker/dspace-shibboleth/attribute-map.xml
https://github.com/DSpace/DSpace/blob/main/dspace/src/main/docker/dspace-shibboleth/attribute-map.xml

<Attributes xmlns="urn:mace:shibboleth:2.0:attribute-map" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- Custom Attributes specific to samltest.id -->
 <Attribute name="urn:oid:0.9.2342.19200300.100.1.1" id="uid"/>
 <Attribute name="urn:oid:0.9.2342.19200300.100.1.3" id="mail"/>
 <Attribute name="urn:oid:2.5.4.4" id="sn"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.241" id="displayName"/>
 <Attribute name="urn:oid:2.5.4.20" id="telephoneNumber"/>
 <Attribute name="urn:oid:2.5.4.42" id="givenName"/>
 <Attribute name="https://samltest.id/attributes/role" id="role"/>

 ...

 <!-- In addition to the attribute mapping, DSpace expects the following Shibboleth Headers to be set:
 - SHIB-NETID
 - SHIB-MAIL
 - SHIB-GIVENNAME
 - SHIB-SURNAME
 These are set by mapping the respective IdP attribute (left hand side) to the header attribute (right
hand side).
 -->
 <Attribute name="urn:oid:0.9.2342.19200300.100.1.1" id="SHIB-NETID"/>
 <Attribute name="urn:mace:dir:attribute-def:uid" id="SHIB-NETID"/>

 <Attribute name="urn:oid:0.9.2342.19200300.100.1.3" id="SHIB-MAIL"/>
 <Attribute name="urn:mace:dir:attribute-def:mail" id="SHIB-MAIL"/>

 <Attribute name="urn:oid:2.5.4.42" id="SHIB-GIVENNAME"/>
 <Attribute name="urn:mace:dir:attribute-def:givenName" id="SHIB-GIVENNAME"/>

 <Attribute name="urn:oid:2.5.4.4" id="SHIB-SURNAME"/>
 <Attribute name="urn:mace:dir:attribute-def:sn" id="SHIB-SURNAME"/>

</Attributes>

DSpace Shibboleth Configuration Options

Authentication Methods:

DSpace supports authentication using NetID, or email address. A user's NetID is a unique identifier from the IdP that identifies a particular user. The NetID
can be of almost any form such as a unique integer, string, or with Shibboleth 2.0 you can use "targeted ids". You will need to coordinate with your
shibboleth federation or identity provider. There are three ways to supply identity information to DSpace:

1) NetID from Shibboleth Header (best)

The NetID-based method is superior because users may change their email address with the identity provider. When this happens DSpace will not be able
to associate their new address with their old account.

2) Email address from Shibboleth Header (okay)

In the case where a NetID header is not available or not found DSpace will fall back to identifying a user based-upon their email address.

3) Tomcat's Remote User (worst)

In the event that neither Shibboleth headers are found then as a last resort DSpace will look at Tomcat's remote user field. This is the least attractive
option because Tomcat has no way to supply additional attributes about a user. Because of this the autoregister option is not supported if this method is
used.

Identity Scheme Migration Strategies:

If you are currently using Email based authentication (either 1 or 2) and want to upgrade to NetID based authentication then there is an easy path. Simply
enable shibboleth to pass the NetID attribute and set the netid-header below to the correct value. When a user attempts to log in to DSpace first DSpace
will look for an EPerson with the passed NetID, however when this fails DSpace will fall back to email based authentication. Then DSpace will update the
user's EPerson account record to set their NetID so all future authentications for this user will be based upon NetID. One thing to note is that DSpace will
prevent an account from switching NetIDs. If an account already has a NetID set and then they try and authenticate with a different NetID the
authentication will fail.

EPerson Metadata:

65

One of the primary benefits of using Shibboleth based authentication is receiving additional attributes about users such as their names, telephone
numbers, and possibly their academic department or graduation semester if desired. DSpace treats the first and last name attributes differently because
they (along with email address) are the three pieces of minimal information required to create a new user account. For both first and last name supply
direct mappings to the Shibboleth headers. In additional to the first and last name DSpace supports other metadata fields such as phone, or really anything
you want to store on an eperson object. Beyond the phone field, which is accessible in the user's profile screen, none of these additional metadata fields
will be used by DSpace out-of-the box. However if you develop any local modification you may access these attributes from the EPerson object. The Vireo
ETD workflow system utilizes this to aid students when submitting an ETD.

Role-based Groups:

DSpace is able to place users into pre-defined groups based upon values received from Shibboleth. Using this option you can place all faculty members
into a DSpace group when the correct affiliation's attribute is provided. When DSpace does this they are considered 'special groups', these are really
groups but the user's membership within these groups is not recorded in the database. Each time a user authenticates they are automatically placed within
the pre-defined DSpace group, so if the user loses their affiliation then the next time they login they will no longer be in the group.

Depending upon the shibboleth attributed use in the role-header it may be scoped. Scoped is shibboleth terminology for identifying where an attribute
originated from. For example a students affiliation may be encoded as "student@tamu.edu". The part after the @ sign is the scope, and the preceding
value is the value. You may use the whole value or only the value or scope. Using this you could generate a role for students and one institution different
than students at another institution. Or if you turn on ignore-scope you could ignore the institution and place all students into one group.

The values extracted (a user may have multiple roles) will be used to look up which groups to place the user into. The groups are defined as "authentication
role.<role-name>" which is a comma separated list of DSpace groups.-shibboleth.

Having issues getting Safari working?

In addition to the below settings, you may need to ensure your Shibboleth IdP is by the DSpace backend by adding it to your trusted rest.cors.
 configuration. allowed-origins This is required for Safari web browsers to work with DSpace's Shibboleth plugin.

For example, if your IdP is , then you need to append that URL to the comma-separated list of "allowed-origins" like:https://samltest.id/

rest.cors.allowed-origins = ${dspace.ui.url}, https://samltest.id

More information on this configuration can be found in the documentation.REST API

Configuration
File:

[dspace]/config/modules/authentication-shibboleth.cfg

Property: authentication-shibboleth.lazysession

Example Value: authentication-shibboleth.lazysession = true

Informational
Note:

Whether to use lazy sessions or active sessions. For more DSpace instances, you will likely want to use lazy sessions. Active
sessions will force user to authenticate via Shibboleth before they can access your DSpace (essentially resulting in a "dark every
archive").

Property: lazysession.loginurlauthentication-shibboleth.

Example Value: authentication-shibboleth.lazysession.loginurl = /Shibboleth.sso/Login

Informational
Note:

The url to start a shibboleth session (only for lazy sessions). Generally this setting will be "/Shibboleth.sso/Login"

Property: lazysession.secureauthentication-shibboleth.

Example Value: lazysession.secure = trueauthentication-shibboleth.

Informational
Note:

Force HTTPS when authenticating (only for lazy sessions). Generally this is recommended to be "true".

Property: netid-headerauthentication-shibboleth.

Example Value: netid-header = SHIB-NETIDauthentication-shibboleth.

Informational
Note:

The HTTP header where shibboleth will supply a user's NetID. This HTTP header should be specified as an Attribute within your
Shibboleth "attribute-map.xml" configuration file.

Property: email-headerauthentication-shibboleth.

Example Value: email-header = SHIB-MAILauthentication-shibboleth.

Informational
Note:

The HTTP header where the shibboleth will supply a user's email address. This HTTP header should be specified as an Attribute
within your Shibboleth "attribute-map.xml" configuration file.

Property: email-use-tomcat-remote-userauthentication-shibboleth.

66

https://samltest.id/
https://samltest.id

Example Value: email-use-tomcat-remote-user = falseauthentication-shibboleth.

Informational
Note:

Used when a netid or email headers are not available should Shibboleth authentication fall back to using Tomcat's remote user
feature? Generally this is not recommended. See the "Authentication Methods" section above.

Property: reconvert.attributesauthentication-shibboleth.

Example Value reconvert.attributes = falseauthentication-shibboleth.

Informational
Note:

Shibboleth attributes are by default UTF-8 encoded. Some servlet container automatically converts the attributes from ISO-8859-1
(latin-1) to UTF-8. As the attributes already were UTF-8 encoded it may be necessary to reconvert them. If you set this property
true, DSpace converts all shibboleth attributes retrieved from the servlet container from UTF-8 to ISO-8859-1 and uses the result as
if it were UTF-8. This procedure restores the shibboleth attributes if the servlet container wrongly converted them from ISO-8859-1
to UTF-8. Set this true, if you notice character encoding problems within shibboleth attributes.

Property: autoregisterauthentication-shibboleth.

Example Value: autoregister = trueauthentication-shibboleth.

Informational
Note:

Should we allow new users to be registered automatically?

Property: sword.compatibilityauthentication-shibboleth.

Example Value: sword.compatibility = falseauthentication-shibboleth.

Informational
Note:

SWORD compatibility will allow this authentication method to work when using SWORD. SWORD relies on username and password
based authentication and is entirely incapable of supporting shibboleth. This option allows you to authenticate username and
passwords for SWORD sessions with out adding another authentication method onto the stack. You will need to ensure that a user
has a password. One way to do that is to create the user via the create-administrator command line command and then edit their
permissions.
WARNING: If you enable this option while ALSO having "PasswordAuthentication" enabled, then you should ensure that
"PasswordAuthentication" is listed prior to "ShibAuthentication" in your authentication.cfg file. Otherwise, ShibAuthentication will be
used to authenticate all of your users INSTEAD OF PasswordAuthentication.

Property: firstname-headerauthentication-shibboleth.

Example Value: firstname-header = SHIB_GIVENNAMEauthentication-shibboleth.

Informational
Note:

The HTTP header where the shibboleth will supply a user's given name. This HTTP header should be specified as an Attribute
within your Shibboleth "attribute-map.xml" configuration file.

Property: lastname-headerauthentication-shibboleth.

Example Value: lastname-header = SHIB_SNauthentication-shibboleth.

Informational
Note:

The HTTP header where the shibboleth will supply a user's surname. This HTTP header should be specified as an Attribute within
your Shibboleth "attribute-map.xml" configuration file.

Property: eperson.metadataauthentication-shibboleth.

Example Value:
authentication-shibboleth.eperson.metadata = \
 SHIB-telephone => phone, \
 SHIB-cn => cn

Informational
Note:

Additional user attributes mapping, multiple attributes may be stored for each user. The left side is the Shibboleth-based metadata
Header and the right side is the eperson metadata field to map the attribute to.

Property: eperson.metadata.autocreateauthentication-shibboleth.

Example Value: eperson.metadata.autocreate = trueauthentication-shibboleth.

Informational
Note:

If the eperson metadata field is not found, should it be automatically created?

Property: role-headerauthentication-shibboleth.

Example Value: role-header = SHIB_SCOPED_AFFILIATIONauthentication-shibboleth.

Informational
Note:

The Shibboleth header holding the user's Shibboleth roles. See the "Role-based Groups" section above for more info.

Property: role-header.ignore-scopeauthentication-shibboleth.

67

Example Value: role-header.ignore-scope = trueauthentication-shibboleth.

Informational
Note:

Whether to ignore roles' scopes (everything after the @ sign for scoped attributes)

Property: role-header.ignore-valueauthentication-shibboleth.

Example Value: role-header.ignore-value = falseauthentication-shibboleth.

Informational
Note:

Whether to ignore roles' values (everything before the @ sign for scoped attributes)

Property: role.[affiliation-attribute]authentication-shibboleth.

Example Value:
authentication-shibboleth.role.faculty = Faculty, Member
authentication-shibboleth.role.staff = Staff, Member
authentication-shibboleth.role.student = Students, Member

Informational
Note:

Mapping of affiliation values to DSpace groups. See the "Role-based Groups" section above for more info.

Property: authentication-shibboleth.default-roles

Example Value: authentication-shibboleth.default-roles = GenericUser

Informational
Note:

These roles are assumed if no roles were sent by Shibboleth or there was no header with name matching the value of authentica
. May be repeated to provide multiple default roles.tion-shibboleth.role_header

LDAP Authentication

Introduction to LDAP specific terminology

If you are unfamiliar with LDAP, the following introduction to some of its terminology might come in handy:

https://stackoverflow.com/questions/18756688/what-are-cn-ou-dc-in-an-ldap-search

Enabling LDAP Authentication

To enable LDAP Authentication, you must ensure the class is listed as one of the org.dspace.authenticate.LDAPAuthentication
AuthenticationMethods in the following configuration:

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
LDAPAuthentication

Configuring LDAP Authentication

If LDAP is enabled, then new users will be able to register by entering their username and password without being sent the registration token. If users do
not have a username and password, then they can still register and login with just their email address the same way they do now.

If you want to give any special privileges to LDAP users, create a stackable authentication method to automatically put people who have a netid into a
special group. You might also want to give certain email addresses special privileges. Refer to the below for more Custom Authentication Code section
information about how to do this.

Ensure required commas are escaped in LDAP configuration

NOTE: As of DSpace 6, commas (,) are now a special character in the system. As some LDAP configuration may contain commas, you must Configuration
be careful to escape any required commas by adding a backslash (\) before each comma, e.g. "\,". The configuration reference for authentication-ldap.cfg
has been updated below with additional examples.

Here is an explanation of each of the different LDAP configuration parameters:

68

https://stackoverflow.com/questions/18756688/what-are-cn-ou-dc-in-an-ldap-search

Configuration
File:

[dspace]/config/modules/authentication-ldap.cfg

Property: enableauthentication-ldap.

Example Value: enable = falseauthentication-ldap.

Informational
Note:

This setting will enable or disable LDAP authentication in DSpace. With the setting off, users will be required to register and login
with their email address. With this setting on, users will be able to login and register with their LDAP user ids and passwords.

Property: autoregisterauthentication-ldap.

Example Value: autoregister = trueauthentication-ldap.

Informational
Note:

This will turn LDAP autoregistration on or off. With this on, a new EPerson object will be created for any user who successfully
authenticates against the LDAP server when they first login. With this setting off, the user must first register to get an EPerson
object by entering their ldap username and password and filling out the forms.

Property: provider_urlauthentication-ldap.

Example Value: provider_url = ldap://ldap.myu.edu/o=myu.edu\,ou=mydeptauthentication-ldap.

Informational
Note:

This is the url to your institution's LDAP server. You may or may not need the /o=myu.edu part at the end. Your server may also
require the ldaps:// protocol. (This field has no default value)

NOTE: As of DSpace 6, commas (,) are now a special character in the system. Therefore, be careful to escape any Configuration
required commas in this configuration by adding a backslash (\) before each comma, e.g. "\,"

Property: authentication-ldap.starttls

Example Value: authentication-ldap.starttls = false

Informational
Note:

Should we issue StartTLS after establishing TCP connection in order to initiate an encrypted connection?
Note: This (TLS) is different from LDAPS:

TLS is a tunnel for plain LDAP and is typically recognized on the same port (standard LDAP port: 389)
LDAPS is a separate protocol, deprecated in favor of the standard TLS method. (standard LDAPS port: 636)

Property: id_fieldauthentication-ldap.

Example Value: id_field = uidauthentication-ldap.

Explanation: This is the unique identifier field in the LDAP directory where the username is stored. (This field has no default value)

Property: object_contextauthentication-ldap.

Example Value: object_context = ou=people\,o=myu.eduauthentication-ldap.

Informational
Note:

This is the LDAP object context to use when authenticating the user. By default, DSpace will use this value to create the user's DN
in order to attempt to authenticate them. It is appended to the and username. For example id_field uid=username\,ou=people\,

. You will need to modify this to match your LDAP configuration. (This field has no default value)o=myu.edu

If your users do NOT all exist under a single "object_context" in LDAP, then you should ignore this setting and INSTEAD use the Hie
 (especially see " " or " ")rarchical LDAP Authentication settings below search.user search.anonymous

NOTE: As of DSpace 6, commas (,) are now a special character in the system. Therefore, be careful to escape any Configuration
required commas in this configuration by adding a backslash (\) before each comma, e.g. "\,"

Property: search_contextauthentication-ldap.

Example Value: search_context = ou=peopleauthentication-ldap.

Informational
Note:

This is the search context used when looking up a user's LDAP object to retrieve their data for autoregistering. With autoregister
, when a user authenticates without an EPerson object we search the LDAP directory to get their name () and =true id_field

email address () so that we can create one for them. So after we have authenticated against email_field uid=username,
 we now search in ou=people for filtering on [uid=username]. Often the is the same as the ou=people,o=byu.edu search_context

 parameter. But again this depends on your LDAP server configuration. object_context (This field has no default value, and it
MUST be specified when either search.anonymous=true or search.user is specified)

NOTE: As of DSpace 6, commas (,) are now a special character in the . Therefore, be careful to escape any Configuration system
required commas in this configuration by adding a backslash (\) before each comma, e.g. "\,"

Property: email_fieldauthentication-ldap.

69

Example Value: email_field = mailauthentication-ldap.

Informational
Note:

This is the LDAP object field where the user's email address is stored. "mail" is the most common for LDAP servers. (This field has
no default value)

If the "email_field" is unspecified, or the user has no email address in LDAP, his/her username (id_field value) will be saved as the
email in DSpace (or appended to , when specified)netid_email_domain

Property: netid_email_domainauthentication-ldap.

Example Value: netid_email_domain = @authentication-ldap. example.com

Informational
Note:

If your LDAP server does not hold an email address for a user (i.e. no), you can use the following field to specify email_field
your email domain. This value is appended to the netid () in order to make an email address (which is then stored in the id_field
DSpace EPerson). For example, a netid of 'user' and as would set the email of the user to netid_email_domain @example.com
be user@example.com

Please note: this field will only be used if " " is unspecified OR the user in question has no email address stored in email_field
LDAP. If both " " and " " are unspecified, then the " " will be used as the email email_field netid_email_domain id_field
address.

Property: surname_fieldauthentication-ldap.

Example Value: surname_field = snauthentication-ldap.

Informational
Note:

This is the LDAP object field where the user's last name is stored. " " is the most common for LDAP servers. If the field is not sn
found the field will be left blank in the new eperson object. (This field has no default value)

Property: authentication-ldap.givenname_field

Example Value: givenname_field = givenNameauthentication-ldap.

Informational
Note:

This is the LDAP object field where the user's given names are stored. I'm not sure how common the givenName field is in different
LDAP instances. If the field is not found the field will be left blank in the new eperson object. (This field has no default value)

Property: phone_fieldauthentication-ldap.

Example Value: phone_field = telephoneNumberauthentication-ldap.

Informational
Note:

This is the field where the user's phone number is stored in the LDAP directory. If the field is not found the field will be left blank in
the new eperson object. (This field has no default value)

Property: login.specialgroupauthentication-ldap.

Example Value: login.specialgroup = group-nameauthentication-ldap.

Informational
Note:

If specified, all user sessions successfully logged in via LDAP will automatically become members of this DSpace Group (for the
remainder of their current, logged in session). This DSpace Group must already exist (it will not be automatically created).
This is useful if you want a DSpace Group made up of all internal authenticated users. This DSpace Group can then be used to
bestow special permissions on any users who have authenticated via LDAP (e.g. you could allow anyone authenticated via LDAP to
view special, on campus only collections or similar)

Property: login.groupmap.*

Example Value: login.groupmap.1 = ou=Students:ALL_STUDENTS authentication-ldap.

login.groupmap.2 = ou=Employees:ALL_EMPLOYEES authentication-ldap.

login.groupmap.3 = ou=Faculty:ALL_FACULTY authentication-ldap.

Informational
Note:

The left part of the value (before the ":") must correspond to a portion of a user's DN (unless " " is login.group.attribute
specified..please see below). The right part of the value corresponds to the name of an existing DSpace group.

For example, if the authenticated user's DN in LDAP is in the following form:

cn=jdoe,OU=Students,OU=Users,dc=example,dc=edu

that user would get assigned to the ALL_STUDENTS DSpace group for the remainder of their current session.

However, if that same user later graduates and is employed by the university, their DN in LDAP may change to:

cn=jdoe,OU=Employees,OU=Users,dc=example,dc=edu

Upon logging into DSpace after that DN change, the authenticated user would now be assigned to the ALL_EMPLOYEES DSpace
group for the remainder of their current session.

Note: This option can be used independently from the login.specialgroup option, which will put all LDAP users into a single DSpace
group. Both options may be used together.

70

http://example.com
http://example.com
mailto:user@example.com

Property: authentication-ldap.login.groupmap.attribute

Example Value: authentication-ldap.login.groupmap.attribute = group

Informational
Note:

The value of the " " should specify the name of a single LDAP attribute. If authentication-ldap.login.groupmap.attribute
this property is uncommented, it changes the meaning of the left part of " " (see login.groupmap.*authentication-ldap.
above) as follows:

If the authenticated user has this LDAP attribute, look up the value of this LDAP attribute in the left part (before the ":") of the au
 valuelogin.groupmap.*thentication-ldap.

If that LDAP value is found in any " " field, assign this authenticated user to the login.groupmap.*authentication-ldap.
DSpace Group specified by the right part (after the ":") of the value.login.groupmap.*authentication-ldap.

For example:

login.groupmap.attribute = groupauthentication-ldap.
login.groupmap.1 = mathematics:Mathematics_Groupauthentication-ldap.

The above would ensure that any authenticated users where their LDAP "group" attribute equals "mathematics" would be added to
the DSpace Group named "Mathematics_Group" for the remainder of their current session. However, if that same user logged in
later with a new LDAP "group" value of "computer science", he/she would no longer be a member of the "Mathematics_Group" in
DSpace.

Debugging LDAP connection and configuration

As every LDAP is different, configuring your DSpace to communicate with your LDAP can sometimes be a challenge. We recommend using third-party
LDAP tools to test your LDAP connection / username / password, and perform sample searches to better understand what information is being returned
from your local LDAP. This will help ensure that LDAP configuration goes more smoothly.

One example of such an LDAP tool is the commandline tool available in most Linux operating systems (e.g. in Debian / Ubuntu it's available ldapsearch
in the "ldap-utils" package). Below are some example ldapsearch commands that can be used to determine (and/or debug) specific configurations in your

. In the below examples, we've used the names of specific DSpace configurations as placeholders (in square brackets). authentication-ldap.cfg

Basic anonymous connection (for VERBOSE, add -v)
ldapsearch -x -H [provider_url]

Debug a connection error (add -d-1)
If you are connecting to an LDAPS URL and see connection errors (e.g. "peer cert untrusted or revoked")
then see below note about "SSL Connection Errors"
ldapsearch -x -H [provider_url] -d-1

Attempt to connect to [provider_url] as [search.user] (will prompt for search.user's password)
This doesn't actually perform a query, just ensures that authentication is working
NOTE: "search.user" is USUALLY either the full user DN (e.g. "cn=dspaceadmin,ou=people,o=myu.edu")
or "DOMAIN\USERNAME" (e.g. "MYU\DSpaceUser"). The latter is more likely with Windows Active Directory
ldapsearch -x -H [provider_url] -D [search.user] -W

Attempt to list the first 100 users in a given [search_context], returning the "cn", "mail" and "sn" fields
for each
ldapsearch -x -H [provider_url] -D [search.user] -W -b [search_context] -z 100 cn mail sn

Attempt to find the first 100 users whose [id_field] starts with the letter "t", returning the [id_field],
"cn", "mail" and "sn" fields for each
ldapsearch -x -H [provider_url] -D [search.user] -W -b [search_context] -z 100 -s sub "([id_field]=t*)"
[id_field] cn mail sn

SSL Connection Errors: If you are using ldapsearch with an LDAPS connection (secure connection), you may receive "peer cert untrusted or revoked"
errors if the LDAP SSL certificate is self-signed. You can temporarily tell LDAP to accept any security certificate by setting in your TLS_REQCERT allow
ldapsearch's file. ldap.conf Be sure to remove this setting however after you are done testing!

FOR TESTING ONLY! This setting disables the check for a valid LDAP Server security certificate,
which is considered a security issue for production LDAP setups. Setting this to "allow" tells
the LDAP client to accept any security certificates that it cannot verify or validate.
TLS_REQCERT allow

More information on this SSL workaround can be found at:

71

https://linux.die.net/man/1/ldapsearch

1.
2.
3.
4.
5.

http://www.bind9.net/manual/openldap/2.3/tls.html
http://muzso.hu/2012/03/29/how-to-configure-ssl-aka.-ldaps-for-libnss-ldap-auth-client-config-in-ubuntu

Enabling Hierarchical LDAP Authentication
Please note, that DSpace doesn't contain the class anymore. TLDAPHierarchicalAuthentication his functionality is now supported by LDAPAuthen

, which uses the same configuration options.tication

If your users are spread out across a hierarchical tree on your LDAP server, you may wish to have DSpace search for the user name in your tree. Here's
how it works:

DSpace gets the user name from the login form
DSpace binds to LDAP as an administrative user with right to search in DNs (LDAP may be configured to allow anonymous users to search)
DSpace searches for the user name as within DNs (username is a part of full DN)
DSpace binds with the found full DN and password from login form
DSpace logs user in if LDAP reports successful authentication; refuses login otherwise

Configuring Hierarchical LDAP Authentication

Hierarchical LDAP Authentication shares all the above standard , but has some additional settings.LDAP configurations

You can optionally specify the search scope. If anonymous access is not enabled on your LDAP server, you will need to specify the full DN and password
of a user that is allowed to bind in order to search for the users.

Configuration
File:

[dspace]/config/modules/authentication-ldap.cfg

Property: search_scopeauthentication-ldap.

Example Value: search_scope = 2authentication-ldap.

Informational
Note:

This is the search scope value for the LDAP search during autoregistering (autoregister=true). This will depend on your LDAP
server setup, and is only really necessary if your users are spread out across a hierarchical tree on your LDAP server. This value
must be one of the following integers corresponding to the following values:
 object scope : 0
 one level scope : 1
 subtree scope : 2

Please note that " " in the LDAP configurations must also be specified.search_context

Property: search.anonymousauthentication-ldap.

Example Value: search.anonymous = trueauthentication-ldap.

Informational
Note:

If true, DSpace will anonymously search LDAP (in the " ") for the DN of the user trying to login to DSpace. This search_context
setting is "false" by default. By default, DSpace will either use " " to authenticate for the LDAP search (if search.user is search.user
specified), or will use the "object_context" value to create the user's DN.

Property: search.userauthentication-ldap.
search.passwordauthentication-ldap.

Example Value: search.user = cn=admin\,ou=people\,o=myu.eduauthentication-ldap.
search.password = passwordauthentication-ldap.

Informational
Note:

The full DN and password of a user allowed to connect to the LDAP server and search for the DN of (in the "search_context")
the user trying to login. By default, if unspecified, DSpace will either search LDAP anonymously for the user's DN (when search.
anonymous=true), or will use the "object_context" value to create the user's DN.

NOTE: As of DSpace 6, commas (,) are now a special character in the system. Therefore, be careful to escape any Configuration
required commas in this configuration by adding a backslash (\) before each comma, e.g. "\,"

ORCID Authentication

Enabling ORCID Authentication
Enabling ORCID Authentication also enabling and requires Configurable Entities Researcher Profiles

To enable ORCID Authentication, see the documentation for enabling the . You do not need to enable ORCID synchronization, but you ORCID Integration
currently must enable and .Researcher Profiles Configurable Entities

IP Authentication

Enabling IP Authentication

To enable IP Authentication, you must ensure the class is listed as one of the org.dspace.authenticate.IPAuthentication
AuthenticationMethods in the following configuration:

72

http://www.bind9.net/manual/openldap/2.3/tls.html
http://muzso.hu/2012/03/29/how-to-configure-ssl-aka.-ldaps-for-libnss-ldap-auth-client-config-in-ubuntu

1.

2.

1.

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
IPAuthentication

Configuring IP Authentication

Configuration File: [dspace]/config/modules/authentication-ip.cfg

Once enabled, you are then able to map DSpace groups to IP addresses in by setting authentication-ip.cfg ip.GROUPNAME = iprange[,
, e.g:iprange ...]

authentication-ip.MY_UNIVERSITY = 10.1.2.3, \ # Full IP
13.5, \ # Partial IP
11.3.4.5/24, \ # with CIDR
12.7.8.9/255.255.128.0, \ # with netmask
2001:18e8::32 # IPv6 too

Negative matches can be set by prepending the entry with a '-'. For example if you want to include all of a class B network except for users of a contained
class c network, you could use: 111.222,-111.222.333.

Notes:

If the Groupname contains blanks you must escape the spaces, e.g. "Department\ of\ Statistics"
If your DSpace installation is hidden behind a web proxy, remember to set the configuration option within the 'Logging' section of useProxies ds

 to use the IP address of the user rather than the IP address of the proxy server.pace.cfg

X.509 Certificate Authentication

Enabling X.509 Certificate Authentication

The X.509 authentication method uses an X.509 certificate sent by the client to establish his/her identity. It requires the client to have a personal Web
certificate installed on their browser (or other client software) which is issued by a Certifying Authority (CA) recognized by the web server.

See the to configure your Web server. If you are using HTTPS with Tomcat, note that the tag HTTPS installation instructions <Connector> must
include the attribute so the server requests a personal Web certificate from the client.clientAuth="true"
Add the plugin to the list of stackable authentication methods in the value of the org.dspace.authenticate.X509Authentication first
configuration key plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Configuration
File:

[dspace]/config/modules/authentication.cfg

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
X509Authentication
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.
PasswordAuthentication

Configuring X.509 Certificate Authentication

Configuration File: [dspace]/config/modules/authentication-x509.cfg

You must also configure DSpace with the same CA certificates as the web server, so it can accept and interpret the clients' certificates. It can
share the same keystore file as the web server, or a separate one, or a CA certificate in a file by itself. Configure it by of these methods, either one
the Java keystore

73

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Installing+DSpace+%28OLD+-+to+be+removed%29

1.

2.

authentication-x509.keystore.path = path to Java keystore file
authentication-x509.keystore.password = password to access the keystore

...or the separate CA certificate file (in PEM or DER format):

authentication-x509.ca.cert = path to certificate file for CA whose client certs to accept.

Choose whether to enable auto-registration: If you want users who authenticate successfully to be automatically registered as new E-Persons if
they are not already, set the configuration property to . This lets you automatically accept all users with valid personal autoregister true
certificates. The default is .false

TODO: document the remaining authentication-x509.* properties

Example of a Custom Authentication Method

Also included in the source is an implementation of an authentication method used at MIT, . This does not actually edu.mit.dspace.MITSpecialGroup
authenticate a user, it adds the current user session to a special (dynamic) group called 'MIT Users' (which must be present in the system!). This only
allows us to create authorization policies for MIT users without having to manually maintain membership of the MIT users group.

By keeping this code in a separate method, we can customize the authentication process for MIT by simply adding it to the stack in the DSpace
configuration. None of the code has to be touched.

You can create your own custom authentication method and add it to the stack. Use the most similar existing method as a model, e.g. org.dspace.
 for an "explicit" method (with credentials entered interactively) or authenticate.PasswordAuthentication org.dspace.authenticate.

 for an implicit method.X509Authentication

74

Bulk Access Management
The Bulk Access Management will let administrators edit massively the access conditions of Metadata and Bitstreams on selected objects.

Usage:

When logged as Administrator, it is possible to change the access condition to Metadata and Bitstreams on items by following the path:
"Management > Access Control > Bulk Access Management".
Community or Collection Administrators may also use this tool from the "Access Control" tab of the "Edit Community", "Edit Collection" or "Edit
Item" page. In this scope, the tool will only perform changes within the selected Community/Collection/Item.

In the first box (Step 1) should be selected the objects on which access conditions will be changed.

In the second box (Step 2) the administrator will choose if change the access conditions on Metadata, or on Bitstreams or both.

The actions that can be performed are:

Replacing the existent access conditions
Add new conditions to the existing ones

75

If there is no previous access condition defined, a warning box will appear.

The access conditions that can be chosen by default are:

Openaccess
Administrator
Embargo
Lease

When done, click Execute. The process will start. If it succeeded, the process page and a success message will show.

76

At the moment, DSpace supports a single feature configuration defined by the defaultBulkAccessConditionConfiguration, in which are specified the access
conditions available for the Item’s and the Bitstream’s Metadata.

The access conditions listed in the dropdown menu are set by default as Openaccess, Administrator, Embargo, and Lease.

They can be edited by changing and adding options in the code:

 <bean id="defaultBulkAccessConditionConfiguration"
 class="org.dspace.app.bulkaccesscontrol.model.BulkAccessConditionConfiguration">
 <property name="name" value="default"/>
 <property name="itemAccessConditionOptions">
 <list>
 <ref bean="openAccess"/>
 <ref bean="administrator"/>
 <ref bean="embargoed" />
 <ref bean="lease"/>
 </list>
 </property>
 <property name="bitstreamAccessConditionOptions">
 <list>
 <ref bean="openAccess"/>
 <ref bean="administrator"/>
 <ref bean="embargoed" />
 <ref bean="lease"/>
 </list>
 </property>
 </bean>

 <bean id="bulkAccessConditionConfigurationService"
 class="org.dspace.app.bulkaccesscontrol.service.BulkAccessConditionConfigurationService">
 <property name="bulkAccessConditionConfigurations">
 <list>
 <ref bean="defaultBulkAccessConditionConfiguration"/>
 </list>
 </property>
 </bean>

Please refer to this page for further information: https://github.com/DSpace/DSpace/blob/main/dspace/config/spring/api/access-conditions.xml#L78-L106

77

https://github.com/DSpace/DSpace/blob/main/dspace/config/spring/api/access-conditions.xml#L78-L106

Embargo

1 What is an Embargo?
2 DSpace Embargo Functionality

2.1 Managing Embargoes on existing Items
3 Configuring and using Embargo in DSpace Submission User Interface

3.1 Enabling Item-level Embargo
3.2 Configuring Embargo / Access Restriction options
3.3 Private/Public (or Non-Discoverable/Discoverable) Item
3.4 Pre-3.0 Embargo Migration Routine

4 Technical Specifications
4.1 Introduction
4.2 ResourcePolicy
4.3 Item
4.4 Item.inheritCollectionDefaultPolicies(Collection c)
4.5 AuthorizeService
4.6 Withdraw Item
4.7 Reinstate Item
4.8 Pre-DSpace 3.0 Embargo Compatibility

5 Creating Embargoes via Metadata
5.1 Introduction
5.2 Setting Embargo terms via metadata

5.2.1 Terms assignment
5.2.2 Terms interpretation/imposition
5.2.3 Embargo period

5.3 Configuration of metadata fields
5.4 Operation
5.5 Extending embargo functionality

5.5.1 Setter
5.5.2 Lifter

What is an Embargo?

An embargo is a temporary access restriction placed on metadata or bitstreams (i.e. files). Its scope or duration may vary, but the fact that it eventually
expires is what distinguishes it from other content restrictions. For example, it is not unusual for content destined for DSpace to come with permanent
restrictions on use or access based on license-driven or other IP-based requirements that limit access to institutionally affiliated users. Restrictions such as
these are imposed and managed using standard administrative tools in DSpace, typically by attaching specific access policies (aka "resource policies") to
Items, Collections, Bitstreams, etc.

Embargo functionality was originally introduced as part of DSpace 1.6, enabling embargoes on the level of items that applied to all bitstreams included in
the item. Since DSpace 3.0, this functionality has been extended to the Submission User Interface, enabling embargoes on the level of individual
bitstreams.

DSpace Embargo Functionality

Embargoes can be applied per and per . The level embargo will be the default for every , item (including metadata) bitstream (i.e. file) item bitstream
although it could be customized at level.bitstream

When an embargo is set on either an item level or a bitstream level, a new ResourcePolicy (i.e. access policy) is added to the corresponding Item or
Bitstream. An embargo lift date is This ResourcePolicy will automatically control the lifting of the embargo (when the embargo date passes).
generally stored as the "start date" of such a policy. Essentially, this means that the access rights defined in the policy do not get applied until after that

 (and prior to that date, the access rights will default to Admin only).date passes

The scheduled, manual "embargo-lifter" commands (used prior to DSpace 3) are no longer necessary and not recommended to run.

Managing Embargoes on existing Items

Administrators are able to change the lift date of any embargo by editing the authorization policy (ResourcePolicy) on the object. These authorization
policies can be managed from the Edit Item screen by clicking on "Authorizations".

To add an embargo, edit the appropriate policy and set a "start date". To add an full Item embargo (including metadata), edit the Item policy. To
embargo individual bitstreams, edit the appropriate Bitstream policy.
To remove an embargo, edit the appropriate policy, and clear out the "start date".
To change an embargo, edit the appropriate policy, and change the "start date" to a new date.

Changes to the embargo should take effect immediately. However, as Administrators have full access to embargoed items, you may need to log out first.
After logging out, you will be subject to the embargo.

Configuring and using Embargo in DSpace Submission User Interface

78

Available in DSpace 7.2 and above

In DSpace 7.2 and above, both Item-level embargoes and bitstream (file) level embargoes are supported in the Submission user interface.
In DSpace 7.1 and 7.0, the Submission user interface only supported embargoes on specified bitstreams (files). However, item-level embargoes could be
added after submissions were accepted using the "Manage Embargoes on existing Items" approach described above.

Enabling Item-level Embargo

While Bitstream-level embargoes are enabled by default, Item-level embargoes currently are not. However, enabling them is easy. Simply update your it
 to include this tag in your <submission-process>:em-submission.xml

<submission-process name="traditional">
 ...

 <!-- This step enables embargoes and other access restrictions at the Item level -->
 <step id="itemAccessConditions"/>
</submission-process>

After making this update, you will need to restart your backend (REST API) for the changes to take effect.

Configuring Embargo / Access Restriction options

Starting in DSpace 7, embargo (and lease) settings are configurable via a Spring Bean configuration file [dspace]/config/spring/api/access-
conditions.xml

For detailed information on configuring your Embargo options (and other related options like lease or restrict to a particular group of users), see the Submis
 documentation. Specifically these two sections:sion User Interface

For Bitstream embargo / access options, see the section on " " of the Configuring the File Upload step Submission User Interface
For Item embargo / access options, see the section on " " of the Configuring the Item Access Conditions step Submission User Interface

Private/Public (or Non-Discoverable/Discoverable) Item

It is also possible to adjust the Private/Public (or Non-Discoverable/Discoverable) state of an item after it has been archived in the repository. This can be
achieved from either the "Admin Search" (/admin/search), or from the "Status" tab under "Edit Item".

Private (or non-Discoverable) items are not retrievable through the DSpace search, browse or Discovery indexes. However, they are accessible via a
direct link. It is possible to create a publicly accessible, non-discoverable item...in which case it can only be shared via a direct link. But, once anyone has
that link, it is available anonymously.

Therefore, an "Admin Search" option is provided, which allows you to search across all items, including private or withdrawn items. You can also filter your
results to display only private items.

Pre-3.0 Embargo Migration Routine

If you have just upgraded from a DSpace 1.x.x version, any embargoes that are currently "in effect" will need to be migrated into ResourcePolicies. Prior to
3.0, embargoes in DSpace were managed entirely in metadata fields (and required running a scheduled "embargo-lifter" command). However, DSpace
now stores all embargo information directly on ResourcePolicies (i.e. "access policies"). These ResourcePolicies automatically "lift" an embargo after the
embargo date passes.

In order to migrate old embargoes into ResourcePolicies, a migration routine has been developed. Please note that this migration routine should only
 (immediately after an upgrade from 1.x.x to a more recent version of DSpace). After that point, any newly defined embargoes will need to be run ONCE

automatically be stored on ResourcePolicies.

To execute it, run the following command:

[dspace]/bin/dspace migrate-embargo -a

Technical Specifications

Introduction

The following sections illustrate the technical changes that have been made to the to add the new functionality.back-end Advanced Embargo

ResourcePolicy

When an embargo is set at level or level, a new will be added.item bitstream ResourcePolicy

Three new attributes have been introduced in the class:ResourcePolicy

79

https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-ConfiguringtheFileUploadstep
https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-ConfiguringtheItemAccessConditionsstep

rpname: resource policy name
rptype: resource policy type
rpdescription: resource policy description

While and are fields manageable by users, the is managed by DSpace itself. It represents a type that a resource policy can rpname rpdescription rptype
assume, among the following:

TYPE_SUBMISSION: all the policies added automatically during the submission process
TYPE_WORKFLOW: all the policies added automatically during the workflow stage
TYPE_CUSTOM: all the custom policies added by users
TYPE_INHERITED: all the policies inherited from the enclosing object (for Item, a Collection; for Bitstream, an Item).

Here is an example of all information contained in a single policy record:

policy_id: 4847
resource_type_id: 2
resource_id: 89
action_id: 0
eperson_id:
epersongroup_id: 0
start_date: 2013-01-01
end_date:
rpname: Embargo Policy
rpdescription: Embargoed through 2012
rptype: TYPE_CUSTOM

Item

To manage state a new attribute has been added to the Item:Private/Public boolean

isDiscoverable

When an Item is private, the attribute will assume the value .false

Item.inheritCollectionDefaultPolicies(Collection c)

This method has been adjusted to leave custom policies, added by the users, in place and add the default collection policies only if there are no custom
policies.

AuthorizeService

Some methods have been changed on to manage the new fields and some convenience methods have been introduced:AuthorizeService

public static List<ResourcePolicy> findPoliciesByDSOAndType(Context c, DSpaceObject o, String type);
public static void removeAllPoliciesByDSOAndTypeNotEqualsTo(Context c, DSpaceObject o, String type);
public static boolean isAnIdenticalPolicyAlreadyInPlace(Context c, DSpaceObject o, ResourcePolicy rp);
public static ResourcePolicy createOrModifyPolicy(ResourcePolicy policy, Context context, String name, int
idGroup, EPerson ePerson, Date embargoDate, int action, String reason, DSpaceObject dso);

Withdraw Item

The feature to withdraw an item from the repository has been modified to keep all the custom policies in place.

Reinstate Item

The feature to reinstate an item in the repository has been modified to preserve existing custom policies.

Pre-DSpace 3.0 Embargo Compatibility

The Pre-DSpace 3.0 embargo functionality (see below) has been modified to adjust the policies setter and lifter. These classes now also set the dates
within the policy objects themselves in addition to setting the date in the item metadata.

Creating Embargoes via Metadata

Introduction

80

Prior to DSpace 3.0, all DSpace embargoes were stored as metadata. While embargoes are no longer stored permanently in metadata fields (they are
now stored on ResourcePolicies, i.e. access policies), embargoes can still be initialized via metadata fields.

This ability to create/initialize embargoes via metadata is extremely powerful if you wish to submit embargoed content via electronic means (such as Importi
, , , etc).ng Items via Simple Archive Format SWORDv1 SWORDv2

Setting Embargo terms via metadata

Functionally, the embargo system allows you to attach "terms" to an item before it is placed into the repository, which express how the embargo should be
applied. What do we mean by "terms" here? They are really any expression that the system is capable of turning into (1) the time the embargo expires,
and (2) a concrete set of access restrictions. Some examples:

"2020-09-12" - an absolute date (i.e. the date embargo will be lifted)
"6 months" - a time relative to when the item is accessioned
"forever" - an indefinite, or open-ended embargo
"local only until 2015" - both a time and an exception (public has no access until 2015, local users OK immediately)
"Nature Publishing Group standard" - look-up to a policy somewhere (typically 6 months)

These terms are interpreted by the embargo system to yield a specific date on which the embargo can be removed (or "lifted"), and a specific set of access
policies. Obviously, some terms are easier to interpret than others (the absolute date really requires none at all), and the default embargo logic
understands only the most basic terms (the first and third examples above). But as we will see below, the embargo system provides you with the ability to
add your own interpreters to cope with any terms expressions you wish to have. This date that is the result of the interpretation is stored with the item. The
embargo system detects when that date has passed, and removes the embargo ("lifts it"), so the item bitstreams become available. Here is a more
detailed life-cycle for an embargoed item:

Terms assignment

The first step in placing an embargo on an item is to attach (assign) "terms" to it. If these terms are missing, no embargo will be imposed. As we will see
below, terms are carried in a configurable DSpace metadata field, so assigning terms just means assigning a value to a metadata field. This can be done
in a web submission user interface form, in a SWORD deposit package, a batch import, etc. - anywhere metadata is passed to DSpace. The terms are not
immediately acted upon, and may be revised, corrected, removed, etc, up until the next stage of the life-cycle. Thus a submitter could enter one value, and
a collection editor replace it, and only the last value will be used. Since metadata fields are multivalued, theoretically there can be multiple terms values,
but in the default implementation only one is recognized.

Terms interpretation/imposition

In DSpace terminology, when an Item has exited the last of any workflow steps (or if none have been defined for it), it is said to be "installed" into the
repository. At this precise time, the interpretation of the terms occurs, and a computed "lift date" is assigned, and recorded as part of the ResourcePolicy
(aka policy) of the Item. Once the lift date has been assigned to the ResourcePolicy, the metadata field which defined the embargo is . From that cleared
point forward, all embargo information is controlled/defined by the ResourcePolicy.

It is important to understand that this interpretation happens only once, (just like the installation). Therefore, updating/changing an embargo cannot be
Instead, all embargo updates must be made to the ResourcePolicies themselves (e.g. ResourcePolicies can be managed from done via metadata fields.

the Admin UI in the Edit Item screens).

Also note that since these policy changes occur before installation, there is no time during which embargoed content is "exposed" (accessible by non-
administrators). The terms interpretation and imposition together are called "setting" the embargo, and the component that performs them both is called the
embargo "setter".

Embargo period

After an embargoed item has been installed, the policy restrictions remain in effect until the embargo date passes. Once the embargo date passes, the
policy restrictions are automatically lifted. An embargo lift date is generally stored as the "start date" of a policy. Essentially, this means that the policy
does not get applied until after that date passes (and prior to that date, the object defaults to Admin only access).

Administrators are able to change the lift date of the embargo by editing the policy (ResourcePolicy). These policies can be managed from the Edit Item
screens.

Configuration of metadata fields

DSpace embargoes utilize standard metadata fields to hold both the "terms" and the "lift date". Which fields you use are configurable, and no specific
metadata element is dedicated or pre-defined for use in embargo. Rather, you must specify exactly what field you want the embargo system to examine
when it needs to find the terms or assign the lift date.

The properties that specify these assignments live in dspace.cfg:

DC metadata field to hold the user-supplied embargo terms
embargo.field.terms = SCHEMA.ELEMENT.QUALIFIER

DC metadata field to hold computed "lift date" of embargo
embargo.field.lift = SCHEMA.ELEMENT.QUALIFIER

81

1.

2.

3.

4.

You replace the placeholder values with real metadata field names. If you only need the "default" embargo behavior - which essentially accepts only
absolute dates as "terms" - this is the only configuration required, except as noted below.

There is also a property for the special date of "forever":

string in terms field to indicate indefinite embargo
embargo.terms.open = forever

which you may change to suit linguistic or other preference.

You are free to use existing metadata fields, or create new fields. If you choose the latter, you must understand that the embargo system does create not
or configure these fields: i.e. you must follow all the standard documented procedures for actually creating them (i.e. adding them to the metadata registry,
or to display templates, etc) - this does not happen automatically. Likewise, if you want the field for "terms" to appear in submission screens and workflows,
you must follow the documented procedure for configurable submission (basically, this means adding the field to submission-forms.xml). The flexibility of
metadata configuration makes if easy for you to restrict embargoes to specific collections, since configurable submission can be defined per collection.

Key recommendations:

Use a local metadata schema. Breaking compliance with the standard Dublin Core in the default metadata registry can create a problem for the
portability of data to/from of your repository.
If using existing metadata fields, avoid any that are automatically managed by DSpace. For example, fields like "date.issued" or "date.
accessioned" are normally automatically assigned, and thus must not be recruited for embargo use.
Do not place the field for "lift date" in submission screens. This can potentially confuse submitters because they may feel that they can directly
assign values to it. As noted in the life-cycle above, this is erroneous: the lift date gets assigned by the embargo system based on the terms. Any
pre-existing value will be over-written. But see next recommendation for an exception.
As the life-cycle discussion above makes clear, after the terms are applied, that field is no longer actionable in the embargo system. Conversely,
the "lift date" field is not actionable the application. Thus you may want to consider configuring both the "terms" and "lift date" to use the until
same metadata field. In this way, during workflow you would see only the terms, and after item installation, only the lift date. If you wish the
metadata to retain the terms for any reason, use 2 distinct fields instead.

Operation

After the fields defined for terms and lift date have been assigned in dspace.cfg, and created and configured wherever they will be used, you can begin to
embargo items simply by entering data (dates, if using the default setter) in the terms field. They will automatically be embargoed as they exit workflow,
and that the computed lift date will be stored on the ResourcePolicy

Extending embargo functionality

The embargo system supplies a default "interpreter/imposition" class (the "Setter") .

Setter

The default setter recognizes only two expressions of terms: either a literal, non-relative date in the fixed format "yyyy-mm-dd" (known as ISO 8601), or a
special string used for open-ended embargo (the default configured value for this is "forever", but this can be changed in dspace.cfg to "toujours",
"unendlich", etc). It will perform a minimal sanity check that the date is not in the past. Similarly, the default setter will only remove all read policies as noted
above, rather than applying more nuanced rules (e.g allow access to certain IP groups, deny the rest). Fortunately, the setter class itself is configurable
and you can "plug in" any behavior you like, provided it is written in java and conforms to the setter interface. The dspace.cfg property:

implementation of embargo setter plugin - replace with local implementation if applicable
plugin.single.org.dspace.embargo.EmbargoSetter = org.dspace.embargo.DefaultEmbargoSetter

controls which setter to use.

Lifter
DEPRECATED: The Lifter is no longer used in the DSpace API, and is not recommended to utilize. Embargo lift dates are now stored on ResourcePolicies
and, as such, are "lifted" automatically when the embargo date passes. Manually running a "lifter" may bypass this automatic functionality and result in
unexpected results.

The default lifter behavior as described above - essentially applying the collection policy rules to the item - might also not be sufficient for all purposes. It
also can be replaced with another class:

implementation of embargo lifter plugin - - replace with local implementation if applicable
plugin.single.org.dspace.embargo.EmbargoLifter = org.dspace.embargo.DefaultEmbargoLifter

82

Pre-3.0 Embargo Lifter Commands
DEPRECATED - Not recommended to use

The old "embargo-lifter" command is no longer necessary to run. All Embargoes in DSpace are now stored on ResourcePolicies and are lifted
automatically after the lift date passed. See documentation for more information.Embargo

Continuing to run the "embargo-lifter" is not recommended and this feature will be removed entirely in a future DSpace release.

If you have implemented the pre DSpace 3.0 feature, you will need to run it periodically to check for Items with expired embargoes and lift them.Embargo

Command used: [dspace]/bin/dspace embargo-lifter

Java class: org.dspace.embargo.EmbargoManager

Arguments short and (long) forms): Description

-c or --check ONLY check the state of embargoed Items, do NOT lift any embargoes

-i or --identifier Process ONLY this handle identifier(s), which must be an Item. Can be repeated.

-l or --lift Only lift embargoes, do NOT check the state of any embargoed items.

-n or --dryrun Do no change anything in the data model, print message instead.

-v or --verbose Print a line describing the action taken for each embargoed item found.

-q or --quiet No output except upon error.

-h or --help Display brief help screen.

You must run the Embargo Lifter task periodically to check for items with expired embargoes and lift them from being embargoed. For example, to check
the status, at the CLI:

[dspace]/bin/dspace embargo-lifter -c

To lift the actual embargoes on those items that meet the time criteria, at the CLI:

[dspace]/bin/dspace embargo-lifter -l

83

Managing User Accounts

From the browser
From the command line

The user command
To create a new user account:
To list accounts:
To modify an account:
To delete an account:

The Groomer
Find accounts with unsalted passwords
Find (and perhaps delete) disused accounts

Cryptographic properties

When a user registers an account for the purpose of subscribing to change notices, submitting content, or the like, DSpace creates an EPerson record in
the database. Administrators can manipulate these records in several ways.

From the browser

Login as an Administrator
Sidemenu "Access Control" "People"
Browse or search for the account you wish to modify or delete.

To modify user permissions / group memberships:

Login as an Administrator
Sidemenu "Access Control" "Groups"
Edit the Group
Search for the EPerson & add/remove them from that group.

To debug issues for a specific user, it's possible to login as (or "impersonate") that user account

On the backend, first you MUST enable the "assumelogin" feature. This feature is disabled by default. Update this setting in your local.cfg or
dspace.cfg

Required to use "Impersonate EPerson" feature
When enabled, a full Administrator can impersonate any other non-Administrative user
webui.user.assumelogin = true

Then, from the user interface, login as an Administrator
Sidemenu "Access Control" "People"
Browse or search for the account you wish to login as
Edit that User, and click the "Impersonate EPerson" button.
You are now logged in as that user. You'll see an Impersonate icon/button in the header.
You are able to temporarily manage any activities as that user.
Once your are done, click the "Stop impersonating EPerson".
Optionally, you may wish to disable this feature again in your local.cfg by setting the above configuration to "false" or commenting it out.

From the command line

The commanduser

The command adds, lists, modifies, and deletes EPerson records.dspace user

To create a new user account:

[dspace]/bin/dspace user --add --email jquser@example.com -g John -s User --password hiddensecret
[dspace]/bin/dspace user --add --netid jquser --telephone 555-555-1234 --password hiddensecret

One of the options is required to name the record. The complete options are:--email or --netid

-a --add required

-m --email email address

-n --netid "netid" (a username in an external system such as a directory – see Authentication Methods for details)

-p --password a password for the account. Required.

84

-g --givenname First or given name

-s --surname Last or surname

-t --telephone Telephone number

-l --language Preferred language

-c --requireCertificate Certificate required? See for details.X.509 Authentication

To list accounts:

[dspace]/bin/dspace user --list

This simply lists some characteristics of each EPerson.

short long meaning

-L --list required

To modify an account:

[dspace]/bin/dspace user --modify -m george@example.com

short long meaning

-M --modify required

-m --email identify the account by email address

-n --netid identify the account by netid

-g --givenname First or given name

-s --surname Last or surname

-t --telephone telephone number

-l --language preferred language

-c --requireCertificate certificate required?

-C --canLogIn is the account enabled or disabled?

-i --newEmail set or change email address

-I --newNetid set or change netid

-w --newPassword set or change password

To delete an account:

[dspace]/bin/dspace user --delete -n martha

short long meaning

-d --delete required

-m --email identify the account by email address

-n --netid identify the account by netid

The Groomer

This tool inspects all user accounts for several conditions.

85

short long meaning

-a --aging find accounts not logged in since a given date

-u --unsalted find accounts not using salted password hashes

-b --before date cutoff for --aging

-d --delete delete disused accounts (used with --aging)

Find accounts with unsalted passwords

Earlier versions of DSpace used an "unsalted hash" method to protect user passwords. Recent versions use a salted hash. You can find accounts which
have never been converted to salted hashing:

Discovering accounts with unsalted password hashes

[DSpace]/bin/dspace dsrun org.dspace.eperson.Groomer -u

The output is a list of email addresses for matching accounts.

Find (and perhaps delete) disused accounts

You can list accounts which have not logged on since a given date:

Discovering disused accounts

[DSpace]/bin/dspace dsrun org.dspace.eperson.Groomer -a -b 07/20/1969

The output is a tab-separated-value table of the EPerson ID, last login date, email address, netid, and full name for each matching account.

You can also have the tool delete matching accounts:

Deleting disused accounts

[DSpace]/bin/dspace dsrun org.dspace.eperson.Groomer -a -b 07/20/1969 -d

Cryptographic properties

The cryptographic properties used for generating the salted hashes, to ensure encryption at rest for user passwords, can be found and adjusted in:

https://github.com/DSpace/DSpace/blob/main/dspace-api/src/main/java/org/dspace/eperson/PasswordHash.java

86

https://github.com/DSpace/DSpace/blob/main/dspace-api/src/main/java/org/dspace/eperson/PasswordHash.java

Email Subscriptions

Introduction
Adding new subscriptions
Managing your subscriptions
Enable sending out emails

Introduction
This feature is available in 7.5 or later.

Registered users can subscribe to communities or collections in DSpace. After subscribing, users will receive a regular email containing the new and
modified items in the communities/collections they are subscribed to.

Adding new subscriptions

Adding new email subscriptions is only available to users who are logged in.

In the User interface, browse to the Community or Collection you wish to subscribe to, and click on the Subscribe button.

After clicking that button, you'll see a popup window which allows you to select the frequency of subscription you'd like.

Currently, three frequency options are available:

Daily: Receive a daily email of Items under the Community/Collection which have been updated in the last day.
Weekly: Receive a weekly email of Items under the Community/Collection which have been updated in the last week.
Monthly: Receive a monthly email of Items under the Community/Collection which have been updated in the last month.

Managing your subscriptions

To manage your subscriptions, visit your "Subscriptions" page under your user profile:

87

From this page, you are able to see all your current Community/Collection subscriptions. You can choose to edit or delete any in the list.

Enable sending out emails
Run "subscription-send" to enable

NOTE: Until you enable the "subscription-send" script, users will not receive the email updates for their subscriptions. It is HIGHLY RECOMMENDED to
enable this script via . See sample settings on that page.Scheduled Tasks via Cron

To send out the subscription emails you MUST invoke the script from the DSpace command-line or Processes UI. It is advised to subscription-send
setup this script as a . See sample settings on that page. Scheduled Tasks via Cron

Example of running subscription-send to send out all "Daily" subscription emails
./dspace subscription-send -f D

This script requires the "-f" (--frequency) parameter with a value of "D" (Daily), "W" (Weekly), or "M" (Monthly). Keep in mind, you will want to schedule it to
run on a Daily, Weekly and Monthly basis to send the appropriate emails.

88

Request a Copy

Introduction
Requesting a copy using the User Interface
(Optional) Requesting a copy with Help Desk workflow
Email templates
Configuration parameters
Selecting Request a Copy strategy

Configure who gets request via a metadata field
Configure all requests to go to a helpdesk email
Configure all requests to go to the administrators of a Collection
Combine multiple strategies

Introduction
Supported in 7.1 or above

Request a Copy was not available in DSpace 7.0. It was restored in DSpace 7.1. See DSpace Release 7.0 Status

The request a copy functionality was added to DSpace as a measure to facilitate access in those cases when uploaded content can not be openly shared
with the entire world immediately after submission into DSpace. It gives users an efficient way to request access to the original submitter of the item, who
can approve this access with the click of a button. This practice complies with most applicable policies as the submitter interacts directly with the requester
on a case by case basis.

Requesting a copy using the User Interface

Users can request a copy by clicking the file thumbnail or the name of a file that the user is restricted from viewing.

The request form asks the user for his or her name, email address and message where the reason for requesting access can be entered.

89

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status

After clicking "Request copy" at the bottom of this form, the original submitter of the item will receive an email containing the details of the request. The
email also contains a link with a token that brings the original submitter to a page where he or she can either grant or reject access. If the original submitter
can not evaluate the request, he or she can forward this email to the right person, who can use the link containing the token without having to log into
DSpace.

Each of these buttons registers the choice of the submitter, displaying the following form in which an additional reason for granting or rejecting the access
can be added.

90

After hitting send, the contents of this form will be sent together with the associated files to the email address of the requester. In case the access is
rejected, only the reason will be sent to the requester.

While responding positively to a request for copy, the person who approved may also ask the repository administrator to alter the access rights of the item,
allowing unrestricted open access to everyone, by checking "Change to open access".

(Optional) Requesting a copy with Help Desk workflow
Available in 7.5 or later. However, in 7.5, users approving/rejecting these requests via the HelpDesk workflow first authenticate. This is a known bug must
as described in https://github.com/DSpace/DSpace/issues/8636

As of 7.6, the HelpDesk workflow can be performed without requiring authentication (issue #8636 has been fixed)

(Optional) Request Item with HelpDesk intermediary, is steered towards having your Repository Support staff act as a helpdesk that receives all incoming
RequestItem requests, and then processes them. This adds the options of "Initial Reply to Requestor" to let the requestor know that their request is being
worked on, and an option "Author Permission Request" which allows the helpdesk to email the author of the document, as not all documents are deposited
by the author, or the author will need to be tracked down by a support staff, as DSpace might not have their current email address.

Initial Reply to Requester

91

https://github.com/DSpace/DSpace/issues/8636

Author permission request, includes information about the original request (requester name, requester email, requester's reason for requesting). The author
/submitter's name and email address will be pre-populated in the form from the submitter, but the email address and author name are editable, as the
submitter's of content to DSpace aren't always the author.

92

Email templates

Most of the email templates used by Request a Copy are treated just like other email templates in DSpace. The templates can be found in the /config
/emails directory and can be altered just by changing the contents and restarting tomcat.

request_item.
admin

template for the message that will be sent to the administrator of the repository, after the original submitter requests to have the
permissions changed for this item.

request_item.
author

template for the message that will be sent to the original submitter of an item with the request for copy.

The templates for emails that the requester receives, that could have been customized by the approver in the aforementioned dialog are not managed as
separate email template files. These defaults are stored in the Messages.properties file under the keys

itemRequest.response.body.approve Default message for informing the requester of the approval

93

itemRequest.response.body.reject Default message for informing the requester of the rejection

itemRequest.response.body.contactAuthor Default message for the helpdesk to contact the author

itemRequest.response.body.contactRequester Default message for the helpdesk to contact the requester

Configuration parameters

Request a copy is enabled by default. These configuration parameters in dspace.cfg relate to Request a Copy:

Propert
y:

request.item.type

Examp
le
Value

request.item.type = all

Inform
ational
Note

This parameter manages who can file a request for an item. The parameter is optional. When it is empty or commented out, request a copy is
disabled across the entire repository. When set to , any user can file a request for a copy. When set to , only registered users can all logged
file a request for copy.

Propert
y:

mail.helpdesk

Examp
le
Value

mail.helpdesk = foo@bar.com

Inform
ational
Note

The email address assigned to this parameter will receive the emails both for granting or rejecting request a copy requests, as well as
requests to change item policies.

This parameter is optional. If it is empty or commented out, it will default to .mail.admin

WARNING: This setting is only utilized if the bean is enabled in RequestItemHelpdeskStrategy [dspace]/config/spring/api
 (see below)/requestitem.xml

Propert
y:

request.item.helpdesk.override

Examp
le
Value

request.item.helpdesk.override = true

Inform
ational
Note

Should all Request Copy emails go to the instead of the item submitter? Default is , which sends Item Requests to mail.helpdesk false
the item submitter.

WARNING: This setting is only utilized if the bean is enabled in RequestItemHelpdeskStrategy [dspace]/config/spring/api
 (see below)/requestitem.xml

Selecting Request a Copy strategy

The process that DSpace uses to determine who is the recipient of the Item Request is configurable in this Spring file: [dspace]/config/spring/api
/requestitem.xml

New in DSpace 7

The strategy is selected using a Spring <alias alias='org.dspace.app.requestitem.RequestItemAuthorExtractor'
. Previously this was done by moving the to the selected definition.name='theStrategyClass'/> RequestItemAuthorExtractor id <bean>

New in DSpace 7.6

The strategy is selected by configuring it into the for as a constructor argument.<bean/> RequestItemMetadataStrategy

Configure who gets request via a metadata field

By default the is enabled, but falls back to the Item Submitter eperson's name and email. You can configure the RequestItemMetadataStrategy Requ
 to load the author's name and email address if you set that information into an item metadata field. For example:estItemMetadataStrategy

94

1.
a.

2.
3.

Syntax for 7.6 or later

<!-- This alias defines that you want to use the RequestItemMetadataStrategy (this is enabled by default) -->
<!-- This bean specifies that you want to use the RequestItemMetadataStrategy (this is enabled by default) -->
<bean class="org.dspace.app.requestitem.RequestItemEmailNotifier" lazy-init='false'>
 <description>This sends various emails between the requestor and the grantor.</description>

 <!-- Modify the "ref" here to point at the "RequestItemHelpdeskStrategy" -->
 <constructor-arg index='0'
 ref='org.dspace.app.requestitem.RequestItemMetadataStrategy'/>
</bean>

<!-- This bean allows you to specify which metadata field is used (if any) -->
<bean class="org.dspace.app.requestitem.RequestItemMetadataStrategy"
 id="org.dspace.app.requestitem.RequestItemMetadataStrategy">
 <!--
 Uncomment these properties if you want lookup in metadata the email and the name of the author to contact for
request copy.
 If you don't configure that or if the requested item doesn't have these metadata the submitter data are used
as fail over

 <property name="emailMetadata" value="schema.element.qualifier" />
 <property name="fullNameMatadata" value="schema.element.qualifier" />

 -->
</bean>

Syntax for 7.5 or earlier

<!-- This alias defines that you want to use the RequestItemMetadataStrategy (this is enabled by default) -->
<alias alias='org.dspace.app.requestitem.RequestItemAuthorExtractor'
 name='org.dspace.app.requestitem.RequestItemMetadataStrategy'/>

<!-- This bean allows you to specify which metadata field is used (if any) -->
<bean class="org.dspace.app.requestitem.RequestItemMetadataStrategy"
 id="org.dspace.app.requestitem.RequestItemMetadataStrategy"
 autowireCandidate="true">
 <!--
 Uncomment these properties if you want lookup in metadata the email and the name of the author to contact for
request copy.
 If you don't configure that or if the requested item doesn't have these metadata the submitter data are used
as fail over

 <property name="emailMetadata" value="schema.element.qualifier" />
 <property name="fullNameMatadata" value="schema.element.qualifier" />

 -->
</bean>

Configure this as follows:

Create a metadata field which you'd like to use to store this email address (and optionally a second metadata field for the full name).
Hint: You may wish to add this metadata field to your "metadata.hide.*" settings in local.cfg in order to ensure this metadata field is
hidden from normal users & is only visible to Administrative users. That way this email address will NOT appear in Item display pages
(except to Administrators)

Uncomment the "emailMetadata" setting above, and configure it's "value" to use the new metadata field.
Edit the Item(s) which you wish to use this field. Add the new metadata field to those items, given it a value of the email address which will receive
the request for copy. By default, if an Item does NOT have this metadata field, the request for copy will still go to the Item's submitter.

Configure all requests to go to a helpdesk email
Prior to 7.6, all users who wish to respond to a request to the helpdesk email to DSpace. See must first login https://github.com/DSpace/DSpace/issues

 This was fixed in 7.6./8636

Another common request strategy is the use a single Helpdesk email address to receive all of these requests (see corresponding helpdesk configs in
dspace.cfg above). If you wish to use the Helpdesk Strategy, you must replace the references to the default , bean RequestItemMetadataStrategy
with the bean:RequestItemHelpdeskStrategy

95

https://github.com/DSpace/DSpace/issues/8636
https://github.com/DSpace/DSpace/issues/8636

Syntax for 7.6 or later

<!-- To change the settings, you need to modify the constructor-arg (see below) to use the
"RequestItemEmailNotifier" bean.-->
<bean class="org.dspace.app.requestitem.RequestItemEmailNotifier" lazy-init='false'>
 <description>This sends various emails between the requestor and the grantor.</description>

 <!-- Modify the "ref" here to point at the "RequestItemHelpdeskStrategy" -->
 <constructor-arg index='0'
 ref='org.dspace.app.requestitem.RequestItemHelpdeskStrategy'/>
</bean>

Syntax for 7.5 or earlier

<!-- Change this alias to use "RequestItemHelpdeskStrategy" bean-->
<alias alias='org.dspace.app.requestitem.RequestItemAuthorExtractor'
 name='org.dspace.app.requestitem.RequestItemHelpdeskStrategy'/>

<!-- Ensure the bean is uncommented (it should be by default) -->
<bean class="org.dspace.app.requestitem.RequestItemHelpdeskStrategy"
 id="org.dspace.app.requestitem.RequestItemHelpdeskStrategy"
 autowireCandidate="true"/>

Configure all requests to go to the administrators of a Collection

This strategy sends mail to all of the members of the administrators group for the collection which owns the item.

Syntax for 7.6 or later

<!-- To change the settings, you need to modify the constructor-arg (see below) to use the
"CollectionAdministratorsRequestItemStrategy" bean.-->
<bean class="org.dspace.app.requestitem.RequestItemEmailNotifier" lazy-init='false'>
 <description>This sends various emails between the requestor and the grantor.</description>

 <!-- Modify the "ref" here to point at the "CollectionAdministratorsRequestItemStrategy" -->
 <constructor-arg index='0'
 ref='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'/>
</bean>

Syntax for 7.5 or earlier

<!-- Change this alias to use "CollectionAdministratorsRequestItemStrategy" bean-->
<alias alias='org.dspace.app.requestitem.RequestItemAuthorExtractor'
 name='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'/>

<!-- Ensure the bean is uncommented (it should be by default) -->
<bean class='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'
 id='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'
 autowireCandidate='true'/>

Combine multiple strategies

This strategy combines the results of other strategies into a single list of email recipients. Pass the strategy a single constructor argument, being a list of
the strategy beans whose output should be combined.

In the following example, email will be sent to the address(es) found in the configured metadata fields (or to the submitter if none), to the owning and
collection's administrators.

96

Syntax for 7.6 or later

<!-- To change the settings, you need to modify the constructor-arg (see below) to use the
"CombiningRequestItemStrategy" bean.-->
<bean class="org.dspace.app.requestitem.RequestItemEmailNotifier" lazy-init='false'>
 <description>This sends various emails between the requestor and the grantor.</description>

 <!-- Modify the "ref" here to point at the "CombiningRequestItemStrategy" -->
 <constructor-arg index='0'
 ref='org.dspace.app.requestitem.CombiningRequestItemStrategy'/>
</bean>

<!-- This bean is where you can combine multiple strategies by referencing them in the <list> below -->
<bean class='org.dspace.app.requestitem.CombiningRequestItemStrategy'
 id='org.dspace.app.requestitem.CombiningRequestItemStrategy'>
 <constructor-arg>
 <description>A list of references to RequestItemAuthorExtractor beans</description>
 <list>
 <ref bean='org.dspace.app.requestitem.RequestItemMetadataStrategy'/>
 <ref bean='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'/>
 </list>
 </constructor-arg>
</bean>

Syntax for 7.5 or earlier

<!-- Change this alias to use "CombiningRequestItemStrategy" bean-->
<alias alias='org.dspace.app.requestitem.RequestItemAuthorExtractor'
 name='org.dspace.app.requestitem.CombiningRequestItemStrategy'/>

<!-- This bean is where you can combine multiple strategies by referencing them in the <list> below -->
<bean class='org.dspace.app.requestitem.CombiningRequestItemStrategy'
 id='org.dspace.app.requestitem.CombiningRequestItemStrategy'
 autowireCandidate='true'>
 <constructor-arg>
 <description>A list of references to RequestItemAuthorExtractor beans</description>
 <list>
 <ref bean='org.dspace.app.requestitem.RequestItemMetadataStrategy'/>
 <ref bean='org.dspace.app.requestitem.CollectionAdministratorsRequestItemStrategy'/>
 </list>
 </constructor-arg>
</bean>

97

CAPTCHA Verification
This feature is available starting from DSpace 7.4

This feature, when enabled, offers a powerful additional layer of protection against possible unwanted behaviors like massive registrations performed by
bots using random or stolen email addresses. Feature can be enabled or disabled by decision of DSpace instance administrator, and is based on Google

. reCAPTCHA

ReCAPTCHA supported versions are v2 with both invisible () and checkbox (https://developers.google.com/recaptcha/docs/invisible https://developers.
) verification modes, and v3 ()google.com/recaptcha/docs/display https://developers.google.com/recaptcha/docs/v3

Prerequisites

Before enabling the feature, a valid site and secret pair should be obtained from Google reCAPTCHA system, by registering the DSpace application on
which verification will be set on reCAPTCHA admin panel () https://www.google.com/recaptcha/admin

How to enable the feature

Once site and secret are available, following property, set in configuration files (dspace.cfg or local.cfg) enables the CAPTCHA verification

registration.verification.enabled = true

Whereas, in case of Google reCAPTCHA is to be enabled, these properties, in configuration files, must be setv2

google.recaptcha.version = v2
google.recaptcha.mode = <invisible or checkbox depending on which mode is wanted>
google.recaptcha.key.site = <your site here>
google.recaptcha.key.secret = <your secret here>

In case of Google reCAPTCHA is to be enabled, properties to be set are:v3

google.recaptcha.version = v3
google.recaptcha.key.site = <your site here>
google.recaptcha.key.secret = <your secret here>
google.recaptcha.site-verify = https://www.google.com/recaptcha/api/siteverify
google.recaptcha.key.threshold = <score threshold>
google.recaptcha.mode = invisible

google.recaptcha.key.threshold property is related to reCAPTCHA verification logic. v3 assigns to each request made against verification APIs,
in this case by DSpace system during registration process. reCAPTCHA v3 returns a score (1.0 is very likely a good interaction, 0.0 is very likely a bot).
By default a good threshold could be 0.5. For further information, see https://developers.google.com/recaptcha/docs/v3#interpreting_the_score

Once feature is enabled, the user registration will actually be performed if and only if the CAPTCHA token, passed in registration payload, is verified during
registration process itself and is considered valid. Each registration request, even if made using DSpace REST APIs must have a captcha token in its
header.

98

https://developers.google.com/recaptcha/docs/invisible
https://developers.google.com/recaptcha/docs/display
https://developers.google.com/recaptcha/docs/display
https://developers.google.com/recaptcha/docs/v3
https://www.google.com/recaptcha/admin
https://developers.google.com/recaptcha/docs/v3#interpreting_the_score

A new type of cookie has been added to DSpace cookie set, "Registration and Password Recovery". This cookie is proposed only when CAPTCHA
verification is enabled.

This cookie option must be enabled by users before registering, otherwise they won't be able to perform a registration

99

Configurable Entities

Introduction
Default Entity Models

Research Entities
Journals

Enabling Entities
1. Configure your entity model (optionally)
2. Import entity model into the database
3. Configure Collections for each Entity type
4. Configure Submission Forms for each Entity type

4.1 Use of collection-entity-type attribute for default Submission forms per Entity Type
5. Configure Workflow for each Entity type (optionally)
6. Configure Virtual Metadata to display for related Entities (optionally)

Designing your own Entity model
Thinking about the object model
Configuring the object model
Configuring the metadata fields
Configuring the item display pages
Configuring virtual metadata
Configuring discovery
Additional Technical Details

Versioning Support
Example of the latest status of a relationship (technical details)
Metadata fields that represent relations
Configure versioning for an entity type

Introduction

DSpace users have expressed the need for DSpace to be able to provide more support for different types of digital objects related to open access
publications, such as authors/author profiles, data sets etc. Configurable Entities are designed to meet that need.

In DSpace, . Breaking it down with more details...an Entity is a special type of Item which often has Relationships to other Entities

Entity: Every Entity is an Item.
This means they must belong to a Collection, just like a normal Item. (Community & Collection objects are unchanged and unaffected by
Entities.)
Normal Items are still the "default" Item, and they are unchanged. So, not every Item is an Entity.
Because Entities are all Items, they are immediately usable in submission/workflow process, batch import/export, OAI-PMH, etc.

Entity (or Item) Type: Entities all have a "dspace.entity.type" metadata field which defines their Entity/Item "type". For example, this type may be
"Person", "Project", "Publication", "Journal", etc. It's highly visible within the User Interface as a label.
Relationships: Based on that "type", an Entity may be related to other Entities via a Relationship. One Entity type may support several
relationship types at once. Examples of relationship types include "isPersonOfProject" or "isPublicationOfAuthor". These relationship types are
named based on the Entity "type" (as you can likely tell). Relationships also appear on Entities as metadata using the "relation" schema.
Virtual Metadata: Entities of different types may also have customized visualizations in the User Interface. These visualizations may also
dynamically pull in metadata from related Entities. For example, a Publication entity may be displayed in the User Interface with an author name
dynamically pulled in from a related Person entity. The metadata "appears" as though it is part of the Entity you are viewing, but it is dynamically
pulled via the Relationship.

Entities and their Relationships are also completely configurable. DSpace provides some sample models out of the box, which you can use directly or
adapt as needed.

The Entity model also has similarities with the , with an Entity roughly mapping to a "pcdm:Object" and existing Portland Common Data Model (PCDM)
Communities and Collections roughly mapping to a "pcdm:Collection". However, at this time DSpace Entities concentrate more on building a graph
structure of relationships, instead of a tree structure.

Default Entity Models

DSpace currently comes with the following Entity models, both of which are defined in T [dspace]/config/entities/relationship-types.xml.
hese Entity models are not used by default, but may be enabled as described below.

Research Entities

Research Entities include Person, OrgUnit, Project and Publication. They allow you to create author profiles (Person) in DSpace, and relate those people
to their department(s) (OrgUnit), grant project(s) (Project) and works (Publication).

100

https://github.com/duraspace/pcdm/wiki

Each publication can link to projects, people and org units
Each person can link to projects, publications and org units
Each project can link to publications, people and org units
Each org units can link to projects, people and publications

Journals

Journal Entities include Journal, Journal Volume, Journal Issue and Publication (article). They allow you to represent a Journal hierarchy more easily
within DSpace, starting at the overall Journal, consisting of multiple Volumes, and each Volume containing multiple Issues. Issues then link to all articles
(Publication) which were a part of that journal issue.

NOTE: that this model includes the same "Publication" entity as the Research Entities model described above. This Entity overlap allows you to link an
article (Publication) both to its author (Person) as well as the Journal Issue it appeared in.

Enabling Entities

By default, Entities are not used in DSpace. But, as described above several models are available out-of-the-box that may be optionally enabled.

Keep in mind, there are a few DSpace import/export features that do not yet support Entities in DSpace 7.0. These will be coming in future 7.x
releases. See for prioritization information, etc.DSpace Release 7.0 Status

AIP Backup and Restore does not fully support entity types or relationships. In other words, Entities are only represented as normal Items in AIPs
Importing and Exporting Items via Simple Archive Format does not fully support entity types or relationships. In other words, Entities are only
represented as normal Items in SAF. (Note: early work to bring this support is already begun in)https://github.com/DSpace/DSpace/pull/3322
SWORDv1 Server and does not yet support Entity or relationship creation.SWORDv2 Server

1. Configure your entity model (optionally)

As described above, DSpace provides two default entity models defined in [dspace]/config/entities/relationship-types.xml. These
models may be used as-is, or modified.

You can also design your own model from scratch (see "Designing your own model" section below). So, feel free to start by modifying relationship-
, or creating your own model based on the .types.xml relationship-types.dtd

2. Import entity model into the database

In order to enable a defined entity model, it MUST be imported into the DSpace database This is achieved by using the "initialize-entities" script. The
example below will import the "out-of-the-box" entity models into your DSpace installation

The -f command requires a full path to an Entities model configuration file.
[dspace]/bin/dspace initialize-entities -f [dspace]/config/entities/relationship-types.xml

If an Entity (of same type name) already exists, it will be updated with any new relationships defined in relationship-types.xml

If an Entity (of same type name) doesn't exist, the new Entity type will be created along with its relationships defined in relationship-types.xml

Once imported into the Database, the overall structure is as follows:

All valid Entity Types are stored in the "entity_type" database table.
All Relationship type definitions are stored in the "relationship_type" database table

101

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSDOC6x/Importing+and+Exporting+Items+via+Simple+Archive+Format
https://github.com/DSpace/DSpace/pull/3322

1.

2.
a.

i.

b.

i.

3.

a.
4.

a.
b.

c.
d.

All Relationships between entities get stored in the "relationship" table.
Entities themselves are stored alongside Items in the 'item' table. Every Entity must have a "dspace.entity.type" metadata field whose value is a
valid Entity Type (from the "entity_type" table).

Keep in mind, your currently enabled Entity model is defined in your database, and NOT in the "relationship-types.xml". Anytime you want to update your
data model, you'd update/create a configuration (like relationship-types.xml) and re-run the "initialize-entities" command.

3. Configure Collections for each Entity type

Because all Entities are Items, they MUST belong to a Collection. Therefore, the to create a different submission forms per Entity type recommended way
(e.g. Person, Project, Journal, Publication, etc) is to (as each Collection can have a custom ensure you create a Collection for each Entity Type
Submission Form).

Create at least one Collection for each Entity Type needing a custom Submission form. For example, a Collection for "Person" entities, and a
separate one for "Publication" entities.
Edit the Collection. On the "Edit Metadata" page, use the "Entity Type" dropdown to select the Entity Type for this Collection.

This "Entity Type" selection will ensure that every Item submitted to this collection is automatically assigned that Entity type. So, it ties
this Collection to that type of Entity (i.e. no other type of Entity can be submitted to this Collection).

NOTE: Entity Type is currently not modifiable after being set. This is because changing the Entity type may result in odd
behavior (or errors) with in-progress submissions (as they will continue to use the old Entity Type). If you really need to modify
the Entity Type, you can do so by changing the "dspace.entity.type" metadata value on the Collection object. At this time,
changing that metadata field would need to be done at the database level.

NOTE: In 7.0, this "Entity Type" dropdown did not exist. In that release, you have to create a "Template Item" from that page. In the In
the Template Item, add a single metadata field "dspace.entity.type". Give it a value matching the Entity type (e.g. Publication, Person,
Project, OrgUnit, Journal, JournalVolume, JournalIssue). This value IS CASE SENSITIVE and it MUST match the Entity type name
defined in relationship-types.xml

As of 7.1 (or above) , if you previously created a Template Item in 7.0, the "dspace.entity.type" field value will be migrated to the
"Entity Type" dropdown automatically (via a database migration).

In the Edit Collection page, switch to the "Assign Roles" tab and create a "Submitters" group. Add any people who should be allowed to submit
/create this new Entity type.

If you only want Administrators to create this Entity type, you can skip this step. Administrators can submit to any Collection.
If you want to hide this Collection, you can choose to only make it visible to that same Submitters group (or Administrators). This does NOT hide
the Entities from search or browse, but it will hide the Collection itself.

In the Edit Collection page, switch to the "Authorizations" tab.
Add a new Authorization of TYPE_CUSTOM, restricting "READ" to the Submitters group created above (or Administrators if there is no
Submitters group). You can also add multiple READ policies as needed. WARNING: The Submitters group MUST have READ
privileges to be able to submit/create new Entities.
Remove the default READ policy giving Anonymous permissions.
Assuming you want the Entities to still be publicly available, make sure the DEFAULT_ITEM_READ policy is set to "Anonymous"!

Obviously, how you organize your Entity Types into Collections is up to you. You can create a single Collection for all Entities of that type (e.g. an "Author
Profiles" collection could be where all "Person" Entities are submitted/stored). Or, you could create many Collections for each Entity Type (e.g. each
Department in your University may have it's own Community, and underneath have a "Staff Profiles" Collection where all "Person" Entities for that
department are submitted/stored). A few example structures are shown below.

Example Structure based on the departments:

Department of Architecture
Building Technology Program
Theses - Department of Architecture

Department of Biology
Theses - Biology

People
Projects

OR

Department of Architecture
Building Technology Program
Theses - Department of Architecture
People in Department of Architecture
Projects in Department of Architecture

Department of Biology
Theses - Biology
People in Department of Biology
Projects in Department of Biology

Example Structure based on the publication type:

Books
Book Chapter
Edited Volume
Monograph

Theses
Bachelor Thesis
Doctoral Thesis
Habilitation Thesis
Master Thesis

People

102

Projects

4. Configure Submission Forms for each Entity type

You should have already created Entity-specific Collections in the previous step. Now, we just need to map those Collections to Submission processes
specific to each Entity.

On the backend, you will now need to modify the to "map" this Collection (or Collections) to the submission [dspace]/config/item-submission.xml
process for this Entity type.

DSpace comes with sample submission forms for each Entity type.
The sample <submission-process> is defined in and named based on the Entity type (e.g. Publication, item-submission.xml
Person, Project, etc).
The metadata fields captured for each Entity are defined in a custom step in , and named in the format submission-forms.xml
"[entityType]Step" (where the entity type is camelcased). For example: "publicationStep", "personStep", "projectStep".

Optionally, modify those sample submission forms. See for hints/tips on customizing the or Submission User Interface item-submission.xml s
 filesubmission-forms.xml

As of 7.6, you can simply map each Entity Type to a specific submission form as follows in your (This section already item-submission.xml
exists, just uncomment it)

<name-map collection-entity-type="Publication" submission-name="Publication"/>
<name-map collection-entity-type="Person" submission-name="Person"/>
<name-map collection-entity-type="Project" submission-name="Project"/>
<name-map collection-entity-type="OrgUnit" submission-name="OrgUnit"/>
<name-map collection-entity-type="Journal" submission-name="Journal"/>
<name-map collection-entity-type="JournalVolume" submission-name="JournalVolume"/>
<name-map collection-entity-type="JournalIssue" submission-name="JournalIssue"/>

WARNING: If you create a new Collection using a specific Entity Type, you must currently restart your servlet container (e.g. Tomcat) for
the submission form configuration to take effect for the new Collection. This is the result of a known bug where the Submission forms
are cached until the servlet container is restarted. See this issue ticket: https://github.com/DSpace/DSpace/issues/7985
In 7.5 and earlier, you needed to map each Collection's handle one by one to a Submission form in item-submission.xml. Map your
Collection's handle (findable on the Collection homepage) to the submission form you want it to use. In the below example, we've
mapped a single Collection to each of the out-of-the-box Entity types.

<name-map collection-handle="123456789/5" submission-name="Publication"/>
<name-map collection-handle="123456789/6" submission-name="Person"/>
<name-map collection-handle="123456789/7" submission-name="Project"/>
<name-map collection-handle="123456789/8" submission-name="OrgUnit"/>
<name-map collection-handle="123456789/28" submission-name="Journal"/>
<name-map collection-handle="123456789/29" submission-name="JournalVolume"/>
<name-map collection-handle="123456789/30" submission-name="JournalIssue"/>

Once your modifications to the submission process are complete, you will need to quickly reboot Tomcat (or your servlet container) to reload the current
settings.

4.1 Use of collection-entity-type attribute for default Submission forms per Entity Type

Alternatively to a collection's Handle, Entities Types can be used as an attribute. So, instead of specifying the collection handle, you will need to use the co
 attribute and what Entity Type to use (like: Person, Project). Please mind that your Collections with Entity Type need to be llection-entity-type

previously created.

<name-map collection-entity-type="Publication" submission-name="Publication"/>
<name-map collection-entity-type="Person" submission-name="Person"/>
<name-map collection-entity-type="Project" submission-name="Project"/>
<name-map collection-entity-type="OrgUnit" submission-name="OrgUnit"/>
<name-map collection-entity-type="Journal" submission-name="Journal"/>
<name-map collection-entity-type="JournalVolume" submission-name="JournalVolume"/>
<name-map collection-entity-type="JournalIssue" submission-name="JournalIssue"/>

Once your modifications to the submission process are complete, you will need to quickly reboot Tomcat (or your servlet container) to reload the current
settings.

103

https://github.com/DSpace/DSpace/issues/7985

For DSpace 7.6 release it requires Tomcat Restart for every new collection

Due to the way SubmissionConfigReader is loaded into memory (on a initialize process) currently there is no implemented way to reload submission forms.
So, every time you assign an entity type to a collection, or create a new collection with an associated entity type, you will need to do a Tomcat restart for
that collection to be available at the item submission config. There is an on going fix for that.
DSpace 7.6.1 introduced a fix and you don't need to do a Tomcat Restart anymore

DSpace 7.6.1 adds a way to reload Submission Configs, so you no longer need to do a Tomcat Restart after creating a new collection with an entity type,
or assigning to a existing one.

5. Configure Workflow for each Entity type (optionally)

The DSpace workflow can be used for reviewing all objects in the Object Model since these objects are all Items, and separate collections can be used.
The workflow used for e.g. a Person Object can be configured to be identical to a publication, different from a publication, or use no workflow at all.

See for more information on configuring workflows per Collection.Configurable Workflow

6. Configure Virtual Metadata to display for related Entities (optionally)

"Virtual Metadata" is metadata that is dynamically determined (at the time of access) based on an Entity's relationship to other Entities. A basic example is
displaying a Person Entity's name in the "dc.contributor.author" field of a related Publication Entity. That "dc.contributor.author" field doesn't actually exist
on the Publication, but is dynamically added as "virtual metadata" simply because the Publication is linked to the Person (via a relationship).

Virtual Metadata is configurable for all Entities and all relationships. DSpace comes with default settings for its default Entity model, and those can be
found in . In that Spring Bean configuration file, you'll find a map of each relationship type [dspace]/config/spring/api/virtual-metadata.xml
to a metadata field & its value. Here's a summary of how it works:

The "org.dspace.content.virtual.VirtualMetadataPopulator" bean maps every Relationship type (from) to a <util:relationship-types.xml
map> definition (of a given ID) also in the virtual-metadata.xml

<!-- For example, the isAuthorOfPublication relationship is linked to a map of ID
"isAuthorOfPublicationMap" -->
<entry key="isAuthorOfPublication" value-ref="isAuthorOfPublicationMap"/>

That <util:map> defintion defines which DSpace metadata field will store the virtual metadata. It also links to the bean which will dynamically
define the value of this metadata field.

<!-- In this example, isAuthorOfPublication will be displayed in the "dc.contributor.author" field -->
<!-- The *value* of that field will be defined by the "publicationAuthor_author" bean -->
<util:map id="isAuthorOfPublicationMap">
 <entry key="dc.contributor.author" value-ref="publicationAuthor_author"/>
</util:map>

A bean of that ID then defines the value of the field, based on the related Entity. In this example, these fields are pulled from the related Person
entity and concatenated. If the Person has "person.familyName=Jones" and "person.givenName=Jane", then the value of "dc.contributor.author"
on the related Publication will be dynamically set to "Jones, Jane.

 <bean class="org.dspace.content.virtual.Concatenate" id="publicationAuthor_author">
 <property name="fields">
 <util:list>
 <value>person.familyName</value>
 <value>person.givenName</value>
 <value>organization.legalName</value>
 </util:list>
 </property>
 <property name="separator">
 <value>, </value>
 </property>
 <property name="useForPlace" value="true"/>
 <property name="populateWithNameVariant" value="true"/>
</bean>

If the default Virtual Metadata looks good to you, no changes are needed. If you make any changes, be sure to restart Tomcat to update the bean
definitions.

Designing your own Entity model

When using a different entities model, the new model has to be configured an loaded into your repository

104

Thinking about the object model

First step: identify the entity types

Which types of objects would you want to create items for: e.g. Person, Publication, JournalVolume
Be careful not to confuse a type with a relationship. A Person is a type, an author is a relationship between the publication and the person

Second step: identify the relationship types

Which relationship types would you want to create between the entity items from the previous step: e.g. isAuthorOfPublication,
isEditorOfPublication, isProjectOfPublication, isOrgUnitOfPerson, isJournalIssueOfPublication
Multiple relationships between the same 2 types can be created: isAuthorOfPublication, isEditorOfPublication
Relationships are automatically bidirectional, so no need to worry about whether you want to display the authors in a publication or the
publications of an author

Third step: visualize your model

By creating a drawing of your model, you’ll be able to quickly verify whether anything is missing

Configuring the object model

Configure the model in relationship-types.xml

Similar to the default , configure a relationship type per connection between 2 entity typesrelationship-types.xml
Include the 2 entity type names which are being connected.
Determine a clear an unambiguous name for the relation in both directions
Optionally: determine the cardinality (min/max occurrences) for the relationships
Optionally: determine default behavior for copying metadata if the relationship is deleted

Configuring the metadata fields

Determining the metadata fields to use

Dublin Core works for publications, but not for a Person, JournalVolume, …
There are many standards which can be easily configured: , eurocris, datacite, …schema.org
Pick a schema which suits your needs

Configure the submission forms

Add a form in for each entity type, containing the relevant metadata fieldssubmission-forms.xml
See also documentation.Submission User Interface
Configure which relationships to create

Configuring the item display pages

The metadata configuration is not specific to configurable entities.
Similar to other customizations to the item display pages, configure in Angular which metadata fields to display and their label. A template per
entity type can be created
The relationship display is similar to the metadata configuration
Similar to the metadata configuration: configure in Angular which relationship to display and their label

Configuring virtual metadata

105

https://github.com/DSpace/DSpace/blob/main/dspace/config/entities/relationship-types.xml
http://schema.org
https://github.com/DSpace/DSpace/blob/master/dspace/config/submission-forms.xml
https://docs.google.com/document/d/1X0XsppZYOtPtbmq7yXwmu7FbMAfLxxOCONbw0_rl7jY/edit#heading=h.5bu9shx0j942

The isAuthorOfPublication relationship can be displayed for the Publication item as dc.contributor.author
The isOrgUnitOfPerson relationship can be displayed for the Person item as organization.legalName
This can be configured in virtual-metadata.xml

Configuring discovery

Configure the discovery facets, filters, sort options, …
The facets for a Person can be job title, organization, project, …
The filters for a Person can be person.familyName, person.givenName, …

Additional Technical Details

The original Entities design document is available in Google Docs at: https://docs.google.com/document/d
/1wEmHirFzrY3qgGtRr2YBQwGOvH1IuTVGmxDIdnqvwxM/edit

We are working on pulling that information into this Wiki space as a final home, but currently some technical details exist only in that document.

A talk on Configurable Entities was also presented at DSpace 7 at OR2021

Versioning Support

DSpace entities . For the most part, this works like any other item. For example, when creating a new version of an item, a new fully support versioning
item is created and all metadata values of the preceding item are copied over to the new item. Special care was taken to version relationships between
entities.

Example of the latest status of a relationship (technical details)

To understand how versioning between entities with relationships works, let's walk through the following example:

Consider Volume 1.1 (left side) and Issue 1.1 (right side). Both are archived and both are the first version. Note that on the arrow, representing the relation
between the volume and the issue, two booleans and two numbers are indicated.

The boolean on side is true if and only if volume 1.1 is the latest version that is relevant to issue 1 (even though it may be possible that (v)
volume 1.2, the second version of volume 1, exists). This means that on the item page of issue 1.1, a link to the item page of volume 1.1 should
be displayed. It also means that searching for (the uuid of) issue 1.1 should yield volume 1.1.
The boolean on side is true if and only if issue 1.1 is the latest version that is relevant to volume 1.1 (even though it may be possible that (i)
issue 1.1, the second version of issue 1, exists). This means that on the item page of volume 1.1, a link to the item page of issue 1.1 should be
displayed. It also means that searching for (the uuid of) volume 1.1 should yield issue 1.1.
The number on side indicates the place at which the virtual metadata representing this relationship (if any) will appear on volume 1.1. E.g. (v)
using the out-of-the-box configuration in , metadata field of issue 1.1 would virtual-metadata.xml publicationissue.issueNumber
appear as metadata field on volume 1.1 on place 0 (i.e. as the first metadata value).publicationissue.issueNumber
The number on side indicates the place at which the virtual metadata representing this relationship (if any) will appear on issue 1.1. E.g. (i)
using the out-of-the-box configuration in , metadata field of volume 1.1 would virtual-metadata.xml publicationvolume.volumeNumber
appear as metadata field on issue 1.1 on place 0 (i.e. as the first metadata value).publicationvolume.volumeNumber

With the groundwork out of the way, let's see what happens when we create a new version of volume 1.1. The new version is not yet archived, because it
still has to be edited in the submission UI.

106

https://github.com/DSpace/DSpace/blob/master/dspace/config/spring/api/virtual-metadata.xml
https://docs.google.com/document/d/1wEmHirFzrY3qgGtRr2YBQwGOvH1IuTVGmxDIdnqvwxM/edit
https://docs.google.com/document/d/1wEmHirFzrY3qgGtRr2YBQwGOvH1IuTVGmxDIdnqvwxM/edit
https://wiki.lyrasis.org/display/DSPACE/DSpace+7+at+OR2021

At this moment, when viewing the item page of issue 1.1, the user should only see volume 1.1 (as volume 1.2 is not yet archived). When viewing the item
page of volume 1.1, nothing has changed: only a link to issue 1.1 will appear. When viewing the item page of volume 1.2 (e.g. as an admin), a link to issue
1.1 will appear as well.

As soon as volume 1.2 is deposited (archived), the "latest status" of both volume 1.1 and volume 1.2 are updated. When viewing the item page of issue
1.1, volume 1.2 should be visible. When viewing the item pages of the volumes, nothing has changed.

Let's create another version of the volume (not archived):

And after archiving volume 1.3:

107

What happens if we create a new version of issue 1.1?

Only the relationship with volume 1.3 is copied. For issue 1.1, no relationship was displayed with volume 1.1 and 1.2. (The relationships still exist in the
database, but are not visible in the UI.). For volume 1.1, a relationship to issue 1.1 remains present, but it should not be updated to issue 1.2. For issue
1.2, these relationships are longer relevant, so they are not copied.

On the item pages of volume 1.1, volume 1.2 and volume 1.3, you should see issue 1.1 (as 1.2 is not archived yet)

Because issue 1.2 is not yet archived, all volumes are still pointing to issue 1.1. Let's archive it:

108

1.

2.

Now on the item pages of volume 1.1 and volume 1.2, you should see issue 1.1; it's the latest issue at the time that those volumes were superseded by
volume 1.3. On the item page of volume 1.3, you'll see issue 1.3. On the item page of issue 1.1 you'll still see volume 1.3 as well.

Metadata fields that represent relations

If you have a closer look at items with relationships, you'll notice two categories of metadata fields that are controlled by DSpace:

relation.* fields, for example on volume itemsrelation.isIssueOfJournalVolume
relation.*.latestForDiscovery fields, for example on volume itemsrelation.isIssueOfJournalVolume.latestForDiscovery

Metadata fields of the first category () contain all uuids of related items that the current item can see. I.e. a relationship has to exist between relation.*
the current item and the other item, and the other item needs to have "latest status" for that specific relationship.

As an example take the following state of the previous section:

Item issue 1.1 will contain metadata field with as value the uuid of volume 1.3. Volume 1.1 and 1.2 are not relation.isJournalVolumeOfIssue
included because they don't have "latest status" on the relevant relationships.

Metadata fields of the second category () contain all uuids of the items for which the current item is visible. I.e. a relation.*.latestForDiscovery
relationship has to exist between the current item and the other item, and the current item needs to have "latest status" for that specific relationship. These
fields are particularly important for indexing and search, because they allow to us to surface all the items that a particular item is referring to.

Continuing on the example above, issue 1.1 will have metadata field containing the relation.isJournalVolumeOfIssue.latestForDiscovery
uuids of volume 1.1 and 1.2.

With issue 1.1 containing volume 1.1 and 1.2 in , a search on the volume 1.1 page for relation.isJournalVolumeOfIssue.latestForDiscovery
all issues containing volume 1.1 will display issue 1.1 thanks to this setup.

Configure versioning for an entity type

DSpace contains a bunch of example entity types that support versioning out of the box. What follows is an overview of the requirements to make entity
versioning work.

when introducing a relationship type, make sure to add four new metadata fields to . E.g. config/registries/relationship-formats.xml
, , relation.isAuthorOfPublication relation.isAuthorOfPublication.latestForDiscovery relation.

 and isPublicationOfAuthor relation.isPublicationOfAuthor.latestForDiscovery
when introducing an entity type, filter items on in . This will be the default search, which ensures older latestVersion:true discovery.xml
versions are not shown

If you want to show all related items, including older versions, you can create another discovery config without . latestVersion:true
This should be used for item pages displaying the related items to the current item using the discovery search.
The entity types configured out-of-the-box have discovery config and discovery config <entity-type> <entity-

 for that purpose.type>Relationships

Note that versioning support is enabled by default, but can be turned off by setting in or versioning.enabled = false versioning.cfg local.cfg
. For more details on item versioning, see: .https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning

109

https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning

Curation System
DSpace supports running curation tasks, which are described in this section. DSpace includes several useful tasks out-of-the-box, but the system also is
designed to allow new tasks to be added between releases, both general purpose tasks that come from the community, and and deployed locally written
tasks.

1 Tasks
2 Activation
3 Task Invocation

3.1 On the command line
3.2 In the admin UI
3.3 In workflow
3.4 In arbitrary user code

4 Asynchronous (Deferred) Operation
5 Task Output and Reporting

5.1 Status Code
5.2 Result String
5.3 Reporting Stream

6 Task Properties
7 Task Parameters
8 Scripted Tasks

Tasks

The goal of the curation system ("CS") is to provide a simple, extensible way to manage routine content operations on a repository. These operations are
known to CS as "tasks", and they can operate on any DSpaceObject (i.e. subclasses of DSpaceObject) - which means the entire Site, Communities,
Collections, and Items - viz. core data model objects. Tasks may elect to work on only one type of DSpace object - typically an Item - and in this case they
may simply ignore other data types (tasks have the ability to "skip" objects for any reason). The DSpace core distribution will provide a number of useful
tasks, but the system is designed to encourage local extension - tasks can be written for any purpose, and placed in any java package. This gives DSpace
sites the ability to customize the behavior of their repository without having to alter - and therefore manage synchronization with - the DSpace source code.
What sorts of activities are appropriate for tasks?

Some examples:

apply a virus scan to item bitstreams (this will be our example below)
profile a collection based on format types - good for identifying format migrations
ensure a given set of metadata fields are present in every item, or even that they have particular values
call a network service to enhance/replace/normalize an item's metadata or content
ensure all item bitstreams are readable and their checksums agree with the ingest values

Since tasks have access to, and can modify, DSpace content, performing tasks is considered an administrative function to be available only to
knowledgeable collection editors, repository administrators, sysadmins, etc. No tasks are exposed in the public interfaces.

Activation

For CS to run a task, the code for the task must of course be included with other deployed code (to , WAR, etc) but it must also be [dspace]/lib
declared and given a name. This is done via a configuration property in as follows:[dspace]/config/modules/curate.cfg

Task Class implementations
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.NoOpCurationTask = noop
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.ProfileFormats = profileformats
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.RequiredMetadata = requiredmetadata
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.ClamScan = vscan
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MicrosoftTranslator = translate
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MetadataValueLinkChecker = checklinks

For each activated task, a key-value pair is added. The key is the fully qualified class name and the value is the used elsewhere to configure the taskname
use of the task, as will be seen below. Note that the curate.cfg configuration file, while in the config directory, is located under "modules". The intent is that
tasks, as well as any configuration they require, will be optional "add-ons" to the basic system configuration. Adding or removing tasks has no impact on
dspace.cfg.

For many tasks, this activation configuration is all that will be required to use it. But for others, the task needs specific configuration itself. A concrete
example is described below, but note that these task-specific configuration property files also reside in [dspace]/config/modules

Task Invocation

Tasks are invoked using CS framework classes that manage a few details (to be described below), and this invocation can occur wherever needed, but CS
offers great versatility "out of the box":

On the command line

110

1.

2.

A simple tool "CurationCli" provides access to CS via the command line. This tool bears the name "curate" in the DSpace launcher. For example, to
perform a virus check on collection "4":

[dspace]/bin/dspace curate -t vscan -i 123456789/4

The complete list of options:

option meaning

-t taskname name of task to perform.

-T filename name of file containing a list of tasknames to be performed.

-e epersonID (required) email address or netid of the E-Person performing the task

-i identifier ID of object to curate. May be (1) a Handle, (2) a workflow ID, or (3) 'all' to operate on the whole repository.

-q queue name of queue to process. -i and -q are mutually exclusive.

-l limit maximum number of objects in Context cache. If absent, unlimited objects may be added.

-s scope declare a scope for database transactions. Scope must be: (1) 'open' (default value), (2) 'curation' or (3) 'object'.

-v emit verbose output

-r filename emit reporting to the named file. '-r -' writes reporting to standard out. If not specified, report is discarded silently.

-p name=value set a runtime task parameter to the value . May be repeated as needed. See "Task parameters" below.name value

As with other command-line tools, these invocations could be placed in a cron table and run on a fixed schedule, or run on demand by an administrator.

In the admin UI

In the UI, there are several ways to execute configured Curation Tasks:

From the "Curate" tab/button that appears on each "Edit Community/Collection/Item" page: this tab allows an Administrator, Community
Administrator or Collection Administrator to run a Curation Task on that particular Community, Collection or Item. When running a task on a
Community or Collection, that task will also execute on all its child objects, unless the Task itself states otherwise (e.g. running a task on a
Collection will also run it across all Items within that Collection).

NOTE: Community Administrators and Collection Administrators can only run Curation Tasks on the Community or Collection which they
administer, along with any child objects of that Community or Collection. For example, a Collection Administrator can run a task on that
specific Collection, or on any of the Items within that Collection.

From the Administrator's "Curation Tasks" page: This option is only available to DSpace Administrators, and appears in the Administrative
side-menu. This page allows an Administrator to run a Curation Task across a single object, or all objects within the entire DSpace site.

In order to run a task from this interface, you must enter in the handle for the DSpace object. To run a task site-wide, you can use the
handle: [your-handle-prefix]/0

Each of the above pages exposes a drop-down list of configured tasks, with a button to 'perform' the task, or queue it for later operation (see section
below). Not all activated tasks need appear in the Curate tab - you filter them by means of a configuration property. This property also permits you to
assign to the task a more user-friendly name than the PluginManager . The property resides in :taskname [dspace]/config/modules/curate.cfg

curate.ui.tasknames = profileformats = Profile Bitstream Formats
curate.ui.tasknames = requiredmetadata = Check for Required Metadata

When a task is selected from the drop-down list and performed, the tab displays both a phrase interpreting the "status code" of the task execution, and the
"result" message if any has been defined. When the task has been queued, an acknowledgement appears instead. You may configure the words used for
status codes in curate.cfg (for clarity, language localization, etc):

curate.ui.statusmessages = -3 = Unknown Task
curate.ui.statusmessages = -2 = No Status Set
curate.ui.statusmessages = -1 = Error
curate.ui.statusmessages = 0 = Success
curate.ui.statusmessages = 1 = Fail
curate.ui.statusmessages = 2 = Skip
curate.ui.statusmessages = other = Invalid Status

Report output from tasks run in this way is collected by configuring a Reporter plugin. You must have exactly one Reporter configured. The default is to
use the FileReporter, which writes a single report of the output of all tasks in the run over all of the selected objects, to a file in the reports directory
(configured as report.dir). See .cfg for the value of [DSpace]/config/modules/submission-configuration .dspace.plugin.single.org

. Other Reporter implementations are provided, or you may supply your own.curate.Reporter

111

http://plugin.single.org

As the number of tasks configured for a system grows, a simple drop-down list of tasks may become too cluttered or large. DSpace 1.8+ provides a all
way to address this issue, known as . A task group is a simple collection of tasks that the Admin UI will display in a separate drop-down list. task groups
You may define as many or as few groups as you please. If no groups are defined, then all tasks that are listed in the property will appear in ui.tasknames
a single drop-down list. If at least group is defined, then the admin UI will display drop-down lists. The first is the list of task groups, and the one two
second is the list of task names associated with the selected group. A few key points to keep in mind when setting up task groups:

a task can appear in more than one group if desired
tasks that belong to no group are to the admin UI (but of course available in other contexts of use)invisible

The configuration of groups follows the same simple pattern as tasks, using properties in . The group is [dspace]/config/modules/curate.cfg
assigned a simple logical name, but also a localizable name that appears in the UI. For example:

ui.taskgroups contains the list of defined groups, together with a pretty name for UI display
curate.ui.taskgroups = replication = Backup and Restoration Tasks
curate.ui.taskgroups = integrity = Metadata Integrity Tasks
.....
each group membership list is a separate property, whose value is comma-separated list of logical task names
curate.ui.taskgroup.integrity = profileformats, requiredmetadata
....

In workflow

CS provides the ability to attach any number of tasks to standard DSpace workflows. Using a configuration file [dspace]/config/workflow-
, you can declaratively (without coding) wire tasks to any step in a workflow. An example:curation.xml

<taskset-map>
 <mapping collection-handle="default" taskset="cautious" />
</taskset-map>
<tasksets>
 <taskset name="cautious">
 <flowstep name="editstep">
 <task name="vscan">
 <workflow>reject</workflow>
 <notify on="fail">$flowgroup</notify>
 <notify on="fail">$colladmin</notify>
 <notify on="error">$siteadmin</notify>
 </task>
 </flowstep>
 </taskset>
</tasksets>

This markup would cause a virus scan to occur during the "editstep" of workflow for any collection, and automatically reject any submissions with infected
files. It would further notify (via email) both the reviewers ("editstep" role/group), and the collection administrators, if either of these are defined. If it could
not perform the scan, the site administrator would be notified.

The notifications use the same procedures that other workflow notifications do - namely email. There is a new email template defined for curation task use:
. This may be language-localized or otherwise modified like any other email template.[dspace]/config/emails/flowtask_notify

Tasks wired in this way are normally performed , and the outcome action (defined by the 'workflow' element) as soon as the workflow step is entered
immediately follows. It is also possible to delay the performance of the task - which will ensure a responsive system - by queuing the task instead of
directly performing it:

...
 <taskset name="cautious">
 <flowstep name="editstep" queue="workflow">
...

This attribute (which must always follow the "name" attribute in the flowstep element), will cause all tasks associated with the step to be placed on the
queue named "workflow" (or any queue you wish to use, of course), and further has the effect of the workflow. When the queue is emptied suspending
(meaning all tasks in it performed), then the workflow is restarted. Each workflow step may be separately configured,

Like configurable submission, you can assign these task rules per collection, as well as having a default for any collection.

As with task invocation from the administrative UI, workflow tasks need to have a Reporter configured in .submission-configuration.cfg

In arbitrary user code

If these pre-defined ways are not sufficient, you can of course manage curation directly in your code. You would use the CS helper classes. For example:

112

Collection coll = (Collection)HandleManager.resolveToObject(context, "123456789/4");
Curator curator = new Curator();
curator.setReporter(System.out);
curator.addTask("vscan").curate(coll);
System.out.println("Result: " + curator.getResult("vscan"));

would do approximately what the command line invocation did. the method "curate" just performs all the tasks configured (you can add multiple tasks to a
curator).

The above directs report output to standard out. Any class which implements Appendable may be set as the reporter class.

Asynchronous (Deferred) Operation

Because some tasks may consume a fair amount of time, it may not be desirable to run them in an interactive context. CS provides a simple API and
means to defer task execution, by a queuing system. Thus, using the previous example:

Curator curator = new Curator();
curator.addTask("vscan").queue(context, "monthly", "123456789/4");

would place a request on a named queue "monthly" to virus scan the collection. To read (and process) the queue, we could for example:

[dspace]/bin/dspace curate -q monthly

use the command-line tool, but we could also read the queue programmatically. Any number of queues can be defined and used as needed.
In the administrative UI curation "widget", there is the ability to both perform a task, but also place it on a queue for later processing.

Task Output and Reporting

Few assumptions are made by CS about what the 'outcome' of a task may be (if any) - it. could e.g. produce a report to a temporary file, it could modify
DSpace content silently, etc. But the CS runtime does provide a few pieces of information whenever a task is performed:

Status Code

This was mentioned above. This is returned to CS whenever a task is called. The complete list of values:

 -3 NOTASK - CS could not find the requested task
 -2 UNSET - task did not return a status code because it has not yet run
 -1 ERROR - task could not be performed
 0 SUCCESS - task performed successfully
 1 FAIL - task performed, but failed
 2 SKIP - task not performed due to object not being eligible

In the administrative UI, this code is translated into the word or phrase configured by the property (discussed above) for display.ui.statusmessages

Result String

The task may define a string indicating details of the outcome. This result is displayed, in the "curation widget" described above:

"Virus 12312 detected on Bitstream 4 of 1234567789/3"

CS does not interpret or assign result strings, the task does it. A task may not assign a result, but the "best practice" for tasks is to assign one whenever
possible.

Reporting Stream

For very fine-grained information, a task may write to a stream. This stream may be sent to a file or to standard out, when running a task from the reporting
command line. Tasks run from the administrative UI or a workflow use a configured Reporter class to collect report output. Your own code may collect the
report using any implementation of the Appendable interface. Unlike the result string, there is no limit to the amount of data that may be pushed to this
stream.

Task Properties

113

DSpace 1.8 introduces a new "idiom" for tasks that require configuration data. It is available to any task whose implementation extends AbstractCuratio
, but is completely optional. There are a number of problems that task properties are designed to solve, but to make the discussion concrete we will nTask

start with a particular one: the problem of hard-coded configuration file names. A task that relies on configuration data will typically encode a fixed
reference to a configuration file name. For example, the virus scan task reads a file called " ", which lives in . It clamav.cfg [dspace]/config/modules
could look up its configuration properties in the ordinary way. But tasks are supposed to be written by anyone in the community and shared around
(without prior coordination), so if another task uses the same configuration file name, there is a name here that can't be easily fixed, since the collision
reference is hard-coded in each task. In this case, if we wanted to use both at a given site, we would have to alter the source of one of them - which
introduces needless code localization and maintenance.

Task properties gives us a simple solution. Here is how it works: suppose that both colliding tasks instead use the task properties facility instead of
ordinary configuration lookup. For example, each asks for the property . At runtime, the curation system this request clamav.service.host resolves
to a set of configuration properties, and it uses the as the prefix of the properties. So, for example, if both were name the task has been configured as
installed (in, say,) as:curate.cfg

org.dspace.ctask.general.ClamAv = vscan,
org.community.ctask.ConflictTask = virusscan,
....

then the task property will resolve to the property named when called from ClamAv task, but when called from foo vscan.foo virusscan.foo
ConflictTask's code. Note that the " " etc are locally assigned names, so we can always prevent the "collisions" mentioned, and we make the tasks vscan
much more portable, since we remove the "hard-coding" of config names.

Another use of task properties is to support multiple task profiles. Suppose we have a task that we want to operate in one of two modes. A good example
would be a mediafilter task that produces a thumbnail. We can either create one if it doesn't exist, or run with "-force" which will create one regardless.
Suppose this behavior was controlled by a property in a config file. If we configured the task as "thumbnail", then we would have in (perhaps) [dspace]

:/config/modules/thumbnail.cfg

...other properties...
thumbnail.thumbnail.maxheight = 80
thumbnail.thumbnail.maxwidth = 80
thumbnail.forceupdate=false

The thumbnail generating task code would then resolve "forcedupdate" to see whether filtering should be forced.

But an obvious use-case would be to want to run force mode non-force mode from the admin UI on different occasions. To do this, one would have to and
stop Tomcat, change the property value in the config file, and restart, etc However, we can use task properties to elegantly rescue us here. All we need to
do is go into the config/modules directory, and create a new file perhaps called: . In this file, we put the properties:thumbnail.force.cfg

thumbnail.force.thumbnail.maxheight = 80
thumbnail.force.thumbnail.maxwidth = 80
thumbnail.force.forceupdate=true

Then we add a new task (really just a new name, no new code) in curate.cfg:

org.dspace.ctask.general.ThumbnailTask = thumbnail
org.dspace.ctask.general.ThumbnailTask = thumbnail.force

Consider what happens: when we perform the task " " (using taskProperties), it uses the properties and operates in "non-force" thumbnail thumbnail.*
profile (since the value is false), but when we run the task " " the curation system uses the properties. Notice thumbnail.force thumbnail.force.*
that we did all this via local configuration - we have not had to touch the source code at all to obtain as many "profiles" as we would like.

See Task Properties in for details of how properties are resolved in task code.Curation Tasks

Task Parameters

New in DSpace 7, you can pass parameters to a task at invocation time. These runtime parameters will be presented to the task as if they were task
properties (see above) and, if present, will override the value of identically-named properties. Example:

Task parameters

bin/dspace curate -t reticulate -i 123456789/36 -p foreground=red -p background=green

Scripted Tasks
The procedure to set up curation tasks in Jython is described on a separate page: Curation tasks in Jython

114

DSpace 1.8 includes limited (and somewhat experimental) support for deploying and running tasks written in languages other than Java. Since version 6,
Java has provided a standard way (API) to invoke so-called scripting or dynamic language code that runs on the java virtual machine (JVM). Scripted tasks
are those written in a language accessible from this API. The exact number of supported languages will vary over time, and the degree of maturity of each
language, or suitability of the language for curation tasks will also vary significantly. However, preliminary work indicates that Ruby (using the JRuby
runtime) and Groovy may prove viable task languages.

Support for scripted tasks does include any DSpace pre-installation of the scripting language itself - this must be done according to the instructions not
provided by the language maintainers, and typically only requires a few additional jars on the DSpace classpath. Once one or more languages have been
installed into the DSpace deployment, task support is fairly straightforward. One new property must be defined in [dspace]/config/modules/curate.

:cfg

curate.script.dir = ${dspace.dir}/scripts

This merely defines the directory location (usually relative to the deployment base) where task script files should be kept. This directory will contain a
"catalog" of scripted tasks named that contains information needed to run scripted tasks. Each task has a 'descriptor' property with value task.catalog
syntax:

<engine>|<relFilePath>|<implClassCtor>

An example property for a link checking task written in Ruby might be:

linkchecker = ruby|rubytask.rb|LinkChecker.new

This descriptor means that a " " script engine will be created, a script file named " " in the directory < > will be loaded and ruby rubytask.rb script.dir
the resolver will expect an evaluation of " " will provide a correct implementation object. Note that the task must be configured in all LinkChecker.new
other ways just like java tasks (in , etc).ui.tasknames, ui.taskgroups

Script files may embed their descriptors to facilitate deployment. To accomplish this, a script must include the descriptor string with syntax:
 somewhere on a comment line. For example:$td=<descriptor>

My descriptor $td=ruby|rubytask.rb|LinkChecker.new

For reasons of portability, the <relFilePath> component may be omitted in this context. Thus, " " will be expanded to a $td=ruby||LinkChecker.new
descriptor with the name of the embedding file.

115

Bundled Tasks
DSpace bundles a small number of tasks of general applicability. Those that do not require configuration (or have usable default values) are activated by
default to demonstrate the use of the curation system. They may be deactivated by means of configuration, if desired, without affecting system integrity.
Those that require configuration may be enabled (activated) by means editing DSpace configuration files. Each task is briefly described in this section.

All bundled tasks are in the package . So, for example, to activate the no-operation task, which is implemented in the org.dspace.ctask.general
class , one would configure:NoOpCurationTask

plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.NoOpCurationTask = noop

116

Bitstream Format Profiler Task
The task with the taskname 'formatprofiler' (in the admin UI it is labeled "Profile Bitstream Formats") examines all the bitstreams in an item and produces a
table ("profile") which is assigned to the result string. It is activated by default, and is configured to display in the administrative UI. The result string has the
layout:

10 (K) Portable Network Graphics
5 (S) Plain Text

where the left column is the count of bitstreams of the named format and the letter in parentheses is an abbreviation of the repository-assigned support
level for that format:

U Unsupported
K Known
S Supported

The profiler will operate on any DSpace object. If the object is an item, then only that item's bitstreams are profiled; if a collection, all the bitstreams of all
the items; if a community, all the items of all the collections of the community.

117

Link Checker Tasks
Two link checker tasks, BasicLinkChecker and MetadataValueLinkChecker, can be used to check for broken or unresolvable links appearing in item
metadata.

This task is intended as a prototype / example for developers and administrators who are new to the curation system.

These tasks are not configurable.

Basic Link Checker

BasicLinkChecker iterates over all metadata fields ending in "uri" (eg. dc.relation.uri, dc.identifier.uri, dc.source.uri ...), attempts a GET to the value of the
field, and checks for a 200 OK response.
Results are reported in a simple "one row per link" format.

Metadata Value Link Checker

MetadataValueLinkChecker parses all metadata fields for valid HTTP URLs, attempts a GET to those URLs, and checks for a 200 OK response.
Results are reported in a simple "one row per link" format.

118

MetadataWebService Task
DSpace item metadata can contain any number of identifiers or other field values that participate in networked information systems. For example, an item
may include a DOI which is a controlled identifier in the DOI registry. Many web services exist to leverage these values, by using them as 'keys' to retrieve
other useful data. In the DOI case for example, CrossRef provides many services that given a DOI will return author lists, citations, etc. The
MetadataWebService task enables the use of such services, and allows you to obtain and (optionally) add to DSpace metadata the results of any web
service call to any service provider. You simply need to describe what service you want to call, and what to do with the results. Using the task code ([task

), you can create as many distinct tasks as you have services you want to call.code]

Each task description lives in a configuration file in 'config/modules' (or in your local.cfg), and is a simple properties file, like all other DSpace configuration
files (see). All of the settings associated with a given task should be prepended with the task name (as assigned in Configuration Reference config

). For example, if the task name is in curate.cfg, then all settings should start with " " Your /modules/curate.cfg issn2pubname issn2pubname.
settings can either be set in your , or in a new configuration file which is included () into either your local.cfg include = path/to/new/file.cfg
local.cfg or the dspace.cfg. See the for examples of including configuration files, or modifying your Configuration Reference local.cfg

There are a few required properties you must configure for any service, and for certain services, a few additional ones. An example will illustrate best.

ISSN to Publisher Name

Suppose items (holding journal articles) include 'dc.identifier.issn' when available. We might also want to catalog the publisher name (in 'dc.publisher'). The
cataloger could look up the name given the ISSN in various sources, but this 'research' is tedious, costly and error-prone. There are many good quality,
free web services that can furnish this information. So we will configure a MetadataWebService task to call a service, and then automatically assign the
publisher name to the item metadata. As noted above, all that is needed is a description of the service, and what to do with the results. Create a new file in
'config/modules' called 'issn2pubname.cfg' (or whatever is mnemonically useful to you). The first property in this file describes the service in a 'template'.
The template is just the URL to call the web service, with parameters to substitute values in. Here we will use the 'Sherpa/Romeo' service:

[taskcode].template=http://www.sherpa.ac.uk/romeo/api29.php?issn={dc.identifier.issn}

When the task runs, it will replace '{dc.identifier.issn}' with the value of that field in the item, If the field has multiple values, the first one will be used. As a
web service, the call to the above URL will return an XML document containing information (including the publisher name) about that ISSN. We need to
describe what to do with this response document, i.e. what elements we want to extract, and what to do with the extracted content. This description is
encoded in a property called the 'datamap'. Using the example service above we might have:

[taskcode].datamap=//publisher/name=>dc.publisher,//romeocolor

Each separate instruction is separated by a comma, so there are 2 instructions in this map. The first instruction essentially says: find the XML element
'publisher name' and assign the value or values of this element to the 'dc.publisher' field of the item. The second instruction says: find the XML element
'romeocolor', but do not add it to the DSpace item metadata - simply add it to the task result string (so that it can be seen by the person running the task).
You can have as many instructions as you like in a datamap, which means that you can retrieve multiple values from a single web service call. A little more
formally, each instruction consists of one to three parts. The first (mandatory) part identifies the desired data in the response document. The syntax (here '
//publisher/name') is an XPath 1.0 expression, which is the standard language for navigating XML trees. If the value is to be assigned to the DSpace item
metadata, then 2 other parts are needed. The first is the 'mapping symbol' (here '=>'), which is used to determine how the assignment should be made.
There are 3 possible mapping symbols, shown here with their meanings:

'->' mapping will add to any existing value(s) in the item field
'=>' mapping will replace any existing value(s) in the item field
'~>' mapping will add *only if* item field has no existing value(s)

The third part (here 'dc.publisher') is simply the name of the metadata field to be updated. These two mandatory properties (template and datamap) are
sufficient to describe a large number of web services. All that is required to enable this task is to edit ' ' (or your config/modules/curate.cfg local.

), and add ' ' to the list of tasks:cfg issn2pubname

plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MetadataWebService = issn2pubname
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MetadataWebService = doi2crossref

If you wish the task to be available in the Admin UI, see the documentation (above) about how to configure it. The remaining Invocation from the Admin UI
sections describe some more specialized needs using the MetadataWebService task.

HTTP Headers

For some web services, protocol and other information is expressed not in the service URL, but in HTTP headers. Examples might be HTTP basic auth
tokens, or requests for a particular media type response. In these cases, simply add a property to the configuration file (our example was 'issn2pubname.
cfg') containing all headers you wish to transmit to the service:

[taskcode].headers=Accept: application/xml||Cache-Control: no-cache

119

https://wiki.lyrasis.org/display/DSDOC7x/MetadataWebService+Task#MetadataWebServiceTask-IntheadminUI

You can specify any number of headers, just separate them with a 'double-pipe' (' '). Ensure that any commas in values are escaped (with backslash ||
comma, i.e. ' ').\,

Transformations

One potential problem with the simple parameter substitutions performed by the task is that the service might expect a different format or expression of a
value than the way it is stored in the item metadata. For example, a DOI service might expect a bare prefix/suffix notation ('10.000/12345'), whereas the
DSpace metadata field might have a URI representation (' In these cases one can declare a 'transformation' of a value in http://dx.doi.org/10.000/12345').
the template. For example:

[taskcode].template=http://www.crossref.org/openurl/?id={doi:dc.relation.isversionof}&format=unixref

The 'doi:' prepended to the metadata field name declares that the value of the 'dc.relation.isversionof' field should be before the substitution transformed
into the template using a transformation named 'doi'. The transformation is itself defined in the same configuration file as follows:

[taskcode].transform.doi=match 10. trunc 60

This would be read as: exclude the value string up to the occurrence of '10.', then truncate any characters after length 60. You may define as many
transformations as you want in any task, although generally 1 or 2 will suffice. They keywords 'match', 'trunc', etc are names of 'functions' to be applied (in
the order entered). The currently available functions are:

'cut' <number> = remove number leading characters
'trunc' <number> = remove trailing characters after number length
'match' <pattern> = start match at pattern
'text' <characters> = append literal characters (enclose in ' ' when whitespace needed)

When the task is run, if the transformation results in an invalid state (e.g. cutting more characters than there are in the value), the un-transformed value will
be used and the condition will be logged. Transformations may also be applied to values returned from the web service. That is, one can apply the
transformation to a value before assigning it to a metadata field. In this case, the declaration occurs in the datamap property, not the template:

[taskcode].datamap=//publisher/name=>shorten:dc.publisher,//romeocolor

Here the task will apply the 'shorten' transformation (which must be defined in the same config file) before assigning the value to 'dc.publisher'.

Result String Programatic Use

Normally a task result string appears in a window in the admin UI after it has been invoked. The MedataWebService task will concatenate all the values
declared in the 'datamap' property and place them in the result string using the format: 'name:value name:value' for as many values as declared. In the
example above we would get a string like 'publisher: Nature romeocolor: green'. This format is fine for simple display purposes, but can be tricky if the
values contain spaces. You can override the space separator using an optional property 'separator' (put in the config file, with all other properties). If you
use:

[taskcode].separator=||

for example, it becomes easy to parse the result string and preserve spaces in the values. This use of the result string can be very powerful, since you are
essentially creating a map of returned values, which can then be used to populate a user interface, or any other way you wish to exploit the data (drive a
workflow, etc).

Limits and Use

A few limitations should be noted. First, since the response parsing utilizes XPath, the service can only operate on XML, (not JSON) response documents.
Most web services can provide either, so this should not be a major obstacle. The MetadataWebService can be used in many ways: showing an admin a
value in the result string in a UI, run in a batch to update a set of items, etc. One excellent configuration is to wire these tasks into submission workflow, so
that 'automatic cataloging' of many fields can be performed on ingest.

120

MicrosoftTranslator Task
Microsoft Translator uses the Microsoft Translate API to translate metadata values from one source language into one or more target languages.

This task cab be configured to process particular fields, and use a default language if no authoritative language for an item can be found. Bing API v2 key
is needed.

MicrosoftTranslator extends the more generic AbstractTranslator. This now seems wasteful, but a GoogleTranslator had also been written to extend
AbstractTranslator. Unfortunately, Google has announced they are decommissioning free Translate API service, so this task hasn't been included in
DSpace's general set of curation tasks.

Translated fields are added in addition to any existing fields, with the target language code in the 'language' column. This means that running a task
multiple times over one item with the same configuration could result in duplicate metadata.

This task is intended as a prototype / example for developers and administrators who are new to the curation system.

Configure Microsoft Translator

An example configuration file can be found in .[dspace]/config/modules/translator.cfg

#---#
#----------TRANSLATOR CURATION TASK CONFIGURATIONS--------------#
#---#
Configuration properties used solely by MicrosoftTranslator
Curation Task (uses Microsoft Translation API v2)
#---#
Translation field settings
##
Authoritative language field
This will be read to determine the original language an item was submitted in
Default: dc.language
translator.field.language = dc.language

Metadata fields you wish to have translated
translator.field.targets = dc.description.abstract, dc.title, dc.type

Translation language settings
##
If the language field configured in translate.field.language is not present
in the record, set translate.language.default to a default source language
or leave blank to use autodetection
translator.language.default = en

Target languages for translation
translator.language.targets = de, fr

Translation API settings
##
Your Bing API v2 key and/or Google "Simple API Access" Key
(note to Google users: your v1 API key will not work with Translate v2,
you will need to visit https://code.google.com/apis/console and activate
a Simple API Access key)
##
You do not need to enter a key for both services.
translator.api.key.microsoft = YOUR_MICROSOFT_API_KEY_GOES_HERE
translator.api.key.google = YOUR_GOOGLE_API_KEY_GOES_HERE

121

NoOp Task
This task does absolutely nothing. It is intended as a starting point for developers and administrators wishing to learn more about the curation system.

122

Required Metadata Task
The " " task examines item metadata and determines whether fields that the web submission () marks as required requiredmetadata input-forms.xml
are present. It sets the result string to indicate either that all required fields are present, or constructs a list of metadata elements that are required but
missing. When the task is performed on an item, it will display the result for that item. When performed on a collection or community, the task be performed
on each item, and will display the item result. If all items in the community or collection have all required fields, that will be the last in the collection. If last
the task fails for any item (i.e. the item lacks all required fields), the process is halted. This way the results for the 'failed' items are not lost.

123

Virus Scan Task
The " " task performs a virus scan on the bitstreams of items using the ClamAV software product.vscan

Clam AntiVirus is an open source (GPL) anti-virus toolkit for UNIX. A port for Windows is also available. The virus scanning curation task interacts with the
ClamAV virus scanning service to scan the bitstreams contained in items, reporting on infection(s). Like other curation tasks, it can be run against a
container or item, in the GUI or from the command line. It should be installed according to the documentation at . It should not be http://www.clamav.net
installed in the dspace installation directory. You may install it on the same machine as your dspace installation, or on another machine which has been
configured properly.

Setup the service from the ClamAV documentation.

This plugin requires a ClamAV daemon installed and configured for TCP sockets. Instructions for installing ClamAV (http://www.clamav.net/doc/latest/clam
)doc.pdf

NOTICE: The following directions assume there is a properly installed and configured clamav daemon. Refer to links above for more information about
ClamAV.
The Clam anti-virus database must be updated regularly to maintain the most current level of anti-virus protection. Please refer to the ClamAV
documentation for instructions about maintaining the anti-virus database.

DSpace Configuration

In , activate the task:[dspace]/config/modules/curate.cfg

Add the plugin to the list of curation tasks.

Task Class implementations
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.NoOpCurationTask = noop
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.ProfileFormats = profileformats
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.RequiredMetadata = requiredmetadata
This is the ClamAV scanner plugin
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.ClamScan = vscan
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MicrosoftTranslator = translate
plugin.named.org.dspace.curate.CurationTask = org.dspace.ctask.general.MetadataValueLinkChecker = checklinks

Optionally, add the vscan friendly name to the configuration to enable it in the administrative it in the administrative user interface.

curate.ui.tasknames = profileformats = Profile Bitstream Formats
curate.ui.tasknames = requiredmetadata = Check for Required Metadata
curate.ui.tasknames = checklinks = Check Links in Metadata
Enable ClamAV from UI
curate.ui.tasknames = vscan = Virus Scan

In , edit configuration file clamav.cfg:[dspace]/config/modules

clamav.service.host = 127.0.0.1
Change if not running on the same host as your DSpace installation.
clamav.service.port = 3310
Change if not using standard ClamAV port
clamav.socket.timeout = 120
Change if longer timeout needed
clamav.scan.failfast = false
Change only if items have large numbers of bitstreams

Finally, if desired virus scanning can be enabled as part of the submission process upload file step. In , edit [dspace]/config/modules
configuration file :submission-curation.cfg

NOT YET SUPPORTED IN 7.0

submission-curation.virus-scan = true

Task Operation from the Administrative user interface

Curation tasks can be run against container and item dspace objects by e-persons with administrative privileges. A curation tab will appear in the
administrative ui after logging into DSpace:

124

http://www.clamav.net/
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf

1.
2.
3.

Click on the curation tab.
Select the option configured in ui.tasknames above.
Select Perform.

Task Operation from the Item Submission user interface

If desired virus scanning can be enabled as part of the submission process upload file step. In , edit configuration file [dspace]/config/modules submi
:ssion-curation.cfg

NOT YET SUPPORTED IN 7.0

submission-curation.virus-scan = true

Task Operation from the curation command line client

To output the results to the console:

[dspace]/bin/dspace curate -t vscan -i <handle of container or item dso> -r -

Or capture the results in a file:

[dspace]/bin/dspace curate -t vscan -i <handle of container or item dso> -r - > /<path...>/<name>

Table 1 – Virus Scan Results Table

GUI (Interactive Mode) FailFast Expectation

Container T Stop on 1 Infected Bitstreamst

Container F Stop on 1 Infected Itemst

Item T Stop on 1 Infected Bitstreamst

Item F Scan all bitstreams

Command Line

Container T Report on 1 infected bitstream within an item/Scan all contained Itemsst

Container F Report on all infected bitstreams/Scan all contained Items

Item T Report on 1 infected bitstreamst

Item F Report on all infected bitstreams

125

Exporting Content and Metadata
General top level page to group all DSpace facilities for exporting content and metadata.

Signposting
OpenAIRE4 Guidelines Compliancy
OAI
Exchanging Content Between Repositories
SWORDv1 Client
Linked (Open) Data
Rioxx v3 schema compliance

126

Signposting

Overview

The concept of Signposting is aimed at facilitating machine agents in navigating scholarly information systems easily. Signposting uses typed links to
clarify patterns found in scholar portals, offering a standard approach to address the issue of making the descriptive metadata and links in landing pages,
usually optimized for human use, readable for machine agents.

To provide machine-friendly authorship information, the publisher can include author links in the Link header of the HTTP response. Additionally, the
publisher can use a "cite-as" link to fetch the persistent identifier of the resource. These links enable bots to follow them and discover relevant additional
information related to the resource.

By adopting Signposting techniques, the users contribute to improving the machine accessibility and navigation of scholarly web resources, enhancing the
overall efficiency and interoperability of scholarly information systems.

More information can be found on the Signposting website: https://signposting.org/

DSpace supports FAIR Signposting Profile at Level 2: By supporting the FAIR Signposting Profile at Level 2, your platform demonstrates a commitment to
improving the machine accessibility, interoperability, and reusability of scholarly resources. It ensures that the information you provide is standardized,
consistent, and easily navigable by both human users and machine agents, contributing to a more efficient and FAIR scholarly web ecosystem. More
information on: https://github.com/DSpace/RestContract/blob/main/signposting.md

The FAIR Signposting profile (more information on: https://signposting.org/FAIR/) is based on the FAIR principles (Findable, Accessible, Interoperable, and
Reusable - https://www.go-fair.org/fair-principles/).

Findability: Your system ensures that scholarly resources are easily discoverable by both humans and machines. It includes the use of persistent
identifiers, such as DOIs (Digital Object Identifiers), to uniquely identify and locate resources. These identifiers are included in the signposting
links provided in the HTTP responses.
Accessibility: Your system supports accessibility by providing machine-readable metadata and links that facilitate automated processing. The
Signposting Patterns specified in the profile guide the inclusion of links in the HTTP Link headers, HTML link elements, or Link Sets. These links
convey essential information about the resource, such as authorship, identifiers, and relationships to other resources.
Interoperability: Your system promotes interoperability by adopting standardized formats and protocols. It ensures that the signposting links and
metadata adhere to established conventions and vocabularies, making it easier for machines to interpret and process the information consistently.
By implementing the FAIR Signposting Profile, your system aligns with a community-accepted standard for interoperability.
Reusability: Your system supports reusability by providing clear and structured metadata about scholarly resources. This includes information
about licenses, permissions, and terms of use. By including this information in the signposting links or associated metadata, your system enables
users and machines to understand the conditions under which the resources can be reused.

Enabling / Disabling

Signposting is enabled by default in DSpace 7 (starting with version 7.6). When enabled on the backend, the ${dspace.server.url}/signposting/
REST Endpoint will be available and can be used based on the documentation at . Whehttps://github.com/DSpace/RestContract/blob/main/signposting.md
n disabled, this endpoint will return a 404.

However, if you wish to disable it, you can change this configuration in your local.cfg

signposting.enabled = false

Modifications to this setting require rebooting your servlet container (e.g. Tomcat)

Configuration

Additional signposting configuration options are available in . For most sites, the default settings [dspace]/config/modules/signposting.cfg
should be all you need.

127

https://signposting.org/
https://github.com/DSpace/RestContract/blob/main/signposting.md
https://signposting.org/FAIR/
https://www.go-fair.org/fair-principles/
https://github.com/DSpace/RestContract/blob/main/signposting.md

OpenAIRE4 Guidelines Compliancy

Loading of Entities and Fields

OpenAIRE4 features depends on Configurable Entities feature and its default configurations. In order to have your repository compliant with OpenAIRE4
guidelines you need to follow some steps:

The default submission-forms.xml file configures the form fields that allow the creation of the specific OpenAIRE entities and their relationships. In order to
use those forms you need to configure your item-submission.xml and add these to the : <submission-map>

item-submission.xml

<name-map collection-handle="123456789/2" submission-name="openAIREPublicationSubmission" />
<name-map collection-handle="123456789/3" submission-name="openAIREPersonSubmission" />
<name-map collection-handle="123456789/5" submission-name="openAIREProjectSubmission" />
<name-map collection-handle="123456789/4" submission-name="openAIREOrganizationSubmission" />

Please note that my will be different in your system and it refers to the collection that will gather a specific Entity collection-handle="123456789/4"
type like Publications, Persons, Projects or Organizations.

To load OpenAIRE Entities model you must firstly run the following:

loading openaire entity-relationships model

[/dspace]/bin/dspace initialize-entities -f [/dspace]/config/entities/openaire4-relationships.xml

 and load the required metadata fields

loading openaire registries

[/dspace]/bin/dspace registry-loader -metadata [/dspace]/config/registries/openaire4-types.xml

After those steps your repository will have the required fields and entities for the compliancy.

OAI interface

As decided in our Entities meeting (), the XOAI Default Context should only display Publications or non Entity 2019-11-19 DSpace 7 Entities WG Meeting
Items. For OpenAIRE4 it will also be considered only Publications as the main Entity to be processed and all the related ones will be loaded in the process.

OpenAIRE4 is accessible in a specific OAI context through the URL:
http://[dspace-server-url]/oai/openaire4?verb=ListRecords&metadataPrefix=oai_openaire

in order to use it, you must first ensure you have the oai.cfg setting uncommented:
oai.enabled = true
(NOTE: you may need to restart your tomcat service)

If you need to display additional metadata at the oai_openaire metadata format, you could rename the file:

[/dspace/]config/spring/api/virtual-metadata.xml.openaire

and replace it with the existing one:

 [/dspace/]config/spring/api/virtual-metadata.xml

Please note if you do this you should restart your tomcat service container.

128

https://wiki.lyrasis.org/display/DSPACE/2019-11-19+DSpace+7+Entities+WG+Meeting
http://host/server/oai/openaire4?verb=ListRecords&metadataPrefix=oai_openaire

This additional virtual metadata will enable to represent something like this in this XML in the oai_openaire metadata format, where you have, for instance,
author identifiers:

oai datacite:creators example

<datacite:creators>
 <datacite:creator>
 <datacite:creatorName>Evans, R.J.</datacite:creatorName>
 <datacite:affiliation>Institute of Science and Technology</datacite:affiliation>
 <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org"> 1234-1234-1234-1234 <
/datacite:nameIdentifier>
 </datacite:creator>
</datacite:creators>

Then you may need to run the OAI import from the command line with the cleaning cache parameter to reload all data to OAI:
[/dspace/]/bin/dspace oai import -c

129

OAI
OAI Interfaces

1 OAI-PMH Server
1.1 OAI-PMH Server Activation
1.2 OAI-PMH Server Maintenance

2 OAI-PMH / OAI-ORE Harvester (Client)
2.1 Harvesting from another DSpace
2.2 OAI-PMH / OAI-ORE Harvester Configuration
2.3 Setting up a harvest to import content into a collection

2.3.1 Using the "harvest" script
2.3.1.1 Examples of harvesting a collection through CLI commands

2.3.2 Setting up a harvest content source from the UI
3 DSpace 7 Demo - OAI-PMH

OAI-PMH Server

In the following sections and subpages, you will learn how to configure OAI-PMH server and activate additional OAI-PMH crosswalks. The user is also
referred to for greater depth details of the program.OAI-PMH Data Provider

The OAI-PMH Interface may be used by other systems to harvest metadata records from your DSpace.

OAI-PMH Server Activation

DSpace's OAI-PMH server is enabled by default. However, you can choose to enable/disable it in your local.cfg using these configurations:

Enable (true) or disable (false) OAI-PMH server
oai.enabled = true

When enabled, OAI-PMH server is available at this path
oai.path = oai

If you modify either of these configuration, you must restart your Servlet Container (usually Tomcat).

You can test that it is working by sending a request to: (e.g. [dspace.server.url]/[oai.path]/request?verb=Identify
http://localhost:8080/server/oai/request?verb=Identify)
The response should look similar to the response from the DSpace 7 Demo Server: https://api7.dspace.org/server/oai/request?verb=Identify

If you're using a recent browser, you should see a HTML page describing your repository. What you're getting from the server is in fact an XML file with a
link to an XSLT stylesheet that renders this HTML in your browser (client-side). Any browser that cannot interpret XSLT will display pure XML. The default
stylesheet is located in and can be changed by configuring the [dspace-source]/dspace-oai/src/main/resources/static/style.xsl style

 attribute of the element in .sheet Configuration [dspace]/config/crosswalks/oai/xoai.xml

Relevant Links

OAI 2.0 Server - basic information needed to configure and use the OAI Server in DSpace
OAI-PMH Data Provider 2.0 (Internals) - information on how it's implemented
http://www.openarchives.org/pmh/ - information on the OAI-PMH protocol and its usage (not DSpace-specific)

OAI-PMH Server Maintenance

After activating the OAI-PMH server, you need to also ensure its index is updated on a regular basis. Currently, this doesn't happen automatically within
DSpace. Instead, you must schedule the commandline tool to run on a regular basis (usually at least [dspace.dir]/bin/dspace oai import
nightly, but you could schedule it more frequently).

Here's an example cron that can be used to schedule an OAI-PMH reindex on a nightly basis (for a full list of recommended DSpace cron tasks see Schedu
):led Tasks via Cron

Update the OAI-PMH index with the newest content at midnight every day
NOTE: ONLY NECESSARY IF YOU ARE RUNNING OAI-PMH
(This ensures new content is available via OAI-PMH)
0 0 * * * [dspace.dir]/bin/dspace oai import > /dev/null

More information about the commandline tool can be found in the documentation.dspace oai OAI Manager

130

https://wiki.lyrasis.org/display/DSDOC8x/Application+Layer#ApplicationLayer-OAI-PMHDataProvider
https://api7.dspace.org/server/oai/request?verb=Identify
http://www.openarchives.org/pmh/
https://wiki.lyrasis.org/display/DSDOC5x/Scheduled+Tasks+via+Cron
https://wiki.lyrasis.org/display/DSDOC5x/Scheduled+Tasks+via+Cron
https://wiki.lyrasis.org/display/DSDOC8x/OAI+2.0+Server#OAI2.0Server-OAIManager

1.

2.

OAI-PMH / OAI-ORE Harvester (Client)

This section describes the parameters used in configuring the OAI-ORE / OAI-ORE harvester. This harvester can be used to harvest content (bitstreams
and metadata) into DSpace from an external OAI-PMH or OAI-ORE server.

Supported in 7.1 or above

OAI Harvesting was not available in DSpace 7.0. It was restored in DSpace 7.1. See DSpace Release 7.0 Status

Harvesting from another DSpace

If you are harvesting content (bitstreams and metadata) an external DSpace installation via OAI-PMH & OAI-ORE, you first should verify that the from
external DSpace installation allows for OAI-ORE harvesting.

If the external DSpace is running v6.x or below, it must be running both the OAI-PMH interface and the XMLUI interface to support harvesting content from
it via OAI-ORE.

If the external DSpace is running v7.x or above, it just needs to be running the OAI-PMH interface.

You can verify that OAI-ORE harvesting option is enabled by following these steps:

First, check to see if the external DSpace reports that it will support harvesting ORE via the OAI-PMH interface. Send the following request to the
DSpace's OAI-PMH interface: http://[full-URL-to-OAI-PMH]/request?verb=ListRecords&metadataPrefix=ore

The response should be an XML document containing ORE, similar to the response from the DSpace Demo Server: http://demo.dspace.
org/oai/request?verb=ListRecords&metadataPrefix=ore

For 6.x or below, you can verify that the XMLUI interface supports OAI-ORE (it should, as long as it's a current version of DSpace). First, find a
valid Item Handle. Then, send the following request to the DSpace's XMLUI interface: http://[full-URL-to-XMLUI]/metadata/handle/
[item-handle]/ore.xml

The response should be an OAI-ORE (XML) document which describes that specific Item. It should look similar to the response from the
DSpace Demo Server: http://demo.dspace.org/xmlui/metadata/handle/10673/3/ore.xml

OAI-PMH / OAI-ORE Harvester Configuration

There are many possible configuration options for the OAI harvester. Most of these are contained in the file [dspace]/config/modules/oai.cfg
(unless otherwise noted below). They may be updated there or overridden in your config file (see).local.cfg Configuration Reference

Configuration
File:

[dspace]/config/modules/oai.cfg

Property: oai.harvester.eperson

Example Value: oai.harvester.eperson = admin@myu.edu

Informational
Note:

The EPerson under whose authorization automatic harvesting will be performed. This field does not have a default value and must
be specified in order to use the harvest scheduling system. This will most likely be the DSpace admin account created during
installation.

Property: oai.url

Example Value: oai.url = ${dspace.server.url}/${oai.path}

Informational
Note:

The base url of the OAI-PMH disseminator webapp (i.e. do not include the /request on the end). This is necessary in order to mint
URIs for ORE Resource Maps. The default value of will work for a typical installation, but should be ${dspace.baseUrl}/oai
changed if appropriate. Please note that is defined in your configuration file.dspace.baseUrl dspace.cfg

Property: oai.ore.authoritative.source

Example Value: oai.ore.authoritative.source = oai

Informational
Note:

The webapp responsible for minting the URIs for ORE Resource Maps. If using oai, the config value must be set.oai.url

When set to 'oai', all URIs in ORE Resource Maps will be relative to the OAI-PMH URL (configured by above)oai.url

The URIs generated for ORE ReMs follow the following convention for either setting: http://\[base-URL\]/metadata/handle/\[item-
handle\]/ore.xml

Property: oai.harvester.autoStart

Example Value: oai.harvester.autoStart = false

Informational
Note:

Determines whether the harvest scheduler process starts up automatically when DSpace webapp is redeployed.

Property: oai.harvester.metadataformats.PluginName

131

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
http://demo.dspace.org/oai/request?verb=ListRecords&metadataPrefix=ore
http://demo.dspace.org/oai/request?verb=ListRecords&metadataPrefix=ore
http://demo.dspace.org/xmlui/metadata/handle/10673/3/ore.xml

Example Value:
oai.harvester.metadataformats.PluginName = \
http://www.openarchives.org/OAI/2.0/oai_dc/, Simple Dublin Core

Informational
Note:

This field can be repeated and serves as a link between the metadata formats supported by the local repository and those
supported by the remote OAI-PMH provider. It follows the form oai.harvester.metadataformats.PluginName =

 . The pluginName designates the metadata schemas that the harvester "knows" the NamespaceURI,Optional Display Name
local DSpace repository can support. Consequently, the PluginName must correspond to a previously declared ingestion crosswalk.
The namespace value is used during negotiation with the remote OAI-PMH provider, matching it against a list returned by the
ListMetadataFormats request, and resolving it to whatever metadataPrefix the remote provider has assigned to that namespace.
Finally, the optional display name is the string that will be displayed to the user when setting up a collection for harvesting. If
omitted, the PluginName:NamespaceURI combo will be displayed instead.

Property: oai.harvester.oreSerializationFormat.OREPrefix

Example Value:
oai.harvester.oreSerializationFormat.OREPrefix = \
http://www.w3.org/2005/Atom

Informational
Note:

This field works in much the same way as . The must oai.harvester.metadataformats.PluginName OREPrefix
correspond to a declared ingestion crosswalk, while the Namespace must be supported by the target OAI-PMH provider when
harvesting content.

Property: oai.harvester.timePadding

Example Value: oai.harvester.timePadding = 120

Informational
Note:

Amount of time subtracted from the from argument of the PMH request to account for the time taken to negotiate a connection.
Measured in seconds. Default value is 120.

Property: harvester.harvestFrequencyoai.

Example Value: harvester.harvestFrequency = 720oai.

Informational
Note:

How frequently the harvest scheduler checks the remote provider for updates. Should always be longer than . timePadding
Measured in minutes. Default value is 720.

Property: harvester.minHeartbeatoai.

Example Value: harvester.minHeartbeat = 30oai.

Informational
Note:

The heartbeat is the frequency at which the harvest scheduler queries the local database to determine if any collections are due for
a harvest cycle (based on the) value. The scheduler is optimized to then sleep until the next collection is actually harvestFrequency
ready to be harvested. The and are the lower and upper bounds on this timeframe. Measured in minHeartbeat maxHeartbeat
seconds. Default value is 30.

Property: harvester.maxHeartbeatoai.

Example Value: harvester.maxHeartbeat = 3600oai.

Informational
Note:

The heartbeat is the frequency at which the harvest scheduler queries the local database to determine if any collections are due for
a harvest cycle (based on the) value. The scheduler is optimized to then sleep until the next collection is actually harvestFrequency
ready to be harvested. The and are the lower and upper bounds on this timeframe. Measured in minHeartbeat maxHeartbeat
seconds. Default value is 3600 (1 hour).

Property: harvester.maxThreadsoai.

Example Value: harvester.maxThreads = 3oai.

Informational
Note:

How many harvest process threads the scheduler can spool up at once. Default value is 3.

Property: harvester.threadTimeoutoai.

Example Value: harvester.threadTimeout = 24oai.

Informational
Note:

How much time passes before a harvest thread is terminated. The termination process waits for the current item to complete ingest
and saves progress made up to that point. Measured in hours. Default value is 24.

Property: harvester.unknownFieldoai.

Example Value: harvester.unkownField = fail | add | ignoreoai.

132

Informational
Note:

You have three (3) choices. When a harvest process completes for a single item and it has been passed through ingestion
crosswalks for ORE and its chosen descriptive metadata format, it might end up with DIM values that have not been defined in the
local repository. This setting determines what should be done in the case where those DIM values belong to an already declared
schema. will terminate the harvesting task and generate an error. will quietly omit the unknown fields. will add the Fail Ignore Add
missing field to the local repository's metadata registry. Default value: .fail

Property: harvester.unknownSchemaoai.

Example Value: harvester.unknownSchema = fail | add | ignoreoai.

Informational
Note:

When a harvest process completes for a single item and it has been passed through ingestion crosswalks for ORE and its chosen
descriptive metadata format, it might end up with DIM values that have not been defined in the local repository. This setting
determines what should be done in the case where those DIM values belong to an unknown schema. will terminate the Fail
harvesting task and generate an error. will quietly omit the unknown fields. will add the missing schema to the local Ignore Add
repository's metadata registry, using the schema name as the prefix and "unknown" as the namespace. Default value: .fail

Property: harvester.acceptedHandleServeroai.

Example Value:
oai.harvester.acceptedHandleServer = \
hdl.handle.net, handle.test.edu

Informational
Note:

A harvest process will attempt to scan the metadata of the incoming items (identifier.uri field, to be exact) to see if it looks like a
handle. If so, it matches the pattern against the values of this parameter. If there is a match the new item is assigned the handle
from the metadata value instead of minting a new one. Default value: .hdl.handle.net

Property: harvester.rejectedHandlePrefixoai.

Example Value: harvester.rejectedHandlePrefix = 123456789, myeduHandleoai.

Informational
Note:

Pattern to reject as an invalid handle prefix (known test string, for example) when attempting to find the handle of harvested items. If
there is a match with this config parameter, a new handle will be minted instead. Default value: .123456789

Setting up a harvest to import content into a collection

There are two options to set up a collection for harvesting. One is by using the DSpace scripts "harvest", the other is by setting up the content source of a
collection through the UI.

Using the "harvest" script

The harvest script can be called from both the CLI and REST API by calling "harvest". It uses the paramaters as defined in the following table.

Short
option

Long
option

Argument Explanation

-p --purge [none] Delete all the items in the collection provided with the -c parameter.

-r --run [none] Run the standard harvesting procedure for the collection provided with the -c parameter.

-g --ping [none] Verify that the server provided through the -a parameter and the set provided through the -i parameter can be resolved and
work.

-s --setup [none] Set the collection provided with the -c parameter up for harvesting. The server will need to be provided through the -a
parameter, and the oai set id needs to be provided by the -i parameter.

-S --start [none] Start the harvest loop for all collections.

-R --reset [none] Reset the harvest status on all collections.

-P --
purgeCollec
tions

[none] Purge all harvestable collections.

-o --reimport [none] Reimport all items the items in the collection provided by the -c parameter. This is the equivalent of running both the -p and
the -r command for the provided collection.

-c --collection [id-or-handle] The harvesting collection (handle or id)

-t --type [type-code] The type of harvesting: 0 for no harvesting, 1 for metadata only, 2 for metadata and bitstream references (requires ORE
support), 3 for metadata and bitstreams (requires ORE support)

-a --address [url] The address of the OAI-PMH server to be harvested

-i --oai_set_id [set-id] The id of the PMH set representing the harvested collection. In case all sets need to harvested the value "all" should be
provided.

133

-m --
metadata_f
ormat

[format] The name of the desired metadata format for harvesting, resolved to namespace and crosswalk in the dspace.cfg

-h --help [none] Print the help message

-e --eperson [email] (CLI ONLY) The eperson that performs the harvest. When the command is used from the REST API, the currently logged in
user will be used.

Examples of harvesting a collection through CLI commands

1. Verify whether the harvester source can be reached

dspace/bin/dspace -g -a https://harvest.source.org -i harvest-set

Replace https://harvest.source.org with the source you want to use, the harvest-set with the set/sets you want to harvest or all in case you
want to harvest all sets.

2. Set up a collection for harvesting

dspace/bin/dspace harvest -s -c 123456789/123 -a https://harvest.source.org -i harvest-set -m dc -t 1

Replace the 123456789/123 with your collection, https://harvest.source.org with the source you want to use, the harvest-set with the set
/sets you want to harves or all in case you want to harvest all sets. The -m parameter indicated the metadata format to be used and the -t parameter
indicates the harvest type to be used. When the value 0 is used for -t , harvesting will be disabled.

3. Run the harvest for the set up collection

dspace/bin/dspace harvest -r -c 123456789/123 -e harvest-user@dspace.org

Replace the 123456789/123 with your collection, the harvest-user@dspace.org with an existing user in DSpace that has sufficient rights to perform
the ingestion.

Setting up a harvest content source from the UI

A collection can be configured to retrieve its content from an external source. This can be done from the "Edit Collection" UI by using the following steps.

1. Configure the collection to harvest its content from an external source

Navigate to the "Edit collection" > "Content Source" tab. Tick the checkbox "This collection harvests its content from an external source".

2. Configure the harvest source

Once the checkbox has been ticket, the OAI provider, set id and metadata format can be configured. An example of the configuration can be found in the
image below.

134

https://harvest.source.org
https://harvest.source.org
mailto:harvest-user@dspace.org

When all sets need to be harvested, the field can be left empty.

The server configuration will be tested upon clicking the "Save" button.

3. Start the harvest

Click the "Import Now" button to start the import. When the import has started, the button will indicate that the import is in progress, however, there is no
need to remain on this page as the harvest will continue to run after leaving this page.

If the current server configuration needs to be retested at a later point, the "Test configuration" button can be used. To fully reset the collection by purging
all items and starting a reimport, click the "Reset and reimport" button.

DSpace 7 Demo - OAI-PMH

https://demo.dspace.org/server/oai/request?verb=Identify

135

https://demo.dspace.org/server/oai/request?verb=Identify

OAI 2.0 Server

1 Introduction
1.1 What is OAI 2.0?
1.2 Why OAI 2.0?
1.3 Concepts (XOAI Core Library)

2 OAI 2.0
2.1 Indexing OAI content

2.1.1 OAI Manager
2.1.2 Scheduled Tasks

2.2 Client-side stylesheet
2.3 Metadata Formats
2.4 Encoding problems

3 Configuration
3.1 Basic Configuration
3.2 Advanced Configuration

3.2.1 General options
3.2.2 Add/Remove Metadata Formats
3.2.3 Add/Remove Metadata Fields

4 Driver/OpenAIRE compliance
4.1 Driver Compliance
4.2 OpenAIRE compliance

5 Sanity check your OAI interface with the OAI Validator

Introduction

Open Archives Initiative Protocol for Metadata Harvesting is a low-barrier mechanism for repository interoperability. Data Providers are repositories that
expose structured metadata via OAI-PMH. Service Providers then make OAI-PMH service requests to harvest that metadata. OAI-PMH is a set of six
verbs or services that are invoked within HTTP.

What is OAI 2.0?

OAI 2.0 is a Java implementation of an OAI-PMH data provider interface (originally developed by Lyncode) that uses .XOAI, an OAI-PMH Java Library

Why OAI 2.0?

Projects like have specific metadata requirements (to the published content through the OAI-PMH interface). As the OAI-PMH protocol doesn't OpenAIRE
establish any frame to these specifics, OAI 2.0 can, in a simple way, have more than one instance of an OAI interface (feature provided by the XOAI core
library) so one could define an interface for each project. That is the main purpose, although, OAI 2.0 allows much more than that.

Concepts (XOAI Core Library)

To understand how XOAI works, one must understand the concept of Filter, Transformer and Context. With a Filter it is possible to select information from
the data source. A Transformer allows one to make some changes in the metadata before showing it in the OAI interface. XOAI also adds a new concept
to the OAI-PMH basic specification, the concept of context. A context is identified in the URL:

http://www.example.com/oai/<context>

Contexts could be seen as virtual distinct OAI interfaces, so with this one could have things like:

http://www.example.com/oai/request
http://www.example.com/oai/driver
http://www.example.com/oai/openaire

With this ingredients it is possible to build a robust solution that fulfills all requirements of , and also other project-specific requirements. Driver OpenAIRE
As shown in Figure 1, with contexts one could select a subset of all available items in the data source. So when entering the context, all OAI-OpenAIRE
PMH request will be restricted to that subset of items.

136

http://www.openarchives.org/pmh/
https://github.com/DSpace/xoai
http://www.openaire.eu/
http://www.example.com/oai/request
http://www.example.com/oai/driver
http://www.example.com/oai/openaire

At this stage, contexts could be seen as sets (also defined in the basic OAI-PMH protocol). The magic of XOAI happens when one need specific metadata
format to be shown in each context. Metadata requirements by slightly differs from the ones. So for each context one must define its Driver OpenAIRE
specific transformer. So, contexts could be seen as an extension to the concept of sets.

To implement an OAI interface from the XOAI core library, one just need to implement the datasource interface.

OAI 2.0

OAI 2.0 is deployed as a part of the DSpace server (backend) webapp. OAI 2.0 has a configurable data source, by default it will not query the DSpace
SQL database at the time of the OAI-PMH request. Instead, it keeps the required metadata in its Solr index (currently in a separate "oai" Solr core) and
serves it from there. It's also possible to set OAI 2.0 to only use the database for querying purposes if necessary, but this decreases performance
significantly. Furthermore, it caches the requests, so doing the same query repeatedly is very fast. In addition to that it also compiles DSpace items to
make uncached responses much faster.

Details about OAI 2.0 internals can be found .here

The OAI 2.0 Server only uses Solr for its indexing. The previous capability to use Database indexing has been removed.

Indexing OAI content

OAI 2.0 uses Solr for all indexing of content.

The Solr index can be updated at your convenience, depending on how fresh you need the information to be. Typically, the administrator sets up a nightly
cron job to update the Solr index from the SQL database.

OAI Manager

OAI manager is a utility that allows one to do certain administrative operations with OAI. You can call it from the command line using the dspace launcher:

Syntax

[dspace]/bin/dspace oai <action> [parameters]

Actions

import Imports DSpace items into OAI Solr index (also cleans OAI cache)
clean-cache Cleans the OAI cache

Parameters

-c Clears the Solr index before indexing (it will import all items again)
-v Verbose output
-h Shows an help text

Scheduled Tasks

In order to refresh the OAI Solr index, it is required to run the command periodically. You can add the following [dspace]/bin/dspace oai import
task to your crontab:

0 3 * * * [dspace]/bin/dspace oai import

Note that should be replaced by the correct value, that is, the value defined in parameter .[dspace] dspace.cfg dspace.dir

Client-side stylesheet

137

https://wiki.duraspace.org/pages/viewpage.action?pageId=32478690

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

1.
2.
3.

1.
2.

The OAI-PMH response is an XML file. While OAI-PMH is primarily used by harvesting tools and usually not directly by humans, sometimes it can be
useful to look at the OAI-PMH requests directly - usually when setting it up for the first time or to verify any changes you make. For these cases, XOAI
provides an XSLT stylesheet to transform the response XML to a nice looking, human-readable and interactive HTML. The stylesheet is linked from the
XML response and the transformation takes place in the user's browser (this requires a recent browser, older browsers will only display the XML directly).
Most automated tools are interested only in the XML file itself and will not perform the transformation. If you want, you can change which stylesheet will be
used by placing it into the directory (or into the [dspace]/webapps/oai/static [dspace-src]/dspace-xoai/dspace-xoai-webapp/src/main

 after which you have to rebuild DSpace), modifying the "stylesheet" attribute of the "Configuration" element in /webapp/static [dspace]/config
 and restarting your servlet container./crosswalks/oai/xoai.xml

Metadata Formats

By default OAI 2.0 provides 12 metadata formats within the /request context:

OAI_DC
DIDL
DIM
ETDMS
METS
MODS
OAI-ORE
QDC
RDF
MARC
UKETD_DC
XOAI

At /driver context it provdes:

OAI_DC
DIDL
METS

And at /openaire context it provides:

OAI_DC
METS

Encoding problems

There are two main potential sources of encoding problems:

a) The servlet connector port has to use the correct encoding. E.g. for Tomcat, this would be <Connector port="8080" ... URIEncoding="UTF-
, where the port attribute specifies port of the connector that DSpace is configured to access Solr on (this is usually 8080, 80 or in case of AJP 8" />

8009).

b) System locale of the dspace command line script that is used to do the oai import. Make sure the user account launching the script (usually from cron)
has the correct locale set (e.g. en_US.UTF-8). Also make sure the locale is actually present on your system.

Configuration

Basic Configuration

Configuration
File:

[dspace]/config/modules/oai.cfg

Property: oai.enabled

Example Value: oai.enabled = true (default)

Information Note: Allows you to enable or disable the OAI module/endpoint

Property: oai.path

Example Value: oai.path = oai (default)

Information Note: Allows you to specify the path where the OAI module will be deployed. This path is relative to the dspace.server.url. So, for
example, if "dspace.server.url=http://localhost:8080/server", then by default the OAI module is available at http://localhost:8080
/server/oai/

Property: oai.storage

Example Value: oai.storage = solr

Information Note: This allows to choose the OAI data source between solr and database. ONLY "solr" is supported at this time.

138

Property: oai.solr.url

Example Value: oai.solr.url = ${solr.server}/oai

Informational
Note:

Solr Server location

Property: oai.identifier.prefix

Example Value: oai.identifier.prefix = ${dspace.hostname}

Informational
Note:

OAI persistent identifier prefix. Format - oai:PREFIX:HANDLE

Property: oai.config.dir

Example Value: oai.config.dir = ${dspace.dir}/config/crosswalks/oai

Informational
Note:

Configuration directory, used by XOAI (core library). Contains xoai.xml, metadata format XSLTs and transformer XSLTs.

Property: oai.cache.enabled

Example Value: oai.cache.enabled = true

Informational
Note:

Whether to enable the OAI cache. Default is true (for better performance).

Property: oai.cache.dir

Example Value: oai.cache.dir = ${dspace.dir}/var/oai

Informational
Note:

Directory to store runtime generated files (for caching purposes).

Advanced Configuration

OAI 2.0 allows you to configure following advanced options:

Contexts
Transformers
Metadata Formats
Filters
Sets

It's an XML file commonly located at: [dspace]/config/crosswalks/oai/xoai.xml

General options

These options influence the OAI interface globally. "per page" means per request, next page (if there is one) can be requested using resumptionToken
provided in current page.

identation [boolean] - whether the output XML should be indented to make it human-readable
maxListIdentifiersSize [integer] - how many identifiers to show per page (verb=ListIdentifiers)
maxListRecordsSize [integer] - how many records to show per page (verb=ListRecords)
maxListSetsSize [integer] - how many sets to show per page (verb=ListSets)
stylesheet [relative file path] - an xsl stylesheet used by client's web browser to transform the output XML into human-readable HTML

Their location and default values are shown in the following fragment:

<Configuration xmlns="http://www.lyncode.com/XOAIConfiguration"
 identation="false"
 maxListIdentifiersSize="100"
 maxListRecordsSize="100"
 maxListSetsSize="100"
 stylesheet="static/style.xsl">

Add/Remove Metadata Formats

Each context could have its own metadata formats. So to add/remove metadata formats to/from it, just need add/remove its reference within xoai.xml, for
example, imagine one need to remove the XOAI schema from:

139

<Context baseurl="request">
 <Format refid="oaidc" />
 <Format refid="mets" />
 <Format refid="xoai" />
 <Format refid="didl" />
 <Format refid="dim" />
 <Format refid="ore" />
 <Format refid="rdf" />
 <Format refid="etdms" />
 <Format refid="mods" />
 <Format refid="qdc" />
 <Format refid="marc" />
 <Format refid="uketd_dc" />
</Context>

Then one would have:

<Context baseurl="request">
 <Format refid="oaidc" />
 <Format refid="mets" />
 <Format refid="didl" />
 <Format refid="dim" />
 <Format refid="ore" />
 <Format refid="rdf" />
 <Format refid="etdms" />
 <Format refid="mods" />
 <Format refid="qdc" />
 <Format refid="marc" />
 <Format refid="uketd_dc" />
</Context>

It is also possible to create new metadata format by creating a specific XSLT for it. All already defined XSLT for DSpace can be found in the [dspace]
 directory. So after producing a new one, add the following information (location marked using brackets) inside /config/crosswalks/oai/metadataFormats

the element in [dspace]/config/crosswalks/oai/xoai.xml:<Formats>

<Format id="[IDENTIFIER]">
 <Prefix>[PREFIX]</Prefix>
 <XSLT>metadataFormats/[XSLT]</XSLT>
 <Namespace>[NAMESPACE]</Namespace>
 <SchemaLocation>[SCHEMA_LOCATION]</SchemaLocation>
</Format>

where:

Parameter Description

IDENTIFIER The identifier used within context configurations to reference this specific format, must be unique within all Metadata Formats
available.

PREFIX The prefix used in OAI interface (metadataPrefix=PREFIX).

XSLT The name of the XSLT file within directory[dspace]/config/crosswalks/oai/metadataFormats

NAMESPACE XML Default Namespace of the created Schema

SCHEMA_LOCATION URI Location of the XSD of the created Schema

NOTE: Changes in [dspace]/config/crosswalks/oai/xoai.xml requires reloading/restarting the servlet container.

Add/Remove Metadata Fields

The internal DSpace fields (Dublin Core) are exposed in the internal XOAI format (xml). All other metadata formats exposed via OAI are mapped from this
XOAI format using XSLT (xoai.xsl itself is just an identity transformation). These XSLT stylesheets are found in the [dspace]/config/crosswalks/oai

 directory. So e.g. oai_dc.xsl is a transformation from the XOAI format to the oai_dc format (unqualified Dublin Core)./metadataFormats

Therefore exposing any DSpace metadata field in any OAI format is just a matter of modifying the corresponding output format stylesheet (This assumes
the general knowledge of how XSLT works. For a tutorial, see e.g.).http://www.w3schools.com/xsl/

140

http://www.w3schools.com/xsl/

For example, if you have a DC field "local.note.librarian" that you want to expose in oai_dc as <dc:note> (please note that this is not a valid DC field and
thus breaks compatibility), then edit oai_dc.xsl and add the following lines just above the closing tag </oai_dc:dc>:

<xsl:for-each select="doc:metadata/doc:element[@name='local']/doc:element[@name='note']/doc:element/doc:element
/doc:field[@name='librarian']">
 <dc:note><xsl:value-of select="." /></dc:note>
</xsl:for-each>

If you need to add/remove metadata fields, you're changing the output format. Therefore it is recommended to as a copy of create a new metadata format
the one you want to modify. This way the old format will remain available along with the new one and any upgrades to the original format during DSpace
upgrades will not overwrite your customizations. If you need the format to have the same name as the original format (e.g. the default oai_dc format), you
can create a new in xoai.xsl containing your modified format with the original name, which will be available as /oai/context-name.context

NOTE: Please, keep in mind that the OAI provider caches the transformed output, so you have to run after [dspace]/bin/dspace oai clean-cache
any .xsl modification and reload the OAI page for the changes to take effect. When adding/removing metadata formats, making changes in [dspace]/config
/crosswalks/oai/xoai.xml requires reloading/restarting the servlet container.

Driver/OpenAIRE compliance

The default OAI 2.0 installation provides two new contexts. They are:

Driver context, which only exposes Driver compliant items;
OpenAIRE context, which only exposes OpenAIRE compliant items;

However, in order to be exposed DSpace items must be compliant with Driver/OpenAIRE guide-lines.

Driver Compliance

DRIVER Guidelines for Repository Managers and Administrators on how to expose digital scientific resources using OAI-PMH and Dublin Core Metadata,
creating interoperability by homogenizing the repository output. The OAI-PMH is based on DRIVER Guidelines 2.0. set driver

This set is used to expose items of the repository that are available for open access. It’s not necessary for all the items of the repository to be available for
open access.

What specific metadata values are expected?

To have items in this set, you must configure your file in order to comply with the DRIVER Guidelines:input-forms.xml

Must have a publication date - (already configured in DSpace items)dc.date.issued
dc.language must use ISO639-3
the value of must be one of the dc.type 16 types named in the guidelines

How do you easily add those metadata values?

As DRIVER guidelines use Dublin Core, all the needed items are already registered in DSpace. You just need to configure the deposit process.

OpenAIRE compliance
For OpenAIRE v4 compliance, see OpenAIRE4 Guidelines Compliancy

The OpenAIRE Guidelines 2.0 provide the OpenAIRE compatibility to repositories and aggregators. By implementing these Guidelines, repository
managers are facilitating the authors who deposit their publications in the repository in complying with the EC Open Access requirements. For developers
of repository platforms, the Guidelines provide guidance to add supportive functionalities for authors of EC-funded research in future versions.

The name of the set in OAI-PMH is "ec_fundedresources" and will expose the items of the repository that comply with these guidelines. These guidelines
are based on top of DRIVER guidelines. See .version 2.0 of the Guidelines

See the .Application Profile of OpenAIRE

What specific metadata values are expected?

These are the OpenAIRE metadata values only, to check these and driver metadata values check page 11 of the OpenAIRE guidelines 2.0.

dc:relation with the project ID (see p.8)
dc:rights with the access rights information from vocabulary (possible values)here

Optionally:

dc:date with the embargo end date (recommended for embargoed items)

141

http://wiki.duraspace.org/#OAI2.0Server-Concepts(XOAICoreLibrary)
http://www.driver-support.eu/
http://www.openaire.eu/
http://www-01.sil.org/iso639-3/codes.asp
http://guidelines.readthedocs.org/en/latest/literature/field_publicationtype.html
https://guidelines.openaire.eu/en/latest/
http://colab.mpdl.mpg.de/mediawiki/ESciDoc_Application_Profile_OpenAIRE
http://wiki.surf.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights

<dc:date>info:eu-repo/date/embargoEnd/2011-05-12<dc:date>

How do you easily add those metadata values?

Have a dc:relation field in with a list of the projects. You can also use the to facilitate the input-forms.xml OpenAIRE Authority Control Addon
process of finding the project.
Just use a combo-box for dc:rights to input the 4 options:

info:eu-repo/semantics/closedAccess
info:eu-repo/semantics/embargoedAccess
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess

Use an input-box for dc:date to insert the embargo end date

Relevant Links

OAI 2.0 is a standard part of DSpace 3.0
Download & Install OAI 2.0 for DSpace 1.8.x: http://www.lyncode.com/dspace/addons/xoai/

Sanity check your OAI interface with the OAI Validator

There is a very useful validator for OAI interfaces available at , we urge you to use this validator to confirm your OAI interface is http://validator.oaipmh.com
in fact usable.

142

http://projecto.rcaap.pt/index.php/lang-pt/consultar-recursos-de-apoio/remository?func=fileinfo&id=354
http://www.lyncode.com/dspace/addons/xoai/
http://validator.oaipmh.com

OAI-PMH Data Provider 2.0 (Internals)

1 OAI-PMH Data Provider 2.0 (Internals)
1.1 Sets
1.2 Unique Identifier
1.3 Access control
1.4 Modification Date (OAI Date Stamp)
1.5 "About" Information
1.6 Deletions
1.7 Flow Control (Resumption Tokens)

OAI-PMH Data Provider 2.0 (Internals)

The DSpace platform supports the (OAI-PMH) version 2.0 as a data provider. This is Open Archives Initiative Protocol for Metadata Harvesting
accomplished using the OAI-PMH Java Toolkit.XOAI

The DSpace build process builds a single backend webapp, which optionally includes an OAI-PMH endpoint (when oai.enabled=true) In a typical
configuration, this endpoint is deployed at (configured by "oai.path"), containing request, driver and openaire contexts, ${dspace.server.url}/oai
for example:

http://dspace.myu.edu/server/oai/request?verb=Identify

The "base URL" of this DSpace deployment would be:

http://dspace.myu.edu/server/oai/request

But one could also provide the Driver or OpenAIRE contexts:

http://dspace.myu.edu/server/oai/driver
http://dspace.myu.edu/server/oai/openaire

It is this URL that should be registered with . www.openarchives.org

DSpace provides implementations of the XOAI data sources interfaces.

Sets

OAI-PMH allows repositories to expose an hierarchy of sets in which records may be placed. A record can be in zero or more sets.

DSpace exposes collections and communities as sets.

Each community and collection has a corresponding OAI set, discoverable by harvesters via the ListSets verb. The setSpec is based on the community
/collection handle, with the "/" converted to underscore to form a legal setSpec. The setSpec is prefixed by "com_" or "col_" for communities and
collections, respectively (this is a change in set names in DSpace 3.0 / OAI 2.0). For example:

col_1721.1_1234

Naturally enough, the community/collection name is also the name of the corresponding set.

Unique Identifier

Every item in OAI-PMH data repository must have an unique identifier, which must conform to the URI syntax. As of DSpace 1.2, Handles are not used;
this is because in OAI-PMH, the OAI identifier identifies the associated with the . The is the DSpace item, whose metadata record resource resource resour

 is the Handle. In practical terms, using the Handle for the OAI identifier may cause problems in the future if DSpace instances share items with ce identifier
the same Handles; the OAI metadata record identifiers should be different as the different DSpace instances would need to be harvested separately and
may have different metadata for the item.

The OAI identifiers that DSpace uses are of the form:

oai:PREFIX:handle

For example:

143

http://www.openarchives.org/
https://github.com/lyncode/xoai
http://www.openarchives.org/

oai:dspace.myu.edu:123456789/345

If you wish to use a different scheme, this can easily be changed by editing the value of identifier.prefix at [dspace]/config/modules/oai.cfg file.

Access control

OAI provides no authentication/authorisation details, although these could be implemented using standard HTTP methods. It is assumed that all access
will be anonymous for the time being.

A question is, "is all metadata public?" Presently the answer to this is yes; all metadata is exposed via OAI-PMH, even if the item has restricted access
policies. The reasoning behind this is that people who do actually have permission to read a restricted item should still be able to use OAI-based services
to discover the content. But, exposed data could be changed by changing the XSLT defined at [dspace]/config/crosswalks/oai/metadataFormats.

Modification Date (OAI Date Stamp)

OAI-PMH harvesters need to know when a record has been created, changed or deleted. DSpace keeps track of a "last modified" date for each item in the
system, and this date is used for the OAI-PMH date stamp. This means that any changes to the metadata (e.g. admins correcting a field, or a withdrawal)
will be exposed to harvesters.

"About" Information

As part of each record given out to a harvester, there is an optional, repeatable "about" section which can be filled out in any (XML-schema conformant)
way. Common uses are for provenance and rights information, and there are schemas in use by OAI communities for this. Presently DSpace does not
provide any of this information, but XOAI core library allows its definition. This requires to dive into code and perform some changes.

Deletions

As DSpace supports two forms of deletions (withdrawals or permanent expunging), this has an impact on how OAI-PMH exposes delitions. During a
permanent deletion (expunge), DSpace no longer retains any information about the deleted object. Therefore, permanent deletions "disappear" from OAI-
PMH, as DSpace no longer has any information about the object. This is considered a ."transient" approach to deletion based on OAI-PMH definitions

When an item is withdrawn in DSpace, the item still exists but it hidden from public view. Withdrawn items will report a "<header status="deleted">" in OAI-
PMH when a GetRecord request is made for a withdrawn item (however, they are NOT shown in an OAI-PMH "ListRecords" request by default). Keep in
mind that the OAI-PMH index does NOT update automatically, so withdrawn items will not show this "deleted" status until "./dspace oai import" is next run.

Once an item has been withdrawn, OAI-PMH harvests of the date range in which the withdrawal occurred will find the "deleted" record header. Harvests of
a date range prior to the withdrawal will find the record, despite the fact that the record did exist at that time. As an example of this, consider an item not
that was created on 2002-05-02 and withdrawn on 2002-10-06. A request to harvest the month 2002-10 will yield the "record deleted" header. However, a
harvest of the month 2002-05 will not yield the original record.

Flow Control (Resumption Tokens)

An OAI data provider can prevent any performance impact caused by harvesting by forcing a harvester to receive data in time-separated chunks. If the
data provider receives a request for a lot of data, it can send part of the data with a resumption token. The harvester can then return later with the
resumption token and continue.

DSpace supports resumption tokens for "ListRecords", "ListIdentifiers" and "ListSets" OAI-PMH requests.

Each OAI-PMH ListRecords request will return at most 100 records (by default) but it could be configured in the [dspace]/config/crosswalks/oai
 file./xoai.xml

When a resumption token is issued, the optional and attributes are included. OAI 2.0 resumption tokens are persistent, so completeListSize cursor expiratio
 of the resumption token is undefined, they do not expire.nDate

Resumption tokens contain all the state information required to continue a request.

144

https://www.openarchives.org/OAI/openarchivesprotocol.html#deletion

Exchanging Content Between Repositories

1 Transferring Content via Export and Import
1.1 Transferring Communities, Collections, or Items using Packages

2 Transferring Items using Simple Archive Format
3 Transferring Items using OAI-ORE/OAI-PMH Harvester

Transferring Content via Export and Import

To migrate content from one DSpace to another, you can export content from the Source DSpace and import it into the Destination DSpace.

Transferring Communities, Collections, or Items using Packages

You may transfer any DSpace content (Communities, Collections or Items) from one DSpace to another by utilizing the tool. This AIP Backup and Restore
tool allows you to export content into a series of Archival Information Packages (AIPs). These AIPs can be used to restore content (from a backup) or move
/migrate content to another DSpace installation.

For more information see .AIP Backup and Restore

Transferring Items using Simple Archive Format

Where items are to be moved between DSpace instances (for example from a test DSpace into a production DSpace) the Item Exporter and Item Importer
can be used.

First, you should export the DSpace Item(s) into the Simple Archive Format, as detailed at: . Be Importing and Exporting Items via Simple Archive Format
sure to use the --migrate option, which removes fields that would be duplicated on import. Then import the resulting files into the other instance.

Transferring Items using OAI-ORE/OAI-PMH Harvester
OAI Harvesting is not available in DSpace 7.0. It is scheduled to be restored in a later 7.x release (currently 7.1), see DSpace Release 7.0 Status

You may also choose to enable the OAI-ORE Harvester. This OAI-ORE Harvester allows one DSpace installation to harvest Items (via OAI-ORE) from
another DSpace Installation (or any other system supporting OAI-ORE). Items are harvested from a remote DSpace Collection into a local DSpace
Collection. Harvesting can also be scheduled to run automatically (or by demand).

See OAI - Harvesting from another DSpace

145

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSDOC8x/OAI#OAI-HarvestingfromanotherDSpace

SWORDv1 Client
The embedded SWORD Client allows a user (currently restricted to an administrator) to copy an item to a SWORD server. This allows your DSpace
installation to deposit items into another SWORD-compliant repository (including another DSpace install).

DSpace 7.0 does not yet support

The SWORDv1 Client is not available in DSpace 7.0. It may be restored in a later 7.x release, see DSpace Release 7.0 Status

1 Enabling the SWORD Client
2 Configuring the SWORD Client

Enabling the SWORD Client

The SWORDv1 Client is not available in DSpace 7.0. It may be restored in a later 7.x release, see DSpace Release 7.0 Status

Configuring the SWORD Client

All the relevant configuration can be found in . These may be overridden in your config (see).sword-client.cfg local.cfg Configuration Reference

Configuration File: [dspace]/config/modules/sword-client.cfg

Property: sword-client.targets

Example value:
sword-client.targets = http://localhost:8080/sword/servicedocument, \
 http://client.swordapp.org/client/servicedocument, \
 http://dspace.swordapp.org/sword/servicedocument, \
 http://sword.eprints.org/sword-app/servicedocument, \
 http://sword.intralibrary.com/IntraLibrary-Deposit/service, \
 http://fedora.swordapp.org/sword-fedora/servicedocument

Informational note: List of remote Sword servers. Used to build the drop-down list of selectable SWORD targets.

Property: file-typessword-client.

Example value: file-types = application/zipsword-client.

Informational note: List of file types from which the user can select. If a type is not supported by the remote server
it will not appear in the drop-down list.

Property: package-formatssword-client.

Example value:
sword-client.package-formats = http://purl.org/net/sword-types/METSDSpaceSIP

Informational note: List of package formats from which the user can select. If a format is not supported by the remote server
it will not appear in the drop-down list.

146

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status

Linked (Open) Data

Introduction
Exchanging repository contents
Terminology

Linked (Open) Data Support within DSpace
Architecture / Concept
Install a Triple Store
Default configuration and what you should change
Configuration Reference

[dspace-source]/dspace/config/modules/rdf.cfg
[dspace-source]/dspace/config/modules/rdf/constant-data-*.ttl
[dspace-source]/dspace/config/modules/rdf/metadata-rdf-mapping.ttl
[dspace-source]/dspace/config/modules/rdf/fuseki-assembler.ttl
[dspace-source]/dspace/config/spring/api/rdf.xml

Maintenance

Introduction

Exchanging repository contents

Most sites on the Internet are oriented towards human consumption. While HTML may be a good format for presenting information to humans, it is not a
good format to export data in a way easy for a computer to work with. Like most software for building repositories, DSpace supports as an OAI-PMH
interface to expose the stored metadata. While OAI-PMH is well known in the field of repositories, it is rarely known elsewhere (e.g. Google retired its

). The Semantic Web is a generic approach to publish data on the Internet together with information about its semantics. Its support for OAI-PMH in 2008
application is not limited to repositories or libraries and it has a growing user base. W3C-released standards for publishing RDF and SPARQL are
structured data on the web in a machine-readable way. The data stored in repositories is particularly suited for use in the Semantic Web, as the metadata
are already available. It doesn’t have to be generated or entered manually for publication as Linked Data. For most repositories, at least for Open Access
repositories, it is quite important to share their stored content. Linked Data is a rather big chance for repositories to present their content in a way that can
easily be accessed, interlinked and (re)used.

Terminology

We don't want to give a full introduction into the Semantic Web and its technologies here as this can be easily found in many places on the web.
Nevertheless, we want to give a short glossary of the terms used most often in this context to make the following documentation more readable.

Semantic
Web

The term "Semantic Web" refers to the part of the Internet containing Linked Data. Just like the World Wide Web, the Semantic Web is
also woven together by links among the data.

Linked
Data

Linked
Open
Data

Data in RDF, following the are called Linked Data. The Linked Data Principles describe the expected behavior of Linked Data Principles
data publishers who shall ensure that the data are easy to find, easy to retrieve, can be linked easily and link to other data as published
well.

Linked Open Data is Linked Data published under an open license. There is no t difference between Linked Data and Linked echnical
Open Data (often abbreviated as LOD). It is only a question of the license used to publish it.

RDF
RDF/XML
Turtle
N-Triples
N3-
Notation

RDF is an acronym for Resource Description Framework, a metadata model. Don't think of RDF as a format, as it is a model.
Nevertheless, there are different formats to serialize data following RDF. RDF/XML, Turtle, N-Triples and N3-Notation are probably the
most well-known formats to serialize data in RDF. While RDF/XML uses XML, Turtle, N-Triples and N3-Notation don't and they are
easier for humans to read and write. When we use RDF in configuration files, we currently prefer Turtle (but the code should be DSpace
able to deal with any serialization).

Triple
Store

A triple store is a database to natively store data following the RDF model. Just as you have to provide a relational database for DSpace,
you have to provide a Triple Store for DSpace if you want to use the LOD support.

SPARQL The SPARQL Protocol and RDF Query Language is a family of protocols to query triple stores. Since version 1.1, can be used SPARQL
to manipulate triple stores as well, to store, delete or update data in triple stores. DSpace uses SPARQL 1.1 Graph Store HTTP Protocol
and SPARQL 1.1 Query Language to communicate with the Triple Store. The SPARQL 1.1 Query Language is often referred to simply
as SPARQL, so expect the SPARQL 1.1 Query Language if no other specific protocol out of the SPARQL family is explicitly .specified

SPARQL
endpoint

A SPARQL endpoint is a SPARQL interface of a triple store. Since SPARQL 1.1, a SPARQL endpoint can be either read-only, allowing o
to query the stored data; or readable and writable, allowing to modify the stored data as well. When talking about a SPARQL nly

endpoint without specifying which SPARQL protocol is used, an endpoint supporting SPARQL 1.1 Query Language is meant.

Linked (Open) Data Support within DSpace
Starting with DSpace 5.0, DSpace provides stored contents in form of Linked (Open) Data.support for publishing

147

http://googlewebmastercentral.blogspot.de/2008/04/retiring-support-for-oai-pmh-in.html
http://googlewebmastercentral.blogspot.de/2008/04/retiring-support-for-oai-pmh-in.html
http://www.w3.org/standards/techs/rdf#w3c_all
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/DesignIssues/LinkedData.html

Architecture / Concept

To publish content stored in DSpace as Linked (Open) Data, the data have to be converted into RDF. The conversion into RDF has to be configurable as
different DSpace instances may use different metadata schemata, different persistent identifiers (DOI, Handle, ...) and so on. Depending on the content to
convert, configuration and other parameters, may be time- and impact performance. Content of repositories is much more often read conversion intensive
then created, deleted or changed because the main goal of repositories is to safely store their contents. For this reason, the content stored within DSpace
is converted and immediately after it is created or updated. The triple store serves as a cache and provides a SPARQL endpoint to stored in a triple store
make the converted data accessible using SPARQL. The conversion is triggered automatically by the DSpace event system and can be started manually
using the command line interface – both cases are documented below. There is no need to backup the triple store, as all data stored in the triple store can
be recreated from the contents stored in DSpace (in the assetstore(s) and the database). Beside the SPARQL endpoint, the data should be elsewhere
published as RDF serialization as well. With dspace-rdf DSpace offers a module that loads converted data from the triple store and provides it as an RDF
serialization. It currently supports RDF/XML, Turtle and N-Triples.

Repositories use Persistent Identifiers to make content citable and to address content. Following the Linked Data Principles, DSpace uses a Persistent
Identifier in the form of HTTP(S) URIs, converting a Handle to http://hdl.handle.net/<handle> and a DOI to http://dx.doi.org/<doi>. Altogether, LinkeDSpace
d Data support spans all three Layers: the storage layer with a triple store, the business logic with classes to convert stored contents into RDF, and the
application layer with a module to publish RDF serializations. Just like DSpace allows you to choose Oracle or Postgresql as the relational database, you
may choose between different triple stores. The only requirements are that the triple store must support SPARQL 1.1 Query Language and SPARQL 1.1
Graph Store HTTP Protocol which DSpace uses to store, update, delete and load converted data in/out of the triple store and uses the triple store to
provide the data over a SPARQL endpoint.

Store public data only in the triple store!

The triple store should contain only data that are public, because the access restrictions won't affect the SPARQL endpoint. For this reason, DSpace
DSpace converts only archived, discoverable (non-private) Items, Collections and Communities which are readable for anonymous users. Please consider
this while configuring and/or extending DSpace Linked Data support.

The contains the classes used to convert the repository content to RDF. The conversion itself is done by plugins. The org.dspace.rdf.conversion package or
 is really simple, so take a look at it you can program in Java and want to extend the conversion. The g.dspace.rdf.conversion.ConverterPlugin interface if

only thing important is that plugins must only create RDF that can be made publicly available, as the triple store provides it using a sparql endpoint for
which the DSpace access restrictions do not apply. Plugins converting metadata should check whether a specific metadata field needs to be protected or
not (see on how to check that). The is heavily configurable (see below) and is used to org.dspace.app.util.MetadataExposure MetadataConverterPlugin
convert the metadata of Items. The can be used to add static RDF Triples (see below). The StaticDSOConverterPlugin SimpleDSORelationsConverterPlugin
creates links between items and collections, collections and communities, subcommunitites and their parents, and between top-level communities and the
information representing the repository itself.

As different repositories uses different persistent identifiers to address their content, different algorithms to create URIs used within the converted data can
be implemented. Currently HTTP(S) URIs of the repository (called local URIs), Handles and DOIs can be used. See the configuration part of this document
for further information. If you want to add another algorithm, take a look at the .org.dspace.rdf.storage.URIGenerator interface

Install a Triple Store

In addition to a normal DSpace installation you have to install a triple store. You can use any triple store that supports SPARQL 1.1 Query Language and
SPARQL 1.1 Graph Store HTTP Protocol. If you do not have one yet, you can use Apache Fuseki. Download Fuseki from its and official download page
unpack the downloaded archive. The archive contains several scripts to start Fuseki. Use the start script appropriate to the OS of your choice with the
options '--localhost --config=<dspace-install>/config/modules/rdf/fuseki-assembler.ttl'. Instead of changing to the directory into which you unpacked Fuseki,
you may set the variable FUSEKI_HOME. If you're using Linux and bash, you unpacked Fuseki to /usr/local/jena-fuseki-1.0.1 and you installed DSpace to
[dspace-install], this would look like this:

export FUSEKI_HOME=/usr/local/jena-fuseki-1.0.1 ; $FUSKI_HOME/fuseki-server --localhost --config [dspace-
install]/config/modules/rdf/fuseki-assembler.ttl

Fuseki's archive contains a script to start Fuseki automatically at startup as well.

Make Fuseki connect to localhost only, by using the argument --localhost when launching if you use the configuration provided with DSpace! The
configuration contains a writeable SPARQL endpoint that allows any connection to change/delete the content of your triple store.
Use Apache mod proxy, mod rewrite or any other appropriate web server/proxy to make localhost:3030/dspace/sparql readable from the internet. Use the
address under which it is accessible as the address of your public sparql endpoint (see the property public.sparql.endpoint in the configuration reference
below.).

The configuration provided within DSpace makes it store the files for the triple store under [dspace-install]/triplestore. Using this configuration, Fuseki
provides three SPARQL endpoints: two read-only endpoints and one that can be used to change the data of the triple store. You should not use this

 as it would make it possible for anyone to delete, change or add information to the triple configuration if you let Fuseki connect to the internet directly
store. The option --localhost tells Fuseki to listen only on the loopback device. You can use Apache mod_proxy or any other web or proxy server to make
the read-only SPARQL endpoint accessible from the internet. With the configuration described, Fueski listens to the port 3030 using HTTP. Using the
address you can connect to the Fuseki Web UI. addresses a writeable SPARQL 1.1 HTTP Graph http://localhost:3030/ http://localhost:3030/dspace/data
Store Protocol endpoint, and a read-only one. Under a read-only SPARQL 1.1 Query http://localhost:3030/dspace/get http://localhost:3030/dspace/sparql
Language endpoint can be found. , while the last one should be accessible The first one of these endpoints must be not accessible by the internet
publicly.

Default configuration and what you should change

148

https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/java/org/dspace/rdf/conversion
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/ConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/ConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/app/util/MetadataExposure.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/MetadataConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/StaticDSOConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/SimpleDSORelationsConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/SimpleDSORelationsConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/storage/URIGenerator.java
http://jena.apache.org/documentation/serving_data/index.html#download-fuseki

First, you'll want to ensure the Linked Data endpoint is enabled/configured. In your , add . You can optionally local.cfg rdf.enabled = true
change it's path by setting (it defaults to "rdf" which means the Linked Data endpoint is available at (where rdf.path [dspace.server.url]/rdf/ ds

 is also specified in your)pace.server.url local.cfg

In the file you should look for the property and add there. Adding [dspace]/config/dspace.cfg event.dispatcher.default.consumers rdf
rdf there makes DSpace update the triple store automatically as the publicly available content of the repository changes.

As the Linked Data support of DSpace is highly configurable this section gives a short list of things you probably want to configure before using it. Below
you can find more information on what is possible to configure.

In the file you want to configure the address of the public sparql endpoint and the address of the writable [dspace]/config/modules/rdf.cfg
endpoint DSpace use to connect to the triple store (the properties ,). In the rdf.public.sparql.endpoint rdf.storage.graphstore.endpoint
same file you want to configure the URL that addresses the dspace-rdf module which is depending on where you deployed it (property rdf.contextPath
) and switch content negotiation on (set property).rdf.contentNegotiation.enable = true

In the file you should change the links to the Web UI of the repository and the [dspace]/config/modules/rdf/constant-data-general.ttl
public readable SPARQL endpoint. The URL of the public SPARQL endpoint should point to a URL that is proxied by a webserver to the Triple Store. See
the section above for further information.Install a Triple Store

In the file you may add any triples that should be added to the description of the [dspace]/config/modules/rdf/constant-data-site.ttl
repository itself.

If you want to change the way the metadata fields are converted, take a look into the file [dspace]/config/modules/rdf/metadata-rdf-mapping.
. This is also the place to add information on how to map metadata fields that you added to DSpace. There is already a quite acceptable default ttl

configuration for the metadata fields which DSpace supports out of the box. If you want to use some specific prefixes in RDF serializations that support
prefixes, you have to edit .[dspace]onfig/modules/rdf/metadata-prefixes.ttl

Configuration Reference

There are several configuration files to configure DSpace's LOD support. The main configuration file can be found under [dspace-source]/dspace
. Within DSpace we use Spring to define which classes to load. For DSpace's LOD support this is done within /config/modules/rdf.cfg [dspace-

. All other configuration files are positioned in the directory source]/dspace/config/spring/api/rdf.xml [dspace-source]/dspace/config
/. Configurations in can be modified directly, or overridden via your config file (see). You'll /modules/rdf rdf.cfg local.cfg Configuration Reference

have to configure where to find and how to connect to the triple store. You may configure how to generate URIs to be used within the generated Linked
Data and how to convert the contents stored in DSpace into RDF. We will guide you through the configuration file by file.

[dspace-source]/dspace/config/modules/rdf.cfg

Pr
op
ert
y:

rdf.enabled

Ex
am
ple
Val
ue:

rdf.enabled = true

Inf
or
ma
tio
nal
No
te:

Defines whether the RDF endpoint is enabled or disabled (disabled by default). If enabled, the RDF endpoint is available at ${dspace.server.url}
/${rdf.path}. Changing this value requires rebooting your servlet container (e.g. Tomcat)

Pr
op
ert
y:

rdf.path

Ex
am
ple
Val
ue:

rdf.path = rdf

Inf
or
ma
tio
nal
No
te:

Defines the path of the RDF endpoint, if enabled. For example, a value of "rdf" (the default) means the RDF interface/endpoint is available at
${dspace.server.url}/rdf (e.g. if "dspace.server.url = http://localhost:8080/server", then it'd be available at "http://localhost:8080/server
/rdf". Changing this value requires rebooting your servlet container (e.g. Tomcat)

149

Pr
op
ert
y:

rdf.contentNegotiation.enable

Ex
am
ple
Val
ue:

rdf.contentNegotiation.enable = true

Inf
or
ma
tio
nal
No
te:

Defines whether content negotiation should be activated. Set this true, if you use Linked Data support.

Pr
op
ert
y:

rdf.contextPath

Ex
am
ple
Val
ue:

rdf.contextPath = ${dspace.baseUrl}/rdf

Inf
or
ma
tio
nal
No
te:

The content negotiation needs to know where to refer if anyone asks for RDF serializations of content stored within DSpace. This property sets the
URL where the dspace-rdf module can be reached on the Internet (depending on how you deployed it).

Pr
op
ert
y:

rdf.public.sparql.endpoint

Ex
am
ple
Val
ue:

rdf.public.sparql.endpoint = http://${dspace.baseUrl}/sparql

Inf
or
ma
tio
nal
No
te:

Address of the read-only public SPARQL endpoint supporting SPARQL 1.1 Query Language.

Pr
op
ert
y:

rdf.storage.graphstore.endpoint

Ex
am
ple
Val
ue:

rdf.storage.graphstore.endpoint = http://localhost:3030/dspace/data

Inf
or
ma
tio
nal
No
te:

Address of a writable SPARQL 1.1 Graph Store HTTP Protocol endpoint. This address is used to create, update and delete converted data in the
triple store. If you use Fuseki with the configuration provided as part of DSpace 5, you can leave this as it is. If you use another Triple Store or
configure Fuseki on your own, change this property to point to a writeable SPARQL endpoint supporting the SPARQL 1.1 Graph Store HTTP
Protocol.

150

Pr
op
ert
y:

rdf.storage.graphstore.authentication

Ex
am
ple
Val
ue:

rdf.storage.graphstore.authentication = no

Inf
or
ma
tio
nal
No
te:

Defines whether to use HTTP Basic authentication to connect to the writable SPARQL 1.1 Graph Store HTTP Protocol endpoint.

Pr
op
erti
es:

rdf.storage.graphstore.login
rdf.storage.graphstore.password

Ex
am
ple
Val
ue
s:

rdf.storage.graphstore.login = dspace
rdf.storage.graphstore.password =ecapsd

Inf
or
ma
tio
nal
No
te:

Credentials for the HTTP Basic authentication if it is necessary to connect to the writable SPARQL 1.1 Graph Store HTTP Protocol endpoint.

Pr
op
ert
y:

rdf.storage.sparql.endpoint

Ex
am
ple
Val
ue:

rdf.storage.sparql.endpoint = http://localhost:3030/dspace/sparql

Inf
or
ma
tio
nal
No
te:

Besides a writable SPARQL 1.1 Graph Store HTTP Protocol endpoint, DSpace needs a SPARQL 1.1 Query Language endpoint, which can be
read-only. This property allows you to set an address to be used to connect to such a SPARQL endpoint. If you leave this property empty the
property ${rdf.public.sparql.endpoint} will be used instead.

Pr
op
erti
es:

rdf.storage.sparql.authentication
rdf.storage.sparql.login
rdf.storage.sparql.password

Ex
am
ple
Val
ue
s:

rdf.storage.sparql.authentication = yes
rdf.storage.sparql.login = dspace
rdf.storage.sparql.password = ecapsd

Inf
or
ma
tio
nal
No
te:

As for the SPARQL 1.1 Graph Store HTTP Protocol you can configure DSpace to use HTTP Basic authentication to authenticate against the (read-
only) SPARQL 1.1 Query Language endpoint.

151

Pr
op
ert
y:

rdf.converter.DSOtypes

Ex
am
ple
Val
ue:

rdf.converter.DSOtypes = SITE, COMMUNITY, COLLECTION, ITEM

Inf
or
ma
tio
nal
No
te:

Define which kind of DSpaceObjects should be converted. Bundles and Bitstreams will be converted as part of the Item they belong to. Don't add
EPersons here unless you really know what you are doing. All converted data is stored in the triple store that provides a publicly readable
SPARQL endpoint. So all data converted into RDF is exposed publicly. Every DSO type you add here must have an HTTP URI to be referenced in
the generated RDF, which is another reason not to add EPersons here currently.

The following properties configure the StaticDSOConverterPlugin.

Pr
op
erti
es:

rdf.constant.data.GENERAL
constant.data.COLLECTIONrdf.
constant.data.COMMUNITYrdf.
constant.data.ITEMrdf.
constant.data.SITErdf.

Ex
am
ple
Val
ue
s:

rdf.constant.data.GENERAL = ${dspace.dir}/config/modules/rdf/constant-data-general.ttl
constant.data.COLLECTION = ${dspace.dir}/config/modules/rdf/constant-data-collection.ttlrdf.
constant.data.COMMUNITY = ${dspace.dir}/config/modules/rdf/constant-data-community.ttlrdf.
constant.data.ITEM = ${dspace.dir}/config/modules/rdf/constant-data-item.ttlrdf.
constant.data.SITE = ${dspace.dir}/config/modules/rdf/constant-data-site.ttlrdf.

Inf
or
ma
tio
nal
No
te:

These properties define files to read static data from. These data should be in RDF, and by default Turtle is used as serialization. The data in the
file referenced by the property ${ constant.data.GENERAL} will be included in every Entity that is converted to RDF. E.g. it can be used to point rdf.
to the address of the public readable SPARQL endpoint or may contain the name of the institution running DSpace.

The other properties define files that will be included if a DSpace Object of the specified type (collection, community, item or site) is converted.
This makes it possible to add static content to every Item, every Collection, ...

The following properties configure the MetadataConverterPlugin.

Pr
op
ert
y:

rdf.metadata.mappings

Ex
am
ple
Val
ue:

rdf.metadata.mappings = ${dspace.dir}/config/modules/rdf/metadata-rdf-mapping.ttl

Inf
or
ma
tio
nal
No
te:

Defines the file that contains the mappings for the MetadataConverterPlugin. See below the description of the configuration file [dspace-source]
/dspace/config/modules/rdf/metadata-rdf-mapping.ttl.

Pr
op
ert
y:

rdf.metadata.schema

Ex
am
ple
Val
ue:

rdf.metadata.schema = file://${dspace.dir}/config/modules/rdf/metadata-rdf-schema.ttl

152

Inf
or
ma
tio
nal
No
te:

Configures the URL used to load the RDF Schema of the DSpace Metadata RDF mapping Vocabulary. Using a file:// URI makes it possible to
convert DSpace content without having an internet connection. The version of the schema has to be the right one for the used code. In DSpace
5.0 we use the version 0.2.0. This Schema can be found here as well: Thhttp://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0.
e newest version of the Schema can be found here: .http://digital-repositories.org/ontologies/dspace-metadata-mapping/

Pr
op
ert
y:

rdf.metadata.prefixes

Ex
am
ple
Val
ue:

rdf.metadata.prefixes = ${dspace.dir}/config/modules/rdf/metadata-prefixes.ttl

Inf
or
ma
tio
nal
No
te:

If you want to use prefixes in RDF serializations that support prefixes, you can define these prefixes in the file referenced by this property.

The following properties configure the SimpleDSORelationsConverterPlugin

Pr
op
ert
y:

rdf.simplerelations.prefixes

Ex
am
ple
Val
ue:

rdf.simplerelations.prefixes = ${dspace.dir}/config/modules/rdf/simple-relations-prefixes.ttl

Inf
or
ma
tio
nal
No
te:

If you want to use prefixes in RDF serializations that support prefixes, you can define these prefixes in the file referenced by this property.

Pr
op
ert
y:

rdf.simplerelations.site2community

Ex
am
ple
Val
ue:

rdf.simplerelations.site2community = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasCommunity

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from the data representing the whole repository to the top level communities. Defining multiple predicates
separated by commas will result in multiple triples.

Pr
op
ert
y:

rdf.simplerelations.community2site

Ex
am
ple
Val
ue:

rdf.simplerelations.community2site = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfRepository

153

http://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0
http://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0
http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasCommunity
http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfRepository

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from the top level communities to the data representing the whole repository. Defining multiple predicates
separated by commas will result in multiple triples.

Pr
op
ert
y:

rdf.simplerelations.community2subcommunity

Ex
am
ple
Val
ue:

rdf.simplerelations.community2subcommunity = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0
#hasSubcommunity

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from communities to their subcommunities. Defining multiple predicates separated by commas will result in
multiple triples.

Pr
op
ert
y:

rdf.simplerelations.subcommunity2community

Ex
am
ple
Val
ue:

rdf.simplerelations.subcommunity2community = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0
#isSubcommunityOf

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from subcommunities to the communities they belong to. Defining multiple predicates separated by commas
will result in multiple triples.

Pr
op
ert
y:

rdf.simplerelations.community2collection

Ex
am
ple
Val
ue:

rdf.simplerelations.community2collection = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasCollection

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from communities to their collections. Defining multiple predicates separated by commas will result in multiple
triples.

Pr
op
ert
y:

rdf.simplerelations.collection2community

Ex
am
ple
Val
ue:

rdf.simplerelations.collection2community = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0
#isPartOfCommunity

154

http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasSubcommunity
http://digital-repositories.org/ontologies/dspace/0.1.0#hasSubcommunity
http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isSubcommunityOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isSubcommunityOf
http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasCollection
http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCommunity
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCommunity

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from collections to the communities they belong to. Defining multiple predicates separated by commas will
result in multiple triples.

Pr
op
ert
y:

rdf.simplerelations.collection2item

Ex
am
ple
Val
ue:

rdf.simplerelations.collection2item = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasItem

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from collections to their items. Defining multiple predicates separated by commas will result in multiple triples.

Pr
op
ert
y:

rdf.simplerelations.item2collection

Ex
am
ple
Val
ue:

rdf.simplerelations.item2collection = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCollection

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from items to the collections they belong to. Defining multiple predicates separated by commas will result in
multiple triples.

Pr
op
ert
y:

rdf.simplerelations.item2bitstream

Ex
am
ple
Val
ue:

rdf.simplerelations.item2bitstream = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasBitstream

Inf
or
ma
tio
nal
No
te:

Defines the predicates used to link from item to their bitstreams. Defining multiple predicates separated by commas will result in multiple triples.

[dspace-source]/dspace/config/modules/rdf/constant-data-*.ttl

As described in the documentation of the configuration file [dspace-source]/dspace/config/modules/rdf.cfg, the constant-data-*.ttl files can be used to add
static RDF to the converted data. The data are written in Turtle, but if you change the file suffix (and the path to find the files in) you can use any rdf.cfg
other RDF serialization you like to. You can use this, for example, to add a link to the public readable SPARQL endpoint, add a link to the repository
homepage, or add a triple to every community or collection defining it as an entity of a specific type like a bibo:collection. The content of the file [dspace-
source]/dspace/config/modules/rdf/constant-data-general.ttl will be added to every DSpaceObject that is converted. The content of the file [dspace-source]
/dspace/config/modules/rdf/constant-data-community.ttl to every community, the content of the file [dspace-source]/dspace/config/modules/rdf/constant-
data-collection.ttl to every collection and the content of the file [dspace-source]/dspace/config/modules/rdf/constant-data-item.ttl to every Item. You can use
the file [dspace-source]/dspace/config/modules/rdf/constant-data-site.ttl to specify data representing the whole repository.

[dspace-source]/dspace/config/modules/rdf/metadata-rdf-mapping.ttl

155

http://purl.org/dc/terms/hasPart,%5C%22%20data-mce-href=
http://digital-repositories.org/ontologies/dspace/0.1.0#hasItem
http://purl.org/dc/terms/isPartOf,
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCollection
http://purl.org/dc/terms/hasPart,%5C%22%20data-mce-href=
http://digital-repositories.org/ontologies/dspace/0.1.0#hasBitstream

This file should contain several metadata mappings. A metadata mapping defines how to map a specific metadata field within DSpace to a triple that will
be added to the converted data. The MetadataConverterPlugin uses these metadata mappings to convert the metadata of a item into RDF. For every
metadata field and value it looks if any of the specified mappings matches. If one does, the plugin creates the specified triple and adds it to the converted
data. In the file you'll find a lot of examples on how to define such a mapping.

For every mapping a metadata field name has to be specified, e.g. dc.title, dc.identifier.uri. In addition you can specify a condition that is matched against
the field's value. The condition is specified as a regular expression (using the syntax of the java class java.util.regex.Pattern). If a condition is defined, the
mapping will be used only on fields those values which are matched by the regex defined as condition.

The triple to create by a mapping is specified using reified RDF statements. The defines some placeholders DSpace Metadata RDF Mapping Vocabulary
that can be used. The most important placeholder is dm:DSpaceObjectIRI which is replaced by the URI used to identify the entity being converted to RDF.
That means if a specific Item is converted the URI used to address this Item in RDF will be used instead of dm:DSpaceObjectIRI. There are three
placeholders that allow reuse of the value of a meta data field. dm:DSpaceValue will be replace by the value as it is. dm:LiteralGenerator allows one to
specify a regex and replacement string for it (see the syntax of the java classes java.util.regex.Pattern and java.util.regex.Matcher) and creates a Literal
out of the field value using the regex and the replacement string. dm:ResourceGenerator does the same as dm:LiteralGenerator but it generates a HTTP
(S) URI that is used in place. So you can use the resource generator to generate URIs containing modified field values (e.g. to link to classifications). If you
know regular expressions and turtle, the syntax should be quite self explanatory.

[dspace-source]/dspace/config/modules/rdf/fuseki-assembler.ttl

This is a configuration for the triple store Fuseki of the Apache Jena project. You can find more information on the configuration it provides in the section Ins
 above.tall a Triple Store

[dspace-source]/dspace/config/spring/api/rdf.xml

This file defines which classes are loaded by DSpace to provide the RDF functionality. There are two things you might want to change: the class that is
responsible to generate the URIs to be used within the converted data, and the list of Plugins used during conversion. To change the class responsible for
the URIs, change the following line:

<property name="generator" ref="org.dspace.rdf.storage.LocalURIGenerator"/>

This line defines how URIs should be generated, to be used within the converted data. The LocalURIGenerator generates URIs using the ${dspace.url}
property. The HandleURIGenerator uses handles in form of HTTP URLs. It uses the property ${handle.canonical.prefix} to convert handles into HTTPS
URLs. The class org.dspace.rdf.storage.DOIURIGenerator uses DOIs in the form of HTTP URLs if possible, or local URIs if there are no DOIs. It uses the
DOI resolver " " to convert DOIs into HTTP URLs. The class org.dspace.rdf.storage.DOIHandleGenerator does the same but uses Handles http://dx.doi.org
as fallback if no DOI exists. The fallbacks are necessary as DOIs are currently used for Items only and not for Communities or Collections.

All plugins that are instantiated within the configuration file will automatically be used during the conversion. Per default the list looks like the following:

<!-- configure all plugins the converter should use. If you don't want to
 use a plugin, remove it here. -->
 <bean id="org.dspace.rdf.conversion.SimpleDSORelationsConverterPlugin" class="org.dspace.rdf.conversion.
SimpleDSORelationsConverterPlugin"/>
 <bean id="org.dspace.rdf.conversion.MetadataConverterPlugin" class="org.dspace.rdf.conversion.
MetadataConverterPlugin"/>
 <bean id="org.dspace.rdf.conversion.StaticDSOConverterPlugin" class="org.dspace.rdf.conversion.
StaticDSOConverterPlugin"/>

You can remove plugins if you don't want them. If you develop a new conversion plugin, you want to add its class to this list.

Maintenance

As described you should add to the property and in dspace.cfg. This configures DSpace to above rdf event.dispatcher.default.consumers
automatically update the triple store every time the publicly available content of the repository is changed. Nevertheless there is a command line tool that
gives you the possibility to update the content of the triple store. As the triple store is used as a cache only, you can delete its content and reindex it every
time you think it is necessary of helpful. The command line tool can be started by the following command which will show its online help:

[dspace-install]/bin/dspace rdfizer --help

The online help should give you all necessary information. There are commands to delete one specific entity; to delete all information stored in the triple
store; to convert one item, one collection or community (including all subcommunities, collections and items) or to convert the complete content of your
repository. If you start using the Linked Open Data support on a repository that already contains content, you should run [dspace-install]/bin

 once./dspace rdfizer --convert-all

Every time content of DSpace is converted or Linked Data is requested, DSpace will try to connect to the triple store. So ensure that it is running (as you
do with e.g. your sevlet container or relational database).

156

http://digital-repositories.org/ontologies/dspace-metadata-mapping/
http://dx.doi.org

Rioxx v3 schema compliance

Loading of Entities and Fields

To achieve full compliance, there is no need to enable DSpace entitites. However, if entities are enabled, richer metadata such as funding or Rioxx v3
project related information can be then exposed via the OAI interface. To expose this information, the following steps need to be performed:

First, load the Rioxx Entities model by running the following command:

loading rioxx entity-relationships model

[/dspace]/bin/dspace initialize-entities -f [/dspace]/config/entities/rioxx3-relationships.xml

(: the openaire4-relationships.xml model can be loaded instead, as the set of relationships needed to support entities are exactly the same as those NOTE
needed by Rioxx)

To support Rioxx metadata, there is no need to load additional registries, as it uses metadata from Dublin Core and Qualified Dublin Core schemas.

OAI interface

For Rioxx v3, only Publication entities or non-entity item types will be loaded as the main Entity to be processed, and any related entities such as projects
or funders (i.e. FundingAgency) will be loaded in the process via virtual metadata.

A Rioxx v3 compliant endpoint is available in a dedicated OAI context, namely , through the URL:rioxx

http://[dspace-server-url]/oai/rioxx?verb=ListRecords&metadataPrefix=rioxx

To be able to use it, check first that that the oai application is enabled by checking the setting:oai.cfg

oai.enabled = true
(: when enabling you may need to restart your tomcat service)NOTE

To make metadata available from related entities such as projects or funders, you need to enable the relevant virtual metadata file. The Rioxx context
makes use of the virtual metadata from openaire4. To enable this, you have to copy the file:

[/dspace/]config/spring/api/virtual-metadata.xml.openaire4

into the default virtual-metadata file:

cp [/dspace/]config/spring/api/virtual-metadata.xml.openaire4 [/dspace/]config/spring/api/virtual-metadata.
xml

(: if you do this you should restart your tomcat service container)NOTE

This additional virtual metadata will enable to represent something like this in this XML in the , where you have, for instance, author rioxx metadata format
identifiers, or funding information:

oai datacite:creators example

<rioxxterms:creator>
 <rioxxterms:id>https://orcid.org/0000-0001-7656-9453</rioxxterms:id>
 <rioxxterms:name>Pathan, Nazima</rioxxterms:name>
</rioxxterms:creator>
...
<rioxxterms:grant funder_name="NIHR HTA Programme">16/152/01</rioxxterms:grant>

Then you may need to run the OAI import from the command line with the cleaning cache parameter to reload all data to OAI:
[/dspace/]/bin/dspace oai import -c

157

https://www.rioxx.net/profiles/v3-0-final/
http://host/server/oai/openaire4?verb=ListRecords&metadataPrefix=oai_openaire

Ingesting Content and Metadata
This is a new top level page grouping all documentation concerning all different ways to ingest content and metadata into DSpace

Submission User Interface
Configurable Workflow
Importing and Exporting Content via Packages
Importing and Exporting Items via Simple Archive Format
Registering Bitstreams via Simple Archive Format
Importing Items via basic bibliographic formats (Endnote, BibTex, RIS, CSV, etc) and online services (arXiv, PubMed, CrossRef, CiNii, etc)
Exporting and Importing Community and Collection Hierarchy
SWORDv1 Server
SWORDv2 Server
Ingesting HTML Archives

The section on also contains information on how to add items through spreadsheet ingest. Batch Metadata Editing

158

1.

2.

3.

4.

5.

Submission User Interface
This page explains various customization and configuration options that are available within DSpace for the Item Submission user interface.

1 Default Submission Process
1.1 Optional Steps

2 Understanding the Submission Configuration Files
2.1 The Structure of item-submission.xml
2.2 Defining Steps (<step>) within the item-submission.xml

2.2.1 Where to place your <step-definition>
2.2.2 The ordering of <step> tags matter!
2.2.3 Structure of the <step-definition> tag

3 Reordering/Removing/Adding Submission Steps
4 Assigning a custom Submission Process to a Collection

4.1 Getting A Collection's Handle
4.2 Assigning a default Submission Process per Entity Type

5 Custom Metadata-entry Steps for Submission
5.1 Introduction
5.2 Describing Custom Metadata Forms
5.3 The Structure of submission-forms.xml

5.3.1 Using a form in a submission process for a Collection
5.3.2 Adding a Form

5.3.2.1 Forms and Pages
5.3.2.2 Composition of a Field

5.3.2.2.1 Visibility configuration examples
5.3.2.3 Item type Based Metadata Collection

5.3.3 Configuring Controlled Vocabularies
5.3.4 Adding Value-Pairs

5.3.4.1 Example
5.4 Deploying Your Custom Forms

6 Configuring the File Upload step
6.1 Basic Settings
6.2 Modifying metadata form presented for Bitstreams
6.3 Modifying access conditions (embargo, etc.) presented for Bitstreams

7 Configuring the Item Access Conditions step
7.1 Enabling the step
7.2 Modifying access conditions (embargo, etc.) presented for Items
7.3 Examples of selecting Item and Bitstream access conditions

8 Configuring the Sherpa Romeo step
8.1 Enabling the Sherpa Romeo step

9 Configuring the "Identifiers" step
10 Creating new Submission Steps Programmatically.

DSpace Submission Configuration changed in v7.x

The name and structure of the Submission configuration files changed in 7.x. The DSpace 6.x (and below) "item-submission.xml" and "input-forms.xml"
configuration files are no longer supported. In 7.x and above, the format of the "item-submission.xml" file has been updated, and the older "input-forms.
xml" has been replaced by a new "submission-forms.xml".

You can choose to either start fresh with the new v7 configuration files (see documentation below) and/or use the "./dspace submission-forms-migrate"
script to migrate your old configurations into new ones. See the guide (step on "Update your DSpace Configurations") for more Upgrading DSpace
information on using the migration script.

Default Submission Process

The DSpace Submission process consists of a series of "steps", where each "step" corresponds to one or "sections" in the Submission UI. By default, the
DSpace Submission process includes the following steps/sections, in this order:

"Select Collection" (id="collection"), appears as dropdown: If not already selected, the user must select a collection to deposit the Item into. As
of DSpace 7, you also can change the Collection you are submitting into at any time. However, be aware that there may be some metadata lost if
the Collection you switch two uses a submission form & you already began entering metadata in the current submission.different
"Describe" sections (id="traditionalpageone" and "traditionalpagetwo"): This is where the user may enter descriptive metadata about the Item.
This step may consist of one or more sections of metadata entry. By default, there are two sections of metadata-entry . For information on
modifying the metadata entry pages, please see section below.Custom Metadata-entry Pages for Submission
"Upload" section (id="upload"): This is where the user may upload one or more files to associate with the Item. As of DSpace 7, you can also
drag and drop files anywhere on the page to trigger an upload. For more information on file upload, also see Configuring the File Upload step
below.
"License" section (id="license"): This is where the user agree to the repository distribution license in order to complete the deposit. This must
repository distribution license is defined in the file. It can also be customized per-collection from the [dspace]/config/default.license
Collection Edit UI.
"Deposit" button: Once all required fields/sections are completed, the "Deposit" button becomes enabled. After clicking it, the new Item will
either become immediately available or undergo a workflow approval process (depending on the Collection policies). For more information on the
workflow approval process see Configurable Workflow

159

To modify or reorganize these submission steps, just modify the file. Please see the section below on [dspace]/config/item-submission.xml Reor
.dering/Removing/Adding Submission Steps

You can also choose to have different submission processes for different DSpace Collections. For more details, please see the section below on Assigning
.a custom Submission Process to a Collection

Optional Steps

DSpace also ships with several optional steps which you may choose to enable if you wish. In no particular order:

"Item Access" (or) section Embargo (id="itemAccessConditions"): This step allows the user to (optionally) Only available in 7.2 or above.
modify access rights or set an embargo during the deposit of an Item. For more information on this step, and Embargo options in general, please
see the documentation.Embargo
"CC License" section (id="cclicense"): This step allows the user to (optionally) assign a Creative Commons license to a particular Item. Please
see the section of the Configuration documentation for more details.Configuring Creative Commons License
"Extraction" section (id="extractionstep"): This step will automatically attempt to extract metadata from uploaded files. Currently it only supports
bibliographic formats documented in Importing Items via basic bibliographic formats (Endnote, BibTex, RIS, TSV, CSV) and online services (OAI,
arXiv, PubMed, CrossRef, CiNii). Any extracted metadata is immediately populated in the submission form (without notifying the user).

By default it is disabled, as it populates metadata automatically (without notifying the user). This means it can sometimes result in
duplicative metadata in the submission form.
The behavior of this step can be more fully configured via the 'config/spring/api/step-processing-listener.xml' configuration
NOTE: this action is also only triggered when a request is performed (e.g. when a file is uploaded or the submission form is saved). You
can configure the Angular UI to autosave based on a timer in order to force this action to be done more regularly.

Various related steps: These steps are "Describe" steps that are specific to different Entity types. They provide a list of Configurable Entities
metadata fields of specific interest to those Entities.

To enable any of these optional submission steps, just uncomment the step definition within the file. [dspace]/config/item-submission.xml
Please see the section below on .Reordering/Removing/Adding Submission Steps

You can also choose to enable certain steps only for specific DSpace Collections. For more details, please see the section below on Assigning a custom
.Submission Process to a Collection

Understanding the Submission Configuration Files

The contains the submission configurations for the DSpace UI. This configuration file contains detailed [dspace]/config/item-submission.xml
documentation within the file itself, which should help you better understand how to best utilize it.

The Structure of item-submission.xml
The structure of this file changed slightly in DSpace 7

As of DSpace 7, the following structural changes were made to item-submission.xml:

Step definitions under <step-definitions> now use the <step-definition> tag (previously, in 6.x, the tag was named <step>)
Every step definition now needs to be defined under <step-definitions> (previously, in 6.x, you could also define them in <submission-process>),
and have a unique ID
Each <step-definition> now only represents a single "section" of the Submission UI. (previously, in 6.x, some steps like Describe represented
multiple pages)
An attribute "mandatory=[true|false]" was added to the <step> element. When true, that section is always displayed to the user. When false, it's
not displayed by default, but instead must be activated explicitly by the user by choosing to add the section in the Submission UI.
The old <workflow-editable> element has been replaced with a <scope> element which defines when/how this <step> should be displayed.

Because this file is in XML format, you should be familiar with XML before editing this file. By default, this file contains the "traditional" Item Submission
Process for DSpace, which consists of the following Steps (in this order):

Select Collection -> Describe (two steps) -> Upload -> License -> Complete

If you would like to customize the steps used or the ordering of the steps, you can do so within the section of the <submission-definition> item-submission.
 .xml

In addition, you may also specify different Submission Processes for different DSpace Collections. This can be done in the section. The <submission-map>
 file itself documents the syntax required to perform these configuration changes.item-submission.xml

Defining Steps () within the <step> item-submission.xml

This section describes how Steps of the Submission Process are defined within the .item-submission.xml

Where to place your <step-definition>

The always appear within the section of the configuration file.<step-definition> <step-definitions> item-submission.xml

This section allows all definitions to be defined globally (i.e. so they may be used in multiple definitions). Steps <step> <submission-process>
defined in this section define a unique which can be used to reference this step.must id
For example:

160

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-ConfiguringCreativeCommonsLicense

1.

2.

<step-definitions>
 <step-definition id="custom-step">
 ...
 </step>
 ...
</step-definitions>

The above step definition could then be referenced from within a as simply <submission-process> <step id="custom-step"/>

The ordering of tags matter!<step>

The ordering of the tags within a definition directly corresponds to the order in which those steps will appear!<step> <submission-process>

For example, the following defines a Submission Process where the step directly precedes the step (more information about the License Describe
structure of the information under each <step> tag can be found in the section on Structure of the <step> Definition below):

<submission-process>
 <!--Step 1 will be to Sign off on the License-->
 <step id="license"/>

 <!--Step 2 & 3 will be to ask for metadata-->
 <step id="traditionalpageone"/>
 <step id="traditionalpagetwo"/>

 ...[other steps]...
</submission-process>

Structure of the <step-definition> tag

The structure of the <step-definition> tag is as follows:

<step-definition id="traditionalpageone" mandatory="true">
 <heading>submit.progressbar.describe.stepone</heading>
 <processing-class>org.dspace.app.rest.submit.step.DescribeStep</processing-class>
 <type>submission-form</type>
 <!-- <scope visibility="hidden" visibilityOutside="hidden">submission</scope> -->
</step-definition>

Each contains the following elements/attributes. The required elements are so marked:step

mandatory (attribute): [true|false] When true, the step's section is displayed by default to all users in the UI. When false, the step is not displayed
and must be activated explicitly by the user by selecting it in the UI or supplying data of interest to the section.
heading: Partial I18N key (defined in the UI's language packs) which corresponds to the text that should be displayed in section header for this
step. This partial I18N key is prefixed with "submission.sections.". Therefore, the full i18n key is "submission.sections.[heading]" in the User
Interface's language packs (e.g. en.json5 for English)
processing-class (Required): Full Java path to the Processing Class for this Step. This Processing Class perform the primary processing must
of any information gathered in this step. All valid step processing classes must extend the abstract org.dspace.submit.

 class (or alternatively, extend one of the pre-existing step processing classes in)AbstractProcessingStep org.dspace.submit.step.*
type (Required): The type of step defined. Most steps are of type "submission-form", which means they directly map to a defined in the <form> s

 configuration file. In this situation, the "id" attribute MUST map to a "name" attribute ubmission-forms.xml <step-definition> <form>
defined in submission-forms.xml. Any value is allowed, and only "submission-form" has a special meaning at this time.
scope: Optionally, allows you to limit the "scope" of this particular step, and define whether the step is visible outside that scope. Valid scope
values include "submission" (limited to the submission form) and "workflow" (limited to workflow approval process).

"visibility" attribute defines the visibility of the step while the given scope. Can be set to "read-only" (in this scope you can see this within
step but not edit it), or "hidden" (in this scope you cannot see this step).
"visibilityOutside" attribute defines the visibility of the step while the given scope. Can be set to "read-only" (in other scopes you outside
can see this step but not edit it), or "hidden" (in other scopes you cannot see this step).

Reordering/Removing/Adding Submission Steps

The removal of existing steps and reordering of existing steps is a relatively easy process!

Reordering steps

Locate the tag which defines the Submission Process that you are using. If you are unsure which Submission Process <submission-process>
you are using, it's likely the one with , since this is the traditional DSpace submission process.name="traditional"
Reorder the tags within that tag. Be sure to move the tag.<step> <submission-process> entire <step>

161

1.

2.

1.

2.

1.

a.

2.

a.

3.

a.

Removing one or more steps

Locate the tag which defines the Submission Process that you are using. If you are unsure which Submission Process <submission-process>
you are using, it's likely the one with , since this is the traditional DSpace submission process.name="traditional"
Comment out (i.e. surround with and) the tags which you want to remove from that tag. Be sure to <! -- --> <step> <submission-process>
comment out the entire <step tag.>

Hint: You cannot remove the step, as an DSpace Item cannot exist without belonging to a Collection."collection"

Adding one or more optional steps

Locate the tag which defines the Submission Process that you are using. If you are unsure which Submission Process <submission-process>
you are using, it's likely the one with , since this is the traditional DSpace submission process.name="traditional"
Uncomment (i.e. remove the and) the tag(s) which you want to add to that tag. Be sure to <! -- --> <step> <submission-process>
uncomment the entire <step> tag.

Assigning a custom Submission Process to a Collection

Assigning a custom submission process to a Collection in DSpace involves working with the section of the . For a submission-map item-submission.xml
review of the structure of the see the section above on Understanding the Submission Configuration File.item-submission.xml

Each element within associates a collection with the name of a submission definition.name-map submission-map

There are three ways to configure this mapping:

The traditional way is to use the "collection-handle" attribute to map a submission form to it's Collection. Its collection-handle attribute is the
Handle of the collection. Its submission-name attribute is the submission definition name, which must match the name attribute of a submission-
process element (in the submission-definitions section of item-submission.xml.

For example, the following fragment shows how the collection with handle "12345.6789/42" is assigned the "custom" submission process:

<submission-map>
 <name-map collection-handle="12345.6789/42" submission-name="custom" />
 ...
</submission-map>

<submission-definitions>
 <submission-process name="custom">
 ...
</submission-definitions>

Another option is to use the "collection-entity-type" attribute to map which use that Entity Type (requires) to a all Collections Configurable Entities
specific submission definition name (via the submission-name attribute, similar to above).

For example, the following fragment shows how to map all Collections which use the out-of-the-box Entity Types to a submission
definition of the same name:

<submission-map>
 ...
 <name-map collection-entity-type="Publication" submission-name="Publication"/>
 <name-map collection-entity-type="Person" submission-name="Person"/>
 <name-map collection-entity-type="Project" submission-name="Project"/>
 <name-map collection-entity-type="OrgUnit" submission-name="OrgUnit"/>
 <name-map collection-entity-type="Journal" submission-name="Journal"/>
 <name-map collection-entity-type="JournalVolume" submission-name="JournalVolume"/>
 <name-map collection-entity-type="JournalIssue" submission-name="JournalIssue"/>
 ...
<submission-map>

Finally, it is also possible to use the "community-handle" attribute to map a submission process to all descendant collections that do not have a
direct mapping assigned by collection handle or by entity type (also via the submission-name attribute).

For example, the following fragment shows how the descendant collections of the community with handle "12345.6789/38" are assigned
the "custom2" submission process:

162

3.

a.

b.

<submission-map>
 <name-map community-handle="12345.6789/38" submission-name="custom2" />
 ...
</submission-map>

<submission-definitions>
 <submission-process name="custom2">
 ...
</submission-definitions>

If a collection has multiple parent communities with a defined mapping, the collection will use the submission process mapped for the
closest community.

It's a good idea to keep the definition of the name-map, so there is always a default for collections which do not have a custom form set.default

Getting A Collection's Handle

You will need the of a collection in order to assign it a custom form set. To discover the handle, go to the Community or Collection in the DSpace handle
UI. Look for the "Permanent URI" listed near the top of the page. It should look something like:

http://myhost.my.edu/handle/12345.6789/42

The handle is everything after "handle/" (in the above example it is "12345.6789/42"). It should look familiar to any DSpace administrator. That is what
goes in the attribute of your element.collection-handle name-map

Assigning a default Submission Process per Entity Type

Alternatively to a collection's Handle, Entities Types can be used as an attribute. With these configurations you will enable default submission forms per
Entity type. You don't have to specify every collection's handle to use for a particular submission form if you intend to use entities.

 The possible values for this attribute are the In order to do it so, instead of attributecollection-handle you need to use collection-entity-type.
ones that you use or that you specified in file (please for more information). In order the relationship-types.xml check the documentation
submission process to be assigned to an entity type, you need to previously have associated an Entity Type to a Collection (please check: Configurable

). Entities#3.ConfigureCollectionsforeachEntitytype

As an example, for every time you need to insert a new person in a Person's collection. You just need to specify the submission form to be used, like: subm
 in the example and also the entity type that is associated, like .ission-name="customPerson" collection-entity-type="Person"

<submission-map>
 <name-map collection-entity-type="Person" submission-name="customPerson" />
 ...
</submission-map>

<submission-definitions>
 <submission-process name="customPerson">
 ...
</submission-definitions>

If a collection configuration will prevail over this configuration. Meaning that if a icollection-handle="12345.6789/42" collection-entity-type
s defined and a collection-handle is also defined and if a collection handle overlaps in both configurations, then, the submission to be considered it will be
the one that is defined by (it will prevail the one with more granularity).collection-handle

Custom Metadata-entry Steps for Submission

Introduction

This section explains how to customize the Web forms used by submitters and editors to enter and modify the metadata for a new item. These metadata
web forms are controlled by the step within the Submission Process. However, they are also configurable via their own XML configuration file Describe [ds

.pace]/config/submission-forms.xml

In this configuration you can create alternate metadata forms, which can then be mapped to a "submission-form" step in the "item-submission.xml" (see
above).

In creating custom metadata forms, you can choose:

Which fields appear on each form, and their sequence. (Keep in mind, each "form" represents to a "step" or section)
Labels, prompts, and other text associated with each field.

163

https://wiki.lyrasis.org/display/DSDOC8x/Configurable+Entities#ConfigurableEntities-3.ConfigureCollectionsforeachEntitytype
https://wiki.lyrasis.org/display/DSDOC8x/Configurable+Entities#ConfigurableEntities-3.ConfigureCollectionsforeachEntitytype

1.

2.
3.

Ability to display smaller fields side-by-side in a single "row"
List of available choices for each menu-driven field.

All of the custom metadata-entry forms for a DSpace instance are controlled by a single XML file, , in the subdirectory submission-forms.xml config
under the DSpace home . DSpace comes with a number of sample forms which implement the traditional , [dspace]/config/submission-forms.xml
metadata-entry forms, and also serves as a well-documented example. Some default forms include:

"bitstream-metadata" - This is a special form which defines the metadata fields available for every uploaded bitstream (file)
"traditionalpageone" - A sample form which is used by the first "Describe" step defined in item-submission.xml
"traditionalpagetwo" - A sample form which is used by the second "Describe" step defined in item-submission.xml
A number of sample forms for various out-of-the-box . These forms all have a corresponding <step> defined in item-Configurable Entities
submission.xml. In conjunction to those <step> definitions, these forms may be used to submit new Entities of specific types. Usually this is done
by mapping that Entity-specific submission-process (in item-submission.xml) to a Collection which is used for new submissions of that Entity.

The rest of this section explains how to create your own sets of custom forms.

Describing Custom Metadata Forms

The description of a set of fields through which submitters enter their metadata is called a (in the UI, each "form" is displayed in a separate collapsible form
section). A form is identified by a unique symbolic . In the XML structure, the is broken down into . This allows you to place smaller name form rows of fields
fields side-by-side in a single, horizontal row, or alternatively decide to display one field per row.

The Structure of submission-forms.xml
The name & structure of this file changed slightly in DSpace 7

As of DSpace 7, the following structural changes were made to this configuration:

input-forms.xml (v6) was renamed to submission-forms.xml
<form-map> top-level element was removed. All Collection mappings are now in item-submission.xml
<page> element under <form> was removed. As described below, <form> element now represent a single section of the submission process.
<row> element under <form> was added. As described below, multiple fields can now be displayed in one horizontal row.
A new form named "bitstream-metadata" was introduced to allow you to configure which metadata is requested for a bitstream during submission.

The XML configuration file has a single top-level element, , which contains two elements in a specific order. The outline is as follows:input-forms

<input-forms>

 <-- Form Set Definitions -->
 <form-definitions>
 <form name="traditionalpageone">
 ...
 </form>
 ...
 </form-definitions>

 <-- Name/Value Pairs used within Multiple Choice Widgets -->
 <form-value-pairs>
 <value-pairs value-pairs-name="common_iso_languages" dc-term="language_iso">
 ...
 </value-pairs>
 ...
 </form-value-pairs>
</input-forms>

Using a form in a submission process for a Collection

Keep in mind, the "submission-forms.xml" only defines and (used for specific fields like selectboxes). To enable a form requires also forms value-pairs
updating the "item-submission.xml" configuration to use that form (see also above):

In "item-submission.xml", a <step-definition> of type "submission-form" must be created, with an "id" matching the of the (see above name form
for more details on step-definition)
In "item-submission.xml", a <submission-process> must be created/updated to use that newly defined "step".
Finally, also in "item-submission.xml", a Collection must be setup to use that submission process in the <submission-map> section.

So, if you modify submission-forms.xml, you may need to double check your changes will be used in your item-submission.xml.

Adding a Form

You can add a new form by creating a new element within the element. It has one attribute, , which as described above must form form-definitions name
match the "id" of a <step-definition> in "item-submission.xml".

Forms and Pages

164

The content of the is a sequence of elements. Each of these corresponds to a single, horizontal row, containing metadata input fields. The rows form row
are presented in sequence, with the first row displayed at the top of the form. A form is displayed as a section (or step) within the submission process.

A may contain any number of rows. A row generally only contains one or two input fields (including more than one input field may require the "style" form
setting, see below). Each field defines an interactive dialog where the submitter enters one of the Dublin Core metadata items.

Composition of a Field

Each contains the following elements, in the order indicated. The required sub-elements are so marked:field

dc-schema (Required) : Name of metadata schema employed, e.g. for Dublin Core. This value must match the value of the element dc schema
defined in dublin-core-types.xml
dc-element (Required) : Name of the Dublin Core element entered in this field, e.g. .contributor
dc-qualifier: Qualifier of the Dublin Core element entered in this field, e.g. when the field is the value of this element would be contributor.advisor

. Leaving this out means the input is for an unqualified DC element.advisor
language: If set to a drop down menu will be shown, containing languages. The selected language will be used as language tag of the true
metadata field. A compulsory argument must be given containing the name of the value pair that contains all the languages: e.value-pairs-name
g. . <language value-pairs-name="common_iso_languages">true</language>
repeatable: Value is when multiple values of this field are allowed, otherwise. When you mark a field repeatable, the UI will add an true false
"Add more" control to the field, allowing the user to ask for more fields to enter additional values. Intended to be used for arbitrarily-repeating
fields such as subject keywords, when it is impossible to know in advance how many input boxes to provide. Repeatable fields also support
reordering of values.
label (Required): Text to display as the label of this field, describing what to enter, e.g. " ".Your Advisor's Name
input-type (Required): Defines the kind of interactive widget to put in the form to collect the Dublin Core value. Content must be one of the
following keywords:

onebox – A single text-entry box (i.e. a normal input textbox)
textarea – Large block of text that can be entered on multiple lines, e.g. for an abstract.
name – Personal name, with separate fields for family name and first name. When saved they are appended in the format 'LastName,
FirstName'. (By default, this input type is unused. Author fields now use the "onebox" type to support different types of names.)
date – Calendar date. When required, demands that at least the year be entered.
series – Series/Report name and number. Separate fields are provided for series name and series number, but they are appended (with
a semicolon between) when saved.
dropdown – Choose value(s) from a "drop-down" menu list.

Requires that you include a value for the attribute to specify a list of menu entries from which to choose. Use value-pairs-name
this to make a choice from a restricted set of options, such as for the item.language

qualdrop_value – Enter a "qualified value", which includes a qualifier from a drop-down menu and a free-text value. Used to enter both
items like alternate identifiers and codes for a submitted item, e.g. the DC field.identifier

Similar to the type, that you include the attribute to specify a menu choice list.dropdown requires value-pairs-name
Because the "qualdrop_value" dynamically sets the (based on the drop-down menu), the <dc-qualifier> field be qualifier MUST
empty. The <dc-qualifier> element cannot be used with this field type.

 list – Choose value(s) from a checkbox or radio button list. If the attribute is set to , a list of checkboxes is displayed. If repeatable true
the attribute is set to , a list of radio buttons is displayed. repeatable false (By default, this input type is unused.)

Requires that you include a value for the attribute to specify a list of values from which to choose.value-pairs-name
tag - A free-text field which allows you to add multiple labels/tags as values. An example is the "Subject Keywords" field.

Note: A tag field MUST be marked as <repeatable>true</repeatable>.
hint (Required): Content is the text that will appear as a "hint", or instructions, below the input field. Can be left empty, but the tag must be
present.
required: When this element is included with any content, it marks the field as a required input. If the user saves the form without entering a value
for this field, that text is displayed as a warning message. For example, Note that leaving the <required>You must enter a title.</required>
required element empty will mark a field as required, e.g.:not <required></required>
vocabulary: When specified, this field uses a defined in controlled vocabulary [dspace]/config/controlled-vocabularies/[name].

. This setting may be used to provide auto-complete functionality, for example in the "Subject Keywords" field (which uses the "tag" input xml
type). See also the "Configuring Controlled Vocabularies" section below.
regex: When specified, this field will be validated against the Regular Expression, and only successfully validating values will be saved. An
example is commented out in the default "Author" field. If the validation fails, the following error message will be shown by default: "This input is
restricted by the current pattern: {{ pattern }}.". This can be customized, by adding an entry to the internalization files with the key error.
validation.pattern.schema_element_qualifier and the schema, element and qualifier of the field. For example: "error.validation.
pattern.dc_identifier": "The identifier can only consist of numbers". For instructions on how to add custom entries see: Customize UI labels using
Internationalization (i18n) files
style: When specified, this provides a CSS style recommendation to the UI for how to style that field. This is primarily used when displaying
multiple fields per row, so that you can tell the UI how many columns each field should use in that row. Keep in mind, these styles should follow
the , where the number of columns adds up to 12. An example can be see in the default "Date of Issue" and "Publisher" Bootstrap Grid System
fields, which are configured to use 4 (col-sm-4) and 8 (col-sm-8) columns respectively.
visibility: the submission scope for which the field should be visible. Values allowed are or When one of the two options is submission workflow.
given the filed will be visible only for the scope provided and it will be hidden otherwise.
readonly: this option can be used only together with the element, and it means the field should be a read-only input instead of being visibility
hidden out of the scope provided by the element. The value allowed is , e.g.:visibility readonly <readonly>readonly</readonly>

Visibility configuration examples

A field configured to be visible only with scope, while is hidden with scopesubmission workflow

165

https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Customization#UserInterfaceCustomization-CustomizeUIlabelsusingInternationalization(i18n)files
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Customization#UserInterfaceCustomization-CustomizeUIlabelsusingInternationalization(i18n)files
https://getbootstrap.com/docs/4.0/layout/grid/

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>title</dc-element>
 <dc-qualifier>alternative</dc-qualifier>
 <repeatable>true</repeatable>
 <label>Other Titles</label>
 <input-type>onebox</input-type>
 <hint>If the item has any alternative titles, please enter them here.</hint>
 <required></required>
 <visibility>submission</visibility>
</field>

A field configured to be visible only with scope, while is read-only with scopeworkflow submission

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>title</dc-element>
 <dc-qualifier>alternative</dc-qualifier>
 <repeatable>true</repeatable>
 <label>Other Titles</label>
 <input-type>onebox</input-type>
 <hint>If the item has any alternative titles, please enter them here.</hint>
 <required></required>
 <readonly>readonly</readonly>
 <visibility>workflow</visibility>
</field>

Item type Based Metadata Collection
Available in 7.3 and later

A field can be made visible depending on the value of . A new field element, <type-bind>, has been introduced to facilitate this. The <type-bind> dc.type
takes a comma separated list of publication types. If the field is missing or empty, it will always be visible. In this example the field will only be visible if a
value of "thesis" or "ebook" has been entered into on an earlier page:dc.type

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>isbn</dc-qualifier>
 <label>ISBN</label>
 <type-bind>thesis,ebook</type-bind>
</field>

A field may be configured multiple times in the submission configuration with different values in type-bind. This is useful if a field is required for one type
but not another, or should display a different label and hint message depending on the publication type:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>isbn</dc-qualifier>
 <label>ISBN</label>
 <type-bind>book,ebook</type-bind>
 <required>You must enter an ISBN for this book</required>
</field>

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>isbn</dc-qualifier>
 <label>ISBN of Parent Publication</label>
 <type-bind>thesis,book chapter,letter</type-bind>
 <hint>Enter the ISBN of the book in which this was published</hint>
</field>

166

If a field is but is bound to a type that does not match the submitted publication, the value will be ignored.required required

Note: When the submitter changes the Type field, other fields (usually just below it) dynamically appear. There's a brief demo of this feature in the 2022-07-
13 - DSpace 7 Q&A webinar at time 19:05. The submission process is one page, but it has collapsible sections, each of which corresponds to one of the
old "pages".

Configuring Controlled Vocabularies

DSpace supports controlled vocabularies to confine the set of keywords that users can use while describing items. The need for a limited set of keywords
is important since it eliminates the ambiguity of a free description system, consequently simplifying the task of finding specific items of information. The
controlled vocabulary allows the user to choose from a defined set of keywords organized in an tree (taxonomy) and then use these keywords to describe
items while they are being submitted.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 ...
 </isComposedBy>
 </node>
 ...
 </isComposedBy>
</node>

You are free to use any application you want to create your controlled vocabularies. A simple text editor should be enough for small projects. Bigger
projects will require more complex tools. You may use Protegé to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to
transform your documents to the appropriate format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL
or RDF.

New vocabularies should be placed in and must be according to the structure described.[dspace]/config/controlled-vocabularies/

Vocabularies need to be associated with the corresponding metadata fields. Edit the file and place a [dspace]/config/submission-forms.xml "voc
 tag under the element that you want to control. Set value of the element to the name of the file that contains the abulary" "field" "vocabulary"

vocabulary, leaving out the extension (the add-on will only load files with extension "*.xml"). For example:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>onebox</input-type>
 <hint>Enter appropriate subject keywords or phrases below.</hint>
 <required></required>
 <vocabulary>srsc</vocabulary>
</field>

The vocabulary element has an optional boolean attribute that can be used to force input only with the Javascript of controlled-vocabulary add-on. closed
The default behaviour (i.e. without this attribute) is as set . This allow the user also to enter the value in free way.closed="false"

Controlled vocabularies have two main display types in the submission form:

167

https://wiki.lyrasis.org/pages/viewpage.action?pageId=249135425
https://wiki.lyrasis.org/pages/viewpage.action?pageId=249135425

1.

2.

<input-type>onebox</input-type> will display a onebox style field (optionally repeatable) which pops up the entire hierarchical vocabulary
to allow you to select an individual term.

<input-type>tag</input-type> will display a tag-style field (optionally repeatable) which suggests terms within the vocabulary as you type.

The following vocabularies are currently available by default:

nsi - - The Norwegian Science Indexnsi.xml
srsc - - Swedish Research Subject Categoriessrsc.xml

Adding Value-Pairs

Finally, your custom form description needs to define the "value pairs" for any fields with input types that refer to them. Do this by adding a value-pairs
element to the contents of . It has the following required attributes:form-value-pairs

value-pairs-name – Name by which an refers to this list.input-type
dc-term – Dublin Core field for which this choice list is selecting a value.

Each element contains a sequence of sub-elements, each of which in turn contains two elements:value-pairs pair

displayed-value – Name shown (on the web page) for the menu entry.
stored-value – Value stored in the DC element when this entry is chosen. Unlike the HTML tag, there is no way to indicate one of the select
entries should be the default, so the first entry is always the default choice.

Example

Here is a menu of types of common identifiers:

<value-pairs value-pairs-name="common_identifiers" dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc #</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>

168

 </pair>
</value-pairs>

It generates the following HTML, which results in the menu widget below. (Note that there is no way to indicate a default choice in the custom input XML,
so it cannot generate the HTML attribute to mark one of the options as a pre-selected default.)SELECTED

<select name="identifier_qualifier_0">
 <option VALUE="govdoc">Gov't Doc #</option>
 <option VALUE="uri">URI</option>
 <option VALUE="isbn">ISBN</option>
</select>

Deploying Your Custom Forms

The DSpace web application only reads your custom form definitions when it starts up, so it is important to remember:

You must always restart Tomcat (or whatever servlet container you are using) for changes made to the and/or submission-forms.xml item-
 to take effect.submission.xml

Any mistake in the syntax or semantics of the form definitions, such as poorly formed XML or a reference to a nonexistent field name, may result in errors
in the DSpace REST API & UI. The exception message (at the top of the stack trace in the file) usually has a concise and helpful explanation of dspace.log
what went wrong. Don't forget to stop and restart the servlet container before testing your fix to a bug.

Configuring the File Upload step

Basic Settings

The step in the DSpace submission process has a few configuration options which can be set with your configuration file. Upload [dspace]/config/local.cfg
They are as follows:

spring.servlet.multipart.max-file-size (default=512MB) - Spring Boot's maximum allowable file upload size. For DSpace, we default it to 512MB (in
application.properties). But, you may wish to override the default value in your local.cfg. Example values include "512MB", "1GB", or even "-1" (to
allow unlimited). See Spring's documentation on this setting: https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits

NOTE: Increasing this value significantly does NOT guarantee that DSpace will be able to successfully upload files of a very large size
via the web. Large uploads depend on many other factors including bandwidth, web server settings, internet connection speed, etc.
Therefore, for very large files, you may need to consider importing via command-line tools or similar.

spring.servlet.multipart.max-request-size (default=512MB) - Spring Boot's maximum allowable upload size (i.e. the maximum total upload request
size for all files in a multi-file upload). For DSpace, we default it to 512MB (in application.properties). But, you may wish to override the default
value in your local.cfg. Example values include "512MB", "1GB", or even "-1" (to allow unlimited). See Spring's documentation on this setting: https
://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits

NOTE: Increasing this value significantly does NOT guarantee that DSpace will be able to successfully upload files of a very large size
via the web. Large uploads depend on many other factors including bandwidth, web server settings, internet connection speed, etc.
Therefore, for very large files, you may need to consider importing via command-line tools or similar.

webui.submit.upload.required - Whether or not all users are to upload a file when they submit an item to DSpace. It defaults to 'true'. required
When set to 'false' users will see an option to skip the upload step when they submit a new item.

Modifying metadata form presented for Bitstreams

After uploading a file (bitstream) in the Submission UI, you can optionally edit that bitstream's metadata. The form displayed on that edit screen is built by
the "bitstream-metadata" form defined in submission-forms.xml. You can modify that form to change the fields captured for a Bitstream. However, the "dc.
title" field is REQUIRED in order to store the name of the file.

<form-definitions>
 <!-- Form used for entering in Bitstream/File metadata after uploading a file -->
 <form name="bitstream-metadata">
 ...
 </form>
</form-definitions>

Modifying access conditions (embargo, etc.) presented for Bitstreams

After uploading a file (bitstream) in the Submission UI, you can optionally edit that bitstream's access conditions. This allows you to embargo a bitstream,
lease it, or limit it to Administrators only.

These access conditions are defined in a new Spring Bean configuration file [dspace]/config/spring/api/access-conditions.xml

The "uploadConfigurationService" bean maps an existing "UploadConfiguration" bean (default is "uploadConfigurationDefault") to a specific step
/section name used in item-submission.xml.

169

https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits
https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits
https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits

<!-- This default configuration says the <step-definition id="upload"> defined in item-submission.xml
uses "uploadConfigurationDefault" -->
<bean id="uploadConfigurationService" class="org.dspace.submit.model.UploadConfigurationService">
 <property name="map">
 <map>
 <entry key="upload" value-ref="uploadConfigurationDefault" />
 </map>
 </property>
</bean>

One or more UploadConfiguration beans may exist, providing different options for different upload sections. An "UploadConfiguration" consists of
several properties:

name (Required): The unique name of this upload configuration
configurationService (Required through 7.3): reference to the DSpace ConfigurationService (should always be "org.dspace.services.
ConfigurationService"). Starting in 7.4 this is no longer required and should not be set.
metadata (Required): The metadata "form" to use for this upload configuration. The value specified here MUST correspond to a <form>
defined in your submission-forms.xml. In the below example, the "bitstream-metadata" form is used by the "uploadConfigurationDefault"
bean...meaning that form will be used to capture metadata about the uploaded bitstream.
options (Required, but can be empty): list of all "AccessConditionOption" beans to enable. This list will be shown to the user to let them
select which access restrictions to place on each bitstream. NOTE: To disable the ability to select bitstream access restrictions,
comment out all <ref> tags to create an empty list of options.
maxSize: Optionally, you can specify a maximum size of file accepted by this UploadConfiguration. If unspecified, default is to use the
maximum file upload limits specified in Spring Boot (see "Basic Settings" above)
required: Optionally, you can specify if a file upload is required for this UploadConfiguration. If true, upload is required and users cannot
complete a submission without uploading at least one file. If false, no upload is required to complete the submission. If unspecified,
default is to use "webui.submit.upload.required" configuration in dspace.cfg/local.cfg, which defaults to "true" (file upload required).

<bean id="uploadConfigurationDefault" class="org.dspace.submit.model.UploadConfiguration">
 <property name="name" value="upload"></property>
 <property name="configurationService" ref="org.dspace.services.ConfigurationService"/>
 <property name="metadata" value="bitstream-metadata" />
 <property name="options">
 <!-- This is the list of access options which will be displayed on the "bitstream-
metadata" form -->
 <!-- If no <ref> tags appear in this list, then access restrictions will not be allowed on
bitstreams -->
 <list>
 <ref bean="openAccess"/>
 <ref bean="lease"/>
 <ref bean="embargoed" />
 <ref bean="administrator"/>
 </list>
 </property>
</bean>

Any number of "AccessConditionOption" beans may be added for applying different types of access permissions to uploaded files (based on
which one the user selects). These beans are easy to add/update, and just require the following

id (Required): Each defined bean MUST have a unique "id" and have "class=org.dspace.submit.model.AccessConditionOption".
groupName: Optionally, define a specific DSpace Group which this Access Condition relates to. This group will be saved to the
ResourcePolicy when this access condition is applied.
name: Give a unique name for this Access Condition. This name is stored in the ResourcePolicy "name" when this access condition is
applied.
hasStartDate: If the access condition is time-based, you can decide whether a start date is required. (true = required start date, false =
disabled/not required). This start date will be saved to the ResourcePolicy when this access condition is applied.
startDateLimit: If the access condition is time-based, you can optionally set an start date limit (e.g. +36MONTHS). This field is used to
set an upper limit to the start date based on the current date. In other words, a value of "+36MONTHS" means that users cannot set a
start date which is more than 3 years from today. This setting's value uses , and is always based on today Solr's Date Math Syntax
(NOW).
hasEndDate: If the access condition is time-based, you can enable/disable whether an end date is required. (true = required end date,
false = disabled/not required). This end date will be saved to the ResourcePolicy when this access condition is applied.
endDateLimit: If the access condition is time-based, you can optionally set an end date limit (e.g. +6MONTHS). This field is used to set
an upper limit to the start date based on the current date. In other words, a value of "+6MONTHS" means that users cannot set an end
date which is more than 6 months from today. This setting's value use , and is always based on today (NOW).Solr's Date Math Syntax

<!-- Example access option named "embargo", which lets users specify a future date
 (not more than 3 years from now) when this file will be available to Anonymous users -->
<bean id="embargoed" class="org.dspace.submit.model.AccessConditionOption">
 <property name="groupName" value="Anonymous"/>
 <property name="name" value="embargo"/>
 <property name="hasStartDate" value="true"/>

170

https://solr.apache.org/guide/7_5/working-with-dates.html#date-math
https://solr.apache.org/guide/7_5/working-with-dates.html#date-math

 <property name="startDateLimit" value="+36MONTHS"/>
 <property name="hasEndDate" value="false"/>
</bean>

By default, DSpace comes with these out-of-the-box Access Conditions (which you can customize/change based on local requirements)
"administrator" - access restricts the bitstream to the Administrator group immediately (after submission completes)
"openAccess" - makes the bitstream immediately accessible to Anonymous group (after submission completes)
"embargoed" - embargoes the bitstream for a period of time (maximum of 3 years, as defined in startDateLimit default setting), after
which it becomes anonymously accessible. See also for discussion of how embargoes work in DSpace.Embargo
"lease" - makes the bitstream anonymously accessible immediately (after submission completes), but that access after a period expires
of time (maximum of 6 months, as defined in endDateLimit default setting). After that date it is no longer accessible (except to
Administrators)

Configuring the Item Access Conditions step

Enabling the step

By default, the "Item Access Conditions" step is disabled. To enable it, simply update your item-submission.xml to include this tag in your
<submission-process>:

<submission-process name="traditional">
 ...

 <!-- This step enables embargoes and other access restrictions at the Item level -->
 <step id="itemAccessConditions"/>
</submission-process>

After making this update, you will need to restart your backend (REST API) for the changes to take effect.

Modifying access conditions (embargo, etc.) presented for Items

The "Item Access Conditions" step uses a similar access condition configuration as the "Upload" step as described in the Modifying access conditions
 documentation above.(embargo, etc.) presented for Bitstreams

All available Item access conditions are defined in a new Spring Bean configuration file [dspace]/config/spring/api/access-conditions.xml

One or more "AcccessConditionConfiguration" beans may exist, providing different options for different submission forms (only one should be in
use in a form at a time). By default an "accessConditionConfigurationDefault" bean is defined. An "AccessConditionConfiguration" consists of
several properties:

name (Required): The unique name of this configuration. It must match the "id" of the step defined in your item-submission.xml
canChangeDiscoverable: Whether this configuration allows users to change the discoverability of an Item. A "discoverable" item is one
that is findable through all search/browse interfaces, provided that you have access to see that Item. A "non-discoverable" item is one
that will never be findable through search/browse (except by Administrators)... instead a direct link is necessary to view the Item. See
also . When "canChangeDiscoverable" is "true", the user can modify discoverability in this submission DSpace Item State Definitions
section. When set to "false", the user cannot modify this setting and all submitted Items will be "discoverable".
options (Required): list of all "AccessConditionOption" beans to enable for this Item access conditions step. This list will be shown to the
user to let them select which access restrictions to place on this Item.

This step uses the same "AccessConditionOption" beans as the "Upload" step, as described in the Modifying access conditions (embargo, etc.)
 documentation above. You can choose to enable the same options for both Items and Bitstreams, or provide different presented for Bitstreams

options for each.
By default, DSpace comes with these out-of-the-box Access Conditions (which you can customize/change based on local requirements)

"administrator" - access restricts the bitstream to the Administrator group immediately (after submission completes)
"openAccess" - makes the bitstream immediately accessible to Anonymous group (after submission completes)
"embargoed" - embargoes the bitstream for a period of time (maximum of 3 years, as defined in startDateLimit default setting), after
which it becomes anonymously accessible. See also for discussion of how embargoes work in DSpace.Embargo
"lease" - makes the bitstream anonymously accessible immediately (after submission completes), but that access after a period expires
of time (maximum of 6 months, as defined in endDateLimit default setting). After that date it is no longer accessible (except to
Administrators)

Examples of selecting Item and Bitstream access conditions

What happens when a User selects different access conditions for an Item (via the "Item Access Conditions" step) and its files (via the "Upload"
step)? Generally speaking, both

Generally speaking, both access restrictions will be applied. Here's some examples:

If a user selects "openAccess" in the "Item Access Conditions" step AND "embargo" in the "Upload" step for one Bitstream
Then, the Item's metadata will be publicly visible, but that single Bitstream will be embargoed.

If a user selects "openAccess" in the "Item Access Conditions" step AND "administrator" in the "Upload" step for one Bitstream
Then, the Item's metadata will be publicly visible, but that single Bitstream will only be visible to Administrators

If a user selects "administrator" in the "Item Access Conditions" step AND nothing in the "Upload" step.

171

Then, the Item's metadata and all Bitstreams will only be accessible to administrators.
If a user selects "embargo" in the "Item Access Conditions" step AND nothing in the "Upload" step.

Then, the Item's metadata and all Bitstreams will be embargoed. Nothing will be visible in the system until the embargo data passes.
If a user selects "embargo" in the "Item Access Conditions" step AND "openAccess" in the "Upload" step for one Bitstream.

Then, the Item's metadata will be embargoed (making it impossible to find the Item unless you are an Administrator). HOWEVER, the
bitstream will be publicly accessible immediately (but only via a direct link, as it won't be searchable in the system until the embargo date
passes).

(To test other scenarios, submit a test Item with those permissions applied. Then, edit that Item, visit the "Status" tab, and click "Authorizations" to
see what access restrictions were applied to the Item and its bitstreams.)

Configuring the Sherpa Romeo step

Enabling the Sherpa Romeo step

By default, the "Sherpa RoMEO Policy" step is disabled. To enable it, simply update your item-submission.xml to include this tag in your <submission-
process>:

<submission-process name="traditional">
 ...
 <!-- This step shows when appropriate publisher policies retrieved from SHERPA/RoMEO -->
 <step id="sherpaPolicies"/>
</submission-process>

you must also obtain your registering you client application here and put them in the sherpa.romeo.apikey https://v2.sherpa.ac.uk/api/ local.cfg

sherpa.romeo.apikey = <YOUR-API-KEY>

The step needs to extract the ISSN of the Journal where the publication has been submitted/published to query the Sherpa/RoMEO database in order to
visualize the publisher policies, this is done by an implementation of the interface org.dspace.app.sherpa.submit.ISSNItemExtractor
configured in the org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService

The configuration is provided by Spring config/spring/api/sherpa.xml

 <bean class="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService"
 id="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService">
 <property name="issnItemExtractors">
 <list>
 <bean class="org.dspace.app.sherpa.submit.MetadataValueISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.identifier.issn</value>
 </list>
 </property>
 </bean>
 <!-- Uncomment this bean if you have SHERPARoMEOJournalTitle enabled
 <bean class="org.dspace.app.sherpa.submit.MetadataAuthorityISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.title.alternative</value>
 </list>
 </property>
 </bean> -->
 </list>
 </property>
 </bean>

out-of-box implementations able to extract the ISSN from the metadata value or authority are provided.

172

https://v2.sherpa.ac.uk/api/

Configuring the "Identifiers" step

By default, the "Identifiers" step is disabled. To enable it, update your to include this tag in your <submission-process>:item-submission.xml

<submission-process name="traditional">

 ...

 <!-- This step shows identifiers already registered for this in-progress item

 <step id="identifiers"/>

 ...

</submission-process>

It is recommended to display this step above most others so that the submitter can clearly see any identifiers that will be created while completing their
submission.

You must also enable registration of identifiers for workspace and workflow items in or (thidspace/config/modules/identifiers.cfg local.cfg
s is disabled by default):

identifiers.submission.register = true

While editing this configuration, pay attention to the filter configuration - logical item filters can be referenced here to apply some conditions as to whether
an item qualifies for a DOI or not (eg. based on metadata entered, the type of work, or so on).

Any identifiers registered for the current submission or workflow item will be displayed in a read-only section. If no identifiers are registered, a placeholder
“no identifiers” message will be displayed.

If DOI registration is configured for logical item filtering, the DOI will be minted (in a 'pending' state) or deleted as appropriate whenever the in-progress
item is saved, depending on whether it passes the filter test.

See dspace/config/modules/identifiers.cfg

173

1.

2.

3.

Creating new Submission Steps Programmatically.

First, a brief warning: Creating a new Submission Step requires some Java knowledge, and is therefore recommended to be undertaken by a Java
programmer whenever possible.

In most scenarios, this is NOT necessary, as it's much easier to configure a custom Submission Step using DescribeStep or similar.

That being said, at a higher level, creating a new Submission Step requires the following (in this relative order):

Create a new Step Processing class
This class extend the abstract class and implement all methods defined by must org.dspace.submit.AbstractProcessingStep
that abstract class.
This class should be built in such a way that it can process the input gathered from the UI

Add a valid Step Definition to the configuration file.item-submission.xml
This may also require that you add an I18N (Internationalization) key for this step's heading to the UI
For more information on within the , see the section above on Defining Steps () <step-definition> tags item-submission.xml <step>
within the .item-submission.xml

For the UI, you will need to..
Add a new section type to SectionsType enum matching to the type of step you are creating
Create a new Component for this new SectionsType, annotated with "@renderSectionFor()".... see existing section components under
src/app/submission/sections for examples.
(Other steps may be necessary... this process has not been fully documented at this time.)

174

Basic Duplicate Detection for Submission/Workflow

Overview
Examples of default duplicate display in the DSpace frontend:

Configuration
Configuring Basic Duplicate Detection
Configuring Basic Duplicate Detection in Item Submission

Overview

This feature adds basic duplicate detection to DSpace by comparing normalised item titles in Solr with a configurable allowing for levenshtein edit distance
fuzzy matching of potential duplicates.

Duplicates can be searched via a submission step, to warn submitters or editors of potential duplicates while they are editing metadata for an in-progress
item, and also with a new /duplicates REST item link which will search and retrieve a paged list of potential duplicates for any item.

Workflow reviewers / editors will also get a warning for claimed and pooled tasks indicating the total number of potential duplicates.

The feature must be enabled in configuration (see below). It is disabled by default.

When enabling this feature for the first time, a full discovery reindex must be performed with ${dspace.dir]/bin/dspace index-discovery -b.

Examples of default duplicate display in the DSpace frontend:

Preview of a potential duplicate in item submission

Warning of 1 potential duplicate for a pooled task.

Configuration

175

https://en.wikipedia.org/wiki/Levenshtein_distance

Configuring Basic Duplicate Detection

To enable Basic Duplicate Detection and configure its parameters, edit $[dspace.dir}/config/modules/duplicate-detection.cfg and uncomment or adjust the
default properties accordingly.

The default configuration is shown below.

Property: duplicate.enabled

Example
Value:

duplicate.enabled = true

Information
al Note:

This setting enables or disables the entire duplicate detection feature. When changing the value you MUST reindex the site (./dspace
index-discovery -b)

If the value is not true, any requests to the duplicate detection REST endpoints or section data will be an empty list (the search will not be
performed) and item signatures will not be indexed.

Default: false

Property: duplicate.signature.normalise.lowercase

Example
Value:

duplicate.signature.normalise.lowercase = false

Information
al Note:

Specifies whether the metadata used in the fuzzy match for duplicates should be lowercased at index and query time.

This is recommended to help keep the edit distance used in fuzzy search predictable and in line with typical user expectations.

Default: true

Property: duplicate.signature.normalise.whitespace

Example
Value:

duplicate.signature.normalise.whitespace = false

Information
al Note:

Specifies whether the metadata used in the fuzzy match for duplicates should have all whitespace stripped at index and query time.

This is recommended to help keep the edit distance used in fuzzy search predictable and in line with typical user expectations.

Default: true

Property: duplicate.signature.distance

Example
Value:

duplicate.signature.distance = 2

Information
al Note:

Specifies the maximum edit distance between the two item "signatures" (normalised titles). This value is appended to the Solr term query
with the ~ operator.

For more information see https://en.wikipedia.org/wiki/Levenshtein_distance

A distance of 0 is an exact match (not including any case or whitespace differences as per normalisation rules above)

Default: 0

Property: duplicate.signature.field

Example
Value:

duplicate.signature.field = item_signature

Information
al Note:

Specifies the Solr field name to use when indexing the normalised value for fuzzy duplicate matching. This field name end in should
signature to ensure that the expected Solr schema field type and rules are used.

It is not recommended to change this field name.

Default: item_signature

Property: duplicate.preview.metadata.field

Example
Value:

duplicate.preview.metadata.field = dc.title

duplicate.preview.metadata.field = dc.date.issued

176

https://en.wikipedia.org/wiki/Levenshtein_distance

Information
al Note:

Specifies the item metadata field(s) to include in the duplicate match object, which will be displayed to users. Customise this list of fields to
suit your preferences and metadata privacy requirements.

Default:

duplicate.preview.metadata.field = dc.title

duplicate.preview.metadata.field = dc.date.issued

duplicate.preview.metadata.field = dc.type

duplicate.preview.metadata.field = dspace.entity.type

To display previews of potential duplicates in item submission, you will need to enable the step as per elowb

Configuring Basic Duplicate Detection in Item Submission

To include a submission section that displays a list of potential duplicates to item submitters and editors,

By default, the "Basic Duplicate Detection" step is disabled. To enable it, simply update your item-submission.xml to include this tag in your
<submission-process>:

<submission-process name="traditional">
 <!-- This step enables preview of potential duplicates for the in-progress item -->
 <step id="duplicates"/>

 ...

</submission-process>

After making this update, you will need to restart your backend (REST API) for the changes to take effect.

You will also need to enable the overall Basic Duplicate Detection feature in DSpace configuration as per bove.a

177

https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-ConfiguringtheBasicDuplicateDetectionstep

1.
a.

Live Import from external sources

1 General Framework
1.1 Introduction
1.2 Features
1.3 Abstraction of input format
1.4 Editing Metadata Mapping
1.5 Transformation to DSpace Item

1.5.1 Implementation of an import source for External Sources
1.5.2 Implementation of an import source for files
1.5.3 Mapping raw data to Metadata
1.5.4 Inherited methods
1.5.5 Spring configuration for External Sources
1.5.6 Metadata mapping
1.5.7 Available Metadata Contributor classes

1.6 Framework Sources Implementations
1.6.1 PubMed Integration

1.6.1.1 Introduction
1.6.1.2 Publication Lookup URL
1.6.1.3 PubMed Metadata Mapping
1.6.1.4 PubMed specific classes Config

1.6.1.4.1 Metadata mapping classes
1.6.1.4.2 Service classes

1.6.2 ArXiv Integration
1.6.2.1 ArXiv Metadata Mapping

General Framework

Introduction

This framework is used by both the and to help enhance or enrich submissions. One examples usage is in REST API User Interface Importing Items via
basic bibliographic formats (Endnote, BibTex, RIS, CSV, etc) and online services (arXiv, PubMed, CrossRef, CiNii, etc)

Features

lookup publications from remote sources
Support for multiple implementations

Abstraction of input format

The importer framework does not enforce a specific input format. Each importer implementation defines which input format it expects from a remote
source. The import framework uses generics to achieve this. Each importer implementation will have a type set of the record type it receives from the
remote source's response. This type set will also be used by the framework to use the correct MetadataFieldMapping for a certain implementation. Read "I
mplementation of an import source" below for more information and how to enable the framework.

Editing Metadata Mapping

At a simple level, metadata mapping configurations are all in Spring configs in [dspace.dir]/config/spring/api/

In that directory, you'll find a mapping file per import source, e.g. "arxiv-integration.xml", "bibtex-integration.xml", "endnote-integration.xml", "pubmed-
integration.xml", etc.

There are two different mapping types.

First, mapping from a file-based import (e.g. bibtex, endnote, ris, etc) to a DSpace metadata field.
The list of all of the enabled mappings can be found in a "MetadataFieldConfig" <util:map>, usually at the top of the config file.

178

1.
a.

b.

2.
a.

b.

<util:map id="bibtexMetadataFieldMap" key-type="org.dspace.importer.external.metadatamapping.
MetadataFieldConfig"
 value-type="org.dspace.importer.external.metadatamapping.contributor.
MetadataContributor">
 <description>Defines which metadatum is mapped on which metadatum. Note that while the key
must be unique it
 only matters here for postprocessing of the value. The mapped MetadatumContributor has
full control over
 what metadatafield is generated.
 </description>
 <!-- These entry tags are the enabled mappings. The "value-ref" must map to a <bean> ID. -->
 <entry key-ref="dcTitle" value-ref="bibtexTitleContrib" />
 <entry key-ref="dcAuthors" value-ref="bibtexAuthorsContrib" />
 <entry key-ref="dcJournal" value-ref="bibtexJournalContrib" />
 <entry key-ref="dcIssued" value-ref="bibtexIssuedContrib" />
 <entry key-ref="dcJissn" value-ref="bibtexJissnContrib" />
</util:map>

Each field in the file is mapped to a DSpace metadata field in a "SimpleMetadataContributor" bean definition. NOTE: a large number of
DSpace defined metadata fields are already configured as MetadataFieldConfig beans in the "dublincore-metadata-mapper.xml" Spring
Config in the same directory. These may be reused in other configurations.

<!-- This example bean for BibTex says the "title" key in the BibTex" file should be mapped to the
DSpace metadata field
 defined in the "dcTitle" bean. This "dcTitle" bean is found in "dublincore-metadata-mapper.
xml" and obviously maps to "dc.title" -->
<bean id="bibtexTitleContrib" class="org.dspace.importer.external.metadatamapping.contributor.
SimpleMetadataContributor">
 <property name="field" ref="dcTitle"/>
 <property name="key" value="title" />
</bean>

Second, mapping from an external API query import (e.g. arxiv, pubmed, etc) to a DSpace metadata field.
Similar to above, The list of all of the enabled mappings can be found in a "MetadataFieldConfig" <util:map>, usually at the top of the
config file.

<util:map id="arxivMetadataFieldMap" key-type="org.dspace.importer.external.metadatamapping.
MetadataFieldConfig"
 value-type="org.dspace.importer.external.metadatamapping.contributor.
MetadataContributor">
 <description>Defines which metadatum is mapped on which metadatum. Note that while the key
must be unique it
 only matters here for postprocessing of the value. The mapped MetadatumContributor has
full control over
 what metadatafield is generated.
 </description>
 <!-- These entry tags are the enabled mappings. The "value-ref" must map to a <bean> ID. -->
 <entry key-ref="arxiv.title" value-ref="arxivTitleContrib"/>
 <entry key-ref="arxiv.summary" value-ref="arxivSummaryContrib"/>
 <entry key-ref="arxiv.published" value-ref="arxivPublishedContrib"/>
 <entry key-ref="arxiv.arxiv.doi" value-ref="arxivDoiContrib"/>
 <entry key-ref="arxiv.arxiv.journal_ref" value-ref="arxivJournalContrib"/>
 <entry key-ref="arxiv.category.term" value-ref="arxivCategoryTermContrib"/>
 <entry key-ref="arxiv.author.name" value-ref="arxivAuthorContrib"/>
 <entry key-ref="arxiv.identifier.other" value-ref="arxivOtherContrib"/>
</util:map>

Each field in the file is mapped to a DSpace metadata field, usually in a "SimpleXPathMetadatumContributor" bean definition which also
uses a "MetadataFieldConfig" bean. NOTE: a large number of DSpace defined metadata fields are already configured as
MetadataFieldConfig beans in the "dublincore-metadata-mapper.xml" Spring Config in the same directory. These may be reused in other
configurations.

179

2.

b.

<!-- This first bean define an XPath query ("ns:title") to map to a field (ID="arxiv.title") in
DSpace -->
<bean id="arxivTitleContrib" class="org.dspace.importer.external.metadatamapping.contributor.
SimpleXpathMetadatumContributor">
 <property name="field" ref="arxiv.title"/>
 <property name="query" value="ns:title"/>
 <property name="prefixToNamespaceMapping" ref="arxivBasePrefixToNamespaceMapping"/>
</bean>
<!-- This second bean then defines which DSpace field to use when "arxiv.title" is references. In
other words, between these two beans,
 the "ns:title" XPath query value is saved to "dc.title". -->
<bean id="arxiv.title" class="org.dspace.importer.external.metadatamapping.MetadataFieldConfig">
 <constructor-arg value="dc.title"/>
</bean>

Transformation to DSpace Item

The framework produces an 'ImportRecord' that is completely decoupled from DSpace. It contains a set of metadata DTO's that contain the notion of
schema,element and qualifier. The specific implementation is responsible for populating this set. It is then very simple to create a DSpace item from this list.

Implementation of an import source for External Sources

Each external source/API importer implementation must at least implements org.dspace.importer.external.service.components.
, which provides the query method used by the framework to retrieve data from the remote source (e.g. Pubmed, ArXiv, etc). Each external QuerySource

source importer must implements, according to the provider APIs, the declared methods.
An useful abstract for remote sources is .This class org.dspace.importer.external.service.components.AbstractRemoteMetadataSource
contains functionality to handle request timeout and to retry requests. Using this abstract, the query method must implements java.util.concurrent.Callable.

Implementation of an import source for files

Each file importer implementation must at least implements , which provides org.dspace.importer.external.service.components.FileSource
the basic methods used by the framework to parse and load data from the file (e.g. CSV, Endnote, etc).

Each importer must implements the method:

public List<ImportRecord> getRecords(InputStream inputStream) throws FileSourceException;

This method is responsible to transform the input data into an ImportRecord list, which will then managed by the top layer of the framework.

The conversion from raw data to an ImportRecord could be done using the framework too, using the metadata mapping structure (see below).

File sources needs to know which file extensions they have to supports. This is done by the default method in , isValidSourceForFile FileSource
and is controlled by the entries in the list returned by declared method public List<String> getSupportedExtensions();

An useful abstract for file source is . It should be org.dspace.importer.external.service.components.AbstractPlainMetadataSource
used whenever it is possible to model the data in the file as a list of key-value lists (e.g. for CSV files, any row is a key value list).

Mapping raw data to Metadata

The framework core is a mid-layer component which allow the conversion of raw data into metadata (ImportRecord) using xml configurable spring beans.

The core of this approach is . Any service that wants to org.dspace.importer.externa.service.AbstractImportMetadataSourceService
generate metadata from raw data should go through this abstract.

Our service then should extends AbstractImportMetadataSourceService, and use to transform raw data into ImportRecords.transformSourceRecords

The most relevant concept in the framework is private MetadataFieldMapping<RecordType, MetadataContributor<RecordType>>
. This is the place where the framework take the mapping between row data and the associated metadatum. This map must be metadataFieldMapping

injected in the service, and will be used by to convert the data.transformSourceRecords

RecordType is a generic type, which rapresent a single entry of the list of data, and will be mapped to a single ImportRecord. Any metadatum
will be mapped to a specific field in the RecordType using a Contributor as described in Metadata mapping.

Inherited methods

180

Method getImportSource() should return a unique identifier. Importer implementations should not be called directly, but class org.dspace.importer.external.
 should be called instead. This class contains the same methods as the importer implementations, but with an extra parameter 'url'. service.ImportService

This url parameter should contain the same identifier that is returned by the getImportSource() method of the importer implementation you want to use.

The other inherited methods are used to query the remote source.

Spring configuration for External Sources

In order to make the live import providers available, them must be mapped as spring beans into dspace-api/src/main/resources/spring
/spring-dspace-
addon-import-services.xml.

This is an example of a provider which allow to import both files and remote source.

<bean id="PubmedImportService"
 class="org.dspace.importer.external.pubmed.service.PubmedImportMetadataSourceServiceImpl" scope="
singleton">
 <property name="metadataFieldMapping" ref="PubmedMetadataFieldMapping"/>
 <property name="supportedExtensions">
 <list>
 <value>xml</value>
 </list>
 </property>
 ...
</bean>

Here is defined the service responsible to fetch and transform the data , which is an extensionPubmedImportMetadataSourceServiceImpl
of as described above.AbstractImportMetadataSourceService

The field is an instance of and contains the effectivemetadataFieldMapping Map<MetadataFieldConfig,MetadataContributor>
mapping.

supportedExtensions is the file extension this provider supports.

To expose this provider as Live Import provider, we need to construct a bean of type org.dspace.external.provider.impl.
 in the following wayLiveImportDataProvider

<bean id="pubmedLiveImportDataProvider" class="org.dspace.external.provider.impl.LiveImportDataProvider">
 <property name="metadataSource" ref="PubmedImportService"/>
 <property name="sourceIdentifier" value="pubmed"/>
 <property name="recordIdMetadata" value="dc.identifier.other"/>
</bean>

where is the bean referencing to live import service as described in “Metadata mapping”, the name ofmetadataSource sourceIdentifier
the provider in the live import framework and the metadatum used as id of the ImportRecord.recordIdMetadata

Metadata mapping

When using an implementation of , a mapping of remote record fields to DSpace metadata fields can be created.AbstractImportSourceService

first create an implementation of class with the same type set used for the importer implementation.AbstractMetadataFieldMapping

Then create a spring configuration file in .[dspace.dir]/config/spring/api

Each DSpace metadata field that will be used for the mapping must first be configured as a spring bean of classorg.dspace.importer.external.
.metadatamapping.MetadataFieldConfig

 < = = >bean id dc.title" " class org.dspace.importer.external.metadatamapping.MetadataFieldConfig" "
 < = />constructor-arg value dc.title" "
 </ >bean

NOTE: A large number of these MetadataFieldConfig definitions are already provided out-of-the-box in [dspace.dir]/config/spring/api
 This allows most service-specific Spring configurations to just reuse those existing MetadataFieldConfig /dublincore-metadata-mapper.xml

definitions

Now this metadata field can be used to create a mapping. To add a mapping for the "dc.title" field declared above, a new spring bean configuration of a
class class needs to be added. This interface contains a type argument. org.dspace.importer.external.metadatamapping.contributor.MetadataContributor
The type needs to match the type used in the implementation of AbstractImportSourceService. The responsibility of each MetadataContributor
implementation is to generate a set of metadata from the retrieved document. How it does that is completely opaque to the AbstractImportSourceService
but it is assumed that only one entity (i.e. item) is fed to the metadatum contributor.

181

For example can parse a fragment of xml and java SimpleXpathMetadatumContributor implements MetadataContributor<OMElement>
generate one or more metadata values.

This bean expects 2 property values:

field: A reference to the configured spring bean of the DSpace metadata field. e.g. the "dc.title" bean declared above.
query: The xpath expression used to select the record value returned by the remote source.

 < = =bean id titleContrib" " class org.dspace.importer.external.metadatamapping.contributor."
>SimpleXpathMetadatumContributor"

 < = = />property name field" " ref dc.title" "
 < = = />property name query" " value dc:title" "
 </ >bean

Multiple record fields can also be combined into one value. To implement a combined mapping first create a SimpleXpathMetadatumContributor as
explained above for each part of the field.

 < = =bean id lastNameContrib" " class org.dspace.importer.external.metadatamapping.contributor."
>SimpleXpathMetadatumContributor"

 < = = />property name field" " ref dc.contributor.author" "
 < = = />property name query" " value x:authors/x:author/x:surname" "
 </ >bean
 < = =bean id firstNameContrib" " class org.dspace.importer.external.metadatamapping.contributor."

>SimpleXpathMetadatumContributor"
 < = = />property name field" " ref dc.contributor.author" "
 < = = />property name query" " value x:authors/x:author/x:given-name" "
 </ >bean

Note that namespace prefixes used in the xpath queries are configured in bean "FullprefixMapping" in the same spring file.

 < = = = >util:map id FullprefixMapping" " key-type java.lang.String" " value-type java.lang.String" "
 < >Defines the namespace mappin for the SimpleXpathMetadatum contributors</ >description description
 < = = />entry key http://purl.org/dc/elements/1.1/" " value dc" "
 < = = />entry key http://www.w3.org/2005/Atom" " value x" "
 </ >util:map

Then create a new list in the spring configuration containing references to all SimpleXpathMetadatumContributor beans that need to be combined.

 < = =util:list id combinedauthorList" " value-type org.dspace.importer.external.metadatamapping.contributor."
 = >MetadataContributor" list-class java.util.LinkedList" "

 < = />ref bean lastNameContrib" "
 < = />ref bean firstNameContrib" "
 </ >util:list

Finally create a spring bean configuration of class . This bean org.dspace.importer.external.metadatamapping.contributor.CombinedMetadatumContributor
expects 3 values:

field: A reference to the configured spring bean of the DSpace metadata field. e.g. the "dc.title" bean declared above.
metadatumContributors: A reference to the list containing all the single record field mappings that need to be combined.
separator: These characters will be added between each record field value when they are combined into one field.

 < = =bean id authorContrib" " class org.dspace.importer.external.metadatamapping.contributor."
>CombinedMetadatumContributor"

 < = = />property name separator" " value , " "
 < = = />property name metadatumContributors" " ref combinedauthorList" "
 < = = />property name field" " ref dc.contributor.author" "
 </ >bean

Each contributor must also be added to the "MetadataFieldMap" used by the MetadataFieldMapping implementation. Each entry of this map maps a
metadata field bean to a contributor. For the contributors created above this results in the following configuration:

 < =util:map id org.dspace.importer.external.metadatamapping.MetadataFieldConfig" "
 = >value-type org.dspace.importer.external.metadatamapping.contributor.MetadataContributor" "
 < = = />entry key-ref dc.title" " value-ref titleContrib" "
 < = = />entry key-ref dc.contributor.author" " value-ref authorContrib" "
 </ >util:map

Note that the single field mappings used for the combined author mapping are not added to this list.

Available Metadata Contributor classes

Class Description

182

SimpleXpathMetadatumContrib
utor

Use an XPath expression to map the XPath result to a metadatum

SimpleMetadataContributor This contributor is used in plain metadata as exposed above. Mapping is easy because it is based on the key used in
the DTO.

CombinedMetadatumContributor Use a LinkedList of MetadataContributor to combine into the value the resulting value for each contributor.

Framework Sources Implementations

PubMed Integration

Introduction

First read the base documentation on external importing (see above). This documentation explains the implementation of the importer framework using
PubMed () as an example.http://www.ncbi.nlm.nih.gov/pubmed

Publication Lookup URL

To be able to do the lookup for our configured import-service, we need to be able to know what URL to use to check for publications. This URL the public
 setting defined within the . You may choose to modify this ation-lookup.url [dspace.dir]/config/modules/publication-lookup.cfg

setting or override it within your local.cfg.

This setting can be modified in one of two ways:

You can choose to specific a single, specific URL. This will tell the lookup service to only use one location to lookup publication information. Valid
URLs are any that are defined as a for beans within the baseAddress [src]/dspace-api/src/main/resources/spring/spring-

 Spring config file.dspace-addon-import-services.xml
For example, this setting will ONLY use PubMed for lookups: publication-lookup.url=http://eutils.ncbi.nlm.nih.gov
/entrez/eutils/

By default, is set to an asterisk ('*'). This default value will attempt to lookup the publication using ALL configured publication-lookup.url
importServices in the Spring [src]/dspace-api/src/main/resources/spring/spring-dspace-addon-import-services.xml
config file

PubMed Metadata Mapping

The PubMed metadata mappings are defined in the Spring configuration [dspace.dir]/config/spring/api/pubmed-integration.xml
file. These metadata mappings can be tweaked as desired. The format of this file is described in the "Metadata mapping" section above

PubMed specific classes Config

These classes are simply implementations based of the base classes defined in importer/external. They add characteristic behavior for services/mapping
for the PubMed specific data.

Metadata mapping classes

"PubmedFieldMapping". An implementation of AbstractMetadataFieldMapping, linking to the bean that serves as the entry point of other metadata
mapping
"PubmedDateMetadatumContributor"/"PubmedLanguageMetadatumContributor". Pubmed specific implementations of the "MetadataContributor"
interface

Service classes

"GeneratePubmedQueryService". Generates the pubmed query which is used to retrieve the records. This is based on a given item.
"PubmedImportMetadataSourceServiceImpl". Child class of "AbstractImportMetadataSourceService", retrieving the records from pubmed.

ArXiv Integration

ArXiv Metadata Mapping

The ArXiv metadata mappings are defined in the Spring configuration file. These [dspace.dir]/config/spring/api/arxiv-integration.xml
metadata mappings can be tweaked as desired. The format of this file is described in the "Metadata mapping" section above

183

http://www.ncbi.nlm.nih.gov/pubmed
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/

Set a bitstream as primary
When uploading multiple files during a submission, it is possible to define which is the primary bitstream.

In the list of the uploaded files, a toggle in the column lets choose which of the bitstreams is the primary. The changes are Primary bitstream
automatically saved.

To choose another uploaded file as primary bitstream, is enough to activate the related toggle. The previous primary bitstream toggle turns off
automatically and the changes are saved.

If a bitstream set as a primary gets deleted, a new primary bitstream needs to be defined manually.

The Primary bitstream toggle is also present in the window. Clicking on , the bitstream appears as primary.Edit bitstream Save

If another bitstream was set as primary before, and a new bitstream is set as primary in its edit window, the toggle on the previous file turns off
automatically, and the new bitstream becomes primary. The system then saves the changes.

After depositing the changes, the item page will show the next to the item's title.Primary badge

184

If no bitstream can be defined as primary, the toggles can stay off and the item can be deposited. On the item page, no will be shown.Primary badge

185

Simple HTML Fragment Markup
A few features of the user interface, such as the deposit license text & some metadata fields, can be marked up using a subset of HTML. This HTML
subset is defined by Angular, as we use Angular's "[innerHtml]" property to display these HTML-based fields.

Angular automatically sanitizes any HTML passed to "[innerHtml]" in order to avoid XSS attacks. See Angular docs at https://angular.io/guide
/security#preventing-cross-site-scripting-xss

At this time, Angular does NOT have a formal reference of elements/attributes which are allowed, but we've compiled a list below of currently known
acceptable elements. This list may change in later releases of Angular, but is currently maintained in Angular's "html_sanitizer.ts": https://github.com
/angular/angular/blob/main/packages/core/src/sanitization/html_sanitizer.ts

As of the writing of this page, these HTML5 elements may be used:

h1, h2, h3, h4, h5, h6
p, div
a
img
audio
video
map
table-based elements (table, td, th, tr, etc)
list-based elements (ol, ul, li, etc)
other formatting elements (b, i, u, br, hr, small, font, etc)

Not all DSpace fields support HTML, but the User Interface should make it clear which fields do. When adding HTML to a field, you should not create a
complete HTML document (surrounded with "<html>" tags). Just add an HTML fragment.

186

https://angular.io/guide/security#preventing-cross-site-scripting-xss
https://angular.io/guide/security#preventing-cross-site-scripting-xss
https://github.com/angular/angular/blob/main/packages/core/src/sanitization/html_sanitizer.ts
https://github.com/angular/angular/blob/main/packages/core/src/sanitization/html_sanitizer.ts

Supervision Orders
Available in 7.5 or later

In order to facilitate, as a primary objective, the opportunity for thesis authors to be supervised in the preparation of their e-theses, a supervision order
system exists to bind groups of other users (thesis supervisors) to an item in someone's pre-submission workspace. The bound group can have system
policies associated with it that allow different levels of interaction with the student's item; a small set of default policy groups are provided:

Full editorial control (EDITOR)
View item contents (OBSERVER)

Once the default set has been applied, a system administrator may modify them as they would any other policy set in DSpace

This functionality could also be used in situations where researchers wish to collaborate on a particular submission, although there is no particular
collaborative workspace functionality.

Creating a Supervision Order

Login as an Administrator, and visit the "Administer Workflow" sidebar menu. From this screen you can see all Items that are either in the "Workspace"
(pre-submission) or "Workflow" (workflow approval process) status.

For Items that are in the "Workspace", it is possible to create a supervision order by clicking on the "Supervision" button.

After clicking "Supervision", you'll be able to create a Supervision order by selecting the "Type of Order" (EDITOR or OBSERVER) and assigning those
permissions to an existing DSpace Group.

187

In DSpace, there are currently two Types of Orders:

EDITOR - The supervising group is given ADD, WRITE, and READ access to the item (but not any bundles or bitstreams that already exist). Any
new bundles or bitstreams inherit the supervising group's policy to permit ADD, WRITE and READ operations.

NOTE: Keep in mind, this does NOT give the supervising group REMOVE policies on the Bundle or DELETE on the Item. This means
the supervising group is only able to edit the metadata & add additional bitstreams. They are NOT able to remove existing bitstreams or
delete the Item unless additional policies are manually added.

OBSERVER - The supervising group is given READ access to the item (but not to any bundles or bitstreams that already exist). Any new bundles
or bitstreams inherit the supervision group's policy to permit READ operations.

NOTE: At this time, there is a known issue where the OBSERVER group will still see the "Edit" and "Delete" buttons, but are unable to
perform those actions. https://github.com/DSpace/dspace-angular/issues/2094

Keep in mind, Simply click on the "Policies" button on the "Administer you can adjust the permissions defined to any order after creating the order!
Workflow" page to adjust the default policies for that supervising group!

Supervising a Submission

Once a Supervision Order is created (see above step), all group members for the supervising group will see that Item in their "Supervised Items" list on
their MyDSpace page:

188

https://github.com/DSpace/dspace-angular/issues/2094

Based on the type of Submission Order (or additional permissions provided), all members of the supervising group will be able to view and/or edit that in-
progress submission.

Managing Supervision Orders

At any time, an Administrator can remove or recreate Supervision Orders. This is also done from the "Administer Workflow" page.

On that page, a "Supervised By" filter exists, allowing you to locate all currently supervised items by the assigned group:

You can click on the "Supervised by" label under the supervised item to the existing supervision order. New orders can be added by clicking the remove
"Supervision" button. You can also adjust any supervising group permissions by editing the policies directly by clicking on the "Policies" button.

189

Configurable Workflow

1 Introduction
2 How to Configure your Workflows

2.1 WORKFLOWS
2.2 STEPS
2.3 ROLES
2.4 ACTIONS
2.5 CURATION
2.6 HOW IT WORKS

3 Data Migration
3.1 Workflowitem conversion/migration scripts

3.1.1 Automatic migration
3.1.2 Java based migration

4 Configuration
4.1 Main workflow configuration

4.1.1 workflowFactory bean (org.dspace.xmlworkflow.XmlWorkflowFactoryImpl)
4.1.2 workflow beans (org.dspace.xmlworkflow.state.Workflow)
4.1.3 role beans (org.dspace.xmlworkflow.Role)
4.1.4 step beans (org.dspace.xmlworkflow.state.Step)

4.2 Workflow actions configuration
4.2.1 API configuration

4.2.1.1 User Selection Action
4.2.1.2 Processing Action

5 Authorizations
6 Database

6.1 cwf_workflowitem
6.2 cwf_collectionrole
6.3 cwf_workflowitemrole
6.4 cwf_pooltask
6.5 cwf_claimtask
6.6 cwf_in_progress_user

7 Additional workflow steps/actions and features
7.1 Optional workflow steps: Select single reviewer workflow
7.2 Optional workflow steps: Score review workflow
7.3 Workflow overview features

Introduction

Workflows can be used to define how documents should be reviewed or edited after being submitted and/or imported into DSpace. The primary focus of
the workflow framework is to create a more flexible solution for the administrator to configure, and even to allow an application developer to implement
custom steps, which may be configured in the workflow for the collection through a simple configuration file. Each workflow can be compared to an action
that is performed on an item between its submission to the repository and the moment it is archived and published in the repository. The concept behind
this approach was modeled on the configurable submission system already present in DSpace.

How to Configure your Workflows

Every submission to DSpace goes through a workflow before it is published in the repository. A workflow consists of a series of steps, each of which is an
opportunity for a reviewer, editor or collection administrator to modify and/or approve/reject the submission. A step may also begin by running a {Curation
Task} over the submission.

Each collection is associated with a workflow. If no explicit association is made, the collection is assigned the default workflow. These associations are
configured in using the workflowMapping property of the XmlWorkflowFactory bean. To make an explicit config/spring/api/workflow.xml
association, add an entry to the list with the collection's Handle as the 'key' and the 'name' of a Workflow bean as the 'value-ref'.

Each step in a workflow is associated with a "role" which defines who can perform that step. Role members will be notified when a new submission needs
their attention. Roles are defined by DSpace user groups. If you wish to have reviewers interact with incoming submissions, you must create and fill the
necessary groups. See below for details.

WORKFLOWS

To create a new workflow, add another bean with the 'class' 'org.dspace.xmlworkflow.state.Workflow' and a unique 'name'. Give it a 'steps' property
containing a list of the steps that should be entered in sequence, and a 'firstStep' property which names the step to be entered first. See the default
workflow for an example. An existing step may be re-used if appropriate, or you can create one to suit.

STEPS

Aside from its name, a step has a "user selection method", a "role", "actions" and "outcomes".

A step's 'userSelectionMethod' is the name of an "action" of the user-selection type. A step may, for example, let itself be claimed (for a given submission)
by a single user, or it may combine the actions of multiple users. A step has exactly one 'userSelectionMethod'. See more on actions below.

A step's role defines the set of users who may perform actions on a submission that has entered that step. See more on roles below.

190

A step's actions are the types of work that are done in the step. See more on actions below. More than one action may be listed.

A step's outcomes connect the role members' decisions with the next step to be performed. For example, this allows a role member to accept a
submission and skip subsequent steps by going directly to the final step in the workflow.

To create a new step, add a bean with 'class' org.dspace.xmlworkflow.state.Step and the necessary properties, as discussed above. See the existing
steps in workflow.xml for examples.

ROLES

You may re-use existing roles, or add your own. A role has a 'name', a 'scope', and optionally a 'description'. There are three kinds of roles:

A COLLECTION role refers to a user group associated with a specific collection. It will be named {collectionID}_{roleName}. For example, a role
'editor' with COLLECTION scope, applied to collection 123, will refer to the user group named 'editor_123', while the same role applied to
collection 456 will refer to the user group 'editor_456'.
A REPOSITORY role refers to a fixed user group, whose name is the role's name. A REPOSITORY role named 'fred' will always refer to the user
group 'fred'.
An ITEM role is assigned by a previous action in the workflow. [NEEDS MORE EXPLANATION]

To create a new role, add a bean with 'class' org.dspace.xmlworkflow.Role, the appropriate 'scope', and a unique 'name'. Be sure that the related groups
exist.

ACTIONS

Actions are defined separately in 'config/spring/api/workflow-actions.xml'.

A number of actions are already defined, and these should serve most needs. Actions are implemented in Java code, so if you need a new one then you
will need to write some Java in addition to configuring it here.

There are two kinds of actions: user assignment and processing. A user assignment action selects one or more role members to execute a step. A
processing action modifies the state of the submission.

To configure a new Action, create a bean with a unique 'id', 'class' equal to the fully qualified name of the Java class which implements the action, and
'scope' "prototype". Add properties, constructor arguments, etc. as required by the code.

CURATION

To attach a Curation Task to a workflow step, see . Tasks are executed at the beginning of a step, before role members are notified.Curation System

HOW IT WORKS

For details of how these concepts are implemented (for example, to create new actions) see the page under DSpace Development.Workflow

Data Migration

As of DSpace 7, Configurable Workflow is the only workflow system available in DSpace. It has fully replaced the older "traditional/basic workflow"
system. One major difference is that Configurable Workflow is dynamic – if a user is added to a workflow approval task a workflow has already begun, after
they will immediately get access to any existing items in workflow. Previously, this was not possible in the "traditional" workflow system.

Workflowitem conversion/migration scripts

Depending on the workflow that is used by a DSpace installation, different scripts can be used when migrating to the new workflow.

Automatic migration

As part of the upgrade to DSpace 7 or above, all your old policies, roles, tasks and workflowitems will be automatically updated from the original workflow
to the Configurable Workflow framework. This is done via this command:

[dspace]/bin/dspace database migrate ignored

The "ignored" parameter will tell DSpace to run any previously-ignored migrations on your database. As the Configurable Workflow migrations have
existed in the DSpace codebase for some time, this is the only way to force them to be run.

For more information on the "database migrate" command, please see .Database Utilities

Java based migration

191

In case your DSpace installation uses a customized version of the workflow, the migration script might not work properly and a different approach is
recommended. Therefore, an additional Java based script has been created that restarts the workflow for all the workflowitems that exist in the original
workflow framework. The script will take all the existing workflowitems and place them in the first step of the configurable workflow framework thereby
taking into account the XML configuration that exists at that time for the collection to which the item has been submitted. This script can also be used to
restart the workflow for workflowitems in the original workflow but not to restart the workflow for items in the configurable workflow.

To execute the script, run the following CLI command:

[dspace]/bin/dspace dsrun org.dspace.xmlworkflow.migration.RestartWorkflow -e admin@myrespository.org

The following arguments can be specified when running the script:

-e: specifies the username of an administrator user
-n: if sending submissions through the workflow, send notification emails
-p: the provenance description to be added to the item
-h: help

Configuration

Main workflow configuration
As of DSpace 7, the configuration file has been migrated to use Spring Bean syntax (instead of a custom XML format). The structure of workflow.xml
this XML has changed. If you need help migrating your old file (which started with a < > tag) to the new format (using < > workflow.xml wf-config bean
tags), an XSLT script is available: workflow-migration.xsl

The workflow main configuration can be found in the workflow.xml file, located in . An example of [dspace]/config/spring/api/workflow.xml
this workflow configuration file can be found below.

<beans>
 <bean class="org.dspace.xmlworkflow.XmlWorkflowFactoryImpl">
 <property name="workflowMapping">
 <util:map>
 <entry key="defaultWorkflow" value-ref="defaultWorkflow"/>
<!-- <entry key="123456789/4" value-ref="selectSingleReviewer"/>-->
<!-- <entry key="123456789/5" value-ref="scoreReview"/>-->
 </util:map>
 </property>
 </bean>

 <!--Standard DSpace workflow-->
 <bean name="defaultWorkflow" class="org.dspace.xmlworkflow.state.Workflow">
 <property name="firstStep" ref="reviewstep"/>
 <property name="steps">
 <util:list>
 <ref bean="reviewstep"/>
 <ref bean="editstep"/>
 <ref bean="finaleditstep"/>
 </util:list>
 </property>
 </bean>

 <bean id="{workflow.id}"
 class="org.dspace.xmlworkflow.state.Workflow">
 <!-- Another workflow configuration-->
 </bean>

 <!-- Role beans. See below. -->

 <!-- Step beans. See below. -->

</beans>

workflowFactory bean (org.dspace.xmlworkflow.XmlWorkflowFactoryImpl)

The workflow map contains a mapping between collections in DSpace and a workflow configuration, and is defined by the property of workflowMapping
the workflow factory. Similar to the configuration of the submission process, the mapping can be done based on the handle of the collection. The mapping
with "defaultWorkflow" as the value for the collection mapping, will be used for the collections not occurring in other mapping tags. Each mapping is
defined by a " " element with two attributes:entry

192

https://wiki.lyrasis.org/download/attachments/315720698/workflow-migration.xsl?version=1&modificationDate=1701973378799&api=v2

key: can either be a collection handle or "defaultWorkflow"
value-ref: the value of this attribute points to one of the workflow configurations defined by the "Workflow" beans

workflow beans (org.dspace.xmlworkflow.state.Workflow)

The workflow bean is a repeatable XML element and represents one workflow process. It requires the following:

" " attribute: a unique name used for the identification of the workflow and used in the workflow to collection mappingname
" " property: the identifier of the first step of the workflow. This step will be the entry point of this workflow-process. When a new item firstStep
has been committed to a collection that uses this workflow, the step configured in the " " property will he the first step the item will go firstStep
through.
" " property: a list of all steps within this workflow (in the order they will be processed).steps

role beans (org.dspace.xmlworkflow.Role)

Each workflow step has defined "role" property. A role represents one or more existing DSpace EPersons or Groups and can be used to assign them to
one or more steps in the workflow process. One role is represented by one "role" bean and has the following:

" " attribute: a unique identifier (in one workflow process) for the roleid
" " property: optional attribute to describe the roledescription
" " property: optional attribute that is used to find our group and must have one of the following values, which are defined as constant fields scope
of :org.dspace.xmlworkflow.Role.Scope

COLLECTION: The collection value specifies that the group will be configured at the level of the collection. This type of groups is the
same as the type that existed in the original workflow system. In case no value is specified for the scope attribute, the workflow
framework assumes the role is a collection role.
REPOSITORY: The repository scope uses groups that are defined at repository level in DSpace. The name attribute should exactly
match the name of a group in DSpace.
ITEM: The item scope assumes that a different action in the workflow will assign a number of EPersons or Groups to a specific workflow-
item in order to perform a step. These assignees can be different for each workflow item.

" " property: The name specified in the name attribute of a role will be used to lookup an eperson group in DSpace. The lookup will depend name
on the scope specified in the " " attribute:scope

COLLECTION: The workflow framework will look for a group containing the name specified in the name attribute and the ID of the
collection for which this role is used.
REPOSITORY: The workflow framework will look for a group with the same name as the name specified in the attribute.name
ITEM: in case the item scope is selected, the name of the role attribute is not required.

<bean id="reviewer" class="org.dspace.xmlworkflow.Role">
 <property name="scope" value="#{ T(org.dspace.xmlworkflow.Role.Scope).COLLECTION}"/>
 <property name="name" value="Reviewer"/>
 <property name="description" value="The people responsible for this step are able to edit the metadata of
incoming submissions, and then accept or reject them."/>
</bean>

step beans (org.dspace.xmlworkflow.state.Step)

The step element represents one step in the workflow process. A step represents a number of actions that must be executed by one specified role. In case
no attribute is specified, the workflow framework assumes that the DSpace system is responsible for the execution of the step and that no user role
interface will be available for each of the actions in this step. The step element has the following in order to further configure it:

" " attribute: The name attribute specifies a unique identifier for the step. This identifier will be used when configuring other steps in order to name
point to this step. This identifier can also be used when configuring the start step of the workflow item.
" " property: This attribute defines the that will be used to determine how to attach users to this userSelectionMethod UserSelectionAction
step for a workflow-item. The value of this attribute must refer to the identifier of an action bean in the workflow-actions.xml. Examples of the user
attachment to a step are the currently used system of a task pool or as an alternative directly assigning a user to a task.
" " property: optional attribute that must point to the attribute of a role element specified for the workflow. This role will be used to define role id
the epersons and groups used by the .userSelectionMethod
RequiredUsers

193

<bean name="reviewstep" class="org.dspace.xmlworkflow.state.Step">
 <property name="userSelectionMethod" ref="claimaction"/>
 <property name="role" ref="reviewer"/>
 <property name="outcomes">
 <util:map>
 <entry key="#{ T(org.dspace.xmlworkflow.state.actions.ActionResult).OUTCOME_COMPLETE}"
 value-ref="editstep"/>
 </util:map>
 </property>
 <property name="actions">
 <util:list>
 <ref bean="reviewaction"/>
 </util:list>
 </property>
</bean>

Each step contains a number of actions that the workflow item will go through. In case the action has a user interface, the users responsible for the
exectution of this step will have to execute these actions before the workflow item can proceed to the next action or the end of the step.

There is also an optional subsection that can be defined for a step part called " ". This can be used to define outcomes for the step that differ outcomes
from the one specified in the nextStep attribute. Each action returns an integer depending on the result of the action. The default value is "0" and will make
the workflow item proceed to the next action or to the end of the step.
In case an action returns a different outcome than the default "0", the alternative outcomes will be used to lookup the next step. The " " element outcomes
contains a number of steps, each having a status attribute. This status attribute defines the return value of an action. The value of the element will be used
to lookup the next step the workflow item will go through in case an action returns that specified status.

Workflow actions configuration

API configuration

The workflow actions configuration is located in the directory and is named " ". This [dspace]/config/spring/api/ workflow-actions.xml
configuration file describes the different Action Java classes that are used by the workflow framework. Because the workflow framework uses Spring
framework for loading these action classes, this configuration file contains Spring configuration.

This file contains the beans for the actions and user selection methods referred to in the . In order for the workflow framework to work workflow.xml
properly, each of the required actions must be part of this configuration.

194

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans
/spring-beans-2.0.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util
/spring-util-2.0.xsd">

 <!-- At the top are our bean class identifiers --->
 <bean id="{action.api.id}" class="{class.path}" scope="prototype"/>
 <bean id="{action.api.id.2}" class="{class.path}" scope="prototype"/>

 <!-- Below the class identifiers come the declarations for out actions/userSelectionMethods -->

 <!-- Use class workflowActionConfig for an action -->
 <bean id="{action.id}" class="oorg.dspace.xmlworkflow.state.actions.WorkflowActionConfig" scope="
prototype">
 <constructor-arg type="java.lang.String" value="{action.id}"/>

 <property name="processingAction" ref="{action.api.id}"/>
 <property name="requiresUI" value="{true/false}"/>
 </bean>

 <!-- Use class UserSelectionActionConfig for a user selection method -->
 <!--User selection actions-->
 <bean id="{action.api.id.2}" class="org.dspace.xmlworkflow.state.actions.UserSelectionActionConfig"
scope="prototype">
 <constructor-arg type="java.lang.String" value="{action.api.id.2}"/>

 <property name="processingAction" ref="{user.selection.bean.id}"/>
 <property name="requiresUI" value="{true/false}"/>
 </bean>
</beans>

Two types of actions are configured in this Spring configuration file:

User selection action: This type of action is always the first action of a step and is responsible for the user selection process of that step. In case a
step has no role attached, no user will be selected and the is used.NoUserSelectionAction
Processing action: This type of action is used for the actual processing of a step. Processing actions contain the logic required to execute the
required operations in each step. Multiple processing actions can be defined in one step. These user and the workflow item will go through these
actions in the order they are specified in the workflow configuration unless an alternative outcome is returned by one of them.

User Selection Action

Each user selection action that is used in the workflow configuration refers to a bean definition in the file. In order to define a workflow-actions.xml
new user selection action, the following XML code is used:

<bean id="{action.api.id.2}" class="org.dspace.xmlworkflow.state.actions.UserSelectionActionConfig" scope="
prototype">
 <constructor-arg type="java.lang.String" value="{action.api.id.2}"/>

 <property name="processingAction" ref="{user.selection.bean.id}"/>
 <property name="requiresUI" value="{true/false}"/>
</bean>

This bean defines a new UserSelectionActionConfig and the following child tags:

constructor-arg: This is a constructor argument containing the ID of the task. This is the same as the attribute of the bean and is used by the id
workflow configuration to refer to this action.
property : This tag refers the the ID of the API bean, responsible for the implementation of the API side of this action. This processingAction
bean should also be configured in this XML.
property : In case this property is true, the workflow framework will expect a user interface for the action. Otherwise the framework requiresUI
will automatically execute the action and proceed to the next one.

Processing Action

Processing actions are configured similarly to the user selection actions. The only difference is that these processing action beans are implementations of
the WorkflowActionConfig class instead of the UserSelectionActionConfig class.

195

Authorizations

Currently, the authorizations are always granted and revoked based on the tasks that are available for certain users and groups. The types of authorization
policies that is granted for each of these is always the same:

READ
WRITE
ADD
DELETE

Database

The workflow uses a separate metadata schema named . The fields this schema contains can be found in the workflow [dspace]/config
 directory and in the file . This schema is only used when using the score reviewing system at the moment, but one /registries workflow-types.xml

could always use this schema if metadata is required for custom workflow steps.

The following tables have been added to the DSpace database. All tables are prefixed with 'cwf_' to avoid any confusion with the existing workflow related
database tables:

cwf_workflowitem

The cwf_workflowitem table contains the different workflowitems in the workflow. This table has the following columns:

workflowitem_id: The identifier of the workflowitem and primary key of this table
item_id: The identifier of the DSpace item to which this workflowitem refers.
collection_id: The collection to which this workflowitem is submitted.
multiple_titles: Specifies whether the submission has multiple titles (important for submission steps)
published_before: Specifies whether the submission has been published before (important for submission steps)
multiple_files: Specifies whether the submission has multiple files attached (important for submission steps)

cwf_collectionrole

The cwf_collectionrole table represents a workflow role for one collection. This type of role is the same as the roles that existed in the original workflow
meaning that for each collection a separate group is defined to described the role. The cwf_collectionrole table has the following columns:

collectionrol_id: The identifier of the collectionrole and the primaty key of this table
role_id: The identifier/name used by the workflow configuration to refer to the collectionrole
collection_id: The collection identifier for which this collectionrole has been defined
group_id: The group identifier of the group that defines the collection role

cwf_workflowitemrole

The cwf_workflowitemrole table represents roles that are defined at the level of an item. These roles are temporary roles and only exist during the
execution of the workflow for that specific item. Once the item is archived, the workflowitemrole is deleted. Multiple rows can exist for one workflowitem
with e.g. one row containing a group and a few containing epersons. All these rows together make up the workflowitemrole The cwf_workflowitemrole table
has the following columns:

workflowitemrole_id: The identifier of the workflowitemrole and the primaty key of this table
role_id: The identifier/name used by the workflow configuration to refer to the workflowitemrole
workflowitem_id: The cwf_workflowitem identifier for which this workflowitemrole has been defined
group_id: The group identifier of the group that defines the workflowitemrole role
eperson_id: The eperson identifier of the eperson that defines the workflowitemrole role

cwf_pooltask

The cwf_pooltask table represents the different task pools that exist for a workflowitem. These task pools can be available at the beginning of a step and
contain all the users that are allowed to claim a task in this step. Multiple rows can exist for one task pool containing multiple groups and epersons. The
cwf_pooltask table has the following columns:

pooltask_id: The identifier of the pooltask and the primaty key of this table
workflowitem_id: The identifier of the workflowitem for which this task pool exists
workflow_id: The identifier of the workflow configuration used for this workflowitem
step_id: The identifier of the step for which this task pool was created
action_id: The identifier of the action that needs to be displayed/executed when the user selects the task from the task pool
eperson_id: The identifier of an eperson that is part of the task pool
group_id: The identifier of a group that is part of the task pool

cwf_claimtask

The cwf_claimtask table represents a task that has been claimed by a user. Claimed tasks can be assigned to users or can be the result of a claim from
the task pool. Because a step can contain multiple actions, the claimed task defines the action at which the user has arrived in a particular step. This
makes it possible to stop working halfway the step and continue later. The cwf_claimtask table contains the following columns:

196

claimtask_id: The identifier of the claimtask and the primary key of this table
workflowitem_id: The identifier of the workflowitem for which this task exists
workflow_id: The id of the workflow configuration that was used for this workflowitem
step_id: The step that is currenlty processing the workflowitem
action_id: The action that should be executed by the owner of this claimtask
owner_id: References the eperson that is responsible for the execution of this task

cwf_in_progress_user

The cwf_in_progess_user table keeps track of the different users that are performing a certain step. This table is used because some steps might require
multiple users to perform the step before the workflowitem can proceed. The cwf_in_progress_user table contains the following columns:

in_progress_user_id: The identifier of the in progress user and the primary key of this table
workflowitem_id: The identifier of the workflowitem for which the user is performing or has performed the step.
user_id: The identifier of the eperson that is performing or has performe the task
finished: Keeps track of the fact that the user has finished the step or is still in progress of the execution

Additional workflow steps/actions and features

These optional steps are only supported in 7.5 and later.

These optional workflow steps are pre-defined in the "workflow.xml" but are not used by default.

Optional workflow steps: Select single reviewer workflow

This workflow makes it possible to assign a single user to review an item. This workflow configuration skips the task pool option meaning that the assigned
reviewer no longer needs to claim the task. The configuration consists of the following 2 steps.

selectReviewerStep: During this step, a user has the ability to select a responsible user to review the workflowitem. This means that for each
workflowitem, a different user can be selected. Because a user is assigned, the task pool is no longer required.

The available users to select from are defined in the "action.selectrevieweraction.group" setting in workflow.cfg. This setting must list the
name of a group of reviewers to select from (default value = "Reviewers" group).

singleUserReviewStep: The start of the reviewstep is different than the typical task pool. Instead of having a task pool, the user will be
automatically assigned to the task. However, the user still has the option to reject the task (in case he or she is not responsible for the assigned
task) or review the item. In case the user rejects the task, the workflowitem will be sent to the another step in the workflow as an alternative to the
default outcome.

Optional workflow steps: Score review workflow

The score review system allows reviewers to give the reviewed item a rating. Depending on the results of the rating, the item will be approved to go to the
next workflow step or will be sent to an alternative step. The scrore review workflow consists of the following 2 steps.

scoreReviewStep: The group of responsible users for the score reviewing will be able to claim the task from the taskpool. Depending on the
configuration, a different number of users can be required to execute the task (default is requiredusers=2). This means that the task will be
available in the task pool until the required number of users has at least claimed the task. Once everyone of them has finished the task, the next
(automatic) processing step is activated.
evaluationStep: During the evaluationstep, no user interface is required. The workflow system will automatically execute the step that evaluates
the different scores (which corresponds to a rating from 1-5). In case the average score is greater than the average "minimumAcceptanceScore",
the item is approved, otherwise it is rejected. (The minimum average score is set by adjusting the property passed minimumAcceptanceScore
to in .)evaluationactionAPI config/spring/api/workflow-actions.xml

Workflow overview features

The DSpace UI also provides a feature to allow Administrators to see & administer all active workflows (workitems). This feature is provided in the
"Administer Workflow" menu option. Currently, the Administrator has the ability to permanently delete the workflowitem, or to send it back to the original
submitter.

197

Importing and Exporting Content via Packages

1 Package Importer and Exporter
1.1 Supported Package Formats
1.2 Ingesting

1.2.1 Ingestion Modes & Options
1.2.1.1 Ingesting a Single Package
1.2.1.2 Ingesting Multiple Packages at Once

1.2.2 Restoring/Replacing using Packages
1.2.2.1 Default Restore Mode
1.2.2.2 Restore, Keep Existing Mode
1.2.2.3 Force Replace Mode

1.3 Disseminating
1.3.1 Disseminating a Single Object
1.3.2 Disseminating Multiple Objects at Once

1.4 Archival Information Packages (AIPs)
1.5 METS packages

Package Importer and Exporter

This command-line tool gives you access to the Packager plugins. It can a package to create a new DSpace Object (Community, Collection or ingest
Item), or a DSpace Object as a package.disseminate

To see all the options, invoke it as:

[dspace]/bin/dspace packager --help

This mode also displays a list of the names of package ingestion and dissemination plugins that are currently installed in your DSpace. Each Packager
plugin also may allow for custom options, which may provide you more control over how a package is imported or exported. You can see a listing of all
specific packager options by invoking (or) with the (or) option:--help -h --type -t

[dspace]/bin/dspace packager --help --type METS

The above example will display the normal help message, while also listing any additional options available to the "METS" packager plugin.

Supported Package Formats

DSpace comes with several pre-configured package ingestion and dissemination plugins, which allow you to import/export content in a variety of formats.

Pre-Configured Submission Package (SIP) Types

AIP - Ingests content which is in the . This is used as part of the DSpace DSpace Archival Information Package (AIP) format AIP Backup and
 processRestore

DSPACE-ROLES - Ingests DSpace users/groups in the . This is primarily used by the DSpace DSPACE-ROLES XML Schema AIP Backup and
 process to ingest/replace DSpace Users & Groups.Restore

METS - Ingests content which is in the DSpace METS SIP format
PDF - Ingests a single PDF file (where basic metadata is extracted from the file properties in the PDF Document).

Pre-Configured Dissemination Package (DIP) Types

AIP - Exports content which is in the . This is used as part of the DSpace DSpace Archival Information Package (AIP) format AIP Backup and
 processRestore

DSPACE-ROLES - Exports DSpace users/groups in the . This is primarily used by the DSpace DSPACE-ROLES XML Schema AIP Backup and
 process to export DSpace Users & Groups.Restore

METS - Exports content in the DSpace METS SIP format

For a list of all package ingestion and dissemination plugins that are currently installed in your DSpace, you can execute:

[dspace]/bin/dspace packager --help

Some packages ingestion and dissemination plugins also have custom options/parameters. For example, to see a listing of the custom options for the
"METS" plugin, you can execute:

[dspace]/bin/dspace packager --help --type METS

Ingesting

198

https://wiki.lyrasis.org/display/DSDOC8x/DSpace+AIP+Format#DSpaceAIPFormat-DSPACE-ROLESSchema
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceMETSSIPProfile
https://wiki.lyrasis.org/display/DSDOC8x/DSpace+AIP+Format#DSpaceAIPFormat-DSPACE-ROLESSchema
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceMETSSIPProfile

1.
2.

3.

Ingestion Modes & Options

When ingesting packages DSpace supports several different "modes". (Please note that not all packager plugins may support all modes of ingestion)

Submit/Ingest Mode (option, default) – submit package to DSpace in order to create a new object(s)-s
Restore Mode (option) – restore pre-existing object(s) in DSpace based on package(s). This also attempts to restore all handles and -r
relationships (parent/child objects). This is a specialized type of "submit", where the object is created with a known Handle and known
relationships.
Replace Mode (option) – replace existing object(s) in DSpace based on package(s). This also attempts to restore all handles and -r -f
relationships (parent/child objects). This is a specialized type of "restore" where the contents of existing object(s) is replaced by the contents in
the AIP(s). By default, if a normal "restore" finds the object already exists, it will back out (i.e. rollback all changes) and report which object already
exists.

Ingesting a Single Package

To ingest a single package from a file, give the command:

[dspace]/bin/dspace packager -e [user-email] -p [parent-handle] -t [packager-name] /full/path/to/package

Where is the e-mail address of the E-Person under whose authority this runs; is the Handle of the Parent Object into which the [user-email] [parent-handle]
package is ingested, is the plugin name of the package ingester to use, and is the path to the file to ingest (or to [packager-name] /full/path/to/package "-"
read from the standard input).

Here is an example that loads a PDF file with internal metadata as a package:

[dspace]/bin/dspace packager -e admin@myu.edu -p 4321/10 -t PDF thesis.pdf

This example takes the result of retrieving a URL and ingests it:

wget -O - http://alum.mit.edu/jarandom/my-thesis.pdf | [dspace]/bin/dspace packager -e admin@myu.edu -p 4321
/10 -t PDF -

Ingesting Multiple Packages at Once

Some Packager plugins support bulk ingest functionality using the (or) flag. When is used, the packager will attempt to ingest all child --all -a --all
packages referenced by the initial package (and continue on recursively). Some examples follow:

For a Site-based package - this would ingest Communities, Collections & Items based on the located package filesall
For a Community-based package - this would ingest that Community and all SubCommunities, Collections and Items based on the located
package files
For a Collection - this would ingest that Collection and all contained Items based on the located package files
For an Item – this just ingest the Item (including all Bitstreams & Bundles) based on the package file.

Here is a basic example of a bulk ingest 'packager' command template:

 [dspace]/bin/dspace packager -s -a -t AIP -e <eperson> -p <parent-handle> <file-path>

for example:

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/12 collection-aip.zip

The above command will ingest the package named "collection-aip.zip" as a child of the specified Parent Object (handle="4321/12"). The resulting object
is assigned a new Handle (since is specified). In addition, any child packages directly referenced by "collection-aip.zip" are also recursively ingested (a -s
new Handle is also assigned for each child AIP).

Not All Packagers Support Bulk Ingest

Because the packager plugin must know how to locate all child packages from an initial package file, not all plugins can support bulk ingest. Currently, in
DSpace the following Packager Plugins support bulk ingest capabilities:

METS Packager Plugin
AIP Packager Plugin

Restoring/Replacing using Packages

Restoring is slightly different than just . When restoring, the packager makes every attempt to restore the object as it (including its ingesting used to be
handle, parent object, etc.).

199

1.
2.

3.

There are currently three restore modes:

Default Restore Mode () = Attempt to restore object (and optionally children). Rollback all changes if any object is found to already exist.-r
Restore, Keep Existing Mode () = Attempt to restore object (and optionally children). If an object is found to already exist, skip over it (and -r -k
all children objects), and continue to restore all other non-existing objects.
Force Replace Mode () = Restore an object (and optionally children) and any existing objects in DSpace. Therefore, if an object -r -f overwrite
is found to already exist in DSpace, its contents are replaced by the contents of the package. WARNING: This mode is potentially dangerous as it
will permanently destroy any object contents that do not currently exist in the package. You may want to first perform a backup, unless you are
sure you know what you are doing!

Default Restore Mode

By default, the restore mode (option) will rollback all changes if any object is found to already exist. The user will be informed if which object already -r
exists within their DSpace installation.

Use this 'packager' command template:

 [dspace]/bin/dspace packager -r -t AIP -e <eperson> <file-path>

For example:

 [dspace]/bin/dspace packager -r -t AIP -e admin@myu.edu aip4567.zip

Notice that unlike -s option (for submission/ingesting), the -r option does not require the Parent Object (-p option) to be specified if it can be determined
from the package itself.

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). If the object is found to already exist, all changes are rolled back (i.e. nothing is restored to
DSpace)

Restore, Keep Existing Mode

When the "Keep Existing" flag (option) is specified, the restore will attempt to skip over any objects found to already exist. It will report to the user that -k
the object was found to exist (and was not modified or changed). It will then continue to restore all objects which do not already exist. This flag is most
useful when attempting a bulk restore (using the (or) option.--all -a

One special case to note: If a Collection or Community is found to already exist, its child objects are also skipped over. So, this mode will not auto-restore
items to an existing Collection.

Here's an example of how to use this 'packager' command:

 [dspace]/bin/dspace packager -r -a -k -t AIP -e <eperson> <file-path>

For example:

 [dspace]/bin/dspace packager -r -a -k -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child packages referenced by "aip4567.zip" are also recursively restored (the -

 option specifies to also restore all child pacakges). They are also restored with the Handles & Parent Objects provided with their package. If any object is a
found to already exist, it is skipped over (child objects are also skipped). All non-existing objects are restored.

Force Replace Mode

When the "Force Replace" flag (option) is specified, the restore will any objects found to already exist in DSpace. In other words, existing -f overwrite
content is deleted and then replaced by the contents of the package(s).

Potential for Data Loss

Because this mode actually existing content in DSpace, it is potentially dangerous and may result in data loss! It is recommended to always destroys
perform a full backup (assetstore files & database) before attempting to replace any existing object(s) in DSpace.

Here's an example of how to use this 'packager' command:

 [dspace]/bin/dspace packager -r -f -t AIP -e <eperson> <file-path>

For example:

200

 [dspace]/bin/dspace packager -r -f -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child packages referenced by "aip4567.zip" are also recursively ingested.
They are also restored with the Handles & Parent Objects provided with their package. If any object is found to already exist, its contents are replaced by
the contents of the appropriate package.

If any error occurs, the script attempts to rollback the entire replacement process.

Disseminating

Disseminating a Single Object

To disseminate a single object as a package, give the command:

[dspace]/bin/dspace packager -d -e [user-email] -i [handle] -t [packager-name] [file-path]

Where is the e-mail address of the E-Person under whose authority this runs; is the Handle of the Object to disseminate; [user-email] [handle] [packager-
 is the plugin name of the package disseminator to use; and is the path to the file to create (or to write to the standard output). For name] [file-path] "-"

example:

 [dspace]/bin/dspace packager -d -e admin@myu.edu -i 4321/4567 -t METS 4567.zip

The above code will export the object of the given handle (4321/4567) into a METS file named "4567.zip".

Disseminating Multiple Objects at Once

To export an object hierarchy, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -d -a -e [user-email] -i [handle] -t [packager-name][file-path]

for example:

 [dspace]/bin/dspace packager -d -a -t METS -e admin@myu.edu -i 4321/4567 4567.zip

The above code will export the object of the given handle (4321/4567) into a METS file named "4567.zip". In addition it would export all children objects to
the same directory as the "4567.zip" file.

Archival Information Packages (AIPs)

Since DSpace 1.7, DSpace can backup and restore all of its contents as a set of . This includes all Communities, Collections, Items, Groups and AIP Files
People in the system.

This feature came out of a requirement for DSpace to better integrate with , and other backup storage systems. One of these requirements is to DuraCloud
be able to essentially "backup" local DSpace contents into the cloud (as a type of offsite backup), and "restore" those contents at a later time.

Essentially, this means DSpace can export the entire hierarchy (i.e. bitstreams, metadata and relationships between Communities/Collections/Items) into a
relatively standard format (a METS-based,). This entire hierarchy can also be re-imported into DSpace in the same format (essentially a restore AIP format
of that content in the same or different DSpace installation).

For more information, see the section on .AIP backup & Restore for DSpace

METS packages

Since DSpace 1.4 release, the software includes a package disseminator and matching ingester for the DSpace METS SIP (Submission Information
Package) format. They were created to help end users prepare sets of digital resources and metadata for submission to the archive using well-defined
standards such as , , and . The plugin name is by default, and it uses MODS for descriptive metadata.METS MODS PREMIS METS

The DSpace METS SIP profile is available at: DSpaceMETSSIPProfile

201

https://duracloud.org
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/premis/
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceMETSSIPProfile

Importing and Exporting Items via Simple Archive Format

1 Item Importer and Exporter
1.1 DSpace Simple Archive Format

1.1.1 dublin_core.xml or metadata_[prefix].xml
1.1.2 contents file
1.1.3 relationships file

1.2 Configuring metadata_[prefix].xml for a Different Schema
1.3 Importing Items

1.3.1 Adding Items to a Collection from a directory
1.3.2 Adding Items to a Collection from a zipfile
1.3.3 Replacing Items in a Collection
1.3.4 Deleting or Unimporting Items in a Collection
1.3.5 Other Options
1.3.6 UI Batch Import

1.4 Exporting Items
1.4.1 UI Batch Export

Item Importer and Exporter

DSpace has a set of command line tools for importing and exporting items in batches, using the DSpace Simple Archive Format. Apart from the offered
functionality, these tools serve as an example for users who aim to implement their own item importer.

DSpace Simple Archive Format

The basic concept behind the DSpace's Simple Archive Format is to create an archive, which is a directory containing one subdirectory per item. Each
item directory contains a file for the item's descriptive metadata, and the files that make up the item.

archive_directory/
 item_000/
 dublin_core.xml -- qualified Dublin Core metadata for metadata fields belonging to the 'dc'
schema.
 metadata_[prefix].xml -- metadata in another schema. The prefix is the name of the schema as
registered with the metadata registry.
 contents -- text file containing one line per filename.
 collections -- (Optional) text file that contains the handles of
the collections the item will belong to. Each handle in a row.
 -- Collection in first line will be the owning
collection.
 handle -- contains the handle assigned/to be assigned to
this resource
 relationships -- (Optional) If importing Entities, you can specify one or more relationships
to create on import
 file_1.doc -- files to be added as bitstreams to the item.
 file_2.pdf
 item_001/
 dublin_core.xml
 contents
 file_1.png
 ...

dublin_core.xml or metadata_[prefix].xml

The or file has the following format, where each metadata element has its own entry within a dublin_core.xml metadata_[prefix].xml <dcvalue>
tagset. There are currently three tag attributes available in the tagset:<dcvalue>

element - the Dublin Core element
qualifier - the element's qualifier
language - (optional) ISO language code for element

<dublin_core>
 <dcvalue element="title" qualifier="none">A Tale of Two Cities</dcvalue>
 <dcvalue element="date" qualifier="issued">1990</dcvalue>
 <dcvalue element="title" qualifier="alternative" language="fr">J'aime les Printemps</dcvalue>
</dublin_core>

(Note the optional language tag attribute which notifies the system that the optional title is in French.)

202

When providing urls as values for fields that contain the ampersand (&) symbol, the ampersands in these urls have to be encoded as &

Every metadata field used, must be registered via the metadata registry of the DSpace instance first. See .Metadata and Bitstream Format Registries

Recommended Metadata

It is recommended to minimally provide "dc.title" and, where applicable, "dc.date.issued". Obviously you can (and should) provide much more detailed
metadata about the Item. For more information see: .Metadata Recommendations

contents file

The file simply enumerates, one file per line, the bitstream file names. See the following example:contents

file_1.doc
file_2.pdf
license

Please notice that the is optional, and if you wish to have one included, you can place the file in the .../item_001/ directory, for example.license

The bitstream name may optionally be followed by any of the following:

\tbundle:BUNDLENAME
\tpermissions:PERMISSIONS
\tdescription:DESCRIPTION
\tprimary:true

Where '\t' is the tab character.

'BUNDLENAME' is the name of the bundle to which the bitstream should be added. Without specifying the bundle, items will go into the default bundle,
ORIGINAL.

'PERMISSIONS' is text with the following format: -[r|w] 'group name'

'DESCRIPTION' is text of the files description.

Primary is used to specify the primary bitstream.

Supported in 7.2 or above for 'import' only

The IIIF metadata feature was added in 7.2 and is only supported on ('add' mode) of an SAF package.import

For IIIF enabled items, the bitstream name may optionally be followed by any of the following:

\tiiif-label:IIIFLABEL
\tiiif-toc:IIIFTOC
\tiiif-width:IIIFWIDTH
\tiiif-height:IIIFHEIGHT

Where:

'IIIFLABEL' is the label that will be used for the image in the viewer.

'IIIFTOC' is the label that will be used for a table of contents entry in the viewer.

'IIIFWIDTH' is the image width that will be used for the IIIF canvas.

'IIIFHEIGHT' is the image height that will be used for the IIIF canvas.

relationships file
Supported in 7.1 or above for 'import' only.

This feature was added in 7.1. Currently the 'relationships' file is only supported on ('add' mode) of an SAF package. See note at bottom of this import
section about using the "metadata_relation.xml" if you wish to export & update relationships.

The optional file enumerates the relationships of this Entity to other Entities (either already in the system, or also specified in your SAF relationships
import batch). This allows entities to be linked to new or existing entities during import. Entities can be linked to other entities in this import set by referring

, it can only be used when importing .to their import subfolder name. Because relationships can only be created for Entities Configurable Entities

Each line in the file contains a relationship type key and an item identifier in the following format:

relation.<relation_key> <handle|uuid|folderName:import_item_folder|schema.element[.qualifier]:value>

203

1.
2.
3.

The input_item_folder should refer the folder name of another item in this import batch. Example:

relation.isAuthorOfPublication 5dace143-1238-4b4f-affb-ed559f9254bb
relation.isAuthorOfPublication 123456789/1123
relation.isOrgUnitOfPublication folderName:item_001
relation.isProjectOfPublication project.identifier.id:123
relation.isProjectOfPublication project.identifier.name:A Name with Spaces

During initial import, new items are stored in a map keyed by the item folder name. Once the initial import is complete, a second pass checks for a
'relationships' manifest file in each folder and creates a relationship of the specified type to the specified item.

Don't forget Entities require a "dspace.entity.type" metadata field

Remember, if you are creating Entities via an SAF package, those Entities MUST specify a "dspace.entity.type" metadata field. Because this new
metadata field is in the "dspace" schema, it MUST be specified in a "metadata_dspace.xml", similar to:

metadata_dspace.xml

<dublin_core schema="dspace">
 <dcvalue element="entity" qualifier="type">Publication</dcvalue>
</dublin_core>

Relationships to existing Entities can also be created via metadata_relation.xml

If you already know the UUID of an existing Entity that you want to relate to, you can also create/update the "metadata_relation.xml" file to add/update the
relationship, similar to:

metadata_relation.xml

<dublin_core schema="relation">
 <dcvalue element="isAuthorOfPublication">5dace143-1238-4b4f-affb-ed559f9254bb</dcvalue>
</dublin_core>

The "relationships" file is primarily for creating relationships between Entities in the Of course, you can also choose to use the same import batch.
"relationships" file to create new relationships to existing Entities instead of creating/updating the "metadata_relation.xml" file. The main advantage of the
"metadata_relation.xml" file is that it is used both on export and import, while the "relationships" file is only used on import at this time.

Configuring for a Different Schemametadata_[prefix].xml

It is possible to use other Schema such as EAD, VRA Core, etc. Make sure you have defined the new schema in the DSpace Metadata Schema Registry.

Create a separate file for the other schema named , where the is replaced with the schema's prefix.metadata_[prefix].xml [prefix]
Inside the xml file use the same Dublin Core , but on the element include the attribute .syntax <dublin_core> schema=[prefix]
Here is an example for ETD metadata, which would be in the file :metadata_etd.xml

<dublin_core schema="etd">
 <dcvalue element="degree" qualifier="department">Computer Science</dcvalue>
 <dcvalue element="degree" qualifier="level">Masters</dcvalue>
 <dcvalue element="degree" qualifier="grantor">Michigan Institute of Technology</dcvalue>
</dublin_core>

Importing Items

Before running the item importer over items previously exported from a DSpace instance, please first refer to Transferring Items Between DSpace
Instances.

Command used: [dspace]/bin/dspace import

Java class: org.dspace.app.itemimport.ItemImport

Arguments short and (long) forms: Description

-a or --add Add items to DSpace ‡

204

-r or --replace Replace items listed in mapfile ‡

-d or --delete Delete items listed in mapfile ‡

-s or --source Source of the items (directory)

-c or --collection Destination Collection by its Handle or database ID

-m or --mapfile Where the mapfile for items can be found (name and directory)

-e or --eperson Email of eperson doing the importing

-w or --workflow Send submission through collection's workflow

-n or --notify Kicks off the email alerting of the item(s) has(have) been imported

-v or --validate Test run‚ do not actually import items

-p or --template Apply the collection template

-R or --resume Resume a failed import (Used on Add only)

-h or --help Command help

-z or --zip Name of zipfile

‡ These are mutually exclusive.

The item importer is able to batch import unlimited numbers of items for a particular collection using a very simple CLI command and 'arguments'.

Adding Items to a Collection from a directory

To add items to a collection, you gather the following information:

eperson
Collection ID (either Handle (e.g. 123456789/14) or UUID
Source directory where the items reside
Mapfile. Since you don't have one, you need to determine where it will be (e.g. /Import/Col_14/mapfile)
At the command line:

[dspace]/bin/dspace import --add --eperson=joe@user.com --collection=CollectionID --source=items_dir --
mapfile=mapfile

or by using the short form:

[dspace]/bin/dspace import -a -e joe@user.com -c CollectionID -s items_dir -m mapfile

The above command would cycle through the archive directory's items, import them, and then generate a map file which stores the mapping of item
directories to item handles. You can use it for replacing or deleting (unimporting) the mapped items.SAVE THIS MAP FILE.

Testing. You can add (or) to the command to simulate the entire import process without actually doing the import. This is extremely --validate -v
useful for verifying your import files before doing the actual import.

Adding Items to a Collection from a zipfile

To add items to a collection, you gather the following information:

eperson
Collection ID (either Handle (e.g. 123456789/14) or Database ID (e.g. 2)
Source directory where your zipfile containing the items resides
Zipfile
Mapfile. Since you don't have one, you need to determine where it will be (e.g. /Import/Col_14/mapfile)
At the command line:

[dspace]/bin/dspace import --add --eperson=joe@user.com --collection=CollectionID --source=zipfile_dir --
zip=filename.zip --mapfile=mapfile

or by using the short form:

[dspace]/bin/dspace import -a -e joe@user.com -c CollectionID -s zipfile_dir -z filename.zip -m mapfile

205

1.

The above command would unpack the zipfile, cycle through the archive directory's items, import them, and then generate a map file which stores the
mapping of item directories to item handles. You can use it for replacing or deleting (unimporting) the mapped items.SAVE THIS MAP FILE.

Testing. You can add (or) to the command to simulate the entire import process without actually doing the import. This is extremely --validate -v
useful for verifying your import files before doing the actual import.

Replacing Items in a Collection

Replacing existing items is relatively easy. Remember that mapfile you saved above? Now you will use it. The command (in short form):

[dspace]/bin/dspace import -r -e joe@user.com -c collectionID -s items_dir -m mapfile

Long form:

[dspace]/bin/dspace import --replace --eperson=joe@user.com --collection=collectionID --source=items_dire --
mapfile=mapfile

If you wish to replace content using a Zipfile, that's also possible. The command is similar. But, in this situation "-s" refers to the directory of the zip file,
and "-z" gives the name of the zipfile:

[dspace]/bin/dspace import -r -e joe@user.com -c collectionID -s zipfile_dir -z filename.zip -m mapfile

Deleting or Unimporting Items in a Collection

You are able to unimport or delete items provided you have the mapfile. Remember that mapfile you saved above? The command is (in short form):

[dspace]/bin/dspace import -e joe@user.com -d -m mapfile

In long form:

[dspace]/bin/dspace import --eperson=joe@user.com --delete --mapfile mapfile

Other Options

Workflow. The importer usually bypasses any workflow assigned to a collection. But add the () argument will route the imported --workflow -w
items through the workflow system.

Templates. If you have templates that have constant data and you wish to apply that data during batch importing, add the () --template -p
argument.

Resume. If, during importing, you have an error and the import is aborted, you can use the () flag to resume the import where you --resume -R
left off after you fix the error.

Specifying the owning collection on a per-item basis from the command line administration tool

If you omit the -c flag, which is otherwise mandatory, the ItemImporter searches for a file named "collections" in each item directory. This file
should contain a list of collections, one per line, specified either by their handle, or by their internal db id. The ItemImporter then will put the item in
each of the specified collections. The owning collection is the collection specified in the first line of the collections file.

If both the -c flag is specified and the collections file exists in the item directory, the ItemImporter will ignore the collections file and will put the
item in the collection specified on the command line.

Since the collections file can differ between item directories, this gives you more fine-grained control of the process of batch adding items to
collections.

UI Batch Import
Available in DSpace 7.4 and above.

Batch import can also take place via the Administrator's UI. The steps to follow are:

A. Prepare the data

Items, i.e. the metadata and their bitstreams, must be in the Simple Archive Format described earlier in this chapter. Thus, for each item there
must be a separate directory that contains the corresponding files of the specific item.

206

2.

3.

1.
2.

3.
a.
b.
c.

i.

ii.

4.

5.

Moreover, in each item directory, there can be another file that describes the collection or the collections that this item will be added to. The name
of this file must be "collections" and it is optional. It has the following format:

Each line contains the handle of the collection. The collection in the first line is the owning collection while the rest are the other collections that
the item should belong to.
Compress the item directories into a ZIP file. Please note that you need to zip the actual item directories and not just the directory that contains
the item . Thus, the final zip file must directly contain the item .directorie s directorie s

B. Import the items via the UI

Login as an Administrator.
In the side menu, select "Import" "Batch Import (ZIP)"

From the "Import Batch" page:
Select the Collection you are importing into.
Drag & drop the ZIP file into the drop box (or browse to it on your filesystem).
Choose whether you want to "Validate Only" or not.

When selected, DSpace will the batch import process, but no content will be batch imported. This allows you to validate test
the results of the import process before doing the import.
When deselected, DSpace will do the batch import.

Clicking "Proceed" will start the Batch Import. This creates a new "Process" which begins the upload of the batch. Depending on the size of the
You can refresh to page to see the current status, or go back to the list of processes batch, this process may take some time to complete.

("Processes" menu in sidebar) to check on its status. Once the process is COMPLETED, you will see a log of the results and a mapfile (which
can be used to make later updates).
All prior imports will be listed in the "Processes" menu, until their corresponding process entry is deleted. Once you are satisfied with the import
and have no need to see the logs or mapfile, you may wish to delete that process entry in order to free up storage space (as your uploaded ZIP
will be retained in DSpace until the process is deleted). A "process-cleaner" script can also be started from the "Processes" page which can be
used to bulk delete old processes.

It is also possible to start an "import" directly from the "Processes" menu. This allows you to specify additional options/flags which are normally only
available to the command-line "import" tool (see documentation above).

Exporting Items

207

The item exporter can export a single item or a collection of items, and creates a DSpace simple archive in for each itethe aforementioned format exported
m. The items are exported in a sequential order in which they are retrieved from the database. As a consequence, the sequence numbers of the item
subdirectories (item_000, item_001) are not related to DSpace handle or item IDs.

Command used: [dspace]/bin/dspace export

Java class: org.dspace.app.itemexport.ItemExport

Arguments short
and (long) forms:

Description

-t or --type Type of export. will inform the program you want the whole collection. will be only the specific item. (You COLLECTION ITEM
will actually key in the keywords in all caps. See examples below.)

-i or --id The ID or Handle of the Collection or Item to export.

-d or --dest The destination path where you want the file of items to be placed.

-n or --number Sequence number to begin with. Whatever number you give, this will be the name of the first directory created for your export.
The layout of the export directory is the same as the layout used for import.

-m or --migrate Export the item/collection for migration. This will remove the handle and any other metadata that will be re-created in the new
instance of DSpace.

-x or --exclude-
bitstreams

Do not export bitstreams. See the usage scenario below.

-h or --help Brief Help.

Exporting a Collection

The o export the a collection:CLI command t items of

[dspace]/bin/dspace export --type=COLLECTION --id=collectionID_or_handle --dest=/path/to/destination --
number=seq_num

Short form:

[dspace]/bin/dspace export -t COLLECTION -i collectionID_or_handle -d /path/to/destination -n seq_num

The keyword means that you intend to export an entire collection. The ID can either be the database ID or the handle. The exporter will COLLECTION
begin numbering the simple archives with the sequence number that you supply.

Exporting a Single Item

To export a single item use the keyword and give the item ID as an argument:ITEM

[dspace]/bin/dspace export --type=ITEM --id=itemID_or_handle --dest=/path/to/destination --number=seq_num

Short form:

[dspace]/bin/dspace export -t ITEM -i itemID_or_handle -d /path/to/destination -n seq_num

Each exported item will have an additional file in its directory, named "handle". This will contain the handle that was assigned to the item, and this file will
be read by the importer so that items exported and then imported to another machine will retain the item's original handle.

The -m Argument

Using the argument will export the item/collection and also perform the migration step. It will perform the same process that the next section -m Exchanging
 performs. We recommend that section to be read in conjunction with this flag being used.Content Between Repositories

The -x Argument

Using the -x argument will do the standard export except for the bitstreams which will not be exported. If you have full SAF without bitstreams and you
have the bitstreams archive (which might have been imported into DSpace earlier) somewhere near, you could original archive files into SAF symlink
directories and have an exported collection which almost doesn't occupy any space but otherwise is identical to the exported collection (i.e. could be
imported into DSpace). In case of huge collections -x mode might be substantially faster than full export.

208

https://wiki.duraspace.org/display/DSDOC4x/Importing+and+Exporting+Items+via+Simple+Archive+Format#ImportingandExportingItemsviaSimpleArchiveFormat-DSpaceSimpleArchiveFormat
http://en.wikipedia.org/wiki/Symbolic_link

1.
2.

3.

4.

5.

UI Batch Export
Available in DSpace 7.4 and above.

Batch export can also take place via the Administrator's UI. The default file size upload limit is 512MB, and is being configured in the spring boot
.application.properties file

The steps to follow are:

Login as an Administrator.
In the side menu, select "Import" "Batch Export (ZIP)"

Select or search for the Collection to export from:

Clicking "Export" will start the Batch Export. This creates a new "Process" which begins export process. Depending on the size of the export, this
You can refresh to page to see the current status, or go back to the list of processes ("Processes" process may take some time to complete.

menu in sidebar) to check on its status. Once the process is COMPLETED, you will see a log of the results and an exported ZIP file which you
can download for the results.
All prior exports will be listed in the "Processes" menu, until their corresponding process entry is deleted. Once you are satisfied with the export
and have downloaded the ZIP, you may wish to delete that process entry in order to free up storage space (as your exported ZIP will be retained
in DSpace until the process is deleted). A "process-cleaner" script can also be started from the "Processes" page which can be used to bulk
delete old processes.

It is also possible to start an "export" directly from the "Processes" menu. This allows you to specify additional options/flags which are normally only
available from the command-line "export" tool (see documentation above). It also allows you to export a single Item.

209

https://github.com/DSpace/DSpace/blob/main/dspace-server-webapp/src/main/resources/application.properties#L125-L132
https://github.com/DSpace/DSpace/blob/main/dspace-server-webapp/src/main/resources/application.properties#L125-L132

Registering Bitstreams via Simple Archive Format

1 Overview
1.1 Accessible Storage
1.2 Registering Items Using the Item Importer
1.3 Internal Identification and Retrieval of Registered Items
1.4 Exporting Registered Items
1.5 Deleting Registered Items

Registering is not Importing

The procedures below will the actual bitstreams into DSpace. They will merely inform DSpace of an existing location where these Bitstreams not import
can be found. Please refer to for information on importing metadata and bitstreams.Importing and Exporting Items via Simple Archive Format

Overview

Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace by taking advantage of the bitstreams already
being in storage accessible to DSpace. An example might be that there is a repository for existing digital assets. Rather than using the normal interactive
ingest process or the batch import to furnish DSpace the metadata and to upload bitstreams, registration provides DSpace the metadata and the location
of the bitstreams. DSpace uses a variation of the import tool to accomplish registration.

Accessible Storage

To register an item its bitstreams must reside on storage accessible to DSpace and therefore referenced by an asset store number in . The dspace.cfg
configuration file establishes one or more asset stores through the use of an integer asset store number. This number relates to a directory in dspace.cfg
the DSpace host's file system or a set of SRB account parameters. This asset store number is described in The Configuration Properties File dspace.cfg
section and in the file itself. The asset store number(s) used for registered items should generally not be the value of the dspace.cfg assetstore.incoming
property since it is unlikely that you will want to mix the bitstreams of normally ingested and imported items and registered items.

Registering Items Using the Item Importer

DSpace uses the same that is used for batch import except that several variations are employed to support registration. The discussion that import tool
follows assumes familiarity with the import tool.

The for registration does not include the actual content files (bitstreams) being registered. The format is however a DSpace Simple Archive Format
directory full of items to be registered, with a subdirectory per item. Each item directory contains a file for the item's descriptive metadata () dublin_core.xml
and a file listing the item's content files (), but not the actual content files themselves.contents

The file for item registration is exactly the same as for regular item import.dublin_core.xml

The file, like that for regular item import, lists the item's content files, one content file per line, but each line has the one of the following formats:contents

-r -s n -f filepath
-r -s n -f filepath\tbundle:bundlename
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group name'
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group name'\tdescription: some text

where

-r indicates this is a file to be registered
-s n indicates the asset store number ()n
-f filepath indicates the path and name of the content file to be registered (filepath)
\t is a tab character
bundle:bundlename is an optional bundle name
permissions: -[r|w] 'group name' is an optional read or write permission that can be attached to the bitstream
description: some text is an optional description field to add to the file
The bundle, that is everything after the filepath, is optional and is normally not used.

The command line for registration is just like the one for regular import:

[dspace]/bin/dspace import -a -e joe@user.com -c collectionID -s items_dir -m mapfile

(or by using the long form)

[dspace]/bin/dspace import --add --eperson=joe@user.com --collection=collectionID --source=items_dir --
map=mapfile

The and flags will function as described in .--workflow --test Importing Items

210

https://wiki.lyrasis.org/display/DSDOC8x/Importing+and+Exporting+Items+via+Simple+Archive+Format#ImportingandExportingItemsviaSimpleArchiveFormat-DSpaceSimpleArchiveFormat

The flag will function as described in Importing Items but the registered content files will not be removed from storage. See Deleting Registered --delete
Items.

The flag will function as described in Importing Items but care should be taken to consider different cases and implications. With old items and --replace
new items being registered or ingested normally, there are four combinations or cases to consider. Foremost, an old registered item deleted from DSpace
using will not be removed from the storage. See Deleting Registered Items. where is resides. A new item added to DSpace using --replace --replace
will be ingested normally or will be registered depending on whether or not it is marked in the files with the .contents -r

Internal Identification and Retrieval of Registered Items

Once an item has been registered, superficially it is indistinguishable from items ingested interactively or by batch import. But internally there are some
differences:

First, the randomly generated internal ID is not used because DSpace does not control the file path and name of the bitstream. Instead, the file path and
name are that specified in the file.contents

Second, the column of the bitstream database row contains the asset store number specified in the file.store_number contents

Third, the column of the bitstream database row contains a leading flag () followed by the registered file path and name. For example, internal_id -R -
 where is the file path and name relative to the asset store corresponding to the asset store number. The asset store could be Rfilepath filepath

traditional storage in the DSpace server's file system or an SRB account.

Fourth, an MD5 checksum is calculated by reading the registered file if it is in local storage.

Registered items and their bitstreams can be retrieved transparently just like normally ingested items.

Exporting Registered Items

Registered items may be exported as described in Exporting Items. If so, the export directory will contain actual copies of the files being exported but the
lines in the contents file will flag the files as registered. This means that if DSpace items are "round tripped" (see Transferring Items Between DSpace

) using the exporter and importer, the registered files in the export directory will again registered in DSpace instead of being uploaded and Instances
ingested normally.

Deleting Registered Items

If a registered item is deleted from DSpace, (either interactively or by using the or flags described in --delete --replace Importing and Exporting Items
) the item will disappear from DSpace but its registered content files will remain in place just as they were prior to registration. via Simple Archive Format

Bitstreams not registered but added by DSpace as part of registration, such as files, will be deleted.license.txt

211

Importing Items via basic bibliographic formats (Endnote,
BibTex, RIS, CSV, etc) and online services (arXiv, PubMed,
CrossRef, CiNii, etc)

1 Introduction
2 Supported External Sources
3 Disabling an External source
4 Submitting starting from external sources
5 Submitting starting from bibliographic file
6 More Information

In DSpace 7.0, the Biblio-Transformation-Engine (BTE) was removed in favor of . All online services and bibliographic Live Import from external sources
formats previously supported by BTE have been moved or are being moved to the External Sources framework.

Introduction

This documentation explains the features and the usage of the importer framework. The importer framework is built into both the and REST API User
. Currently supported formats include:Interface

Drag & drop of Endnote, BibTex, RIS, TSV, CSV, arXiv, PubMed. From the MyDSpace page, dragging & dropping one of these files will start a
new submission, extracting the metadata from the file.
Import via ORCID, PubMed, Sherpa Journals, Sherpa Publishers. From the MyDSpace page, you can select to start a new submission by
searching an external source.

Supported External Sources

DSpace supports importing metadata from a variety of online services. Some of these services can ONLY support out-of-the-box .Configurable Entities

Supported online services are all configured on the backend in the file. To disable a [dspace]/config/spring/api/external-services.xml
service, simply comment it out in that file.

Online providers available out of the box include:

NASA Astrophysics Data System (ADS) lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "ads.*"
settings in external-providers.cfg. REQUIRES an API key to function, signup at https://ui.adsabs.harvard.edu/help/api/
arXiv lookup (Supported for creating new Items, or "Publication" Entities).
CiNii lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "cinii.*" settings in external-providers.cfg. REQUIR
ES an API key to function, signup at https://support.nii.ac.jp/en/cinii/api/developer
CrossRef lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "crossref.*" settings in external-providers.cfg

 lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "epo.*" settings in European Patent Office (EPO)
external-providers.cfg. REQUIRES an API key to function, signup at https://developers.epo.org/
ORCID

ORCID author lookup (Only supported for creating new "Person" Entities). Can be configured via "orcid.*" settings in orcid.cfg.
ORCID publication lookup (Supported for creating new Items, or "Publication" Entities). Allows you to lookup a publication based on an
author's ORCID. Can be configured via "orcid.*" settings in orcid.cfg.

PubMed
Search PubMed (Supported for creating new Items, or "Publication" Entities). Can be configured via "pubmed.*" settings in external-
providers.cfg
Search PubMed Europe (Supported for creating new Items, or "Publication" Entities). Can be configured via "pubmedeurope.*" settings
in external-providers.cfg

ROR lookup (Supported for creating new "Organization" Entites). It's enabled via " " properties inside the " ". ror.* external-providers.cfg
Other specific configuration for the "data-provider" and the medatada mapping can be found respectively inside " anexternal-services.xml"
d " " files. The is publicly available, for some other implementation details you can refer to these :ror-integration.xml API PRs

DSpace
ROR Integration - Live Import
ROR Integration - OAI PMH & Orcid

dspace-angular
ROR Integration - Identifier Visualization

SciELO lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "scielo.*" settings in external-providers.cfg.
Scopus lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "scopus.*" settings in external-providers.cfg. R
EQUIRES an API key to function, signup at https://dev.elsevier.com
Sherpa Romeo

Sherpa Journals by ISSN (Only supported for creating new "Journal" Entities)
Sherpa Journals (Only supported for creating new "Journal" Entities) - supports looking up a Journal by title
Sherpa Publishers (Only supported for creating new "OrgUnit" Entities)

VuFind lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "vufind.*" settings in external-providers.cfg
Web of Science lookup (Supported for creating new Items, or "Publication" Entities). Can be configured via "wos.*" settings in external-providers.
cfg. REQUIRES a paid API key to function, signup at https://developer.clarivate.com/apis/wos

Currently this WOS integration requires a paid license and does NOT yet support the . See this issue ticket for more WOS Starter API
information: https://github.com/DSpace/DSpace/issues/8695

212

https://ui.adsabs.harvard.edu/
https://ui.adsabs.harvard.edu/help/api/
https://arxiv.org/
https://cir.nii.ac.jp/
https://support.nii.ac.jp/en/cinii/api/developer
https://www.crossref.org/
https://www.epo.org/
https://developers.epo.org/
https://orcid.org/
https://ror.org/
https://github.com/DSpace/DSpace/pull/9238
https://github.com/DSpace/DSpace/pull/9237
https://github.com/DSpace/dspace-angular/pull/2719
https://scielo.org/
https://www.scopus.com/
https://dev.elsevier.com
https://v2.sherpa.ac.uk/romeo/
https://vufind.org/
https://www.webofscience.com
https://developer.clarivate.com/apis/wos
https://developer.clarivate.com/apis/wos-starter
https://github.com/DSpace/DSpace/issues/8695

1.

2.
3.
4.

1.
2.
3.

Disabling an External source

By default, DSpace has all external sources enabled in the file. However, because some [dspace]/config/spring/api/external-services.xml
external services may require a , sites may wish to disable any external sources that they do not want to use.paid subscription

To disable an external source, simply comment out its " " tag in the file. Comment it out using XML comment tags (<!<bean> external-services.xml
-- and -->).

For example, this will disable the Scopus external service (which is one that requires a paid subscription):

<!--
<bean id="scopusLiveImportDataProvider" class="org.dspace.external.provider.impl.LiveImportDataProvider">
 <property name="metadataSource" ref="ScopusImportService"/>
 <property name="sourceIdentifier" value="scopus"/>
 <property name="recordIdMetadata" value="dc.identifier.scopus"/>
 <property name="supportedEntityTypes">
 <list>
 <value>Publication</value>
 </list>
 </property>
</bean>
-->

Submitting starting from external sources

From the MyDSpace page a new submission can be started not only using the submission form but also automatically populating metadata,
importing them from several online services.
After choosing the external source to import from and inserting a term in search bar, the system will show the list of matching results.
When selecting an item, the system will display the metadata to be imported, according to the configured mapping.
Clicking on “Start submission” the system will display the submission forms filled with the imported metadata.

Submitting starting from bibliographic file

From the MyDSpace page, drag & drop the bibliographic file (e.g. bibtex, endnote, etc) onto the file dropbox
Select the collection to submit to
Submission will be created, with the metadata parsed out of that bibliographic file. The bibliographic file will also be attached as a Bitstream (in
case some fields could not be successfully parsed). You can choose to keep it or delete it.

More Information

More information on configuring metadata mappings for various import formats / services can be found in the Live Import from external sources
documentation. See the "Editing Metadata Mapping" section.

213

Exporting and Importing Community and Collection
Hierarchy

1 Community and Collection Structure Importer
1.1 Usage
1.2 XML Import Format

2 Community and Collection Structure Exporter
2.1 Usage

Community and Collection Structure Importer

This Command-Line tool gives you the ability to import a community and collection structure directory from a source XML file.

Usage

Command used: [dspace]/bin/dspace structure-builder

Java class: org.dspace.administer.StructBuilder

Argument: short and long (if available)
forms:

Description of the argument

-f Source xml file. The presence of this argument engages import mode.

-o Output xml file. A copy of the input augmented with the Handles assigned to each new Required.
Community or Collection.

-e Email of DSpace Administrator. Required.

XML Import Format

The administrator need to build the source xml document in the following format:

<import_structure>
 <community>
 <name>Community Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community>
 <name>Sub Community Name</name>
 <community> ...[ad infinitum]...
 </community>
 </community>
 <collection>
 <name>Collection Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <license>Special licence</license>
 <provenance>Provenance information</provenance>
 </collection>
 </community>
</import_structure>

The resulting output document will be as follows:

214

<import_structure>
 <community identifier="123456789/1">
 <name>Community Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community identifier="123456789/2">
 <name>Sub Community Name</name>
 <community identifier="123456789/3"> ...[ad infinitum]...
 </community>
 </community>
 <collection identifier="123456789/4">
 <name>Collection Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <license>Special licence</license>
 <provenance>Provenance information</provenance>
 </collection>
 </community>
</import_structure>

This command-line tool gives you the ability to import a community and collection structure directly from a source XML file. It is executed as follows:

[dspace]/bin/dspace structure-builder -f /path/to/source.xml -o path/to/output.xml -e admin@user.com

This will examine the contents of , import the structure into DSpace while logged in as the supplied administrator, and then output the same source.xml
structure to the output file, but including the handle for each imported community and collection as an attribute.

Community and Collection Structure Exporter

This command-line tool writes the current Community and Collection structure into an XML document in the format which is read by the importer. See
above for format details.

Usage

[dspace]/bin/dspace structure-builder [-h] [-?] -x -e <eperson> -o <output>

 Argument: short and long (if
available) forms:

Description of the argument

-x, --export Export the current structure as XML. The presence of this argument engages export mode.

-e, --eperson email or netid User who is manipulating the repository's structure. This user's rights determine access to Required.
communities and collections.

-o, --output file path The exported structure is written here. Required.

-h or -? Help

215

SWORDv1 Server
SWORD (Simple Web-service Offering Repository Deposit) is a protocol that allows the remote deposit of items into repositories. DSpace implements the
SWORD protocol via the 'sword' web application. The version of SWORD v1 currently supported by DSpace is 1.3. The specification and further
information can be found at .http://swordapp.org

SWORD is based on the Atom Publish Protocol and allows service documents to be requested which describe the structure of the repository, and
packages to be deposited.

1 Enabling SWORD Server
2 Configuring SWORD Server
3 Deposit to SWORD Server
4 DSpace Demo 7 Server: Service Documents

Enabling SWORD Server

To enable DSpace's SWORD v1 server, set the following in your local.cfg:

sword-server.enabled = true
Optionally, if you wish to change its path
sword-server.path = sword

Keep in mind, modifying these settings will require restarting your Servlet Container (usually Tomcat).

Once enabled, the SWORD v1 module will be available at ${dspace.server.url}/${sword-server.path}. For example, if "dspace.server.url=http://localhost:
", then (by default) it will be available at /sword/8080/server http://localhost:8080/server

Configuring SWORD Server

These are the SWORD (v1) configurations. They may be edited directly or overridden in your local.cfg config (see).Configuration Reference

Configuration
File:

[dspace]/config/modules/sword-server.cfg

Property: enabledsword-server.

Example Value: sword-server.enabled = true (default is false)

Informational
Note:

Whether SWORDv1 module is enabled or disabled (disabled by default). Modifying this setting will require restarting your Servlet
Container (usually Tomcat).

Property: pathsword-server.

Example Value: sword-server.path = sword

Informational
Note:

When enabled, this is the subpath where the SWORDv1 module is deployed. This path is relative to ${dspace.server.url}.
Modifying this setting will require restarting your Servlet Container (usually Tomcat).

Property: mets-ingester.package-ingestersword-server.

Example Value: mets-ingester.package-ingester = METSsword-server.

Informational
Note:

The property key tell the SWORD METS implementation which package ingester to use to install deposited content. This should
refer to one of the classes configured for:

plugin.named.org.dspace.content.packager.PackageIngester

The value of sword.mets-ingester.package-ingester tells the system which named plugin for this interface should be used to ingest
SWORD METS packages.

Properties: mets.default.ingest.crosswalk.EPDCX
 mets.default.ingest.crosswalk.*

(NOTE: These configs are in the file as they are used by many interfaces)dspace.cfg

Example Value: mets.submission.crosswalk.EPDCX = EPDCX

216

http://swordapp.org
http://localhost:8080/server
http://localhost:8080/server

Informational
Note:

Define the metadata types which can be accepted/handled by SWORD during ingest of a package. Currently, EPDCX (EPrints DC
XML) is the recommended default metadata format, but others are supported. An example of an EPDCX SWORD package can be
found at [dspace-src]/dspace-sword/example/example.zip.

Additional metadata types can be added to this list by just defining new configurations. For example, you can map a new "mdtype"
MYFORMAT to a custom crosswalk named MYFORMAT:

mets.submission.crosswalk.MYFORMAT = MYFORMAT

You'd also want to map your new custom crosswalk to a stylesheet using the next configuration (crosswalk.submission.*.stylesheet).

Property: crosswalk.submission.EPDCX.stylesheet
(NOTE: This configuration is in the file)dspace.cfg

Example Value: crosswalk.submission.EPDCX.stylesheet = crosswalks/sword-swap-ingest.xsl

Informational
Note:

Define the stylesheet which will be used by the self-named XSLTIngestionCrosswalk class when asked to load the SWORD
configuration (as specified above). This will use the specified stylesheet to crosswalk the incoming SWAP metadata to the DIM
format for ingestion.

Additional crosswalk types can be added to this list by just defining new configurations. For example, you can map a custom
crosswalk named MYFORMAT to use a specific "my-crosswalk.xsl" stylesheet:

crosswalk.submission.MYFORMAT.stylesheet = crosswalks/my-crosswalk.xsl

Keep in mind, you'll need to also ensure MYFORMAT crosswalk is defined by the previous configuration (mets.submission.
crosswalk.*).

Property: deposit.urlsword-server.

Example Value:
sword-server.deposit.url = http://www.myu.ac.uk/sword/deposit

Informational
Note:

The base URL of the SWORD deposit. This is the URL from which DSpace will construct the deposit location URLs for collections.
The default is . In the event that you are not deploying DSpace ${dspace.server.url}/${sword-server.path}/deposit
as the ROOT application in the servlet container, this will generate incorrect URLs, and you should override the functionality by
specifying in full as shown in the example value.

Property: servicedocument.urlsword-server.

Example Value:
sword-server.servicedocument.url = http://www.myu.ac.uk/sword/servicedocument

Informational
Note:

The base URL of the SWORD service document. This is the URL from which DSpace will construct the service document location
URLs for the site, and for individual collections. The default is ${dspace.server.url}/${sword-server.path}

. In the event that you are not deploying DSpace as the ROOT application in the servlet container, this will /servicedocument
generate incorrect URLs, and you should override the functionality by specifying in full as shown in the example value.

Property: media-link.urlsword-server.

Example Value:
sword-server.media-link.url = http://www.myu.ac.uk/sword/media-link

Informational
Note:

The base URL of the SWORD media links. This is the URL which DSpace will use to construct the media link URLs for items which
are deposited via sword. The default is . In the event that you ${dspace.server.url}/${sword-server.path}/media-link
are not deploying DSpace as the ROOT application in the servlet container, this will generate incorrect URLs, and you should
override the functionality by specifying in full as shown in the example value.

Property: generator.urlsword-server.

Example Value:
sword-server.generator.url = http://www.dspace.org/ns/sword/1.3.1

Informational
Note:

The URL which identifies the SWORD software which provides the sword interface. This is the URL which DSpace will use to fill out
the atom:generator element of its atom documents. The default is: http://www.dspace.org/ns/sword/1.3.1

If you have modified your SWORD software, you should change this URI to identify your own version. If you are using the standard
'dspace-sword' module you will not, in general, need to change this setting.

Property: sword-server.updated.field

217

Example Value: sword-server.updated.field = dc.date.updated

Informational
Note:

The metadata field in which to store the updated date for items deposited via SWORD.

Property: sword-server.slug.field

Example Value: sword-server.slug.field = dc.identifier.slug

Informational
Note:

The metadata field in which to store the value of the slug header if it is supplied.

Properties:
sword-server.accept-packaging.METSDSpaceSIP.identifier
sword-server.accept-packaging.METSDSpaceSIP.q

Example Value:
sword-server.accept-packaging.METSDSpaceSIP.identifier = http://purl.org/net/sword-types
/METSDSpaceSIP
sword-server.accept-packaging.METSDSpaceSIP.q = 1.0

Informational
Note:

The accept packaging properties, along with their associated quality values where appropriate. This is a Global Setting; these will be
used on all DSpace collections

Property: sword-server.accepts

Example Value: sword-server.accepts = application/zip, foo/bar

Informational
Note:

A comma separated list of MIME types that SWORD will accept.

Properties:
sword-server.accept-packaging.[handle].METSDSpaceSIP.identifier
sword-server.accept-packaging.[handle].METSDSpaceSIP.q

Example Value:
sword-server.accept-packaging.[handle].METSDSpaceSIP.identifier = http://purl.org/net/sword-
types/METSDSpaceSIP
sword-server.accept-packaging.[handle].METSDSpaceSIP.q = 1.0

Informational
Note:

Collection Specific settings: these will be used on the collections with the given handles.

Property: sword-server.expose-items

Example Value: sword-server.expose-items = false

Informational
Note:

Should the server offer up items in collections as sword deposit targets. This will be effected by placing a URI in the collection
description which will list all the allowed items for the depositing user in that collection on request. this will require an NOTE:
implementation of deposit onto items, which will not be forthcoming for a short while.

Property: sword-server.expose-communities

Example Value: sword-server.expose-communities = false

Informational
Note:

Should the server offer as the default the list of all Communities to a Service Document request. If false, the server will offer the list
of all collections, which is the default and recommended behavior at this stage. a service document for Communities will not NOTE:
offer any viable deposit targets, and the client will need to request the list of Collections in the target before deposit can continue.

Property: sword-server.max-upload-size

Example Value: sword-server.max-upload-size = 0

Informational
Note:

The maximum upload size of a package through the sword interface, in bytes. This will be the combined size of all the files, the
metadata and any manifest data. It is NOT the same as the maximum size set for an individual file upload through the user
interface. If not set, or set to 0, the sword service will default to no limit.

Property: sword-server.keep-original-package

Example Value: sword-server.keep-original-package = true

218

Informational
Note:

Whether or not DSpace should store a copy of the original sword deposit package. this will cause the deposit process to run NOTE:
slightly slower, and will accelerate the rate at which the repository consumes disk space. BUT, it will also mean that the deposited
packages are recoverable in their original form. It is strongly recommended, therefore, to leave this option turned on. When set to
"true", this requires that the configuration option (in) is set to a valid location.upload.temp.dir dspace.cfg

Property: sword-server.bundle.name

Example Value: sword-server.bundle.name = SWORD

Informational
Note:

The bundle name that SWORD should store incoming packages under if sword.keep-original-package is set to true. The default is
"SWORD" if not value is set

Properties: sword-server.keep-package-on-fail
sword-server.failed-package.dir

Example Value:
sword-server.keep-package-on-fail=true
sword-server.failed-package.dir=${dspace.dir}/upload

Informational
Note:

In the event of package ingest failure, provide an option to store the package on the file system. The default is false.

Property: sword-server.identify-version

Example Value: sword-server.identify-version = true

Informational
Note:

Should the server identify the sword version in a deposit response. It is recommended to leave this unchanged.

Property: sword-server.on-behalf-of.enable

Example Value: sword-server.on-behalf-of.enable = true

Informational
Note:

Should mediated deposit via sword be supported. If enabled, this will allow users to deposit content packages on behalf of other
users.

Property: sword-server.restore-mode.enable

Example Value: sword-server.restore-mode.enable = true

Informational
Note:

Should the sword server enable restore-mode when ingesting new packages. If this is enabled the item will be treated as a
previously deleted item from the repository. If the item had previously been assigned a handle then that same handle will be
restored to activity. If that item had not been previously assign a handle, then a new handle will be assigned.

Property: plugin.named.org.dspace.sword.SWORDingester

Example Value:
plugin.named.org.dspace.sword.SWORDIngester = \
 org.dspace.sword.SWORDMETSIngester = http://purl.org/net/sword-types/METSDSpaceSIP \
 org.dspace.sword.SimpleFileIngester = SimpleFileIngester

Informational
Note:

Configure the plugins to process incoming packages. The form of this configuration is as per the Plugin Manager's Named Plugin
documentation: (see plugin.named.[interface] = [implementation] = [package format identifier] dspace.

). Package ingesters should implement the SWORDIngester interface, and will be loaded when a package of the format cfg
specified above in: sword-server.accept-packaging.[package format].identifier = [package format

 is received. In the event that this is a simple file deposit, with no package format, then the class named by identifier]
"SimpleFileIngester" will be loaded and executed where appropriate. This case will only occur when a single file is being deposited
into an existing DSpace Item.

Deposit to SWORD Server

If you'd like to deposit content to your repository via the installed SWORD Server, you'll need to select a SWORD Client to do so.

A variety of SWORDv1 Clients (in various languages/tools) are available off of http://swordapp.org/sword-v1/
DSpacealso comes with an optional which can be enabled to deposit content from one DSpace to another.SWORDv1 Client
An example SWORDv1 ZIP package is available in the DSpace Codebase at: https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword
/example
Finally, it's also possible to simply deposit a valid SWORD Zip package via common Linux commandline tools (e.g. curl). For example:

219

http://swordapp.org/sword-v1/
https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword/example
https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword/example

Deposit a SWORD Zip package named "sword-package.zip" into a DSpace Collection (Handle 123456789/2) as
user "test@dspace.org"
(Please note that you WILL need to obviously modify the Collection location, user/password and name of
the SWORD package)

curl -i --data-binary "@sword-package.zip" -H "Content-Disposition:filename=sword-package.zip" -H
"Content-Type:application/zip" -H "X-Packaging:http://purl.org/net/sword-types/METSDSpaceSIP" -u
test@dspace.org:[password] http://[dspace.url]/sword/deposit/123456789/2

Template 'curl' command:
#curl -i --data-binary "@[zip-package-name]" -H "Content-Disposition:filename=[zip-package-name]" -H
"Content-Type:application/zip" -H "X-Packaging:http://purl.org/net/sword-types/METSDSpaceSIP" -u [user]:
[password] http://[dspace.url]/sword/deposit/[collection-handle

DSpace Demo 7 Server: Service Documents

In DSpace 7, the SWORD interfaces are on the backend, so the correct URLs are

https://api7.dspace.org/server/sword/servicedocument
https://api7.dspace.org/server/swordv2/servicedocument

220

https://api7.dspace.org/server/sword/servicedocument
https://api7.dspace.org/server/swordv2/servicedocument

SWORDv2 Server
SWORD (Simple Web-service Offering Repository Deposit) is a protocol that allows the remote deposit of items into repositories. DSpace implements the
SWORD protocol via the 'sword' web application. The specification and further information can be found at .http://swordapp.org/

SWORD is based on the Atom Publish Protocol and allows service documents to be requested which describe the structure of the repository, and
packages to be deposited.

1 Enabling SWORD v2 Server
2 Configuring SWORD v2 Server
3 Deposit to SWORDv2 Server

3.1 Other example SWORDv2 commands
4 Troubleshooting

4.1 Missing expression of encoding in XML header
5 DSpace Demo 7 Server: Service Documents

Enabling SWORD v2 Server

To enable DSpace's SWORD v2 server, set the following in your local.cfg:

swordv2-server.enabled = true
Optionally, if you wish to change its path
swordv2-server.path = swordv2

Keep in mind, modifying these settings will require restarting your Servlet Container (usually Tomcat).

Once enabled, the SWORDv2 module will be available at ${dspace.server.url}/${swordv2-server.path}. For example, if "dspace.server.url=http://localhost:
8080/server", then (by default) it will be available at /swordv2/http://localhost:8080/server

Configuring SWORD v2 Server

These are the SWORD (v2) configurations. They may be edited directly or overridden in your local.cfg config (see).Configuration Reference

Configuration
File:

[dspace]/config/modules/swordv2-server.cfg

Property: enabledswordv2-server.

Example Value: swordv2-server.enabled = true (default is false)

Informational
Note:

Whether SWORDv2 module is enabled or disabled (disabled by default). Modifying this setting will require restarting your Servlet
Container (usually Tomcat).

Property: pathswordv2-server.

Example Value: swordv2-server.path = swordv2

Informational
Note:

When enabled, this is the subpath where the SWORDv2 module is deployed. This path is relative to ${dspace.server.url}.
Modifying this setting will require restarting your Servlet Container (usually Tomcat).

Property: urlswordv2-server.

Example Value: urlswordv2-server. = ${dspace.server.url}/${swordv2-server.path}

Informational
Note:

The base url of the SWORD 2.0 system. This defaults to ${dspace.server.url}/${swordv2-server.path}

Property: collection.urlswordv2-server.

Example Value: swordv2-server.collection.url = http://www.myu.ac.uk/swordv2/collection

Informational
Note:

The base URL of the SWORD collection. This is the URL from which DSpace will construct the deposit location URLs for
collections. This defaults to ${dspace.server.url}/${swordv2-server.path}/collection

Property: servicedocument.urlswordv2-server.

Example Value: swordv2-server.servicedocument.url = http://www.myu.ac.uk/swordv2/servicedocument

Informational
Note:

The service document URL of the SWORD collection. The base URL of the SWORD service document. This is the URL from which
DSpace will construct the service document location urls for the site, and for individual collections. This defaults to ${dspace.
server.url}/${swordv2-server.path}/servicedocument

221

http://swordapp.org/
https://wiki.duraspace.org/display/DSDOC6x/Configuration+Reference

Property: accept-packaging.collectionswordv2-server.

Example Value:
swordv2-server.accept-packaging.collection.METSDSpaceSIP = http://purl.org/net/sword/package
/METSDSpaceSIP
swordv2-server.accept-packaging.collection.SimpleZip = http://purl.org/net/sword/package
/SimpleZip
swordv2-server.accept-packaging.collection.Binary = http://purl.org/net/sword/package/Binary

Informational
Note:

The accept packaging properties, along with their associated quality values where appropriate.

Package format information

METSDSpaceSIP: zipfile containing mets.xml file describing the resources packed together with it in the root of the zipfile.
Binary: Binary resource that should be taken in as-is, not unpacked
SimpleZip: Zip file that should be unpacked and each file in the zip should be ingested separately. No metadata provided
/ingested.

Property: accept-packaging.itemswordv2-server.

Example Value:
swordv2-server.accept-packaging.item.METSDSpaceSIP = http://purl.org/net/sword/package
/METSDSpaceSIP
swordv2-server.accept-packaging.item.SimpleZip = http://purl.org/net/sword/package/SimpleZip
swordv2-server.accept-packaging.item.Binary = http://purl.org/net/sword/package/Binary

Informational
Note:

The accept packaging properties for items. It is possible to configure this for specific collections by adding the handle of the
collection to the setting, for example accept-packaging.collection.[handle].METSDSpaceSIP =swordv2-server. htt
p://purl.org/net/sword-types/METSDSpaceSIP

Package format information

METSDSpaceSIP: zipfile containing mets.xml file describing the resources packed together with it in the root of the zipfile.
Binary: Binary resource that should be taken in as-is, not unpacked
SimpleZip: Zip file that should be unpacked and each file in the zip should be ingested separately. No metadata provided
/ingested.

Property: acceptsswordv2-server.

Example Value:
swordv2-server.accepts = application/zip, image/jpeg

Informational
Note:

A comma-separated list of MIME types that SWORD will accept. To accept all mimetypes, the value can be set to "*/*"

Property: expose-communitiesswordv2-server.

Example Value:
swordv2-server.expose-communities = false

Informational
Note:

Whether or not the server should expose a list of all the communities to a service document request. As deposits can only be
made into a collection, it is recommended to leave this set to false.

Property: max-upload-sizeswordv2-server.

Example Value:
swordv2-server.max-upload-size = 0

Informational
Note:

The maximum upload size of a package through the SWORD interface (measured in bytes). This will be the combined size of all
the files, metadata, and manifest file in a package - this is different to the maximum size of a single bitstream.

If this is set to 0, no maximum file size will be enforced.

Property: keep-original-packageswordv2-server.

222

https://wiki.duraspace.org/display/DSPACE/DSpaceMETSSIPProfile
http://purl.org/net/sword-types/METSDSpaceSIP
http://purl.org/net/sword-types/METSDSpaceSIP
https://wiki.duraspace.org/display/DSPACE/DSpaceMETSSIPProfile

Example Value:
swordv2-server.keep-original-package = true

Informational
Note:

Should DSpace store a copy of the orignal SWORD deposit package?

This will cause the deposit process to be slightly slower and for more disk to be used, however original files will be preserved. It is
recommended to leave this option enabled.

Property: bundle.nameswordv2-server.

Example Value:
swordv2-server.bundle.name = SWORD

Informational
Note:

The bundle name that SWORD should store incoming packages within if is set to keep-original-packageswordv2-server.
true.

Property: swordv2-server.bundle.deleted

Example Value: swordv2-server.bundle.deleted = DELETED

Informational
Note:

The bundle name that SWORD should use to store deleted bitstreams if is set to true. This versions.keepswordv2-server.
will be used in the case that individual files are updated or removed via SWORD. If the entire Media Resource (files in the
ORIGINAL bundle) is removed this will be backed up in its entirety in a bundle of its own

Property: keep-package-on-failswordv2-server.

Example Value:
swordv2-server.keep-package-on-fail = false

Informational
Note:

In the event of package ingest failure, provide an option to store the package on the file system. The default is false. The location
can be set using the setting.failed-package-dirswordv2-server.

Property: failed-package-dirswordv2-server.

Example Value:
swordv2-server.failed-package-dir = /dspace/upload

Informational
Note:

If is set to true, this is the location where the package would be stored. keep-package-on-failswordv2-server.

Property: on-behalf-of.enableswordv2-server.

Example Value:
swordv2-server.on-behalf-of.enable = true

Informational
Note:

Should DSpace accept mediated deposits? See the SWORD specification for a detailed explanation of deposit On-Behalf-Of
another user.

Property: swordv2-server.on-behalf-of.update.mediators

Example Value: swordv2-server.on-behalf-of.update.mediators = admin@mydspace.edu, mediator@mydspace.edu

Informational
Note:

Which user accounts are allowed to do updates on items which already exist in DSpace, on-behalf-of other users?

If this is left blank, or omitted, then all accounts can mediate updates to items, which could be a security risk, as there is no implicit
checking that the authenticated user is a "legitimate" mediator

Property: swordv2-server.verbose-description.receipt.enable

Example Value: swordv2-server.verbose-description.receipt.enable = false

Informational
Note:

Should the deposit receipt include a verbose description of the deposit? For use by developers - recommend to set to "false" for
production systems

223

Property: swordv2-server.verbose-description.error.enable

Example Value: swordv2-server.verbose-description.error.enable = true

Informational
Note:

should the error document include a verbose description of the error? For use by developers, although you may also wish to leave
this set to "true" for production systems

Property: swordv2-server.error.alternate.url

Example Value: swordv2-server.error.alternate.url = http://mydspace.edu/contact

Informational
Note:

The error document can contain an alternate url, which the client can use to follow up any issues. For example, this could point to
the Contact-Us page

Property: swordv2-server.error.alternate.content-type

Example Value: swordv2-server.error.alternate.content-type = text/html

Informational
Note:

The may have an associated content type, such as if it points to a web error.alternate.urlswordv2-server. text/html
page. This is used to indicate to the client what content type it can expect if it follows that url.

Property: generator.urlswordv2-server.

Example Value:
swordv2-server.generator.url = http://www.dspace.org/ns/sword/2.0/

Informational
Note:

The URL which identifies DSpace as the software that is providing the SWORD interface.

Property: generator.versionswordv2-server.

Example Value:
swordv2-server.generator.version = 2.0

Informational
Note:

The version of the SWORD interface.

Property: auth-typeswordv2-server.

Example Value:
swordv2-server.auth-type = Basic

Informational
Note:

Which form of authentication to use. Normally this is set to in order to use HTTP Basic. Basic

Property: upload.tempdirswordv2-server.

Example Value:
swordv2-server.upload.tempd = /dspace/upload

Informational
Note:

The location where uploaded files and packages are stored while being processed.

Property: updated.fieldswordv2-server.

Example Value:
swordv2-server.updated.field = dc.date.updated

Informational
Note:

The metadata field in which to store the updated date for items deposited via SWORD.

224

http://localhost:8080/xmlui/contact

Property: slug.fieldswordv2-server.

Example Value:
swordv2-server.slug.field = dc.identifier.slug

Informational
Note:

The metadata field in which to store the value of the slug header if it is supplied.

Property: author.fieldswordv2-server.

Example Value:
swordv2-server.author.field = dc.contributor.author

Informational
Note:

The metadata field in which to store the value of the atom entry author if it supplied.

Property: title.fieldswordv2-server.

Example Value:
swordv2-server.title.field = dc.title

Informational
Note:

The metadata field in which to store the value of the atom entry title if it supplied.

Property: disseminate-packagingswordv2-server.

Example Value:
swordv2-server.disseminate-packaging.METSDSpaceSIP = http://purl.org/net/sword/package
/METSDSpaceSIP
swordv2-server.disseminate-packaging.SimpleZip = http://purl.org/net/sword/package/SimpleZip

Informational
Note:

Supported packaging formats for the dissemination of packages.

Property: swordv2-server.statement.bundles

Example Value: swordv2-server.statement.bundles = ORIGINAL, SWORD, LICENSE

Informational
Note:

Which bundles should the Statement include in its list of aggregated resources? The Statement will automatically mark
identified by the property, provided that bundle is also listed any bitstreams which are in the bundle ${bundle.name}

here (i.e. if you want Original Deposits to be listed in the Statement then you should add the SWORD bundle to this list)

Property: plugin.single.org.dspace.sword2.WorkflowManager

Example Value:
plugin.single.org.dspace.sword2.WorkflowManager = org.dspace.sword2.WorkflowManagerDefault

Informational
Note:

Which workflow manager to use.

Property: swordv2-server.workflowmanagerdefault.always-update-metadata

Example Value swordv2-server.workflowmanagerdefault.always-update-metadata = true

Informational
Note

Should the WorkflowManagerDefault plugin allow updates to the item's metadata to take place on items which are in states other
than the workspace (e.g. in the workflow, archive, or withdrawn) ?

Property: swordv2-server.workflowmanagerdefault.file-replace.enable

Example Value swordv2-server.workflowmanagerdefault.file-replace.enable = false

225

Informational
Note

Should the server allow PUT to individual files?

If this is enabled, then DSpace may be used with the DepositMO SWORD extensions, BUT the caveat is that DSpace does not
formally support Bitstream replace, so this is equivalent to a DELETE and then a POST, which violates the RESTfulness of the
server. The resulting file DOES NOT have the same identifier as the file it was replacing. As such it is STRONGLY
RECOMMENDED to leave this option turned off unless working explicitly with DepositMO enabled client environments

Property: swordv2-server.mets-ingester.package-ingester

Example Value:
swordv2-server.mets-ingester.package-ingester = METS

Informational
Note:

Which package ingester to use for METS packages.

Property: swordv2-server.restore-mode.enable

Example Value:
swordv2-server.restore-mode.enable = false

Informational
Note:

Should the SWORD server enable restore-mode when ingesting new packages. If this is enabled the item will be treated as a
previously deleted item from the repository. If the item has previously been assigned a handle then that same handle will be
restored to activity.

Property: swordv2-server.simpledc.*

Example Value:
swordv2-server.simpledc.abstract = dc.description.abstractsimpledc.date = dc.datesimpledc.
rights = dc.rights

Informational
Note:

Configuration of metadata field mapping used by the SimpleDCEntryIngester, SimpleDCEntryDisseminator and
FeedContentDisseminator

Property: swordv2-server.atom.*

Example Value swordv2-server.atom.author = dc.contributor.author

Informational
Note:

Configuration of metadata field mapping used by the SimpleDCEntryIngester, SimpleDCEntryDisseminator and
FeedContentDisseminator

Property: swordv2-server.metadata.replaceable

Example Value swordv2-server.metadata.replaceable = dc.description.abstract, dc.rights, dc.title.alternative,
dc.identifier.citation

Informational
Note

Used by SimpleDCEntryIngester: AtoWhich metadata fields can be replaced during a PUT to the Item of an
m Entry document? Fields listed here are the ones which will be removed when a new PUT comes through (irrespective of whether
there is a new incoming value to replace them)

Property: swordv2-server.multipart.entry-first

Example Value:
swordv2-server.multipart.entry-first = false

Informational
Note:

The order of precedence for importing multipart content. If this is set to then metadata in the package will override metadata true
in the atom entry, otherwise the metadata in the atom entry will override that from the package.

Property: swordv2-server.workflow.notify

Example Value:
swordv2-server.workflow.notify = true

Informational
Note:

If the workflow gets started (the collection being deposited into has a workflow configured), should a notification get sent?

226

Property: swordv2-server.versions.keep

Example Value:
swordv2-server.versions.keep = true

Informational
Note:

When content is replaced, should the old version be kept? This creates a copy of the ORIGINAL bundle with the name V_YYYY-
MM-DD.X where YYYY-MM-DD is the date the copy was created, and X is an integer from 0 upwards.

Property: swordv2-server.state.*

Example Value:
swordv2-server.state.workspace.uri = http://dspace.org/state/inprogress
swordv2-server.state.workspace.description = The item is in the user workspace
swordv2-server.state.workflow.uri = http://dspace.org/state/inreview
swordv2-server.state.workflow.description = The item is undergoing review prior to acceptance
in the archive

Informational
Note:

Pairs of states (URI and description) than items can be in. Typical states are , , , and .workspace workflow archive withdrawn

Property: swordv2-server.workspace.url-template

Example Value swordv2-server.workspace.url-template = http://mydspace.edu/workspaceitems/#wsid#/edit

Informational
Note

URL template for links to items in the workspace (items in the archive will use the handle). The url parameter will be #wsid#
replaced with the workspace id of the item. The example above shows how to construct this URL for the UI.

Other configuration options exist that define the mapping between mime types, ingesters, and disseminators. A typical configuration looks like this:

plugin.named.org.dspace.sword2.SwordContentIngester = \
 org.dspace.sword2.SimpleZipContentIngester = http://purl.org/net/sword/package/SimpleZip, \
 org.dspace.sword2.SwordMETSIngester = http://purl.org/net/sword/package/METSDSpaceSIP, \
 org.dspace.sword2.BinaryContentIngester = http://purl.org/net/sword/package/Binary

plugin.single.org.dspace.sword2.SwordEntryIngester = \
 org.dspace.sword2.SimpleDCEntryIngester

plugin.single.org.dspace.sword2.SwordEntryDisseminator = \
 org.dspace.sword2.SimpleDCEntryDisseminator

note that we replace ";" with "_" as ";" is not permitted in the PluginManager names
plugin.named.org.dspace.sword2.SwordContentDisseminator = \
 org.dspace.sword2.SimpleZipContentDisseminator = http://purl.org/net/sword/package/SimpleZip, \
 org.dspace.sword2.FeedContentDisseminator = application/atom+xml, \
 org.dspace.sword2.FeedContentDisseminator = application/atom+xml_type_feed

note that we replace ";" with "_" as ";" is not permitted in the PluginManager names
plugin.named.org.dspace.sword2.SwordStatementDisseminator = \
 org.dspace.sword2.AtomStatementDisseminator = atom, \
 org.dspace.sword2.OreStatementDisseminator = rdf, \
 org.dspace.sword2.AtomStatementDisseminator = application/atom+xml_type_feed, \
 org.dspace.sword2.OreStatementDisseminator = application/rdf+xml

Deposit to SWORDv2 Server

If you'd like to deposit content to your repository via the installed SWORD Server, you'll need to select a SWORD Client to do so.

Some SWORDv2 Clients are available at http://swordapp.org/sword-v2/
It's possible to simply deposit a valid SWORDv2 Zip package via common Linux commandline tools (e.g. curl). For example:

227

http://swordapp.org/sword-v2/

Deposit a SWORD Zip package named "sword-package.zip" into a DSpace Collection (Handle 123456789/2) as
user "test@dspace.org"
(Please note that you WILL need to obviously modify the Collection location, user/password and name of
the SWORD package)

curl -i --data-binary "@sword-package.zip" -H "Content-Disposition:attachment; filename=sword-package.
zip" -H "Content-Type:application/zip" -H "Packaging:http://purl.org/net/sword/package/METSDSpaceSIP" -u
test@dspace.org:[password] -X POST http://[dspace.url]/swordv2/collection/123456789/2

Template 'curl' command:
#curl -i --data-binary "@[zip-package-name]" -H "Content-Disposition:attachment; filename=[zip-package-
name]" -H "Content-Type:application/zip" -H "Packaging:http://purl.org/net/sword/package/METSDSpaceSIP" -
u [user]:[password] -X POST http://[dspace.url]/swordv2/collection/[collection-handle]

NOTE: -H "Packaging:http://purl.org/net/sword/package/METSDSpaceSIP is required for SWORDv2 and " -H "X-Packaging:
http://purl.org/net/sword-types/METSDSpaceSIP is required for SWORD. X-Packaging/Packaging and the URLs are different. "
A sample SWORD Zip package (which works for both SWORDv1 or SWORDv2) is available in the codebase at https://github.com/DSpace

. Look for the file named example.zip/DSpace/tree/main/dspace-sword/example

Other example SWORDv2 commands

Example of retrieving Item information via "edit-media" path in ATOM format (can be run on any item within
DSpace, but requires authentication)
NOTE: Accept header is required, and must be a format supported by a SwordContentDisseminator plugin (see
configuration above)
curl -i -H "Accept:application/atom+xml" -u test@dspace.org:[password] -X GET http://[dspace.url]/swordv2/edit-
media/[internal-item-identifier]

Troubleshooting

Missing expression of encoding in XML header

If your SWORD Deposit requests are unsuccessful, please check that the XML in your initial metadata deposit correctly specifies the encoding.

If you use:

<?xml version="1.0"?>

DSpace will default to UTF-32.

So to successfully deposit an XML in UTF-8, make sure you use:

<?xml version="1.0" encoding="utf-8" ?>

DSpace Demo 7 Server: Service Documents

In DSpace 7, the SWORD interfaces are on the backend, so the correct URLs are

https://api7.dspace.org/server/sword/servicedocument
https://api7.dspace.org/server/swordv2/servicedocument

228

https://github.com/DSpace/DSpace/tree/main/dspace-sword/example
https://github.com/DSpace/DSpace/tree/main/dspace-sword/example
https://api7.dspace.org/server/sword/servicedocument
https://api7.dspace.org/server/swordv2/servicedocument

Ingesting HTML Archives

Not yet supported in DSpace 7. See https://github.com/DSpace/DSpace/issues/8635

For the most part, at present DSpace simply supports uploading and downloading of bitstreams as-is. This is fine for the majority of commonly-used file
formats – for example PDFs, Microsoft Word documents, spreadsheets and so forth. HTML documents (Web sites and Web pages) are far more
complicated, and this has important ramifications when it comes to digital preservation:

Web pages tend to consist of several files – one or more HTML files that contain references to each other, and stylesheets and image files that
are referenced by the HTML files.
Web pages also link to or include content from other sites, often imperceptibly to the end-user. Thus, in a few year's time, when someone views
the preserved Web site, they will probably find that many links are now broken or refer to other sites than are now out of context.In fact, it may be
unclear to an end-user when they are viewing content stored in DSpace and when they are seeing content included from another site, or have
navigated to a page that is not stored in DSpace. This problem can manifest when a submitter uploads some HTML content. For example, the
HTML document may include an image from an external Web site, or even their local hard drive. When the submitter views the HTML in DSpace,
their browser is able to use the reference in the HTML to retrieve the appropriate image, and so to the submitter, the whole HTML document
appears to have been deposited correctly. However, later on, when another user tries to view that HTML, their browser might not be able to
retrieve the included image since it may have been removed from the external server. Hence the HTML will seem broken.
Often Web pages are produced dynamically by software running on the Web server, and represent the state of a changing database underneath
it.

Dealing with these issues is the topic of much active research. Currently, DSpace bites off a small, tractable chunk of this problem. DSpace can store and
provide on-line browsing capability for HTML documents. DSpace allows relative links between HTML documents stored self-contained, non-dynamic
together in a single item to work. In practical terms, this means:

No dynamic content (CGI scripts and so forth)
All links to preserved content must be , that do not refer to 'parents' above the 'root' of the HTML document/site:relative links

diagram.gif is OK
image/foo.gif is OK
../index.html is only OK in a file that is at least a directory deep in the HTML document/site hierarchy
/stylesheet.css is not OK (the link will break)
http://somedomain.com/content.html is not OK (the link will continue to link to the external site which may change or disappear)

Any 'absolute links' (e.g.) are stored 'as is', and will continue to link to the external content (as opposed to http://somedomain.com/content.html
relative links, which will link to the copy of the content stored in DSpace.) Thus, over time, the content referred to by the absolute link may change
or disappear.

229

https://github.com/DSpace/DSpace/issues/8635
http://somedomain.com/content.html
http://somedomain.com/content.html

Items and Metadata
Authority Control of Metadata Values
Batch Metadata Editing
DOI Digital Object Identifier
Item Level Versioning
Mapping/Linking Items to multiple Collections
Metadata Recommendations
Moving Items
PDF Citation Cover Page
Request Withdrawn and Reinstate of an item
Updating Items via Simple Archive Format

230

Authority Control of Metadata Values

1 Introduction
2 Simple choice management for DSpace submission forms

2.1.1 Example
2.2 Use simple choice management to add language tags to metadata fields

3 Hierarchical Taxonomies and Controlled Vocabularies
3.1 Default Hierarchical Controlled Vocabularies
3.2 Enabling / Disabling a Hierarchical Controlled Vocabulary
3.3 How to invoke a controlled vocabulary from submission-forms.xml

4 Authority Control: Enhancing DSpace metadata fields with Authority Keys
4.1 How it works
4.2 Original source:

Introduction

With DSpace you can describe digital objects such as text files, audio, video or data to facilitate easy retrieval and high quality search results. These
descriptions are organized into metadata fields that each have a specific designation. For example: dc.title stores the title of an object, while dc.subject is
reserved for subject keywords.

For many of these fields, including title and abstract, free text entry is the proper choice, as the values are likely to be unique. Other fields are likely to have
values drawn from controlled sets. Such fields include unique names, subject keywords, document types and other classifications. For those kinds of fields
the overall quality of the repository metadata increases if values with the same meaning are normalized across all items. Additional benefits can be gained
if unique identifiers are associated as well in addition to canonical text values associated with a particular metadata field.

This page covers features included in the DSpace submission forms that allow repository managers to enforce the usage of normalized terms for those
fields where this is required in their institutional use cases. DSpace offers simple and straightforward features, such as definitions of simple text values for
dropdowns, as well as more elaborate integrations with external vocabularies such as the Library of Congress Naming Authority.

Simple choice management for DSpace submission forms

The DSpace Submission forms, defined in the submission-forms.xml file, allows the inclusion of value pairs that can be organized in lists in order to
populate dropdowns or other multiple choice elements. If you explore the default submission-forms.xml file, you can see that a number of such value pair
lists are already pre defined.

Example

<value-pairs value-pairs-name="common_identifiers" dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc #</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>
 </pair>
</value-pairs>

It generates the following HTML, which results in the menu widget below.

<select name="identifier_qualifier_0">
 <option VALUE="govdoc">Gov't Doc #</option>
 <option VALUE="uri">URI</option>
 <option VALUE="isbn">ISBN</option>
</select>

 A list of value pairs has following required attributes:

value-pairs-name – Name by which an refers to this list.input-type
dc-term – Dublin Core field for which this choice list is selecting a value.

Each element contains a sequence of sub-elements, each of which in turn contains two elements:value-pairs pair

displayed-value – Name shown (on the web page) for the menu entry.

231

stored-value – Value stored in the DC element when this entry is chosen. Unlike the HTML tag, there is no way to indicate one of the select
entries should be the default, so the first entry is always the default choice.

Use simple choice management to add language tags to metadata fields

DSpace uses the simple choice management to provide a controlled list of language tags. Out of the box DSpace comes with a list of ISO language tags.
You can add further language lists or use the provided one to let submitters tag languages of metadata fields. Take a look at the part of this documentation
about the configuration of the . Submission User Interface

Hierarchical Taxonomies and Controlled Vocabularies

The value pairs system works well for short and flat lists of choices. DSpace offers a second way of structuring and managing more complex, hierarchical
controlled vocabularies. In contrast to the value pairs system, these controlled vocabularies are managed in separate XML files in the [dspace]/config

 /controlled-vocabularies/ directory instead of being entered straight into submission-forms.xml

The taxonomies are described in XML according to this structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 ...
 </isComposedBy>
 </node>
 ...
 </isComposedBy>
</node>

As you can see, each node element has an id and label attribute. It can contain the isComposedBy element, which in its turn, consists of a list of other
nodes.

You are free to use any application you want to create your controlled vocabularies. A simple text editor should be enough for small projects. Bigger
projects will require more complex tools. You may use Protegé to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to
transform your documents to the appropriate format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL
or RDF.

Default Hierarchical Controlled Vocabularies

By default, DSpace includes two out-of-the-box hierarchical controlled vocabularies in the [dspace]/config/controlled-vocabularies/ directory.

nsi - - The Norwegian Science Index (in the Norweigen language)nsi.xml
srsc - - Swedish Research Subject Categories (in the English language, with notes in Swedish)srsc.xml

You may create your own hierarchical controlled vocabulary by using either of those as a model. All valid hierarchical vocabularies should align with the
"controlledvocabulary.xsd" schedule available in that same directory.

Enabling / Disabling a Hierarchical Controlled Vocabulary

To enable a hierarchical controlled vocabulary, simply configure it's usage in one (or more) of your fields in your "submission-forms.xml" (as documented
below).

To disable a hierarchical controlled vocabulary, simply remove it from all your fields in your "submission-forms.xml". You can also disable controlled all
vocabularies by commenting out the "DSpaceControlledVocabulary" plugin in "authority.cfg":

authority.cfg

plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.DCInputAuthority, \
 org.dspace.content.authority.DSpaceControlledVocabulary

How to invoke a controlled vocabulary from submission-forms.xml

Vocabularies need to be associated with the correspondent DC metadata fields. Edit the file and place a [dspace]/config/submission-forms.xml "
 tag under the element that you want to control. Set value of the element to the name of the file that contains the vocabulary" "field" "vocabulary"

vocabulary, leaving out the extension (the add-on will only load files with extension "*.xml"). For example:

232

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>onebox</input-type>
 <hint>Enter appropriate subject keywords or phrases below.</hint>
 <required></required>
 <vocabulary>srsc</vocabulary>
</field>

The vocabulary element has an optional boolean attribute that can be used to force input only with the Javascript of controlled-vocabulary add-on. closed
The default behaviour (i.e. without this attribute) is . This allows the user to enter values as free text in addition to selecting them from closed="false"
the controlled vocabulary.

Authority Control: Enhancing DSpace metadata fields with Authority Keys

The aforementioned features only deal with text representations of controlled values. DSpace also offers support for adding authority keys and confidence
values to a specific text value entered in a metadata field. The following terminology applies in the description of this area of DSpace functionality:

Authority An is an external source of fixed values for a given domain, each unique value identified by a . For example, authority key the OCLC LC
, ORCID or VIAF.Name Authority Service

Authority Record The information associated with one of the values in an authority; may include alternate spellings and equivalent forms of the
value, etc.
Authority Key An opaque, hopefully persistent, identifier corresponding to exactly one record in the authority.

The fact that this functionality deals with sources of authority makes it inherently different from the functionality for controlled vocabularies. external
Another difference is that the authority control is asserted metadata values are changed, including unattended/batch submission, SWORD everywhere
package submission, and the administrative UI.

How it works

TODO

Original source:

Authority Control of Metadata Values original development proposal for DSpace 1.6

233

http://www.oclc.org/research/researchworks/authority/default.htm
http://www.oclc.org/research/researchworks/authority/default.htm
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Authority+Control+of+Metadata+Values

ORCID Authority

1 Introduction
2 Use case and high level benefits
3 Enabling the ORCID authority control

3.1 Settings to enable in local.cfg
3.2 Enabling the ORCID beans

4 Importing existing authors & keeping the index up to date
4.1 Different possible use cases for Index-authority script

4.1.1 Metadata value WITHOUT authority key in metadata
4.1.2 Metadata that already has an authority key from an external source (NOT auto-generated by DSpace)
4.1.3 Metadata that has already a new dspace generated uid authority key
4.1.4 Processing on records in the authority cache

4.2 Submission of new DSpace items - Author lookup
4.3 Admin Edit Item
4.4 Editing existing items using Batch CSV Editing
4.5 Storage of related metadata

5 Configuration
6 Adding additional fields under ORCID
7 Integration with other systems beside ORCID
8 FAQ

8.1 Which information from ORCID is currently indexed in the authority cache?
8.2 How can I index additional fields in the authority cache?
8.3 How can I use the information stored in the authority cache?
8.4 How to add additional metadata fields in the authority cache that are not related to ORCID?
8.5 What happens to data if another authority control was already present?
8.6 Where can I find the URL that is used to lookup ORCIDs?

ORCID Authority can only pull data from ORCID and link it to a DSpace metadata field

ORCID Authority allows you to link up DSpace metadata fields (added during the submission process) to a person's ORCID identifier. The main use case
for this feature is to allow you to link author metadata fields to their ORCID identifier. This is a very basic ORCID integration that has existed since DSpace
5.x.

If you re looking for ORCID Authentication & the ability to synchronize data from DSpace to an ORCID profile, then you should be using the ORCID
 feature instead.Integration

Introduction

The ORCID integration adds ORCID compatibility to the existing solutions for . String names of authors are still being stored in Authority control in DSpace
DSpace metadata. The authority key field is leveraged to store a uniquely generated internal ID that links the author to more extended metadata, including
the ORCID ID and alternative author names.

This extended metadata is stored and managed in a dedicated SOLR index, the DSpace authority cache.

Use case and high level benefits

The vision behind this project consists of the following two aspects:

Lowering the threshold to adopt ORCID for the members of the DSpace community

ORCID’s API has enabled developers across the globe to build points of integration between ORCID and third party applications. Up until today, this
meant that members of the DSpace community were still required to implement front-end and back-end modifications to the DSpace source code in order
to leverage these APIs. As DSpace aims to provide turnkey Institutional Repository functionality, the platform is expected to provide more functionality out
of the box. Only an elite selection of members in the DSpace community has software development resources readily available to implement this kind of
functionality. By contributing a solution directly to the core DSpace codebase, this threshold to adopt ORCID functionality in DSpace repositories is
effectively lowered. The ultimate goal is to allow easy adoption of ORCID without customization of the DSpace software, by allowing repository
administrators to enable or disable functionality by means of user friendly configuration.

Address generic use cases with appealing end user functionality

This proposal aims to provide user friendly features for both repository administrators as well as non- technical end users of the system. The addition of
ORCID functionality to DSpace should not come at the cost of making the system more difficult for administrators and end users to use. Scope With this
vision in mind, the project partners wanted to tackle the first phases for repository managers of existing DSpace repositories: ensuring that ORCIDs are
properly associated with new works entering the system, as well as providing functionality to efficiently batch-update content already existing in the system,
with unambiguous author identity information.

Enabling the ORCID authority control

To enable ORCID authority control requires settings in both local.cfg and updating the registered beans in "orcid-authority-services.xml" as described
below.

Settings to enable in local.cfg

234

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Authority%2BControl%2Bof%2BMetadata%2BValues

If you wish to enable this feature, some changes are required to the local.cfg file. The first step is to activate the authority as a valid option for authority
control, this is done by adding/setting an additional plugin in the plugin.named.org.dspace.content.authority.ChoiceAuthority property.
An example of this can be found below.

authority.cfg

plugin.named.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.SolrAuthority = SolrAuthorAuthority

The feature relies on the following configuration parameters in . To activate the default authority.cfg, solrauthority.cfg and orcid.cfg
settings it suffices to remove the comment hashes ("#") for the following lines or copy them into your local.cfg. See the section at the bottom of this page
what these parameters mean exactly and how you can tweak the configuration.

This setting should already be specified in your solrauthority.cfg
solr.authority.server=${solr.server}/${solr.multicorePrefix}authority

These settings can be found in your authority.cfg (or could be added to local.cfg)
choices.plugin.dc.contributor.author = SolrAuthorAuthority
choices.presentation.dc.contributor.author = authorLookup
authority.controlled.dc.contributor.author = true
authority.author.indexer.field.1=dc.contributor.author

Beginning with DSpace 7, you must specify which ORCID API you wish to use. A Client ID/Secret is also required, but can be obtained for free for the
Public API: https://info.orcid.org/documentation/features/public-api/

If you are an ORCID Member Institution, you can use the Member API instead. The Member API is required for additional features, but ORCID Integration
is NOT required for this basic ORCID Authority feature.

These ORCID settings are now required for ORCID Authority
They can be found in your orcid.cfg (or can be added to local.cfg)
orcid.domain-url = https://orcid.org
You can use either the Public API or Member API in this next setting
orcid.api-url = https://pub.orcid.org/v3.0

You do NOT need to pay for a Member API ID to use ORCID Authority.
Instead, you just need a Public API ID from a free ORCID account.
orcid.application-client-id = MYID
orcid.application-client-secret = MYSECRET

The final part of configuration is to add the authority consumer in front of the list of event consumers (in dspace.cfg or local.cfg). Add "authority" in front of
the list as displayed below.

event.dispatcher.default.consumers = authority, versioning, discovery, eperson

Enabling the ORCID beans

You must also uncomment the ORCID beans in . These are commented out by default as config/spring/api/orcid-authority-services.xml
they require setting the "orcid.*" settings described above.

Simply uncomment these settings as-is & restart Tomcat. They will pull their configs from orcid.cfg or your local.cfg.

235

https://info.orcid.org/documentation/features/public-api/

orcid-authority-services.xml

<!-- This bean & alias are commented out by default. Simply uncomment them -->
<alias name="OrcidSource" alias="AuthoritySource"/>
<bean name="OrcidSource" class="org.dspace.authority.orcid.Orcidv3SolrAuthorityImpl">
 <property name="clientId" value="${orcid.application-client-id}" />
 <property name="clientSecret" value="${orcid.application-client-secret}" />
 <property name="OAUTHUrl" value="${orcid.token-url}" />
 <property name="orcidRestConnector" ref="orcidRestConnector"/>
</bean>

<!-- Also uncomment Orcidv3AuthorityValue in the list of supported types below.
 The other settings in this AuthorityTypes bean can be left as-is. -->
<bean name="AuthorityTypes" class="org.dspace.authority.AuthorityTypes">
 <property name="types">
 <list>
 <bean class="org.dspace.authority.orcid.Orcidv3AuthorityValue"/>
 <bean class="org.dspace.authority.PersonAuthorityValue"/>
 </list>
 </property>
...
</bean>

Importing existing authors & keeping the index up to date

When first enabled the authority index will be empty, to populate the authority index run the following script:

[dspace]/bin/dspace index-authority

This will iterate over every metadata under authority control and create records of them in the authority index. The metadata without an authority key will
each be updated with an auto generated authority key. These will not be matched in any way with other existing records. The metadata with an authority
key that does not already exist in the index will be indexed with those authority keys. The metadata with an authority key that already exist in the index will
be re-indexed the same way. These records remain unchanged.

Different possible use cases for Index-authority script

Metadata value WITHOUT authority key in metadata

“Luyten, Bram” is present in the metadata without any authority key.
GOAL: “Luyten, Bram” gets added in the cache ONCE

All occurences of “Luyten, Bram” in the DSpace item metadata will become linked with the same generated uid.

Metadata that already has an authority key from an external source (NOT auto-generated by DSpace)

“Snyers, Antoine” is present with authority key “u12345”

The old authority key needs to be preserved in the item metadata and duplicated in the cache.
“u12345” will be copied to the authority cache and used as the authority key there.

Metadata that has already a new dspace generated uid authority key

Item metadata already contains an author with name “Haak, Danielle” and a uid in the authority field 3dda2571-6be8-4102-a47b-5748531ae286

This uid is preserved and no new record is being created in the authority index.

Processing on records in the authority cache

Running this script again will update the index and keep the index clean. For example if an author occurs in a single item and that item is deleted the script
will need to be run again to remove it from the index. When run again it will remove all records that no longer have a link to existing authors in the
database.

Submission of new DSpace items - Author lookup

236

When ORCID Authority is enabled, the Author field can be used to search entries in ORCID. Simply type in an Author name to search your locally indexed
authors and authors in ORCID.

Select an author entry from the list to add that Author. The List of authors is updated as you type.

Authors that already appear somewhere in the repository are differentiated from the authors that have been retrieved from ORCID.

Admin Edit Item
Not yet available in DSpace 7.x. The below screenshots are from 6.x

In the edit metadata page, under the values for the dc.contributor.author fields, an extra line shows the author ID together with a lock icon and a Lookup
button. The author ID cannot be changed manually. However the Lookup button will help you change the author name and ID at the same time.

Clicking the Lookup button brings back the Lookup User Interface. This works just the same way as in the submission forms.

237

Editing existing items using Batch CSV Editing

Instructions on how to use the Batch CSV Editing are found .on the Batch Metadata Editing documentation page

238

https://wiki.lyrasis.org/display/DSDOC5x/Batch+Metadata+Editing

ORCID Integration is provided through the Batch CSV Editing feature with an extra available headers "ORCID:dc.contributor.author". The usual CSV
headers only contain the metadata fields: e.g. "dc.contributor.author". In addition to the traditional header, another dc.contributor.author header can be
added with the "ORCID:" prefix. The values in this column are supposed to be ORCIDs.

For each of the ORCID authors a lookup will be done and their names will be added to the metadata. All the non-ORCID authors will be added as well. The
authority keys and solr records are added when the reported changes are applied.

239

Storage of related metadata

ORCID authorities not only link a digital identifier to a name. It regroups a load of metadata going from alternative names and email addresses to keywords
about their works and much more. The metadata is obtained by querying the ORCID web services. In order to avoid querying the ORCID web services
every time, all these related metadata is gathered in a "metadata authority cache" that DSpace can access directly.

In practice the cache is provided by an apache solr server. When a look-up is made and an author is chosen that is not yet in the cache, a record is
created from an ORCID profile and added to the cache with the list of related metadata. The value of the Dublin Core metadata is based on the first and
last name as they are set in the ORCID profile. The authority key for this value links directly to the solr document's id. DSpace does not provide a way to
edit these records manually.

The information in the authority cache can be updated by running the following command line operation:

Command used: [dspace]/bin/dspace dsrun org.dspace.authority.
UpdateAuthorities

Arguments description

-i update specific solr records with the given internal ids (comma-separated)

-h prints this help message

240

This will iterate over every solr record currently in use (unless the -i argument is provided), query the ORCID web service for the latest data and update the
information in the cache. If configured, the script will also update the metadata of the items in the repository where applicable.

The configuration property can be set in , or overridden in your (see).config/modules/solrauthority.cfg local.cfg Configuration Reference

solrauthority.auto-update-items = false | true

When set to true and this is script is run, if an authority record's information is updated the whole repository will be scanned for this authority. Every
metadata field with this authority key will be updated with the value of the updated authority record.

Configuration

In the section, you have been told to add this block of configuration.Enabling the ORCID authority control

NOTE: you can use local.cfg for these

For all of the configuration options described below, you can use either dspace.cfg or local.cfg. Either will work. It is possible that, when you compile your
code with Maven, and you have tests enabled, your build will fail. DSpace unit tests utilize parts of dspace.cfg, and the configuration options you will utilize
below are known to cause unit test errors. The easiest way to avoid this situation is to use the local.cfg file.

solr.authority.server=${solr.server}/authority
choices.plugin.dc.contributor.author = SolrAuthorAuthority
choices.presentation.dc.contributor.author = authorLookup
authority.controlled.dc.contributor.author = true
authority.author.indexer.field.1=dc.contributor.author

These ORCID settings are now required for ORCID Authority
orcid.domain-url = https://orcid.org
You can use either the Public API or Member API
orcid.api-url = https://pub.orcid.org/v3.0

You do NOT need to pay for a Member API ID to use ORCID Authority.
Instead, you just need a Public API ID from a free ORCID account.
https://info.orcid.org/documentation/features/public-api/
orcid.application-client-id = MYID
orcid.application-client-secret = MYSECRET

The ORCID Integration feature is an extension on the authority control in DSpace. Most of these properties are extensively explained on the Authority
. These will be revisited but first we cover the properties that have been newly added.Control of Metadata Values documentation page

The is the url to the solr core. Usually this would be on the next to the oai, search and statistics cores. solr.authority.server solr.server
 authority.author.indexer.field.1 and the subsequent increments configure which fields will be indexed in the authority cache. However

before adding extra fields into the solr cache, please read the section about .Adding additional fields under ORCID

That's it for the novelties. Moving on to the generic authority control properties:

With the property every metadata field that needs to be authority controlled is configured. This involves every type of authority.controlled
authority control, not only the fields for ORCID integration.
The should be configured for each metadata field under authority control. Setting the value on SolrAuthorAuthority tells choices.plugin
DSpace to use the solr authority cache for this metadatafield, cfr. .Storage of related metadata
The should be configured for each metadata field as well. The traditional values for this property are choices.presention select|suggest|

. A new value, , has been added to be used in combination with the SolrAuthorAuthority choices plugin. While the other lookup authorLookup
values can still be used, the authorLookup provides a richer user interface in the form of a popup on the submission page.
The browse indexes need to point to the new authority-controlled index: webui.browse.index.2 = author:metadata:dc.contributor.

 should become *,dc.creator:text webui.browse.index.2 = author:metadataAuthority:dc.contributor.author:authority
More existing configuration properties are available but their values are independent of this feature and their default values are usually fine: choic

, . es.closed authority.required, authority.minconfidence

For the cache update script, one property can be set in :config/modules/solrauthority.cfg

auto-update-items = false | true

The default value for when the property is missing is false.

The final part of configuration is to add the authority consumer in front of the list of event consumers. Add "authority" in front of the list as displayed below.

241

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Authority_Control_of_Metadata_Values
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Authority_Control_of_Metadata_Values

event.dispatcher.default.consumers = authority, versioning, discovery, eperson, harvester

Without the consumer there is no automatic indexing of the authority cache and the metadata will not even have authority keys.

Changes to the configuration always require a server restart before they're in effect.

Adding additional fields under ORCID

Other metadata fields besides "dc.contributor.author" can benefit from the ORCID authority control at the same time. Here is an example of how to get the
same ORCID functionality for the "dc.contributor.editor" metadata field assuming that "dc.contributor.author" is already configured correctly. It can be
achieved by modifying configuration files only.

First add the same configuration fields that have been added for the "dc.contributor.author"

choices.plugin.dc.contributor.editor = SolrAuthorAuthority
choices.presentation.dc.contributor.editor = authorLookup
authority.controlled.dc.contributor.editor = true

authority.author.indexer.field.1=dc.contributor.author
authority.author.indexer.field.2=dc.contributor.editor

This is enough to get the look-up interface on the submission page and on the edit metadata page. The authority keys will be added and indexed with the
information from orcid just as it happens with the Authors.

But you're not completely done yet, There is one more configuration step. Because now when adding new editors in the metadata that are not retrieved
through the external look-up, their first and last name will not be displayed in the look-up interface next time you look for them.

To fix this, open the file at and find this spring bean:config/spring/api/orcid-authority-services.xml

<bean name="AuthorityTypes" class="org.dspace.authority.AuthorityTypes">
 <property name="types">
 <list>
 <bean class="org.dspace.authority.orcid.Orcidv3AuthorityValue"/>
 <bean class="org.dspace.authority.PersonAuthorityValue"/>
 </list>
 </property>
 <property name="fieldDefaults">
 <map>
 <entry key="dc_contributor_author">
 <bean class="org.dspace.authority.PersonAuthorityValue"/>
 </entry>
 </map>
 </property>
</bean>

The map inside the "fieldDefaults" property needs an additional entry for the editor field:

<entry key="dc_contributor_editor">
 <bean class="org.dspace.authority.PersonAuthorityValue"/>
</entry>

With this last change everything is set up to work correctly. The rest of this configuration file is meant for JAVA developers that wish to provide integration
. Developers that wish to display other fields than first and last name can also have a look in that section. with other systems beside ORCID

Note: Each metadata field has a separate set of authority records. Authority keys are not shared between different metadata fields. E. g. multiple dc.
contributor.author can have the same authority key and point to the same authority record in the cache. But when an ORCID is chosen for a dc.contributor.
editor field, a separate record is made in the cache. Both records are updated from the same source and will contain the same information. The difference
is that when performing a look-up of a person that has been introduced as an authority for an author field but not yet as an editor, it will show as record that
is not yet present in the repository cache.

Integration with other systems beside ORCID

The authority cache and look-up functionality can be extended to use other sources than ORCID or to show more information in the look-up interface.
However some JAVA development is necessary for this. Specific instructions can be found in the readme file of the .org.dspace.authority package

242

https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/java/org/dspace/authority

FAQ

Which information from ORCID is currently indexed in the authority cache?

Here is a breakdown of the fields stored in the solr cache.

The system/dspace related fields are: .id, field, value, deleted, creation_date, last_modified_date, authority_type

The fields with data coming directly from ORCID are: first_name, last_name, name_variant, orcid_id, label_researcher_url, label_keyword,
 The field contains all the values from the other fields starting with "label_".label_external_identifier, label_biography, label_country. all_labels

How can I index additional fields in the authority cache?

There is currently no configuration to control which fields are indexed. The only way to achieve this is to modify the source code.

List of the files at work for this job:
: OrcidSource contains the URL for orcid's REST API.config/spring/api/orcid-authority-services.xml

org.dspace.authority.orcid.Orcid makes the REST call
+ org.dspace.authority.orcid.xml.XMLtoBio converts the received XML to a java object (Bio).
+ org.dspace.authority.orcid.model.Bio
+ org.dspace.authority.orcid.OrcidAuthorityValue#create(org.dspace.authority.orcid.model.Bio) inserts all the values from Bio into the AuthorityValue
subclass.
+ org.dspace.authority.orcid.OrcidAuthorityValue#getSolrInputDocument defines what's included in solr.

The files preceded with a '+' would be necessary to modify to add more info into the cache.

How can I use the information stored in the authority cache?

The look-up UI is currently the only place this information is sent to. However just a limited number of fields are sent. The place in the source code to
modify to get more fields there is org.dspace.authority.orcid.OrcidAuthorityValue#choiceSelectMap. This is also documented in the readme of the org.
dspace.authority package.

How to add additional metadata fields in the authority cache that are not related to ORCID?

Make the same configuration step as for . Currently the ORCID suggestions cannot be turned off for specific fields, adding additional fields under ORCID
that would require custom code.

What happens to data if another authority control was already present?

As long as the metadata does not get indexed, there will be no changes. However every time any metadata of an item is modified, the metadata under
authority control for that item will be re-indexed. When that happens a record will be inserted in the solr cache. That record's ID will be the authority key of
the metadata. This can be done for all metadata at once with the index-authority script.

In short: authority keys that exist prior to enabling the solrauthority are kept. They just won't show in the look-up until they are indexed.

Where can I find the URL that is used to lookup ORCIDs?

It is found in the configuration file. Look for the , which is config/spring/api/orcid-authority-services.xml < = >bean name OrcidSource" "
initialized with a URL of http://pub.orcid.org

243

https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/java/org/dspace/authority
https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/java/org/dspace/authority
http://pub.orcid.org

Batch Metadata Editing

1 Batch Metadata Editing Tool
1.1 Export Function

1.1.1 Web Interface Export
1.1.2 Command Line Export

1.2 Import Function
1.2.1 Web Interface Import
1.2.2 Command Line Import

1.3 CSV Format
1.3.1 File Structure

1.4 Editing the CSV
1.4.1 Editing Collection Membership
1.4.2 Adding Metadata-Only Items
1.4.3 Deleting Metadata
1.4.4 Performing 'actions' on items
1.4.5 Migrating Data or Exchanging data
1.4.6 Common Issues

1.4.6.1 Metadata values in CSV export seem to have duplicate columns
1.4.6.2 DSpace responds with "No changes were detected" when CSV is uploaded

1.5 Batch Editing, Entities and Relationships
1.5.1 Background about entities and virtual metadata
1.5.2 Admin CSV export
1.5.3 Admin CSV import

Batch Metadata Editing Tool

DSpace provides a batch metadata editing tool. The batch editing tool is able to produce a comma delimited file in the CSV format. The batch editing tool
facilitates the user to perform the following:

Batch editing of metadata (e.g. perform an external spell check)
Batch additions of metadata (e.g. add an abstract to a set of items, add controlled vocabulary such as LCSH)
Batch find and replace of metadata values (e.g. correct misspelled surname across several records)
Mass move items between collections
Mass deletion, withdrawal, or re-instatement of items
Enable the batch addition of new items (without bitstreams) via a CSV file
Re-order the values in a list (e.g. authors)

For information about configuration options for the Batch Metadata Editing tool, see Batch Metadata Editing Configuration

Export Function

Web Interface Export

Batch metadata exports (to CSV) can be performed from the Administrative menu:

Login as an Administrative user
In Sidebase, select "Export" "Metadata". Type in the Community/Collection name.

Alternatively, browse to the Community or Collection you wish to export, and then go to "Export" "Metadata". That Community
/Collection will be preselected.

Click "Export". A new Process will be created (in "Processes" menu). Once completed, download the resulting CSV.

Exporting search results to CSV was not added until DSpace 7.3

As of DSpace 7.3, it is possible to Export search results to a CSV When logged in as an Administrator, after performing a search a new (similar to 6.x).
"Export search results as CSV" button appears. Clicking it will export the metadata of all items in your search results to a CSV. This CSV can then be
used to perform batch metadata updates (based on the items in your search results). - Release Notes#7.3ReleaseNotes

Please see below documentation for more information on the and actions that can be performed by .CSV format editing the CSV

Command Line Export

The following table summarizes the basics.

Command used: [dspace]/bin/dspace metadata-export

Java class: org.dspace.app.bulkedit.MetadataExport

Arguments short and
(long) forms):

Description

-f or --file Required. The filename of the resulting CSV.

-i or --id The Item, Collection, or Community handle or Database ID to export. If not specified, items will be exported.all

244

https://wiki.lyrasis.org/display/DSDOC8x/Release+Notes#ReleaseNotes-7.3ReleaseNotes

-a or --all Include all the metadata fields that are not normally changed (e.g. provenance) or those fields you configured in the [dspace]
 to be ignored on export./config/modules/bulkedit.cfg

-h or --help Display the help page.

To run the batch editing exporter, at the command line:

[dspace]/bin/dspace metadata-export -f name_of_file.csv -i 1023/24

Example:

[dspace]/bin/dspace metadata-export -f /batch_export/col_14.csv -i /1989.1/24

In the above example we have requested that a collection, assigned handle ' ' export the entire collection to the file ' ' found in the '1989.1/24 col_14.csv /batc
' directory.h_export

Please see below documentation for more information on the CSV format and actions that can be performed by editing the CSV .

Import Function
Importing large CSV files

It is not recommended to import CSV files of more than 1,000 lines (i.e. 1,000 items). When importing files larger than this, it may be difficult for an
Administrator to accurately verify the changes that the import tool states it will make. In addition, depending on the memory available to the DSpace site,
large files may cause 'Out Of Memory' errors part way through the import process.

Web Interface Import

Batch metadata imports (from CSV) can be performed from the Administrative menu:

First, complete all and save your changesediting of the CSV
Login as an Administrative User
In sidebar, select "Import" "Metadata" and drag & drop the CSV file

Validate a Batch Metadata CSV was not added until DSpace 7.3

As of DSpace 7.3, it is now possible to a Batch Metadata CSV before applying changes . When uploading a CSV for batch updates validate (similar to 6.x)
(using "Import" menu), a new "Validate Only" option is selected by default. When selected, the uploaded CSV will only be validated & you'll receive a report
of the detected changes in the CSV. This allows you to verify the changes are correct before applying them. (NOTE: applying the changes requires re-
submitting the CSV with the "Validate Only" option deselected) - Release Notes#7.3ReleaseNotes

Command Line Import

The following table summarizes the basics.

Command used: [dspace]/bin/dspace metadata-import

Java class: org.dspace.app.bulkedit.MetadataImport

Arguments short and (long) forms: Description

-f or --file Required. The filename of the CSV file to load.

-s or --silent Silent mode. The import function does not prompt you to make sure you wish to make the changes.

-e or --email The email address of the user. This is only required when adding new items.

-w or --workflow When adding new items, the program will queue the items up to use the Collection Workflow processes.

-n or --notify when adding new items using a workflow, send notification emails.

-t or --template When adding new items, use the Collection template, if it exists.

-h or --help Display the brief help page.

Silent Mode should be used carefully. It is possible (and probable) that you can overlay the wrong data and cause irreparable damage to the database.

To run the batch importer, at the command line:

[dspace]/bin/dspace metadata-import -f name_of_file.csv

245

https://wiki.lyrasis.org/display/DSDOC8x/Release+Notes#ReleaseNotes-7.3ReleaseNotes

Example

[dspace]/bin/dspace metadata-import -f /dImport/col_14.csv

If you are wishing to upload new metadata bitstreams, at the command line:without

[dspace]/bin/dspace metadata-import -f /dImport/new_file.csv -e joe@user.com -w -n -t

In the above example we threw in all the arguments. This would add the metadata and engage the workflow, notification, and templates to all be applied to
the items that are being added.

CSV Format

The CSV (comma separated values) files that this tool can import and export abide by the CSV format. This means that new lines, and RFC4180
embedded commas can be included by wrapping elements in double quotes. Double quotes can be included by using two double quotes. The code does
all this for you, and any good csv editor such as Excel or OpenOffice will comply with this convention.

All CSV files are also in UTF-8 encoding in order to support all languages.

File Structure

The first row of the CSV must define the metadata values that the rest of the CSV represents. The first column must always be "id" which refers to the
. The other columns contain the dublin core metadata fields that the data is to reside.item's internal database ID All other columns are optional.

A typical heading row looks like:

id,collection,dc.title,dc.contributor,dc.date.issued,etc,etc,etc.

Subsequent rows in the csv file relate to items. A typical row might look like:

350,2292,Item title,"Smith, John",2008

If you want to store multiple values for a given metadata element, they can be separated with the double-pipe '||' (or another character that you defined in
your file). For example:modules/bulkedit.cfg

Horses||Dogs||Cats

Elements are stored in the database in the order that they appear in the CSV file. You can use this to order elements where order may matter, such as
authors, or controlled vocabulary such as Library of Congress Subject Headings.

Editing the CSV

246

http://www.ietf.org/rfc/rfc4180.txt

1.
2.

3.

a.

4.

1.

2.
3.

If you are editing with Microsoft Excel, be sure to open the CSV in Unicode/UTF-8 encoding

By default, Microsoft Excel may not correctly open the CSV in Unicode/UTF-8 encoding. This means that special characters may be improperly displayed
and also can be "corrupted" during re-import of the CSV.

You need to tell Excel this CSV is Unicode, by importing it as follows. (Please note these instructions are valid for MS Office 2007 and 2013. Other Office
)versions may vary

First, open Excel (with an empty sheet/workbook open)
Select "Data" tab
Click "From Text" button (in the "External Data" section)
Select your CSV file
Wizard Step 1

Choose "Delimited" option
Start import at row: 1
In the "File origin" selectbox, select "65001 : Unicode (UTF-8)"

NOTE: these encoding options are sorted alphabetically, so "Unicode (UTF-8)" appears near the bottom of the list.
Click Next

Wizard Step 2
Select "Comma" as the only delimiter
Click Next

Wizard Step 3
Select "Text" as the "Column data format" ()Unfortunately, this must be done for each column individually in Excel

At a minimum, you MUST ensure all date columns (e.g. dc.date.issued) are treated as "Text" so that Excel doesn't autoconvert
DSpace's YYYY-MM-DD format into MM/DD/YYYY
To avoid such autoconversion, it is safest to ensure each column is treated as "Text". Unfortunately, this means selecting each
column one-by-one and choosing "Text" as the "Column data format".

Click Finish
Choose whether to open CSV in the existing sheet or a new one

Tips to Simplify the Editing Process

 When editing a CSV, here's a couple of basic tips to keep in mind:

The "id" column MUST remain intact. This column also must always have a value in it.
To simplify the CSV, you can simply remove any columns you do NOT wish to edit (except for "id" column, see #1). Don't worry, removing the
entire column won't delete metadata (see #3)
When importing a CSV file, the importer will overlay the metadata onto what is already in the repository to determine the differences. It acts only
on the contents of the CSV file, rather than on the complete item metadata. This means that the CSV file that is exported can be manipulated
quite substantially before being re-imported. Rows (items) or Columns (metadata elements) can be removed and will be ignored.

For example, if you only want to edit "dc.subject", you can remove ALL columns EXCEPT for "id" and "dc.subject" so that you can just
manipulate the "dc.subject" field. On import, DSpace will see that you've only included the "dc.subject" field in your CSV and therefore
will only update the "dc.subject" metadata field for any items listed in that CSV.

Because removing an entire column does NOT delete metadata value(s), if you actually wish to delete a metadata value you should leave the
column intact, and simply clear out the appropriate row's value (in that column).

Editing Collection Membership

Items can be moved between collections by editing the collection handles in the 'collection' column. Multiple collections can be included. The first collection
is the 'owning collection'. The owning collection is the primary collection that the item appears in. Subsequent collections (separated by the field separator)
are treated as mapped collections. These are the same as using the map item functionality in the DSpace user interface. To move items between
collections, or to edit which other collections they are mapped to, change the data in the collection column.

Adding Metadata-Only Items

New metadata-only items can be added to DSpace using the batch metadata importer. To do this, enter a plus sign '+' in the first 'id' column. The importer
will then treat this as a new item. If you are using the command line importer, you will need to use the -e flag to specify the user email address or id of the
user that is registered as submitting the items.

Deleting Metadata

It is possible to perform metadata deletes across the board of certain metadata fields from an exported file. For example, let's say you have used keywords
(dc.subject) that need to be removed . You would leave the column (dc.subject) intact, but remove the data in the corresponding rows.en masse

Performing 'actions' on items

It is possible to perform certain 'actions' on items. This is achieved by adding an 'action' column to the CSV file (after the id, and collection
columns). There are three possible actions:

'expunge' This permanently deletes an item. Use with care! This action must be enabled by setting 'allowexpunge = true' in modules
/bulkedit.cfg
'withdraw' This withdraws an item from the archive, but does not delete it.
'reinstate' This reinstates an item that has previously been withdrawn.

If an action makes no change (for example, asking to withdraw an item that is already withdrawn) then, just like metadata that has not changed, this will be
ignored.

247

1.
2.
3.
4.

Migrating Data or Exchanging data

It is possible that you have data in one Dublin Core (DC) element and you wish to really have it in another. An example would be that your staff have input
Library of Congress Subject Headings in the Subject field (dc.subject) instead of the LCSH field (dc.subject.lcsh). Follow these steps and your data is
migrated upon import:

Insert a new column. The first row should be the new metadata element. (We will refer to it as the TARGET)
Select the column/rows of the data you wish to change. (We will refer to it as the SOURCE)
Cut and paste this data into the new column (TARGET) you created in Step 1.
Leave the column (SOURCE) you just cut and pasted from empty. Do not delete it.

Common Issues

Metadata values in CSV export seem to have duplicate columns

DSpace responds with "No changes were detected" when CSV is uploaded

Unfortunately, this response may be caused in many ways

It's possible the CSV was not saved properly after editing. Check that the edits are in the CSV, and that there were no backend errors in the
DSpace logs (which would be an indication of an invalid or corrupted CSV file)
Depending on the version of DSpace, you may be encountering this known bug with processing linebreaks in CSV files: https://github.com
/DSpace/DSpace/issues/6600
If you are setting a new embargo date in the CSV, ensure that the embargo lift date is a future date. It's been reported that past dates may cause
DSpace to ignore item changes.

Batch Editing, Entities and Relationships

Consider the following page for this topic: Configurable Entities

Background about entities and virtual metadata

In DSpace 7, we have entities. Entities are items with an entity type (there can still be items without an entity type).
Two entities can be linked to each other. For this purpose relations are defined, which indicate the relationship between the entities. Relationships
between two entities are defined by the metadata schema . The relation reflects how two entities are related to each other, for example relation isP

 or .ersonOfProject isPublicationOfAuthor
Until the introduction of entities, we could only link items to each other by inserting DOIs or URLs of other items into metadata fields . dc.relation.*
What is new about the linking between entities in DSpace 7 is that UUIDs are entered into the fields, i.e. internal identifiers of other entities that
DSpace can easily resolve. DSpace "knows" which entities are linked to each other and how.
On the item view of an entity (remember: an entity is an item with an entity type) metadata of other entities can be displayed. DSpace refers to
this as virtual metadata. Virtual metadata does not belong to the item in whose item view it is displayed, but to a linked entity. They can be
changed only in the linked entity. As an example: we have the entities journal and journal issue. All journal issues display the title of the journal in
their item view. This title is stored only in the journal and is only (dynamically) displayed in the issues.

Admin CSV export

Virtual metadata is exported with the entities in which it is included. For example, when you export projects, you see a column for the project.
field. Here, the names of two people have been included as virtual metadata. However, the names are not stored in the project, but investigator

exported from the respective person entities at the time of export. The specification marks this. The specifications and ::virtual:: ::8585:: ::27946::
are examples for this documentation and represent IDs of the relations. The specification comes from the DSpace Authority, which is also ::600
specified due to technical circumstances.
The relation itself is also included in the CSV export, in the field. Additionally, a relation.isPersonOfProject relation.isPersonOfProject.

 field is created. This field has internal reasons in DSpace and should help to make things faster discoverable. In the fields you latestForDiscovery
again see the specification, which are already explained above. Instead of the values of individual metadata fields, you now ::virtual::8585::600
have the UUIDs of the items that are linked. You can always get these UUIDs from the URL of the item view of an item.

An example heading row of the CSV export file (project entity):

id,collection,dc.title,project.investigator,relation.isPersonOfProject,etc,etc,etc.

Subsequent example row in the CSV export file (project entity):

350,2292,Project title,"Smith, John::virtual::8585::600||Doe, Jane::virtual::27946::600","d89c1eb1-2e7c-4912-
a1eb-f27b17fd6848::virtual::8585::600||e3595b14-6937-47b9-b718-1972cb683943::virtual::27946::600"

Admin CSV import

As always, only the columns and rows that will be changed should be specified. You do not want to import the columns that contain virtual
metadata, because they are not stored in the imported items, but in the linked items. So in the above example you don't want to import the project.

column, but delete it from the CSV.investigator

248

https://wiki.duraspace.org/display/DSPACE/TechnicalFAQ#TechnicalFAQ-MetadatavaluesinCSVexportseemtohaveduplicatecolumns
https://github.com/DSpace/DSpace/issues/6600
https://github.com/DSpace/DSpace/issues/6600
https://wiki.lyrasis.org/display/DSDOC7x/Configurable+Entities

To link one item to another you need to create a corresponding column of the metadata schema, so in our example above relation relation.
. All columns of the form are created and updated automatically, so you don't want to import them. isPersonOfProject relation.*.latestForDiscovery

If you want to create a new relation, of course you don't know the ID of the relation, you can replace it with a , then DSpace will assign it on its +
own. Of course, people can also be removed from the column or completely new relations can be created for new items, even if there are no old
ones to be taken over.

An example heading row for the CSV import file (project entity):

id,collection,dc.title,relation.isPersonOfProject,etc,etc,etc.

Subsequent example row for the CSV import file (project entity):

350,2292,Project title,"d89c1eb1-2e7c-4912-a1eb-f27b17fd6848::virtual::8585::600||e3595b14-6937-47b9-b718-
1972cb683943::virtual::+::600"

249

Batch Metadata Editing Configuration
The allows the administrator to extract from the DSpace database a set of records for editing via a CSV file. It provides an Batch Metadata Editing Tool
easier way of editing large collections.

A full list of all available Batch Metadata Editing Configurations:

Configuration
File:

[dspace]/config/modules/bulkedit.cfg

Property: bulkedit.valueseparator

Example Value: valueseparator = ||bulkedit.

Informational
note

The delimiter used to separate values within a single field. For example, this will place the double pipe between multiple authors
appearing in one record (Smith, William || Johannsen, Susan). This applies to any metadata field that appears more than once in a
record. The user can change this to another character.

Property: fieldseparatorbulkedit.

Example Value: fieldseparator = ,bulkedit.

Informational
note

The delimiter used to separate fields (defaults to a comma for CSV). Again, the user could change it something like '$'. If you wish to
use a tab, semicolon, or hash (#) sign as the delimiter, set the value to be , or .tab semicolon hash

bulkedit.fieldseparator = tab

Property: bulkedit.authorityseparator

Example Value: :bulkedit.authorityseparator = :

Informational
note

The delimiter used to separate authority data (defaults to a double colon ::)

Property: gui-item-limitbulkedit.

Example Value: gui-item-limit = 20bulkedit.

Informational
note

When using the WEBUI, this sets the limit of the number of items allowed to be edited in one processing. There is no limit when
using the CLI.

Property: ignore-on-exportbulkedit.

Example Value:
bulkedit.ignore-on-export = dc.date.accessioned, \
 dc.date.available, \
 dc.date.updated, dc.description.provenance

Informational
note

Metadata elements to exclude when exporting via the user interfaces, or when using the command line version and not using the -a
(all) option.

Property: bulkedit.allowexpunge

Example Value: bulkedit.allowexpunge = false

Informational
note

Should the 'action' column allow the 'expunge' method. By default this is set to false

Property bulkedit.allow-bulk-deletion

Example Value: bulkedit.allow-bulk-deletion = dspace.agreements.end-user

Informational
note

Comma separated list of metadata fields that can be deleted in bulk using the 'metadata-deletion' script. By default only the 'dspace.
agreements.end-user' field can be deleted in bulk, as doing so allows an Administrator to force all users to re-review the End User
Agreement on their next login. However, you may choose to enable additional fields. Keep in mind, any fields listed here may be
batch deleted from the Processes UI & such metadata deletions cannot be undone.

250

DOI Digital Object Identifier

Persistent Identifier
DOI Registration Agencies

Configure DSpace to use the DataCite API
dspace.cfg
Metadata conversion
Identifier Service
Sending metadata updates to DataCite
DOIs using DataCite and Item Level Versioning
Command Line Interface
'cron' job for asynchronous reservation/registration
Limitations of DataCite DOI support

Configure DSpace to use EZID service for registration of DOIs
Limitations of EZID DOI support

Adding support for other Registration Agencies
Configuring pre-registration of Identifiers

Why mint in submission?
Enable the Identifiers step
Configure filters and behaviour
Administrator registration

Persistent Identifier
It is good practice to use Persistent Identifiers to address items in a digital repository. There are many different systems for Persistent Identifiers: , Handle D

, , and many more. It is far out of the scope of this document to discuss the differences of all these systems. For several reasons the Handle OI urn:nbn purl
System is deeply integrated in DSpace, and DSpace makes intensive use of it. With DSpace 3.0 the was introduced that makes it Identifier Service
possible to also use external identifier services within DSpace.

DOIs are Persistent Identifiers like Handles are, but as many big publishing companies use DOIs they are quite well-known to scientists. Some journals
ask for DOIs to link supplemental material whenever an article is submitted. Beginning with DSpace 4.0 it is possible to use DOIs in parallel to the Handle
System within DSpace. By "using DOIs" we mean automatic generation, reservation and registration of DOIs for every item that enters the repository.
These newly registered DOIs will not be used as a means to build URLs to DSpace items. Items will still rely on handle assignment for the item urls.

DOI Registration Agencies
To register a DOI one has to enter into a contract with a DOI registration agency which is a member of the International DOI Foundation. Several such
agencies exist. Different DOI registration agencies have different policies. Some of them offer DOI registration especially or only for academic institutions,
others only for publishing companies. Most of the registration agencies charge fees for registering DOIs, and all of them have different rules describing for
what kind of item a DOI can be registered. To make it quite clear: to register DOIs with DSpace you have to enter into a contract with a DOI registration
agency.

DataCite is an international initiative to promote science and research, and a member of the International DOI Foundation. The members of DataCite act
as registration agencies for DOIs. Some DataCite members provide their own APIs to reserve and register DOIs; others let their clients use the DataCite
API directly. Starting with version 4.0 DSpace supports the administration of DOIs by using the DataCite API directly or by using the API from EZID (which
is a service of the University of California Digital Library). This means you can administer DOIs with DSpace if your registration agency allows you to use
the DataCite API directly or if your registration agency is EZID.

Configure DSpace to use the DataCite API

If you use a DOI registration agency that lets you use the DataCite API directly, you can follow the instructions below to configure DSpace. In case EZID is
your registration agency the configuration of DSpace is documented here: .Configure DSpace to use EZID service for registration of DOIs

To use DOIs within DSpace you have to configure several parts of DSpace:

enter your DOI prefix and the credentials to use the API from DataCite in dspace.cfg,
configure the script which generates some metadata,
activate the DOI mechanism within DSpace,
configure a cron job which transmits the information about new and changed DOIs to the registration agency.

dspace.cfg

After you enter into a contract with a DOI registration agency, they'll provide you with user credentials and a DOI prefix. You have to enter these in the
dspace cfg. Here is a list of DOI configuration options in dspace.cfg:

Configuration
File:

[dspace]/config/dspace.cfg

Property: identifier.doi.user

251

http://www.handle.net/
http://www.doi.org/
http://www.doi.org/
http://tools.ietf.org/search/rfc3188
http://purl.oclc.org/docs/index.html
https://wiki.lyrasis.org/display/DSDOC8x/Item+Level+Versioning#ItemLevelVersioning-IdentifierService
http://www.datacite.org

Example Value: identifier.doi.user = user123

Informational
Note:

Username to login into the API of the DOI registration agency. You'll get it from your DOI registration agency.

Property: identifier.doi.password

Example Value: identifier.doi.password = top-secret

Informational
Note:

Password to login into the API of the DOI registration agency. You'll get it from your DOI registration agency.

Property: identifier.doi.prefix

Example Value: identifier.doi.prefix = 10.5072

Informational
Note:

The prefix you got from the DOI registration agency. All your DOIs start with this prefix, followed by a slash and a suffix generated
from DSpace. The prefix can be compared with a namespace within the DOI system.

Property: identifier.doi.namespaceseparator

Example Value: identifier.doi.namespaceseparator = dspace-

Informational
Note:

This property is optional. If you want to use the same DOI prefix in several DSpace installations or with other tools that generate and
register DOIs it is necessary to use a namespace separator. All the DOIs that DSpace generates will start with the DOI prefix,
followed by a slash, the namespace separator and some number generated by DSpace. For example, if your prefix is 10.5072 and
you want all DOIs generated by DSpace to look like 10.5072/dspace-1023 you have to set this as in the example value above.

Property: identifier.doi.resolver

Example Value: identifier.doi.resolver = https://doi.org

Informational
Note:

 URL for the DOI resolver. This will be the stem for generated DOIs. This property is optional, and defaults to the example value
above.

Property: crosswalk.dissemination.DataCite.publisher

Example Value: crosswalk.dissemination.DataCite.publisher = My University Press

Informational
Note:

The name of the publishing institution or publisher.

Property: crosswalk.dissemination.DataCite.hostingInstitution

Example Value: crosswalk.dissemination.DataCite.hostingInstitution = My University

Informational
Note:

The name of the organization/institution which hosts this instance of the object. If not configured, it will default to the value of
crosswalk.dissemination.DataCite.publisher.

Property: crosswalk.dissemination.DataCite.dataManager

Example Value: crosswalk.dissemination.DataCite.dataManager = My University Department of Geology

Informational
Note:

If not configured, it will default to the value of crosswalk.dissemination.DataCite.publisher.

Please don't use the test prefix 10.5072 with DSpace. The test prefix 10.5072 differs from other prefixes: It answers GET requests for all DOIs even for
DOIs that are unregistered. DSpace checks that it mint only unused DOIs and will create an Error: "Register DOI ... failed: DOI_ALREADY_EXISTS". Your
registration agency can provide you an individual test prefix, that you can use for tests.

Metadata conversion

To reserve or register a DOI, DataCite requires that metadata be supplied which describe the object that the DOI addresses. The file [dspace]/config
/crosswalks/DIM2DataCite.xsl controls the conversion of metadata from the DSpace internal format into the DataCite format. If you are running a version of
DSpace earlier than 6.0, you have to add your DOI prefix, namespace separator and the name of your institution to this file:

252

https://doi.org

[dspace]/config/crosswalks/DIM2DataCite.xsl

<!--
 Document : DIM2DataCite.xsl
 Created on : January 23, 2013, 1:26 PM
 Author : pbecker, ffuerste
 Description: Converts metadata from DSpace Intermediat Format (DIM) into
 metadata following the DataCite Schema for the Publication and
 Citation of Research Data, Version 2.2
-->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dspace="http://www.dspace.org/xmlns/dspace/dim"
 xmlns="http://datacite.org/schema/kernel-2.2"
 version="1.0">

 <!-- CONFIGURATION -->
 <!-- Please add your DOI-Prefix and your namespace separator here (e.g. 10.5072-dspace-). -->
 <xsl:variable name="prefix">10.5072-dspace-</xsl:variable>
 <!-- The content of the following variable will be used as element publisher. -->
 <xsl:variable name="publisher">My University</xsl:variable>
 <!-- The content of the following variable will be used as element contributor with contributorType
datamanager. -->
 <xsl:variable name="datamanager"><xsl:value-of select="$publisher" /></xsl:variable>
 <!-- The content of the following variable will be used as element contributor with contributorType
hostingInstitution. -->
 <xsl:variable name="hostinginstitution"><xsl:value-of select="$publisher" /></xsl:variable>
 <!-- Please take a look into the DataCite schema documentation if you want to know how to use these
elements.
 http://schema.datacite.org -->

 <!-- DO NOT CHANGE ANYTHING BELOW THIS LINE EXCEPT YOU REALLY KNOW WHAT YOU ARE DOING! -->
...

Just change the value in the variable named "publisher".

If you are running DSpace 6.0 or later, then these should instead be configured using the properties in crosswalk.dissemination.DataCite.* loca
. You should not need to edit l.cfg DIM2DataCite.xsl.

If you want to know more about the DataCite Schema, have a look at the . If you change this file in a way that is not compatible with the documentation
DataCite schema, you won't be able to reserve and register DOIs anymore. Do not change anything if you're not sure what you're doing. To get the XML
on which the XSLT processor will start, use the following command:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk dim 123456789/3

To get the XML that will be send to DataCite replace 'dim' with 'DataCite'. If the DOI is not stored in the metadata, DSpace will add it automatically as
identifier. So don't worry if the XML produced by this command does not contain the DOI. Once the DOI is stored in the metadata, it should also be
contained in the XML.

Identifier Service

The Identifier Service manages the generation, reservation and registration of identifiers within DSpace. You can configure it using the config file located in
[dspace]/config/spring/api/identifier-service.xml. In the file you should already find the code to configure DSpace to register DOIs. Just read the comments
and remove the comment signs around the two appropriate beans.

After removing the comment signs the file should look something like this (I removed the comments to make the listing shorter):

253

http://schema.datacite.org

[dspace]/config/spring/api/identifier-service.xml

<!--
 Copyright (c) 2002-2010, DuraSpace. All rights reserved
 Licensed under the DuraSpace License.

 A copy of the DuraSpace License has been included in this
 distribution and is available at: http://www.dspace.org/license
-->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="org.dspace.identifier.service.IdentifierService"
 class="org.dspace.identifier.IdentifierServiceImpl"
 autowire="byType"
 scope="singleton"/>

 <bean id="org.dspace.identifier.DOIIdentifierProvider"
 class="org.dspace.identifier.DOIIdentifierProvider"
 scope="singleton">
 <property name="configurationService"
 ref="org.dspace.services.ConfigurationService" />
 <property name="DOIConnector"
 ref="org.dspace.identifier.doi.DOIConnector" />
 </bean>

 <bean id="org.dspace.identifier.doi.DOIConnector"
 class="org.dspace.identifier.doi.DataCiteConnector"
 scope="singleton">
 <property name='DATACITE_SCHEME' value='https'/>
 <property name='DATACITE_HOST' value='mds.test.datacite.org'/>
 <property name='DATACITE_DOI_PATH' value='/doi/' />
 <property name='DATACITE_METADATA_PATH' value='/metadata/' />
 <property name='disseminationCrosswalkName' value="DataCite" />
 </bean>
</beans>

If you use other IdentifierProviders beside the DOIIdentifierProvider there will be more beans in this file.

Please pay attention to configure the property DATACITE_HOST. Per default it is set to the DataCite test server. To reserve real DOIs you will have to
change it to mds.datacite.org. Ask your registration agency if you're not sure about the correct address.

Sending metadata updates to DataCite

DSpace should send updates to DataCite whenever the metadata of an item changes. To do so, you must enable the DOIConsumer in your dspace.cfg (or
local.cfg. You should remove the comments in front of the two following properties or add them to the local.cfg:

[dspace]/config/dspace.cfg

event.consumer.doi.class = org.dspace.identifier.doi.DOIConsumer
event.consumer.doi.filters = Item+Modify_Metadata

Then you should add 'doi' to the property . After adding it, this property may look like this:event.dispatcher.default.consumers

[dspace]/config/dspace.cfg

event.dispatcher.default.consumers = versioning, discovery, eperson, harvester, doi

DOIs using DataCite and Item Level Versioning

254

If you enabled you should enable the instead of the . The Item Level Versioning VersionedDOIIdentifierProvider DOIIdentifierProvider Vers
 ensures that newer versions of the same Item gets a DOI looking as the DOI of the first version of and item, extended ionedDOIIdentifierProvider

by a dot and the version number. With DSpace 6 this also became the default for handles if Item Level Versioning is enabled. In the configuration file [dsp
 you'll find the possiblity to enable the . If you want to ace]/config/spring/api/identifier-service.xml VersionedDOIIdentifierProvider

use versioned DOIS, please comment out the as only one of both DOIProviders should be enabled at the same time.DOIIdentifierProvider

Command Line Interface

To make DSpace resistant to outages of DataCite we decided to separate the DOI support into two parts. When a DOI should be generated, reserved or
minted, DSpace does this in its own database. To perform registration and/or reservation against the DOI registration agency a job has to be started using
the command line. Obviously this should be done by a cron job periodically. In this section we describe the command line interface, in case you ever want
to use it manually. In the next section you'll see the cron job that transfers all DOIs designated for reservation and/or registration.

The command line interface in general is documented here: .Command Line Operations

The command used for DOIs is ' '. You can use the following options:doi-organiser

Option
(short)

Option
(long)

Parameter Description

-d --delete-all Transmit information to the DOI registration agency about all DOIs that were deleted.

--delete-
doi

DOI Transmit information to the DOI registration agency that the specified DOI was deleted. The DOI must already be marked for
deletion; you cannot use this command to delete a DOI for an exisiting item.

-h --help Print online help.

-l --list List all DOIs whose changes were not committed to the registration agency yet.

-q --quiet The doi-organiser sends error reports to the mail address configured in the property alert.recipient in dspace.cfg. If you use this
option no output should be given to stdout. If you do not use this option the doi-organiser writes information about successful
and unsuccessful operations to stdout and stderr. You can find information in dspace.log of course.

-r --register-
all

Transmit information about all DOIs that should be registered.

--register-
doi

DOI | ItemID
| handle

If a DOI is marked for registration, you can trigger the registration at the DOI registration agency by this command. Specify
either the DOI, the ID of the item, or its handle.

-s --reserve-
all

Transmit to the DOI registration agency information about all DOIs that should be reserved.

--reserve-
doi

DOI | ItemID
| handle

If a DOI is marked for registration, you can trigger the registration at the DOI registration agency by this command. Specify
either the DOI, the ID of the item, or its handle.

-u --update-
all

If a DOI is reserved for an item, the metadata of the item will be sent to DataCite. This command transmits new metadata for
items whose metadata were changed since the DOI was reserved.

--update-
doi

DOI | ItemID
| handle

If a DOI needs an update of the metadata of the item it belongs to, you can trigger this update with this command. Specify
either the DOI, the ID of the item, or its handle.

Currently you cannot generate new DOIs with this tool. You can only send information about changes in your local DSpace database to the registration
agency.

'cron' job for asynchronous reservation/registration

When a DOI should be reserved, registered, deleted or its metadata updated, DSpace just writes this information into its local database. A command line
interface is supplied to send the necessary information to the registration agency. This behavior makes it easier to react to outages or errors while using
the API. This information should be sent regularly, so it is a good idea to set up a cron job instead of doing it manually.

There are four commands that should be run regularly:

Update the metadata of all items that have changed since their DOI was reserved.
Reserve all DOIs marked for reservation
Register all DOIs marked for registration
Delete all DOIs marked for deletion

In DSpace, a DOI can have different states (see the following table). After updating an item's metadata the state of its assigned DOI is set back to the last
state it had before. So, e.g., if a DOI has the state "to be registered" and the metadata of its item changes, it will be set to the state "needs update". After
the update is performed its state is set to "to be registered" again. Because of this behavior : the update the order of the commands above matters
command must be executed before all of the other commands above.

State
#

State
Name

DSpace State Description DataCite
State
Name

0 UNKNOWN ??? N/A*

255

1 TO_BE_R
EGISTER
ED

The submission has been approved and the DOI has been registered in DSpace. The registration has not yet been published to
DataCite.

Draft

2 TO_BE_R
ESERVED

The minted DOI has been associated with an item. However, the reservation has not yet been published to DataCite. N/A*

3 IS_REGIS
TERED

The registration has been published to DataCite and a url back to DSpace has been associated with the DOI. Findable

4 IS_RESER
VED

The reservation has been published to DataCite. Draft

5 UPDATE_
RESERVED

A "Reserved" DOI's metadata has been modified in DSpace, but its modification has not yet been communicated to DataCite. Draft

6 UPDATE_
REGISTE
RED

A "Registered" DOI's metadata has been modified in DSpace, but its modification has not yet been communicated to DataCite. Findable

7 UPDATE_
BEFORE_
REGISTR
ATION

A "To be registered" DOI's metadata has been modified in DSpace, but its modification has not yet been communicated to
DataCite.

N/A*

8 TO_BE_D
ELETED

An item with a registered DOI has been deleted in DSpace. However, the DOI still exists in DataCite.

9 DELETED The DOI has been deleted in both DSpace and DataCite. Tombstone?
or nothing
visible
anymore?

10 PENDING The DOI was minted during submission. It was shown to a user that the submitted item would get this DOI if it ever gets any. The
DOI is pending until it is archived and passes any filter by the DOIIdentifierProvider or is assigned to the item manually by an
admin.

11 MINTED A DOI was created during the submission and a user was informed that the submission will get this DOI if any. Then the user
changed the submission in a way that ceased to satisfy the DOI filter. In case the item passes the filter again, we want to re-apply
the same DOI again (without creating new database rows), so we store it as being minted. DataCite was not informed about this
DOI.

* An item in this state is not visible in DataCite

The cron job should perform the following commands with the rights of the user your DSpace installation runs as:

[dspace]/bin/dspace doi-organiser -u -q
[dspace]/bin/dspace doi-organiser -s -q
[dspace]/bin/dspace doi-organiser -r -q
[dspace]/bin/dspace doi-organiser -d -q

The doi-organiser sends error messages as email and logs some additional information. The option -q tells DSpace to be quiet. If you don't use this option
the doi-organiser will print messages to stdout about every DOI it successfully reserved, registered, updated or deleted. Using a cron job these messages
would be sent as email.

In case of an error, consult the log messages. If there is an outage of the API of your registration agency, DSpace will not change the state of the DOIs so
that it will do everything necessary when the cron job starts the next time and the API is reachable again.

The frequency the cron job runs depends on your needs and your hardware. The more often you run the cron job the faster your new DOIs will be
available online. If you have a lot of submissions and want the DOIs to be available really quickly, you probably should run the cron job every fifteen
minutes. If there are just one or two submissions per day, it should be enough to run the cron job twice a day.

To set up the cron job, you just need to run the following command as the UNIX user:dspace

crontab -e

The following line tells cron to run the necessary commands twice a day, at 1am and 1pm. Please notice that the line starting with the numbers is one line,
even it it should be shown as multiple lines in your browser.

Send information about new and changed DOIs to the DOI registration agency:
0 1,13 * * * [dspace]/bin/dspace doi-organiser -u -q ; [dspace]/bin/dspace doi-organiser -s -q ; [dspace]/bin
/dspace doi-organiser -r -q ; [dspace]/bin/dspace doi-organiser -d -q

Limitations of DataCite DOI support
Every DSpace installation expects to be the only application that generates DOIs which start with the prefix and the namespace separator you
configured. DSpace does not check whether a DOI it generates is reserved or registered already.

256

That means if you want to use other applications or even more than one DSpace installation to register DOIs with the same prefix, you'll have to use a
unique namespace separator for each of them. Also you should not generate DOIs manually with the same prefix and namespace separator you
configured within DSpace. For example, if your prefix is 10.5072 you can configure one DSpace installation to generate DOIs starting with 10.5072/papers-
, a second installation to generate DOIs starting with 10.5072/data- and another application to generate DOIs starting with 10.5072/results-.

DOIs will be used in addition to Handles. This implementation does not replace Handles with DOIs in DSpace. That means that DSpace will still generate
Handles for every item, every collection and every community, and will use those Handles as part of the URL of items, collections and communities.

DSpace currently generates DOIs for items only. There is no support to generate DOIs for Communities and collections yet.

When using DSpace's support for the DataCite API probably not all information would be restored when using the AIP Backup and Restore (see https://gith
). The DOIs included in metadata of Items will be restored, but DSpace won't update the metadata of those items at ub.com/DSpace/DSpace/issues/5203

DataCite anymore. You can even get problems when minting new DOIs after you restored older once using AIP.

Configure DSpace to use EZID service for registration of DOIs

The EZID IdentifierProvider operates synchronously, so there is much less to configure. You will need to un-comment the org.dspace.identifier.
 bean in to enable DOI registration through EZID.EZIDIdentifierProvider config/spring/api/identifier-service.xml

In you will find a small block of settings whose names begin with . You should uncomment these config/dspace.cfg identifier.doi.ezid
properties and give them appropriate values. Sample values for a test account are supplied.

name meaning

identifier.doi.ezid.shoulder The "shoulder" is the DOI prefix issued to you by the EZID service. DOIs minted by this instance of DSpace will be
the concatenation of the "shoulder" and a locally unique token.

identifier.doi.ezid.user

identifier.doi.ezid.password

The username and password by which you authenticate to EZID.

identifier.doi.ezid.publisher You may specify a default value for the required metadatum, for use when the Item has no datacite.publisher
publisher.

crosswalk.dissemination.
DataCite.publisher

Should match identifier.doi.ezid.publisher.

crosswalk.dissemination.
DataCite.hostingInstitution

Name of the hosting institution. If not configured, it will be set to the value of crosswalk.dissemination.DataCite.
publisher.

crosswalk.dissemination.
DataCite.dataManager

Name of the data manager. If not configured, it will be set to the value of crosswalk.dissemination.DataCite.
publisher.

Back in you will see some other configuration of the bean. In most config/spring/api/identifier-service.xml EZIDIdentiferProvider
situations, the default settings should work well. But, here's an explanation of options available:

EZID Provider / Registrar settings: By default, the EZIDIdentifierProvider is configured to use the CDLib provider () in the ezid.cdlib.org EZID_SCHE
, and settings. In most situations, the default values should work for you. However, you may need to modify these ME EZID_HOST EZID_PATH

values (especially the) if you are registered with a different EZID provider. In that situation, please check with your provider for valid EZID_HOST
"host" and "path" settings. If your provider provides EZID service at a particular path on its host, you may set that in .EZID_PATH

NOTE: As of the writing of this documentation, the default CDLib provider settings should also work for institutions that use Purdue (ezid.
) as a provider. Currently, Purdue and CDLib currently share the same infrastructure, and both and lib.purdue.edu ezid.cdlib.org ez

point to the same location. id.lib.purdue.edu
Metadata mappings: You can alter the mapping between DSpace and EZID metadata, should you choose. The property is a map crosswalk
from DSpace metadata fields to EZID fields, and can be extended or changed. The of each is the name of an EZID metadata field; key entry
the is the name of the corresponding DSpace field, from which the EZID metadata will be populated.value
Crosswalking / Transforms: You can also supply transformations to be applied to field values using the property. Each crosswalkTransform k

 is the name of an EZID metadata field, and its is the name of a Java class which will convert the value of the corresponding DSpace ey value
field to its EZID form. The only transformation currently provided is one which converts a date to the year of that date, named org.dspace.

. In the configuration as delivered, it is used to convert the date of issue to the year of publication. You may identifier.ezid.DateToYear
create new Java classes with which to supply other transformations, and map them to metadata fields here. If an EZID metadatum is not named
in this map, the default mapping is applied: the string value of the DSpace field is copied verbatim.

Limitations of EZID DOI support

DOIs will be used in addition to Handles. This implementation does not replace Handles with DOIs in DSpace. That means that DSpace will continue to
generate Handles for every item, every collection and every community, and will use those Handles as part of the URL of items, collections and
communities.

Currently, the EZIDIdentifierProvider has a known issue where it stores its DOIs in the field, instead of using the dc.identifier dc.identifier.uri
field (which is the one used by DataCite DOIs and Handles). See for more details. This will be corrected in a https://github.com/DSpace/DSpace/pull/1006
future version of DSpace.

DSpace currently generates DOIs for items only. There is no support to generate DOIs for Communities and Collections yet.

257

https://github.com/DSpace/DSpace/issues/5203
https://github.com/DSpace/DSpace/issues/5203
http://ezid.cdlib.org/
https://ezid.lib.purdue.edu/
https://ezid.lib.purdue.edu/
http://ezid.cdlib.org
http://ezid.lib.purdue.edu
http://ezid.lib.purdue.edu
https://github.com/DSpace/DSpace/pull/1006

Adding support for other Registration Agencies
If you want DSpace to support other registration agencies, you just have to write a Java class that implements the interface DOIConnector ([dspace-source]
/dspace-api/src/main/java/org/dspace/identifier/doi/DOIConnector.java). You might use the DataCiteConnector ([dspace-source]/dspace-api/src/main/java
/org/dspace/identifier/doi/DataCiteConnector.java) as an example. After developing your own DOIConnector, you configure DSpace as if you were using
the DataCite API directly. Just use your DOIConnector when configuring the IdentifierService instead of the DataCiteConnector.

Configuring pre-registration of Identifiers

Why mint in submission?

Users often want to see what DOI they get so they can alter their PDF, coverpage, other metadata, and so on.will

This feature should ensure that users can see their future DOI, and if necessary, a warning that if certain conditions are not met, the DOI will not be
registered after approval.

Keeping a DOI in pending status does use up an integer from the total DOI namespace, but it also ensures that the submitter, reviewers, administrators etc
know what the DOI will be if it is ever registered in the future.

If this is really not desired, eg. there are many item types which should never get a DOI, then there is a way to configure a filter that avoids minting a new
PENDING DOI at all unless conditions are met in submission.

Enable the Identifiers step

See Submission User Interface#Configuringthe%22Identifiers%22step

Configure filters and behaviour

To enable this feature and configure the exact way it works, edit the configuration file${dspace.dir}/dspace/modules/identifiers.cfg

Propert
y:

identifiers.submission.register

Exampl
e
Value:

true

Inform
ational
Note:

Enable this feature. Default: false.

Handles will be registered at time of submission.

DOIs (if item filters evaluate to true) will be minted in a "pending" state for items, to be registered or queued for registration at archival.

Propert
y:

identifiers.submission.filter.install

Exampl
e
Value:

doi-filter

Inform
ational
Note:

Bean ID of a logical item filter (see) that will be used to evaluate whether a DOI config/modules/spring/api/item-filters.xml
should be queued for registration when this item is installed (archived) in DSpace. This filter will be applied whether or not a "pending" DOI is
already minted for the item.

(If a filter is absent or null, an item will always be evaluated as 'true')

Propert
y:

identifiers.submission.filter.workspace

Exampl
e
Value:

always_true_filter

Inform
ational
note

Bean ID of a logical item filter (see) that will be used to evaluate whether a DOI config/modules/spring/api/item-filters.xml
should be minted as "pending" for registration when this item is first submitted as a workspace item in DSpace.

Depending on the value of this filter will be checked whenever the identifiers.submission.strip_pending_during_submission
workspace item changes, to see if it now qualifies for a DOI.

Default: always_true_filter

(If a filter is absent or null, an item will always be evaluated as 'true')

258

https://wiki.lyrasis.org/display/DSDOC8x/Submission+User+Interface#SubmissionUserInterface-Configuringthe%22Identifiers%22step

Propert
y:

identifiers.submission.strip_pending_during_submission

Exampl
e
Value:

true

Inform
ational
Note:

If, during workspace item changes, the workspace filter evaluates to true, should any DOIs be stripped? (moved to MINTED or no longer
DELETED status)

This is useful in situations where the submitter needs real-time feedback as to whether their item qualifies for a DOI.

Propert
y:

identifiers.item-status.register-doi

Exampl
e
Value:

false

Inform
ational
Note:

Allow administrators to queue DOIs for registration in the Item Status page.

Default: false.

Important: This configuration property be set, even if it matches the default, as it is exposed as a REST configuration property to the must
frontend.

Administrator registration

If an item does not have a DOI at all, or if an item has a MINTED or PENDING DOI, a user with ADMIN rights over the item may queue the DOI
registration from the Item Status page. No filters will be applied to this action. This requires to be inidentifiers.item-status.register-doi true
identifiers configuration (see above)

259

Item Level Versioning

1 What is Item Level Versioning?
2 Important warnings
3 Disabling Item Level Versioning
4 Initial Requirements
5 User Interface

5.1 General behaviour: Linear Versioning
5.2 Creating a new version of an item
5.3 View the history and older versions of an item

6 Architecture
6.1 Versioning model

7 Configuration
7.1 Versioning Service Override
7.2 Identifier Service Override
7.3 Version History Visibility

7.3.1 Hide Editor/Submitter details in version table
7.4 Allowing submitters to version their items

8 Identified Challenges & Known Issues
8.1 Conceptual compatibility with Embargo
8.2 Conceptual compatibility with Item Level Statistics

What is Item Level Versioning?

Versioning is a new functionality to build the history of an item. Users will have the opportunity to create new version of an existing item any time the will
make a change.

Supported in 7.1 or above

Item level versioning was not fully supported in DSpace 7.0 (you were only able to view existing versions). It was restored in DSpace 7.1. See DSpace
Release 7.0 Status

Important warnings
Item Level Versioning on Entities configuration

Configurable Entities are supported in Item Level Versioning support starting from version 7.3. More details about the configuration specific to Configurable
Entities can be found on that page.
AIP Backup & Restore functionality only works with the Latest Version of Items

If you are using the functionality to backup / restore / migrate DSpace Content, you must be aware that the "Item Level AIP Backup and Restore
Versioning" feature is with AIP Backup & Restore. Currently the AIPs that not yet compatible Using them together may result in accidental data loss.
DSpace generates only store the of an Item. Therefore, past versions of Items will always be lost when you perform a restore / replace using latest version
AIP tools. See .https://github.com/DSpace/DSpace/issues/4751
DSpace 6+ changed the way Handles are created for versioned Items

Starting with 6.0, the way DSpace crates Handles for versioned Items was changed. If you want to keep the old behavior of DSpace 4 and 5 you have to
enable the in the XML configuration files VersionedHandleIdentifierProviderWithCanonicalHandles [dspace]/config/spring/api

. See below for details and the comments in the configuration file./identifier-service.xml IdentifierServiceOverride

Disabling Item Level Versioning

By default, Item Level Versioning is enabled in DSpace 7. You may choose to disable it by updating this configuration in your local.cfg:

versioning.enabled = false

Additionally, you will need to make the following changes to disable all versioning-related features:

Switch to using the basic "HandleIdentifierProvider" in your . Make sure to [dspace]/config/spring/api/identifier-services.xml
comment out the "VersionedHandleIdentifierProvider" and replace it with this:

<!-- This HandleIdentiferProvider should be used when versioning is disabled -->
<bean id="org.dspace.identifier.HandleIdentifierProvider" class="org.dspace.identifier.
HandleIdentifierProvider" scope="singleton">
 <property name="configurationService" ref="org.dspace.services.ConfigurationService"/>
</bean>

Remove the "versioning" consumer from the list of default Event Consumers in either your dspace.cfg or local.cfg. Look for this configuration:

260

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://github.com/DSpace/DSpace/issues/4751

1.
a.
b.

2.
a.
b.
c.

3.
a.
b.
c.
d.

4.
a.
b.

5.
a.
b.
c.
d.

6.
a.
b.
c.

Remove the "versioning" entry in this list
(NOTE: Your list of consumers may be different based on the features you've enabled)
#event.dispatcher.default.consumers = versioning, discovery, eperson

For example:
event.dispatcher.default.consumers = discovery, eperson

Once these changes are made, you will need to restart your servlet container (e.g. Tomcat) for the new settings to take effect.

Initial Requirements

The Item Level Versioning implementation builds on following requirements identified by the stakeholders who supported this contribution: Initial
Requirements Analysis

What should be Versionable
Versioning happens at the level of an Individual Item
Versioning should preserve the current state of , and attached to the item.metadata bitstreams resource policies

Access, Search and Discovery
Only the most recent version of an item is available via the search interface
Previous versions of Items should continue to be visible, citable and accessible
The Bitstreams for previous versions are retained. If something was once retrievable, it should always be retrievable.

Identifiers
Each version of an Item is represented by a separate " " identifierversioned
A base " " Identifier points to the most recent version of the Item. versionhistory
A revision identifier also exists that is unique to the specific version.
When a new version of an Item is deposited, a new revision identifier will be created.

Presentation
On the item page, there is a link to view previous/subsequent versions.
By examining the metadata or identifiers, it is possible to determine whether an item is the most recent version, the original version, or
an intermediate version.

Access Control and Rights
Certain roles should be able to generate a new version of the item via submission.
To submitters, collection manager, administrators will be given to option to create new version of an item.
Rights to access a specific Item should transmute as well to previous versions
Rights to access a specific Bitstream should also transmute to previous versions.

Data Integrity
The relationships between versions should not be brittle and breakable by manipulating Item metadata records.
The relationships between versions should be preserved and predictable in various Metadata Exports (OAI, Packagers, ItemExport)
The relationships between versions should be maintained in SWORD and AIP packaging and be maintained in updates and restorations.

User Interface

General behaviour: Linear Versioning

From the user interface, DSpace offers versioning. As opposed to hierarchical versioning, linear version has following properties:linear

A new version can be created started from any available version but will be always be put at the end of the version history (it will be the latest)
Only one in-progress version can exist at any time. When new version has been created and still needs to pass certain steps of the workflow, it is
temporarily impossible to create another new version until the workflow steps are finished and the new version has replaced the previous one.

Creating a new version of an item

Administrators, collection/community administrators and eventually the original submitter can create new versions of an item from the Item View page. By
default the original submitter is not allowed to create new version but the permission can be granted with the following property

modules/versioning.cfg

 versioning.submitterCanCreateNewVersion=false

261

https://wiki.duraspace.org/display/DSPACE/Item+Versioning+Support
https://wiki.duraspace.org/display/DSPACE/Item+Versioning+Support

1.

2.

3.

Click "Create a new version" from the buttons on the right side of the item page.

Provide the reason for creating a new version that will later on be stored and displayed in the version summary.

Your new version is now creates as a new Item in your Workspace. It requires you to go through the submission and workflow steps like you
would do for a normal, new submission to the collection. The rationale behind this is that if you are adding new files or metadata, you will also
need to accept the license for them. In addition to this, the versioning functionality does not bypass any quality control embedded in the workflow
steps.

After the submission steps and the execution of subsequent workflow steps, the new version becomes available in the repository.

Versions can be also managed via the edit item page, in the dedicated versions tab

262

View the history and older versions of an item

An overview of the version history, including links to older versions of an item, is available at the bottom of an Item View page. The repository administrator
can decide whether the version history should be available to all users or restricted to administrators. By default, this information is available to all
users. Information displayed includes the version number, Submitter/Editor name (only if enabled), date, and summary/description. As necessary, you
may change the visibility of this table or the "Editor" column using the " " configurations below.Version History Visibility

Architecture

Versioning model

For every new Version a separate DSpace Item will be created that replicates the metadata, bundle and bitstream records. The bitstream records will point
to the same file on the disk.

263

The method has been modified to retain the file if another Bitstream record point to it (the dotted lines in the diagram represent a bitstream Cleanup
deleted in the new version), in other words the file will be deleted only if the Bitstream record processed is the only one to point to the file (count(INTERNAL
_ID)=1).

Configuration

Versioning Service Override

You can override the default behaviour of the Versioning Service using following XML configuration file, deployed under your dspace installation directory:

[dspace_installation_dir]/config/spring/api/versioning-service.xml

In this file, you can specify which metadata fields are automatically "reset" (i.e. cleared out) during the creation of a new item version. By default, all
metadata values (and bitstreams) are copied over to the newly created version, with the exception of and dc.date.accessioned dc.description.

You may specify additional metadata fields to reset by adding them to the "ignoredMetadataFields" property in the "versioning-service.xml" provenance.
file:

<!-- Default Item Versioning Provider, defines behavior for replicating
 Item, Metadata, Budles and Bitstreams. Autowired at this time. -->
<bean class="org.dspace.versioning.DefaultItemVersionProvider">
 <property name="ignoredMetadataFields">
 <set>
 <value>dc.date.accessioned</value>
 <value>dc.description.provenance</value>
 </set>
 </property>
</bean>

Identifier Service Override

Persistent Identifiers are used to address Items within DSpace. The handle system is deeply integrated within DSpace, but since version 4 DSpace can
also mint DOIs. DSpace 4 and 5 supported one type of versioned handle: The initial version of an Item got a handle, e.g. 10673/100. This handle was
called the canonical one. When a newer version was created, the canonical handle was moved to identify the newest version. The previously newest
version got a new handle build out of the canonical handle extended by a dot and the version number. In the image below you see a version history of an
item using this handle strategy.

264

https://github.com/DSpace/DSpace/blob/master/dspace/config/spring/api/versioning-service.xml

The canonical handle will always point to the newest version of an Item. This makes sense if you hide the version history. Normal users won't be able to
find older versions and will always see just the newest one. Please keep in mind, that older versions can be accessed by "guessing" the versioned Handle
if you do not remove the read policies manually. The downside of this identifier strategy is that there is no permanent handle to cite the currently newest
version, as it will get a new Handle when a newer version is created.

With DSpace 6 versioned DOIs (using DataCite as DOI registration agency) were added and the default versioned Handle strategy was changed. Starting
with DSpace 6 the creates a handle for the first version of an item. Every newer version gets the same handle VersionedHandleIdentifierProvider
extended by a dot and the version number. To stay by the example from above, the first version of an Item gets the Handle 10673/100, the second version
10673/100.2, the third version 10673.3 and so on. This strategy has the downside that there is no handle pointing always to the newest version. But each
version gets an identifier that can be use to cite exactly this version. If page numbers changes in newer editions the old citations stay valid.

In DSpace 4 and 5 only the strategy using canonical handles (one handle that always points to the newest version) were implemented. In DSpace 6 the
strategy of creating a new handle for each version was implemented. With DSpace 6 this new strategy become the default. The strategy using canonical
handle still exists in DSpace but you have to enable the in the file VersionedHandleIdentifierWithCanonicalHandles [dspace]/config

. With DSpace 6 versioned DOIs were introduced using the strategy that every new version gets a new DOI /spring/api/identifier-service.xml
(extended by a dot and the version numbers for versions >= 2). To use versioned Handle you have to enable DOIs, you have to use DataCite as
registration agency and you have to enable the in the named configuration file.VersionedDOIIdentifierProvider

You can configure which persistent identifiers should be used by editing following XML configuration file, deployed under your dspace installation directory:

[dspace_installation_dir]/config/spring/api/identifier-service.xml

No changes to this file are required to enable Versioning. This file is currently only relevant if you want to keep the identifier strategy from DSpace 4 and 5
or if you want to enable or even versioned DOIs.DOIs

Version History Visibility

By default, users will be able to see the version history. To ensure that only administrators can see the Version History, enable all versioning.item.
 in the OR in your file.history.view.admin [dspace]/config/modules/versioning.cfg local.cfg

Setting this to "true" will hide the entire "Version History" table from
all users *except* Administrators
versioning.item.history.view.admin=false

Hide Editor/Submitter details in version table

In either the configuration file or your , you can customize the configuration option[dspace]/config/modules/versioning.cfg local.cfg
. By default this is set to false, which means that information about the submitter is only viewable versioning.item.history.include.submitter

by administrators. If you want to expose the submitters information to everyone (which be useful if all submitters uses generic institutional email addresses,
but may conflict with local privacy laws if personal details are included) you can set this configuration property to true.

This property controls whether the name of the submitter/editor
of a version should be included in the version history of an item.
Set to "true" to show the submitter to all users who have access to the table.
Set to "false" to hide the submitter information from everyone except Administrators
versioning.item.history.include.submitter=false

Allowing submitters to version their items

With DSpace 6.0 it became possible to allow submitters to create new versions of their own items. The new versions are going through the normal
workflow process if the collection is configured this way. To allow submitters to create new versions of Item they originally submitted, you have to change
the configuration property and set it to . It is part of the configuration file]versioning.submitterCanCreateNewVersion true [dspace /config

 but can be overridden in your too./modules/versioning.cfg local.cfg

Identified Challenges & Known Issues

Item Level Versioning has a substantial conceptual impact on many DSpace features. Therefore it has been accepted into DSpace as an optional feature.
Following challenges have been identified in the current implementation. As an early adopter of the Item Level Versioning feature, your input is greatly
appreciated on any of these.

Conceptual compatibility with Embargo

Lifting an embargo currently does not interact with Item Level Versioning. Additional implementation would be required to ensure that lifting an embargo
actually creates a new version of the item.

Conceptual compatibility with Item Level Statistics

Both on the level of pageviews and downloads, different versions of an item are treated as different items. As a result, an end user will have the impression
that the stats are being "reset" once a new version is installed, because the previous downloads and pageviews are allocated to the previous version.

265

https://github.com/DSpace/DSpace/blob/master/dspace/config/spring/api/identifier-service.xml

One possible solution would be to present an end user with aggregated statistics across all viewers, and give administrators the possibility to view
statistics per version.

266

Mapping/Linking Items to multiple Collections

Introduction
Using the Item Mapper
Implications

Mapping collection vs Owning collection
Mapping an item does not modify access rights

Introduction
The Item Mapper is a tool in the DSpace web user interface allowing repository managers to display the same item in multiple collections at once. Thanks
to this feature, a repository manager is not forced to duplicate items to display them in different collections

Using the Item Mapper
In the User Interface, the item mapper can be accessed when editing an Item.

Login as someone with Edit permissions
Search/browse to the Item
Click the "Edit this Item" button
Click "Mapped" collections" button on the "Status" tab

You'll be shown a list of currently mapped collections (if any)
You can also map the item to a new collection by clicking on "Map new collections" tab, and searching for the Collection(s)

Implications

Mapping collection vs Owning collection

The relation between an item and the collection in which it is mapped is different from the relation that this item has with the collection to which it was
originally submitted. This second collection is referred to as the "owning" collection. When an item is deleted from the owning collection, it automatically
disappears from the mapping collection. From within the mapping collection, the only thing that can be deleted is the mapping relation. Removing this
mapping relation does not affect the presence of the item in the owning collection.

Mapping an item does not modify access rights

When an item gets mapped into a collection, it does not receive new access rights. It retains the authorizations that it inherited from the
collection that "owns" it. Collection admins who do not have read access to an item will not be able to map them to
other collections.

267

Metadata Recommendations

1 Recommended Metadata Fields
2 Local Fields

Recommended Metadata Fields

DSpace provides a broad list of metadata fields out of the box (see:), and a variety of options for adding content Metadata and Bitstream Format Registries
to DSpace (both from the UI and from other services). No matter which Ingest option you use, DSpace recommends ensuring that the following metadata
fields are specified:

Title ()dc.title
When submitting an Item via the DSpace web user interface, this field is .required
If you add an Item to DSpace through another means (SWORD, etc), it is recommend to specify a title for an Item. Without a title, the
Item will show up in DSpace a "Untitled".

Publication Date ()dc.date.issued
When submitting an Item via the DSpace web user interface, this field is (by default).required

However, your System Administrator can choose to enable the "Initial Questions" step within the . EnSubmission User Interface
abling this step will cause the following to occur: If the item is said to be "published", then the Publication Date will be required.
If the item is said to be "unpublished" then the Publication Date will be auto-set to today's date (date of submission). WARNING:
Google Scholar has recommended against automatically assigning this "dc.date.issued" field to the date of submission as it
often results in incorrect dates in Google Scholar results. See and https://github.com/DSpace/DSpace/issues/4850 https://githu

 for more details.b.com/DSpace/DSpace/issues/5112
If you add and Item to DSpace through another means (SWORD, etc), it is recommended to specify the date in which an Item was
published, in ISO-8601 (e.g. 2007, 2008-01, or 2011-03-04). This ensures DSpace can accurately report the publication date to services
like Google Scholar. If an item is unpublished, you can either chose to leave this blank, or pass in the literal string "today" (which will tell
DSpace to automatically set it to the date of ingest)

DSpace will not auto-assign a "dc.date.issued"

As of DSpace 4.0, the system will not assign a "dc.date.issued" when unspecified. Previous versions of DSpace (3.0 or below) would set
"dc.date.issued" to the date of accession (dc.date.accessioned), if it was unspecified during ingest.

If you are adding content to DSpace without using the DSpace web user interface, there are two recommended options for assigning "dc.
date.issued"

If the item is previously published before, please set "dc.date.issued" to the date of publication in (e.g. 2007, 2008-01, ISO-8601
or 2011-03-04)
If the item has never been previously published, you may set "dc.date.issued='today'" (the literal string "today"). This will cause
DSpace to automatically assign "dc.date.issued" to the date of accession (dc.date.accessioned), as it did previously

You can also chose to leave "dc.date.issued" as unspecified, but then the new Item will have an empty date within
DSpace.

Obviously, we recommend specifying as much metadata as you can about a new Item. For a full list of supported metadata fields, please see: Metadata
and Bitstream Format Registries

Local Fields

You may encounter situations in which you will require an appropriate place to store information that does not immediately fit with the description of a field
in the default registry. The recommended practice in this situation is to create new fields in a separate schema. You can choose your own name and prefix
for this schema such as or local. myuni.

It is generally discouraged to use any of the fields from the default schema as a place to store information that doesn't correspond with the fields
description. This is especially true if you are ever considering the option to open up your repository metadata for external harvesting.

268

https://wiki.lyrasis.org/display/DSDOC4x/Submission+User+Interface
https://github.com/DSpace/DSpace/issues/4850
https://github.com/DSpace/DSpace/issues/5112
https://github.com/DSpace/DSpace/issues/5112
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
https://wiki.lyrasis.org/display/DSDOC4x/Metadata+and+Bitstream+Format+Registries
https://wiki.lyrasis.org/display/DSDOC4x/Metadata+and+Bitstream+Format+Registries

Moving Items

1 Moving Items via Web UI
2 Moving Items via the Batch Metadata Editor

Moving Items via Web UI

It is possible for Administrators to move items one at a time from the User Interface.

Login as an Administrator
Browse/search for the item.
Click "Edit this Item" on the item page
When editing an item, on the 'Edit item' screen, click the "Move..." button.
Search for the new Collection for the item to appear in. By default, when the item is moved, it will take its authorizations (who can READ / WRITE
it) with it.

If you wish for the item to take on the default authorizations of the destination collection, tick the 'Inherit policies' checkbox. This is useful
if you are moving an item from a private collection to a public collection, or from a public collection to a private collection.
Note: When selecting the 'Inherit policies' option, ensure that this will not override system-managed authorizations such as those
imposed by the embargo system.

Moving Items via the Batch Metadata Editor

Items may also be moved in bulk by using the CSV batch metadata editor (see section under).Editing Collection Membership Batch Metadata Editing

269

https://wiki.lyrasis.org/display/DSDOC8x/Batch+Metadata+Editing#BatchMetadataEditing-EditingCollectionMembership

PDF Citation Cover Page
Enabling PDF Cover Pages may affect your site's visibility in Google Scholar (and similar search engines)

Google Scholar specifically warns against automatically generating PDF Cover Pages, as they can break the metadata extraction techniques used by their
search engine. Be aware that enabling PDF Cover Pages may also cause those items to no longer be indexed by Google Scholar. For more information,
please see the " " talk from Anurag Acharya (co-creator of Google Scholar) presented at the Open Indexing Repositories: Pitfalls and Best Practices
Repositories 2015 conference.
A known issue with the current implementation of the PDF Citation Cover Page is that primarily only English/Roman characters are supported. This is due
to a limitation in the tool used to generate PDFs. See for more details on this issuehttps://github.com/DSpace/DSpace/issues/5590

Adding a cover page to retrieved documents from DSpace that include additional citation information has been sought, as documents uploaded to the
repository might have had their context stripped from them, when they are just a PDF. Context that might have surrounded the document would be the
journal, publisher, edition, and more. Without that information, the document might just be a few pages of text, with no way to piece it together. Since
repository policy might be to include this information as metadata to the Item, this metadata can be added to the citation cover page, so that the derivative
PDF includes all of this information.

The citation cover page works by only storing the original PDF in DSpace, and then generating the citation-cover-page PDF on-the-fly. An alternative set
up would be to run the PDF Citation Coverpage Curation Task on the DSpace repository contents, and then disseminate the pre-generated citation-version
instead of generating it on the fly.

Configuration settings for Citation Cover Page
Configuration file renamed to citation-page.cfg and configurations names have changed

As of DSpace 6.0, the configuration file for this feature was from to . The renaming was renamed disseminate-citation.cfg citation-page.cfg
to clarify the purpose of this configuration file, as its previous name was misleading / confusing to some users.

In addition, all configurations below have now been prefixed with "citation-page" (e.g. the configuration has been renamed to enable_globally citati
)on-page.enable_globally

In the file review the following fields to make sure they are uncommented:{dspace.dir}/config/modules/citation-page.cfg

Property: citation-page.enable_globally

Example
Values:

citation-page.enable_globally = true

Informational
Note:

Boolean to determine is citation-functionality is enabled globally for entire site. This will enable the citation cover page generator for all
PDFs.

Default: disabled

Property: citation-page.enabled_collections

Example
Values:

citation-page.enabled_collections = 1811/123, 1811/234

270

https://media.dlib.indiana.edu/media_objects/9z903008w
https://github.com/DSpace/DSpace/issues/5590

Informational
Note:

List of collection handles to enable the cover page generator for bitstreams within.

Default: blank

Property: citation-page.enabled_communities

Example
Values:

citation-page.enabled_communities = 1811/222, 1811/333

Informational
Note:

List of community handles to enable the cover page generator for bitstreams within.

Default: blank

Property: citation-page.citation_as_first_page

Example
Values:

citation-page.citation_as_first_page = true

Informational
Note:

Should the citation page be the first page cover (true), or the last page (false).

Default: true, (first page)

Property: citation-page.header1

Example
Values:

citation-page.header1 = University of Higher Education

Informational
Note:

First row of header, perhaps for institution / university name. Commas separate multiple sections of the header (see screenshot above)

Default Value: DSpace Institution

Property: citation-page.header2

Example
Values:

citation-page.header2 = Scholar Archive\, http://archive.example.com

Informational
Note:

Second row of header, perhaps put your DSpace instance branded name, and url to your DSpace. A comma is used to separate
instance name, and the URL

Default Value: DSpace Repository, http://dspace.org

Property: citation-page.fields

Example
Values:

citation-page.fields = dc.date.issued, dc.title, dc.creator, dc.contributor.author, dc.publisher, _line_, dc.identifier.citation, dc.identifier.uri

Informational
Note:

Metadata fields to display on the citation PDF. Specify in schema.element.qualifier form, and separate fields by a comma. If you want to
have a horizontal line break, use _line_

Default Value: dc.date.issued,dc.title,dc.creator,dc.contributor.author,dc.publisher,_line_,dc.identifier.citation,dc.identifier.uri

Property: citation-page.footer

Example
Values:

citation-page.footer = Downloaded from Scholar Archive at University of Higher Education\, an open access institutional repository. All
Rights Reserved.

Informational
Note:

Footer text at the bottom of the citation page. It might be some type of license or copyright information, or just letting the recipient know
where they downloaded the file from.

Default Value: Downloaded from DSpace Repository\, DSpace Institution's institutional repository

NOTE: any commas appearing in this text should be escaped as "\,". See example above.

271

http://dspace.org

Request Withdrawn and Reinstate of an item

Overview
Enabling this Feature

Withdrawal
Submitter
Admin

Reinstate
Submitter
Admin

Overview
The implementation enables all the authenticated users to create WITHDRAWN and REINSTATE requests for a deposited item using the quality
assurance event mechanism, which is handled by administrators and specific groups.

Once a WITHDRAWN or REINSTATE request is submitted, it can also be cancelled.

To enable Request Withdrawn and Reinstate of an item, you MUST first enable the following:

Quality Assurance

Enabling this Feature

This feature is only enabled to Administrators by default. However, if you wish to allow additional users to make these requests for withdrawal or
reinstatement of an Item, you can specify the Group of users who is allowed to make these requests.

If you want to allow to have this feature, you can configure this setting to use the "Anonymous" group:all authenticated users

Setting this to "Anonymous" allows any authenticated user to submit a request.
NOTE: It will NOT allow Anonymous users to submit the request as all requests MUST be connected to an EPerson
account.
qaevents.withdraw-reinstate.group = Anonymous

in the file.local.cfg

Once enabled, when you are logged in you will see a "Request Withdrawal" or "Request Reinstatement" button on Item pages (depending on their current
status). See example screenshots below.

Withdrawal

Submitter

The user can withdraw an item from the details page of the archived item. Any authenticated user has the permission to withdraw an item.

Click on the eye icon to start the withdrawal of the item.

272

Following that, describe the reason for the withdrawal and subsequently confirm it.

An automatic notification will appear in a notification box, indicating that a withdrawal has been requested for this particular item.

If the withdrawal request is approved, the user will be notified and will be given the opportunity to reinstate the request.

Clicking on on the item page will lead to the "Quality Assurance" page, which lists the topics/requests. In case there is only one topic available, it will View
automatically redirect to the item list.

273

The action button displays the count of elements associated with a specific topic. Clicking on it will lead to a different view of the list of items, tailored
based on the user's role.

Non-admin users, for example, a submitter, only have the authority to reject the withdrawal request.

274

Admin

Admin users have the possibility to access all the requests for all the items from MyDspace.

A message will warn the administrator about the requests to check. The button redirects to the "Quality Assurance" page.View

The "Quality Assurance" page lists the topics/requests, with the action button displaying the number of elements associated with a specific topic.

The action button will lead to a view of the list of items, with actions based on the user's role.

275

An administrator can reject the withdrawal.

Can ignore it, the request can be reconsidered later

Or can accept the request, and this item will not be discoverable and will not be archived. It can only be accessed through the direct link.

Reinstate

Submitter

After the withdrawal request is approved, the user can request to reinstate the item.

In particular, the submitter will see a “Reinstate” button available next to the “Take me to the home page” button on the withdrawn item page and will no
longer see the item's details.

To request the reinstatement, optionally provide a reason and confirm it.

276

Clicking on on the item page will lead to the "Quality Assurance" page, which lists the topics/requests. In case there is only one topic available, it will View
automatically redirect to the item list.

In this case, the Reinstate topic will list all the reinstate requests.

The "Quality Assurance" page lists the topics/requests, with the action button displaying the number of elements associated with a specific topic. In case
there is only one topic available, it will automatically redirect to the item list ("accept/ignore/reject" page).

The action button will lead to a view of the list of items, with actions based on the user's role.

Admin

Like in the case of withdrawal, administrators can access all the requests for all the items from MyDspace.

277

A message will warn the administrator about the requests to check. The button redirects to the "Quality Assurance" page.View

The "Quality Assurance" page also lists the Reinstate topic. The possible actions are:

reject the reinstatement.
ignore it, and the request can be reconsidered later.
accept the reinstatement, and the item will be discoverable again.

Administrators can also start reinstatement requests for all the withdrawn items.

On the page of a withdrawn item, the administrator can use the eye icon on the top right to proceed with a request for reinstatement.

278

279

Updating Items via Simple Archive Format

1 Item Update Tool
1.1 DSpace Simple Archive Format
1.2 ItemUpdate Commands

1.2.1 CLI Examples

Item Update Tool

ItemUpdate is a batch-mode command-line tool for altering the metadata and bitstream content of existing items in a DSpace instance. It is a companion
tool to ItemImport and uses the DSpace simple archive format to specify changes in metadata and bitstream contents. Those familiar with generating the
source trees for ItemImport will find a similar environment in the use of this batch processing tool.

For metadata, ItemUpdate can perform 'add' and 'delete' actions on specified metadata elements. For bitstreams, 'add' and 'delete' are similarly available.
All these actions can be combined in a single batch run.

ItemUpdate supports an undo feature for all actions except bitstream deletion. There is also a test mode, as with ItemImport. However, unlike ItemImport,
there is no resume feature for incomplete processing. There is more extensive logging with a summary statement at the end with counts of successful and
unsuccessful items processed.

One probable scenario for using this tool is where there is an external primary data source for which the DSpace instance is a secondary or down-stream
system. Metadata and/or bitstream content changes in the primary system can be exported to the simple archive format to be used by ItemUpdate to
synchronize the changes.

A note on terminology: refers to a DSpace item. refers generally to a qualified or unqualified element in a schema in the form item metadata element [sch
 or and occasionally in a more specific way to the second part of that form. ema].[element].[qualifier] [schema].[element] metadata field

refers to a specific instance pairing a metadata element to a value.

DSpace Simple Archive Format

As with , the idea behind the DSpace's simple archive format is to create an archive directory with a subdirectory per item. There are a few ItemImporter
additional features added to this format specifically for ItemUpdate. Note that in the simple archive format, the item directories are merely local references
and only used by ItemUpdate in the log output.

The user is referred to the previous section .DSpace Simple Archive Format

Additionally, the use of a is now available. This file lists the bitstreams to be deleted, one bitstream ID per line. Currently, no other delete_contents
identifiers for bitstreams are usable for this function. This file is an addition to the Archive format specifically for ItemUpdate.

The optional suppress_undo file is a flag to indicate that the 'undo archive' should not be written to disk. This file is usually written by the application in an
undo archive to prevent a recursive undo. This file is an addition to the Archive format specifically for ItemUpdate.

ItemUpdate Commands

Command
used:

[dspace]/bin/dspace itemupdate

Java class: org.dspace.app.itemupdate.ItemUpdate

Arguments
short and
(long) forms:

Description

-a or --
addmetada
ta
[metadata
element]

Repeatable for multiple elements. The metadata element should be in the form dc.x or dc.x.y. The mandatory argument indicates the
metadata fields in the dublin_core.xml file to be added unless already present (multiple fields should be separated by a semicolon ';').
However, duplicate fields will not be added to the item metadata without warning or error.

-d or --
deletemet
adata
[metadata
element]

Repeatable for multiple elements. All metadata fields matching the element will be deleted.

-A or --
addbitstr
eams

Adds bitstreams listed in the contents file with the bitstream metadata cited there.

280

https://wiki.lyrasis.org/display/DSDOC8x/Importing+and+Exporting+Items+via+Simple+Archive+Format#ImportingandExportingItemsviaSimpleArchiveFormat-DSpaceSimpleArchiveFormat

-D or --
deletebit
streams
[filter
plug
classname
or alias]

Not repeatable. With no argument, this operation deletes bitstreams listed in the file. Only bitstream IDs are deletes_contents
recognized identifiers for this operation. The optional filter argument is the classname of an implementation of org.dspace.app.

 class to identify files for deletion or one of the aliases (e.g. ORIGINAL, itemdupate.BitstreamFilter
ORIGINAL_AND_DERIVATIVES, TEXT, THUMBNAIL) which reference existing filters based on membership in a bundle of that name.
In this case, the file is not required for any item. The filter properties file will contains properties pertinent to the delete_contents
particular filer used. Multiple filters are not allowed.

-h or --
help

Displays brief command line help.

-e or --
eperson

Email address of the person or the user's database ID (Required)

-s or --
source

Directory archive to process (Required)

-i or --
itemfield

Specifies the metadata field that contains the item's identifier; Default value is "dc.identifier.uri" (Optional)

-t or --
test

Runs the process in test mode with logging. But no changes applied to the DSpace instance. (Optional)

-P or --
provenance

Prevents any changes to the provenance field to represent changes in the bitstream content resulting from an Add or Delete. In other
words, when this flag is specified, no new provenance information is added to the DSpace Item when adding/deleting a bitstream. No
provenance statements are written for thumbnails or text derivative bitstreams, in keeping with the practice of MediaFilterManager.
(Optional)

-F or --
filter-
properties

The filter properties files to be used by the delete bitstreams action (Optional)

-v or --
verbose

Turn on verbose logging.

CLI Examples

Adding Metadata:

[dspace]/bin/dspace itemupdate -e joe@user.com -s [path/to/archive] -a dc.description

This will update all DSpace Items listed in your archive directory, adding a new dc.description metadata field. Items will be located in DSpace based
 on the handle found in 'dc.identifier.uri' (since the -i argument wasn't used, the default metadata field, dc.identifier.uri, from the dublin_core.xml file in the

archive folder, is used).

281

Managing Community Hierarchy

1 Sub-Community Management

Sub-Community Management
Reindex content for new permissions to take effect

After moving or changing an existing Community hierarchy, it is important to reindex your content. Moving a Community under a new parent may result in
the inheritance of new/different permissions from that new parent Community. These new permissions will not take effect until you reindex your
content. Keep in mind, you may not need to reindex all content, but may be able to simply reindex the content under the new parent Community.

./dspace index-discovery -i [new-parent-uuid]

DSpace provides an administrative tool‚ 'CommunityFiliator'‚ for managing community sub-structure. It has two operations, either establishing a community
to sub-community relationship, or dis-establishing an existing relationship.

The familiar parent/child metaphor can be used to explain how it works. Every community in DSpace can be either a 'parent' community‚ meaning it has at
least one sub-community, or a 'child' community‚ meaning it is a sub-community of another community, or both or neither. In these terms, an 'orphan' is a
community that lacks a parent (although it can be a parent); 'orphans' are referred to as 'top-level' communities in the DSpace user-interface, since there is
no parent community 'above' them. The first operation‚ establishing a parent/child relationship - can take place between any community and an orphan.
The second operation - removing a parent/child relationship‚ will make the child an orphan.

Command used: [dspace]/bin/dspace community-filiator

Java class: org.dspace.administer.CommunityFiliator

Arguments short and (long) forms: Description

-s or --set Set a parent/child relationship

-r or --remove Remove a parent/child relationship

-c or --child Child community (Handle or database ID)

-p or --parent Parent community (Handle or database ID

-h or --help Online help.

Set a parent/child relationship, issue the following at the CLI:

[dspace]/bin/dspace community-filiator --set --parent=parentID --child=childID

(or using the short form)

[dspace]/bin/dspace community-filiator -s -p parentID -c childID

where '-s' or '-set' means establish a relationship whereby the community identified by the '-p' parameter becomes the parent of the community identified
by the '-c' parameter. Both the 'parentID' and 'childID' values may be handles or database IDs.

The reverse operation looks like this:

[dspace]/bin/dspace community-filiator --remove --parent=parentID --child=childID

(or using the short form)

[dspace]/bin/dspace community-filiator -r -p parentID -c childID

where '-r' or '-remove' means dis-establish the current relationship in which the community identified by 'parentID' is the parent of the community identified
by 'childID'. The outcome will be that the 'childID' community will become an orphan, i.e. a top-level community.

If the required constraints of operation are violated, an error message will appear explaining the problem, and no change will be made. An example in a
removal operation, where the stated child community does not have the stated parent community as its parent: "Error, child community not a child of
parent community".

It is possible to effect arbitrary changes to the community hierarchy by chaining the basic operations together. For example, to move a child community
from one parent to another, simply perform a 'remove' from its current parent (which will leave it an orphan), followed by a 'set' to its new parent.

282

It is important to understand that when any operation is performed, all the sub-structure of the child community follows it. Thus, if a child has itself children
(sub-communities), or collections, they will all move with it to its new 'location' in the community tree.

283

ORCID Integration
Since DSpace 7.3 a bidirectional ORCID integration is available for DSpace. This feature allows for authentication via ORCID, as well as synchronizing
data between ORCID and DSpace, via the usage of .Researcher Profiles

Acknowledgments

The ORCID integration was originally developed by in . It is the result of years of collaboration with several institutions and the 4Science DSpace-CRIS
ORCID team that has helped to correct, improve and broaden the scope of the integration. We want to thank the that was the first University of Hong Kong
institution to fund development activities in this regard back in 2015 and the that have funded the initial porting of TUHH Hamburg University of Technology
the ORCID integration to the new Angular/REST architecture introduced in DSpace 7. Last but not least, funds have been received by the DSpace
community to port this feature from DSpace-CRIS to DSpace.

Overview
User features

Login via ORCID
Connect/Disconnect the local profile to ORCID
Import publications from ORCID

Configuration
Enable the integration
Configure the push of information from DSpace to ORCID

Mapping of the DSpace Person Items to ORCID Works
Mapping of DSpace Publication items to ORCID Works
Mapping of DSpace Project items to ORCID Funding

Configure the import features
Configure the author lookup in submission

Troubleshooting & common issues
I'm having trouble testing the ORCID integration. What should I check?
I cannot find the ORCID features described by this page in my installation
I'm unable to authenticate via ORCID
After logging in via ORCID, a new DSpace account was created instead of using my existing DSpace account
I'm having trouble creating test accounts on ORCID to experiment with the features
I have configured my Public ORCID API credentials in DSpace but I get an error attempting to login via ORCID
I don't find my publications looking up for my ORCID iD
I cannot push all my publications, only few or none of them are listed in the queue
Push of publications to ORCID fails
Push of projects to ORCID fails

Overview

DSpace provides a bidirectional integration with based on the ORCID API v3.0. Both the Public ORCID API and the Membership API are ORCID
supported.

The table below summarizes the supported features according to the type of ORCID API configured.

Feature No credentials* Public API Member API

Authentication

Connect local profile to ORCID (authenticated ID)

ORCID Registry Lookup - import Person records

ORCID Registry Lookup - as authority

Import publication from ORCID

Push biographic data to ORCID

Push publications to ORCID (works)

Push projects to ORCID (fundings)

* No credentials: please note that ORCID strongly recommends to apply at least for a free public API Key as this will help to trouble-shoot integration
problems and get support from ORCID. There is also a chance to get better performance/priority over "unknown" client.

User features

Login via ORCID

Once enabled, an option to login via ORCID is provided to the user among the other authentication methods configured in the system. The ORCID
authentication doesn't allow the user to reset his password from DSpace.

284

https://www.4science.com
https://wiki.lyrasis.org/display/DSPACECRIS/DSpace-CRIS+Home
https://hku.hk/
https://www.tuhh.de/
https://orcid.org/

Connect/Disconnect the local profile to ORCID

The researcher can connect (or disconnect) their DSpace local with ORCID from the Person item detail page.Researcher Profile

285

Once a profile has been connected they can manage their synchronization preferences deciding what should be pushed to ORCID, including:

biographic data
Publication (entities) linked with their Researcher Profile. (Publication entities are synced to Works in ORCID.)
Project (entities) linked with their Researcher Profile. (Project entities are synced to Fundings in ORCID.)

NOTE: The ORCID synchronization feature is disabled by default, even when ORCID Authentication is enabled. See Configuration section below for how
to enable it.

286

The synchronization can happen automatically over the night or manually. The list of information that should be pushed or updated from DSpace to ORCID
is presented in a queue and can be manually discarded or immediately pushed by the researcher.

Import publications from ORCID

It is possible to import a publication from ORCID using the "Import from external sources" button in the home page. Once you select the Publication entity
type you will be able to find ORCID as a Source and you can get the list of publications (ORCID works) that appear in an ORCID profile by searching for its
ORCID iD.

Configuration

Enable the integration

All the ORCID features requires a minimal common set of properties to configure in the local.cfg

287

These URLs are for testing against ORCID's Sandbox API
These are only useful for testing, and you must first request a Sandbox API Key from ORCID
orcid.domain-url= https://sandbox.orcid.org
orcid.api-url = https://api.sandbox.orcid.org/v3.0
orcid.public-url = https://pub.sandbox.orcid.org/v3.0
Keep in mind, these API keys MUST be for the Sandbox API if you use "sandbox.orcid.org" URLs above!
orcid.application-client-id = <YOUR-SANDBOX-ORCID-CLIENT-ID>
orcid.application-client-secret = <YOUR-SANDBOX-ORCID-CLIENT-SECRET>

Once you are ready to switch to Production, you need to update these settings to use ORCID's production API
See https://github.com/ORCID/ORCID-Source/tree/master/orcid-api-web#endpoints
orcid.domain-url= https://orcid.org
orcid.api-url = https://api.orcid.org/v3.0
orcid.public-url = https://pub.orcid.org/v3.0
DON'T FORGET TO UPDATE YOUR API KEY! It must be a valid Public or Member API Key
orcid.application-client-id = <YOUR-PRODUCTION-ORCID-CLIENT-ID>
orcid.application-client-secret = <YOUR-PRODUCTION-ORCID-CLIENT-SECRET>

Enable in Production: To enable the main integration (i.e. connect a local profile with ORCID and push data to the ORCID registry) you MUST to
be an , get a and properly enable and configure the feature in DSpace. See also ORCID Member Member API Key "How do I register for Member

 from ORCID.API credentials?"
Enable in Testing: To test ORCID integration, it's possible to use the ORCID Sandbox (without being an ORCID member). However, to do so,
you must request a Sandbox Member API Key. See also ."How do I register a public api client?"
Setting the "redirect URL" in ORCID: In the ORCID API Credentials request form you will be asked to enter one or more redirect URLs for your
application (DSpace). You will need to enter here the root URLs of your REST and user interfaces, which could be different. If the root URLs of
both are the same, then just enter the URL of your user interface.

For example, for the DSpace 7 official demo, we use these redirect URLs:
User Interface: https://demo7.dspace.org (please note the absence of a /home or any subpaths)
REST API: https://api7.dspace.org (please note the absence of a /server or any subpaths)

For more information on valid ORCID redirect URLs, see "How do redirect URIs work?" from ORCID.
Configure the Client ID and Client Secret in DSpace: Once ORCID has reviewed and approved your request, you will get from them the Client
ID and Client Secret that need to be set in the among other properties See the configuration examples above.local.cfg

Please note that by default DSpace will request permissions to READ and WRITE all the information from the ORCID profile, as this will enable support for
all of the features. You can fine-tune that by overriding the following properties. Please note that if you are going to configure Public API Credentials you
MUST update this configuration keeping only the scope as all the other scopes require Member API./authenticate

The scopes to be granted by the user during the login on ORCID (see https://info.orcid.org/faq/what-is-an-
oauth-scope-and-which-scopes-does-orcid-support/)
orcid.scope = /authenticate
The below scopes are ONLY valid if you have a Member API Key. They should be commented out if you only have a
Public API Key
orcid.scope = /read-limited
orcid.scope = /activities/update
orcid.scope = /person/update

To enable you need to uncomment the following line in the file or add it to your ORCID Authentication modules/authentication.cfg local.cfg

plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.OrcidAuthentication

Please note that you are NOT required to enable the ORCID Authentication to use the other ORCID features, including the synchronisation ones. It is also
possible to use just the ORCID Authentication without enabling all the other features.

When a user loggs in via ORCID the system will attempt to reuse an existing account looking up by email. If none is found then a new account is created in
DSpace. It is possible to disable the creation of new accounts by setting the following property:

authentication-orcid.can-self-register = false

To enable , you need to uncomment the following or add it to your ORCID Synchronization local.cfg

288

https://info.orcid.org/membership/
https://info.orcid.org/documentation/features/member-api/
https://info.orcid.org/ufaqs/how-do-i-register-for-member-api-credentials/
https://info.orcid.org/ufaqs/how-do-i-register-for-member-api-credentials/
https://sandbox.orcid.org/
https://info.orcid.org/register-a-client-application-sandbox-member-api/
https://info.orcid.org/ufaqs/how-do-i-register-a-public-api-client/
https://demo7.dspace.org
https://api7.dspace.org
https://info.orcid.org/ufaqs/how-do-redirect-uris-work/

the properties below are required only for the sync / linking part (not for authentication or import)
orcid.synchronization-enabled = true
you need to enable the orcidqueue consumer to keep track of what need to be sync between DSpace and ORCID
event.dispatcher.default.consumers = versioning, discovery, eperson, orcidqueue

The push of DSpace data (Person, Publication, Project) to ORCID is based on mappings defined in the file. You will find config/modules/orcid.cfg
details below in the dedicated paragraphs.

The ORCID Synchronization features depend on other features that must be enabled: , at least Person, DSpace User Profile Configurable Entities
Publication, Project & OrgUnit.

The synchronization features are classified as at the time of 7.3 and it be enabled manually. Due to the strict validation rules applied experimental MUST
on the ORCID side and the absence of friendly edit UI for the archived items in DSpace (see), it is hard at this time to achieve an optimal UX.issues#2876

A few special configurations exist for settings:ORCID Disconnection

Configuration with which it is established which user can disconnect a profile from orcid (none, only the
admin, only the owner or both).
Allowed values are disabled, only_admin, only_owner or admin_and_owner
orcid.disconnection.allowed-users = admin_and_owner

Configuration if the orcid sync settings should be remain on the profile when it is disconnected from orcid
or not
(true = retain sync settings, false = delete old sync settings)
orcid.disconnection.remain-sync = true

Configure the push of information from DSpace to ORCID

Please note that many fields on the ORCID side are subject to validation, i.e. only values from controlled-list can be used and some fields are mandatory.
The table below summarizes the validations that are defined at the time of DSpace 7.3. ORCID updates such rules periodically, usually modifying
(enlarging) the controlled-list, and changes to the mandatory fields can also happen.

ORCID
Entity

Corresponding DSpace
Entity

Mandatory fields Controlled fields

Person Person Country (iso-3166 2 code letter)

Work Publication Title

Type

Publication Date (>= 1900)

External Identifier (at least
one)

Type ()https://info.orcid.org/documentation/integration-and-api-faq/#easy-faq-2682

Identifier.Type ()https://pub.orcid.org/v3.0/identifiers

Funding Project Title

External Identifier (at least
one)

Funding Agency
(Organisation)

Currency if an Amount is
provided

Amount.Currency ()https://www.iso.org/iso-4217-currency-codes.html

Organisation OrgUnit External Identifier (at least
one)

Address

City

Country

See https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-
Funding-section

Country (iso-3166 2 code letter)

Identifier.Type ()ROR, LEI, CrossRef Funder ID, RINGOLD, GRID

To provide more meaningful messages to the user DSpace implements a local validation before trying to push the record to ORCID. This validation verifies
the data using the rules above so that a specific message is displayed to the user. If for any reason another error is returned by ORCID a generic message
is shown to the user and the exact technical message received by ORCID is logged in the file and stored in the table.dspace.log orcidhistory

289

https://github.com/DSpace/DSpace/issues/2876
https://info.orcid.org/documentation/integration-and-api-faq/#easy-faq-2682
https://pub.orcid.org/v3.0/identifiers
https://www.iso.org/iso-4217-currency-codes.html
https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-Funding-section
https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-Funding-section
https://github.com/ORCID/ORCID-Source/blob/master/orcid-core/src/main/java/org/orcid/core/orgs/OrgDisambiguatedSourceType.java

The local validation can be turned off. This validation is mainly intended as a development/debug option and should be not enabled in production.

orcid.validation.work.enabled = true
orcid.validation.funding.enabled = true

Mapping of the DSpace Person Items to ORCID Works

Metadata in a DSpace "Person" item, once that the item has been linked to ORCID by the researcher owning the ORCID profile, can be pushed to ORCID
to fill the Profile Section of the ORCID Person using the configured via this org.dspace.orcid.service.OrcidProfileSectionFactoryService
mapping bean:

 <!-- Configuration of ORCID profile sections factory.
 Each entry of sectionFactories must be an implementation of OrcidProfileSectionFactory.-->
 <bean class="org.dspace.orcid.service.impl.OrcidProfileSectionFactoryServiceImpl">
 <constructor-arg name="sectionFactories">
 <list>

 <bean class="org.dspace.orcid.model.factory.impl.OrcidSimpleValueObjectFactory">
 <constructor-arg name="sectionType" value="OTHER_NAMES" />
 <constructor-arg name="preference" value="BIOGRAPHICAL" />
 <property name="metadataFields" value="${orcid.mapping.other-names}" />
 </bean>

 <bean class="org.dspace.orcid.model.factory.impl.OrcidSimpleValueObjectFactory">
 <constructor-arg name="sectionType" value="KEYWORDS" />
 <constructor-arg name="preference" value="BIOGRAPHICAL" />
 <property name="metadataFields" value="${orcid.mapping.keywords}" />
 </bean>

 <bean class="org.dspace.orcid.model.factory.impl.OrcidSimpleValueObjectFactory">
 <constructor-arg name="sectionType" value="COUNTRY" />
 <constructor-arg name="preference" value="BIOGRAPHICAL" />
 <property name="metadataFields" value="${orcid.mapping.country}" />
 </bean>

 <bean class="org.dspace.orcid.model.factory.impl.
OrcidPersonExternalIdentifierFactory">
 <constructor-arg name="sectionType" value="EXTERNAL_IDS" />
 <constructor-arg name="preference" value="IDENTIFIERS" />
 <property name="externalIds" value="${orcid.mapping.person-external-
ids}" />
 </bean>

 <bean class="org.dspace.orcid.model.factory.impl.OrcidSimpleValueObjectFactory">
 <constructor-arg name="sectionType" value="RESEARCHER_URLS" />
 <constructor-arg name="preference" value="IDENTIFIERS" />
 <property name="metadataFields" value="${orcid.mapping.researcher-
urls}" />
 </bean>

 </list>
 </constructor-arg>
 </bean>

The above configuration links each piece of information that can be synchronized from DSpace to ORCID with a preference that the user can manage on
the DSpace side (i.e. sync of the keywords is linked to the BIOGRAPHICAL preference) and defines which DSpace metadata will be used to fill the ORCID
field. The bean reads the metadata mapping from the config/modules/orcid.cfg

290

Other names mapping
orcid.mapping.other-names = person.name.variant
orcid.mapping.other-names = person.name.translated

Keywords mapping
orcid.mapping.keywords = dc.subject

Country mapping
orcid.mapping.country = person.country
orcid.mapping.country.converter =

Person External ids mapping
##orcid.mapping.person-external-ids syntax is <metadatafield>::<type>
orcid.mapping.person-external-ids = person.identifier.scopus-author-id::SCOPUS
orcid.mapping.person-external-ids = person.identifier.rid::RID

Researcher urls mapping
orcid.mapping.researcher-urls = dc.identifier.uri

Mapping of DSpace Publication items to ORCID Works

A DSpace "Publication" item is pushed to ORCID as a "Work" using the configured org.dspace.orcid.model.factory.impl.OrcidWorkFactory
via this mapping bean:

 <bean id="orcidWorkFactoryFieldMapping" class="org.dspace.app.orcid.model.OrcidWorkFieldMapping" >
 <property name="contributorFields" value="${orcid.mapping.work.contributors}" />
 <property name="externalIdentifierFields" value="${orcid.mapping.work.external-ids}" />
 <property name="publicationDateField" value="${orcid.mapping.work.publication-date}" />
 <property name="titleField" value="${orcid.mapping.work.title}" />
 <property name="journalTitleField" value="${orcid.mapping.work.journal-title}" />
 <property name="shortDescriptionField" value="${orcid.mapping.work.short-description}" />
 <property name="subTitleField" value="${orcid.mapping.work.sub-title}" />
 <property name="languageField" value="${orcid.mapping.work.language}" />
 <property name="languageConverter" ref="${orcid.mapping.work.language.converter}" />
 <property name="typeField" value="${orcid.mapping.work.type}" />
 <property name="typeConverter" ref="${orcid.mapping.work.type.converter}" />
 <property name="citationType" value="${orcid.mapping.work.citation.type}" />
 </bean>

that reads the mapping from the file:config/modules/orcid.cfg

Work (Publication) mapping
orcid.mapping.work.title = dc.title
orcid.mapping.work.sub-title =
orcid.mapping.work.short-description = dc.description.abstract
orcid.mapping.work.publication-date = dc.date.issued
orcid.mapping.work.language = dc.language.iso
orcid.mapping.work.language.converter = mapConverterDSpaceToOrcidLanguageCode
orcid.mapping.work.journal-title = dc.relation.ispartof
orcid.mapping.work.type = dc.type
orcid.mapping.work.type.converter = mapConverterDSpaceToOrcidPublicationType

##orcid.mapping.work.contributors syntax is <metadatafield>::<role>
orcid.mapping.work.contributors = dc.contributor.author::author
orcid.mapping.work.contributors = dc.contributor.editor::editor

##orcid.mapping.work.external-ids syntax is <metadatafield>::<type> or $simple-handle::<type>
##The full list of available external identifiers is available here https://pub.orcid.org/v3.0/identifiers
orcid.mapping.work.external-ids = dc.identifier.doi::doi
orcid.mapping.work.external-ids = dc.identifier.scopus::eid
orcid.mapping.work.external-ids = dc.identifier.pmid::pmid
orcid.mapping.work.external-ids = $simple-handle::handle
orcid.mapping.work.external-ids = dc.identifier.isi::wosuid
orcid.mapping.work.external-ids = dc.identifier.issn::issn

291

In the above configuration the "simple" properties are mapped matching the ORCID field name on the left (i.e. short-description) with the DSpace metadata
that holds such information (i.e dc.description.abstract). For the ORCID Type field a special "converter" is configured so that the value of the DSpace
metadata (i.e. dc.type) is mapped to the controlled-list of types accepted by ORCID (). The https://info.orcid.org/faq/what-work-types-does-orcid-support/
value of the matches the name of a bean defined in the orcid.mapping.work.type.converter config/spring/api/orcid-services.xml

 <bean name="mapConverterDSpaceToOrcidPublicationType" class="org.dspace.util.SimpleMapConverter" init-
method="init">
 <property name="converterNameFile" value="orcid/mapConverter-dspace-to-orcid-publication-type.
properties" />
 <property name="configurationService" ref="org.dspace.services.ConfigurationService" />
 <property name="defaultValue" value="other"/>
 </bean>

Finally a special treatment is needed for the external ids as this is a complex field on the ORCID side composed of two values: the identifier type (from a
controlled-list) and the identifier value. In this case the configuration maps a DSpace metadata field (i.e. dc.identifier.doi) to a specific identifier type (i.e.
the part after :: , doi).

Mapping of DSpace Project items to ORCID Funding

A DSpace "Project" item is pushed to ORCID as a "Funding" using the org.dspace.orcid.model.factory.impl.OrcidFundingFactory
configured via this mapping bean:

 <bean id="orcidFundingFactoryFieldMapping" class="org.dspace.orcid.model.OrcidFundingFieldMapping" >
 <property name="contributorFields" value="${orcid.mapping.funding.contributors}" />
 <property name="externalIdentifierFields" value="${orcid.mapping.funding.external-ids}" />
 <property name="titleField" value="${orcid.mapping.funding.title}" />
 <property name="typeField" value="${orcid.mapping.funding.type}" />
 <property name="typeConverter" ref="${orcid.mapping.funding.type.converter}" />
 <property name="amountField" value="${orcid.mapping.funding.amount}" />
 <property name="amountCurrencyField" value="${orcid.mapping.funding.amount.currency}" />
 <property name="amountCurrencyConverter" ref="${orcid.mapping.funding.amount.currency.
converter}" />
 <property name="descriptionField" value="${orcid.mapping.funding.description}" />
 <property name="startDateField" value="${orcid.mapping.funding.start-date}" />
 <property name="endDateField" value="${orcid.mapping.funding.end-date}" />
 <property name="organizationRelationshipType" value="${orcid.mapping.funding.organization-
relationship-type}" />
 </bean>

that reads the mapping from the fileconfig/modules/orcid.cfg

Funding mapping
orcid.mapping.funding.title = dc.title
orcid.mapping.funding.type =
orcid.mapping.funding.type.converter = mapConverterDSpaceToOrcidFundingType
##orcid.mapping.funding.external-ids syntax is <metadatafield>::<type>
##The full list of available external identifiers is available here https://pub.orcid.org/v3.0/identifiers
orcid.mapping.funding.external-ids = dc.identifier::grant_number
orcid.mapping.funding.external-ids = dc.identifier.other::other-id
orcid.mapping.funding.description = dc.description
orcid.mapping.funding.start-date = project.startDate
orcid.mapping.funding.end-date = project.endDate
##orcid.mapping.funding.contributors syntax is <metadatafield>::<type>
orcid.mapping.funding.contributors = project.investigator::lead
orcid.mapping.funding.organization-relationship-type = isOrgUnitOfProject
orcid.mapping.funding.amount = project.amount
orcid.mapping.funding.amount.currency = project.amount.currency
orcid.mapping.funding.amount.currency.converter = mapConverterDSpaceToOrcidAmountCurrency

in the above configuration the "simple" properties are mapped matching the ORCID field name on the left (i.e. description) with the DSpace metadatafield
that holds such information (i.e dc.description). For the ORCID Type field a special "converter" is configured so that the value of the DSpace metadata (i.e.
dc.type) is mapped to the controlled-list of types accepted by ORCID (https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-Funding-

). The value of the matches the name of a bean defined in the section orcid.mapping.funding.type.converter config/spring/api/orcid-
 The same apply for the currency services.xml orcid.mapping.funding.amount.currency.converter =

 mapConverterDSpaceToOrcidAmountCurrency

292

https://info.orcid.org/faq/what-work-types-does-orcid-support/
https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-Funding-section
https://support.orcid.org/hc/en-us/articles/360006894674-Metadata-in-the-Funding-section

<bean name="mapConverterDSpaceToOrcidFundingType" class="org.dspace.util.SimpleMapConverter" init-method="init">
 <property name="converterNameFile" value="orcid/mapConverter-dspace-to-orcid-funding-type.properties" />
 <property name="configurationService" ref="org.dspace.services.ConfigurationService" />
 <property name="defaultValue" value=""/>
</bean>

<bean name="mapConverterDSpaceToOrcidAmountCurrency" class="org.dspace.util.SimpleMapConverter" init-method="
init">
 <property name="converterNameFile" value="orcid/mapConverter-dspace-to-orcid-amount-currency.
properties" />
 <property name="configurationService" ref="org.dspace.services.ConfigurationService" />
 <property name="defaultValue" value=""/>
</bean>

Finally a special treatment is needed for Funder that is a mandatory field on the ORCID side. In this case the mapping defines which relation is used to link
the Project with the Funder (OrgUnit)

orcid.mapping.funding.organization-relationship-type = isOrgUnitOfProject

Configure the import features

The Import features from ORCID have been implemented using the Live Import Framework

The following bean is used to configure the . It is activated as an external source in import of person records from ORCID config/spring/api
 /external-services.xml

 <bean class="org.dspace.external.provider.impl.OrcidV3AuthorDataProvider" init-method="init">
 <property name="sourceIdentifier" value="orcid"/>
 <property name="orcidUrl" value="${orcid.domain-url}" />
 <property name="clientId" value="${orcid.application-client-id}" />
 <property name="clientSecret" value="${orcid.application-client-secret}" />
 <property name="OAUTHUrl" value="${orcid.token-url}" />
 <property name="orcidRestConnector" ref="orcidRestConnector"/>
 <property name="supportedEntityTypes">
 <list>
 <value>Person</value>
 </list>
 </property>
 </bean>

the mapping between ORCID Person and the DSpace Person Item is the following, currently hard-coded:

ORCID DSpace

Name/FamilyName person.firstName

Name/GivenName person.givenName

Name/Path person.identifier.orcid

ORCID Profile URL dc.identifier.uri

The following bean is instead used to configure the from ORCID (Work)import of publication records

293

https://wiki.lyrasis.org/display/DSDOC7x/Live+Import+from+external+sources

 <bean id="orcidPublicationDataProvider" class="org.dspace.external.provider.impl.
OrcidPublicationDataProvider">
 <property name="sourceIdentifier" value="orcidWorks"/>
 <property name="fieldMapping" ref="orcidPublicationDataProviderFieldMapping"/>
 <property name="supportedEntityTypes">
 <list>
 <value>Publication</value>
 </list>
 </property>
 </bean>

The mapping of the ORCID Work metadata to the DSpace metadata is performed by the following bean in config/spring/api/orcid-services.xml

 <bean id="orcidPublicationDataProviderFieldMapping" class="org.dspace.orcid.model.
OrcidWorkFieldMapping" >
 <property name="contributorFields" value="${orcid.external-data.mapping.publication.
contributors}" />
 <property name="externalIdentifierFields" value="${orcid.external-data.mapping.publication.
external-ids}" />
 <property name="publicationDateField" value="${orcid.external-data.mapping.publication.issued-
date}" />
 <property name="titleField" value="${orcid.external-data.mapping.publication.title}" />
 <property name="journalTitleField" value="${orcid.external-data.mapping.publication.is-part-
of}" />
 <property name="shortDescriptionField" value="${orcid.external-data.mapping.publication.
description}" />
 <property name="languageField" value="${orcid.external-data.mapping.publication.language}" />
 <property name="languageConverter" ref="${orcid.external-data.mapping.publication.language.
converter}" />
 <property name="typeField" value="${orcid.external-data.mapping.publication.type}" />
 <property name="typeConverter" ref="${orcid.external-data.mapping.publication.type.converter}"
/>
 </bean>

that reads the mapping from the file.config/modules/orcid.cfg

Please note that such mapping is separated from the mapping used to push information from DSpace to ORCID but usually, as provided in the default
configuration, the mapping should be the same.

Work (Publication) external-data.mapping
orcid.external-data.mapping.publication.title = dc.title

orcid.external-data.mapping.publication.description = dc.description.abstract
orcid.external-data.mapping.publication.issued-date = dc.date.issued
orcid.external-data.mapping.publication.language = dc.language.iso
orcid.external-data.mapping.publication.language.converter = mapConverterOrcidToDSpaceLanguageCode
orcid.external-data.mapping.publication.is-part-of = dc.relation.ispartof
orcid.external-data.mapping.publication.type = dc.type
orcid.external-data.mapping.publication.type.converter = mapConverterOrcidToDSpacePublicationType

##orcid.external-data.mapping.publication.contributors syntax is <metadatafield>::<role>
orcid.external-data.mapping.publication.contributors = dc.contributor.author::author
orcid.external-data.mapping.publication.contributors = dc.contributor.editor::editor

##orcid.external-data.mapping.publication.external-ids syntax is <metadatafield>::<type> or $simple-handle::
<type>
##The full list of available external identifiers is available here https://pub.orcid.org/v3.0/identifiers
orcid.external-data.mapping.publication.external-ids = dc.identifier.doi::doi
orcid.external-data.mapping.publication.external-ids = dc.identifier.scopus::eid
orcid.external-data.mapping.publication.external-ids = dc.identifier.pmid::pmid
orcid.external-data.mapping.publication.external-ids = dc.identifier.isi::wosuid
orcid.external-data.mapping.publication.external-ids = dc.identifier.issn::issn

294

Configure the author lookup in submission

Please note that there are two different possibilities:

via an available for a DSpace repository that is not using Configurable EntitiesORCID lookup authority
via a relation among the research output item (Publication, etc.) and a Person Item bound to the ORCID Person External Source defined in the
previous paragraph

Troubleshooting & common issues

The troubleshooting guide from ORCID can help as well https://info.orcid.org/documentation/integration-guide/troubleshooting/

I'm having trouble testing the ORCID integration. What should I check?

Please double check the documentation and the other FAQs to be sure that you have followed all of the instructions to enable the integration correctly. If
you still have trouble, contact the providing as much detail as possible. If the issue is related to the DSpace tech community via email or slack
synchronization of DSpace local data with ORCID it would be useful to share information about the content of your table and any relevant orcidhistory
message that you could have in the file.dspace.log

I cannot find the ORCID features described by this page in my installation

The ORCID features must be enabled by changing some configuration files. Please refer to the above.Enable the integration section

I'm unable to authenticate via ORCID

If you have correctly enabled the ORCID authentication feature and you are able to start the OAuth flow with ORCID but get a failure when you are
redirected back to DSpace, it could be due to privacy settings on your ORCID record. The DSpace ORCID authentication requires that you release an

 or to create a new one at your first login. Make your ORCID account email email address to match your ORCID account with a DSpace account
address public or visible to trusted parties. This is often not the case for a freshly created account on ORCID.

If you are encountering this issue, you'll see a message like this in your "dspace.log" file on the backend:

2022-08-04 11:43:42,124 ERROR unknown unknown org.dspace.authenticate.OrcidAuthenticationBean @ An error occurs
registering a new EPerson from ORCID
java.lang.IllegalStateException: The email is configured private on orcid

After logging in via ORCID, a new DSpace account was created instead of using my existing DSpace
account

Currently, the ORCID integration with DSpace relies on a matching email address to find your existing account. If your ORCID account and DSpace
account have email addresses associated with them, then it is possible that a new (duplicative) user account will be created. different

I'm having trouble creating test accounts on ORCID to experiment with the features

Please refer to the ORCID trouble-shooting guide A frequent mistake working with https://info.orcid.org/documentation/integration-guide/troubleshooting/
the ORCID sandbox environment is to forget that only email addresses @mailinator.com are allowed for account created on the sandbox. Remember to
validate your email address once the account as been created visiting the online inbox at mailinator.com

I have configured my Public ORCID API credentials in DSpace but I get an error attempting to login via
ORCID

When you use public ORCID API credentials you can only use a subset of the integration features (check). Moreover you need to limit the scopes
(permissions) requested to the user via the ORCID authentication to the scope. Please check the /authenticate Enable the integration section
above.

I don't find my publications looking up for my ORCID iD

Please check " " (or your) to see if the system has been properly configured to use the production ORCID API. config/modules/orcid.cfg local.cfg
There is a chance that your installation is still configured to use the ORCID Sandbox that is appropriate for the testing and development phase of the
integration. The ORCID sandbox doesn't contain the same data as the Public environment.

I cannot push all my publications, only few or none of them are listed in the queue

295

https://info.orcid.org/documentation/integration-guide/troubleshooting/
https://wiki.lyrasis.org/display/DSPACE/Support
https://info.orcid.org/documentation/integration-guide/troubleshooting/

Please double check that the consumer has been enabled (in dspace.cfg or local.cfg) and that the orcid settings of your profile have the "All orcidqueue
publications" checkbox flagged. ORCID features require the use of the new . Only Publication item are synchronized with ORCID; Configurable Entities
simple "untyped" Items will not be synchronized. Please consider to convert your legacy collection to "Publication" collection and set a dspace.entity.

 metadata on your legacy items.type = Publication

Push of publications to ORCID fails

This is usually due to validation errors. ORCID could complain about missing mandatory fields or invalid values for fields that are linked to a controlled-list.
Please check the table in the and the Configure the push of information from DSpace to ORCID Mapping of DSpace Publication items to ORCID

to solve this. Your dspace.log file may also provide useful error messages.Works paragraph

Push of projects to ORCID fails

This is usually due to validation errors. Make sure that all required metadata fields exist on the Project Entity and any linked OrgUnit Entities. ORCID could
complain about missing mandatory fields or invalid values for fields that are linked to a controlled-list. Please check the table in the Configure the push of

 and the to solve this. Your dspace.log file may information from DSpace to ORCID Mapping of DSpace Project items to ORCID Funding paragraph
also provide useful error messages.

296

Researcher Profiles
The DSpace Researcher Profile feature has been introduced in DSpace 7.3 to support the work but can be used alone. It is turned off ORCID Integration
by default and must be enabled manually

A DSpace Researcher Profile is a special Person Entity (item) that is linked with exactly one EPerson (DSpace account). This linked EPerson owns the
profile (Person Item), including having WRITE permission on it. The link between the Person Item and the EPerson is managed in the Person's dspace.

 metadata field. This field is configured to hold authority values and will contain the of the EPerson that owns the profile.object.owner UUID

Here a summary of the key concepts & requirements of the feature:

Profiles require to be enabled, as every Researcher Profile is represented by a Person Entity.Configurable Entities
A profile can be linked to only one EPerson (user account). That EPerson has full rights to manage the profile, including whether the profile is
publicly visible or private.
Optionally, Profiles can be synchronized (or initially created) via .ORCID Integration

When the feature is enabled, the user can create a researcher profile from his Profile (account page)

If a Person Item already exists in the system, matching the account email address, this Person Item is offered to the user:

Once a profile has been created or claimed, the user can make it public (Anonymous READ) or private:

297

By default, deletion of the researcher profile does NOT delete the corresponding Person Item. Instead, it just unlinks the Person Item from the EPerson
account. This behavior can be changed as specified in the section below. Advanced configuration

Enable the feature

To enable the feature you need to set the following property (uncommenting it in the or adding it to the config/modules/researcher-profile.cfg c
)onfig/local.cfg

researcher-profile.entity-type = Person

You can specify a different Entity Type for the item that can be used as profile. This is an advanced setting -- change it only if you know what are you doing
and have implemented specific customisation.

You need to enable also the EPerson authority for the . Uncomment the following lines in the dspace.object.owner config/modules/authority.
cfg:

Configuration settings required for Researcher Profiles
These settings ensure "dspace.object.owner" field are indexed by Authority Control
choices.plugin.dspace.object.owner = EPersonAuthority
choices.presentation.dspace.object.owner = suggest
authority.controlled.dspace.object.owner = true

Last, you need to ensure that at least one Collection is configured to accept Person entities. Only EPersons having the submission right in such a
Collection will be able to create profiles. There are many possibilities for using these settings to control who may or may not create a profile.

Advanced configuration

You can configure some aspects of the Profile feature in the config/modules/researcher-profile.cfg

Pro
per
ty:

researcher-profile.entity-type

Ex
am
ple
Val
ue:

Person

Inf
or
ma
tio
nal
Not
e:

The type of Entity to use for Researcher Profile items. By default, the Person Entity is used, as this is provided out-of-the-box in DSpace. This
would only need to be modified if you have created a heavily customized data model which does NOT include Person.Configurable Entities

Pro
per
ty:

researcher-profile.collection.uuid

298

Ex
am
ple
Val
ue:

[collection-uuid]

Inf
or
ma
tio
nal
Not
e:

UUID of the Collection where all Researcher Profiles should be created by default. This Collection MUST be configured to accept Person Entities
(or the entity type specified in "researcher-profile.entity-type").

By default this is UNSPECIFIED. The default behavior is that the person's Researcher Profile will be created in the Collection in DSpace which is
configured to accept Person Entities and where the user has permissions to submit. If multiple Collections of this type are available, then the first
one found will be used.

Pro
per
ty:

researcher-profile.hard-delete.enabled

Ex
am
ple
Val
ue:

false

Inf
or
ma
tio
nal
note

Whether to enable "hard delete" when a Researcher Profile is deleted by an EPerson. When "hard delete" is enabled (set to true), then anytime
an EPerson deletes their Researcher Profile, the underlying Person Entity will be deleted (i.e. this acts as a permanent deletion). When "hard
delete" is disabled (set to false, the default value), then anytime an EPerson deletes their Researcher Profile, it will simply be "unlinked". In other
words, the underlying Person Entity will be kept in the system.

Pro
per
ty:

researcher-profile.set-new-profile-visible

Ex
am
ple
Val
ue:

false

Inf
or
ma
tio
nal
note

Whether to make a new Researcher Profile "visible" (i.e. allow anonymous access) on creation. When set to "false" (default value), a newly
created Researcher Profile will only be accessible to the EPerson who created it. That EPerson may chose to make to visible (i.e. allow
anonymous access) at a later time. When set to "true", a newly created Researcher Profile will be immediately accessible to anonymous
users. But, the EPerson who created it may chose to hide it (i.e. disallow anonymous access) at a later time.

Troubleshooting

I cannot find this feature

The feature needs to be enabled explicitly. Please follow the instruction in the section above.Enable the feature

The users sees an error when they try to create their profile

The feature requires that the Person entity be configured in the data model (see) and the user must have permission to submit in at Configurable Entities
least one collection configured to accept Person entities. Please double check that the EPersonAuthority is bound to the metadadspace.object.owner
ta -- see the section above.Enable the feature

299

Statistics and Metrics
Exchange usage statistics with IRUS
DSpace Google Analytics Statistics
SOLR Statistics

300

Exchange usage statistics with IRUS

1 Introduction
2 Prerequisite
3 Configuration
4 Re-trying failed attempts

Introduction

IRUS (Institutional Repository Usage Statistics) enables Institutional Repositories to share and expose statistics based on the COUNTER standard.
It offers opportunities for benchmarking and acts as an intermediary between repositories and other agencies.

IRUS is currently available in the following areas/countries:

United Kingdom: https:// .jisc.ac.ukirus /
Australia and New-Zealand: https:// .jisc.ac.uk/ - /irus irus anz
United States: https://www.lyrasis.org/programs/Pages/IRUS-US.aspx

Prerequisite

The DSpace server should be able to access the tracker’s base production and test URL's.
The tracker's base production URL will depend on the area/country where your repository is located:

United Kingdom: http://irus.jisc.ac.uk/counter/
Australia and New-Zealand: https://irus.jisc.ac.uk/counter/anz/
United States: https://irus.jisc.ac.uk/counter/us/

The tracker's base test URL is common to all areas/countries:

https://irus.jisc.ac.uk/counter/test/

Access to the tracker's base URLs can easily be verified using a command with the applicable URL, e.g.:wget

wget https://irus.jisc.ac.uk/counter/test/

The above command should return a HTTP 200.

Configuration

The IRUS statistics tracker can be configured in the irus-statistics.cfg file which can be found [dspace-src]/dspace/config/modules.

Property Description Default

irus.statistics.
tracker.enabled

Configuration used to enable the IRUS statistics tracker. Set to true to enable. false

irus.statistics.
tracker.type-field

Metadata field to check if certain items should be excluded from tracking. If empty or commented out, all items
are tracked.

irus.statistics.
tracker.type-value

The values in the above metadata field that will be considered to be tracked.

irus.statistics.
tracker.entity-
types

 The to be included in the tracking. If left empty, only publication hits will be tracked. If entities are entity types
disabled in DSpace (the default in DSpace 7.1), then all Items will be included in tracking.

Publica
tion

irus.statistics.
tracker.
environment

The tracker environment determines to which url the statistics are exported (test or prod). test

irus.statistics.
tracker.testurl

The url to which the trackings are exported when testing. (In theory, this should be https://irus.jisc.ac.uk/counter
)/test/

irus.statistics.
tracker.produrl

The url to which the trackings are exported in production. (this will depend on your area/country, refer to the
Prerequisite section)

irus.statistics.
tracker.urlversion

Tracker version

301

http://www.irus.mimas.ac.uk/
https://irus.jisc.ac.uk/
https://irus.jisc.ac.uk/
https://irus.jisc.ac.uk/irus-anz/
https://www.lyrasis.org/programs/Pages/IRUS-US.aspx
http://irus.jisc.ac.uk/counter/
https://irus.jisc.ac.uk/counter/anz/
https://irus.jisc.ac.uk/counter/us/
https://irus.jisc.ac.uk/counter/test/
https://irus.jisc.ac.uk/counter/test/
https://irus.jisc.ac.uk/counter/test/

irus.statistics.
spider.agentregex.
url

External URL pointing to the COUNTER user agents file. The user agents file is downloaded from the provided
URL as part of the Apache ant build process.

Item views determined by DSpace to have been generated by bots/spiders are not sent to IRUS. Including this
additional (and optional) agents file can reduce unnecessary network traffic by reducing the need to transfer
view data that will be ignored by IRUS.

Example value: https://raw.githubusercontent.com/atmire/COUNTER-Robots/master/generated
/COUNTER_Robots_list.txt

irus.statistics.
spider.agentregex.
regexfile

Location where the user agents file should be downloaded to. The Apache ant build process that retrieves the
user agents file from the URL specified above places it in the location specified here.

Example value: ${dspace.dir}/config/spiders/agents/COUNTER_Robots_list.txt

Re-trying failed attempts

If the IRUS tracker is down or some other kind of error should occur preventing DSpace from committing to the tracker, the record is stored in the database
in a separate table () that is being created automatically during deployment. Committing these entries can be tried again using the OpenUrlTracker
following command.

[deployed-dspace]/bin/dspace retry-tracker

This will iterate over all the logged entries and retry committing them. If they fail again, they remain in the table, if they succeed, they are removed.

It is strongly advised to schedule this script to be executed daily or weekly (preferable at low load-times during the night or weekend). If there are no failed
entries, the script will not perform any actions and exit immediately.

302

https://raw.githubusercontent.com/atmire/COUNTER-Robots/master/generated/COUNTER_Robots_list.txt
https://raw.githubusercontent.com/atmire/COUNTER-Robots/master/generated/COUNTER_Robots_list.txt

DSpace Google Analytics Statistics

Google Analytics Support
Enabling Google Analytics
Configuring Google Analytics

Google Analytics Reports in DSpace UI
Configuration settings for Google Analytics Statistics

Google Analytics development and debugging
Identifying outgoing events in Chrome Dev Tools
The GA4 Measurement protocol and event parameters
Analytics Debug View and Debugger Chrome extension

Google Analytics Support

It is possible to record User Interface traffic by enabling the recording of Google Analytics data within DSpace. DSpace supports Universal either
Analytics or . Also, under GA4 it currently supports the Google Tag (gtag.js), but not Google Tag Manager (GTM).Google Analytics 4

Enabling Google Analytics

By default, Google Analytics is disabled in DSpace. To enable it, simply set the value of in either your local.cfg or dspace.cfggoogle.analytics.key :

For Universal Analytics (older style Google Analytics)
google.analytics.key = UA-XXXXXX-X

Or, for Google Analytics 4
google.analytics.key = G-XXXXX

When Google Analytics is disabled, you will see 404 responses returned from the REST API whenever the User Interface attempts to access ${dspace.
 . This is expected behavior, as that 404 response is the REST API telling the server.url}/api/config/properties/google.analytics.key

User Interface that Google Analytics is not configured. When the UI sees that 404 from the REST API, it disables Google Analytics tracking the UI.

Configuring Google Analytics

Additional configuration are provided to allow for enhanced Google Analytics support.

Prope
rty:

google.analytics.buffer.limit

Exam
ple
Value:

 = 256google.analytics.buffer.limit

Inform
ationa
l Note:

Maximum number of events held in the buffer to send to Google Analytics. Used in conjunction with "cron" settings below.

Prope
rty:

google.analytics.cron

Exam
ple
Value:

google.analytics.cron = 0 0/5 * * * ?

Inform
ationa
l Note:

REQUIRED if you want to send file download events to Google Analytics (where they will be tracked as Google "events"). This defines the
schedule for how frequently events tracked on the backend (like file downloads) will be sent to Google Analytics. Syntax is defined at https://ww

 w.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html

The above example will run this task every 5 minutes (0 0/5 * * * ?)

For Google Analytics 4, you MUST also add the "api-secret" below to support sending download events.

Prope
rty:

google.analytics.api-secret

Exam
ple
Value:

google.analytics.api-secret = mysecret

303

https://support.google.com/analytics/answer/10089681?hl=en
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html

1.

2.

3.

4.
5.

6.

7.

Inform
ationa
l Note:

(Only used for Google Analytics 4) Defines a Measurement Protocol API Secret to be used to track interactions which occur outside of the
user's browser.
This is REQUIRED to track downloads of bitstreams. For more details see https://developers.google.com/analytics/devguides/collection/protocol

 /ga4

Steps to create your API secret are also available from https://www.monsterinsights.com/docs/how-to-create-your-measurement-protocol-api-
secret-in-ga4/

Prope
rty:

google-analytics.bundles

Exam
ple
Value:

google-analytics.bundles = ORIGINAL

Inform
ationa
l Note:

Which Bundles to include in Bitstream statistics. By default, set to ORIGINAL bundle only.

Google Analytics Reports in DSpace UI
DSpace 7 does not yet support

Google Analytics Reporting is not available in DSpace 7.0. While DSpace 7 can capture statistics via Google Analytics (see above), it is not able to display
Google Analytics reports in the DSpace User Interface (like was supported in the XMLUI). It is under discussion as it's unclear how many sites used this
feature. See DSpace Release 7.0 Status

As of DSpace version 5.0 it has also become possible to expose that recorded Google Analytics data within DSpace. The data is retrieved from Google
using the Google Analytics Reporting API v3. This feature is disabled by default, to enable it please follow the instructions below.

Please read the documentation found at and https://developers.google.com/analytics/devguides/reporting/core/v3/ https://developers.google.com
. It is the definitive documentation, however, it is over detailed for our purposes so the critical steps are summarised /accounts/docs/OAuth2ServiceAccount

below. The theory is that as a developer you would create a Google project, write your application and store the code in the Google code repository, then
create a Google Service Account which your application could use to retrieve data from the Google Analytics API. In our case we already have our
application, DSpace, but we still have to go through the motions of creating a project in order to be able to be able to generate the Service Account which
we need to allow DSpace to talk to the Google Analytics API.

Logon to the Google Developers Console with whatever email address you use to access/manage https://console.developers.google.com/project
your existing Google Analytics account(s).
Create a new Google Project. The assumption is that you are developing some new software and will make use of the Google code repository.
This is not the case but you need to create the skeleton project before you can proceed to the next step.
Enable the Analytics API for the project. In the sidebar on the left, expand . Next, click . In the list of APIs, make sure the status APIs & auth APIs
is for the Analytics API.ON
In the sidebar on the left, select .Credentials
Select , then in the subsequent popup screen select . This will automatically generate the OAuth / Create new Client ID Service account
required Service Account email address and certificate.
Go to your Google Analytics dashboard . Create an account for the newly generated Service Account email http://www.google.com/analytics/
address and give it permission to 'Read and Analyze' at account level. See *Note below.
The generated certificate needs to be placed somewhere that your DSpace application can access and be referenced as described below in the
configuration section..

*Note:- The Google documentation specifies that the Service Account email address should only require 'Read and Analyze' permission. However, it would
appear this may not be the case and it may be necessary to grant greater permissions, at least initially.

Configuration settings for Google Analytics Statistics

In the file review the following fields. These should be either edited directly or overridden [dspace.dir]/config/modules/ .cfggoogle-analytics
in your local.cfg config file (see).Configuration Reference

Prop
erty:

google-analytics.application.name

Valu
e:

Dummy Project

Infor
matio
nal
Note:

Not sure if this property is required but it was in the example code provided by Google. Please do not delete.

Prop
erty:

google-analytics.table.id

Exa
mple
Valu
e:

ga:12345678

304

https://developers.google.com/analytics/devguides/collection/protocol/ga4
https://developers.google.com/analytics/devguides/collection/protocol/ga4
https://www.monsterinsights.com/docs/how-to-create-your-measurement-protocol-api-secret-in-ga4/
https://www.monsterinsights.com/docs/how-to-create-your-measurement-protocol-api-secret-in-ga4/
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://developers.google.com/analytics/devguides/reporting/core/v3/
https://developers.google.com/accounts/docs/OAuth2ServiceAccount
https://developers.google.com/accounts/docs/OAuth2ServiceAccount
https://console.developers.google.com/project
http://www.google.com/analytics/

Infor
matio
nal
Note:

Logon to the Google Analytics Dashboard and select the Property (or website in plain English) that you wish to target. Then select the Admin
section for the property. You should then be able to select the 'view settings' for the view you are interested in. The View ID should replace
12345678 below (note - confusingly the Reporting API documentation refers to the View ID as Table ID).

Prop
erty:

google-analytics.account.email

Exa
mple
Valu
e:

xx@developer.gserviceaccount.com

Infor
matio
nal
Note:

The email address automatically generated when you created the Service Account.

Prop
erty:

google-analytics.certificate.location

Exa
mple
Valu
e:

/home/example/dslweb--privatekey.p12

Infor
matio
nal
Note:

The certificate file automatically generated when you created the Service Account.

Prop
erty:

google-analytics.authorization.admin.usage

Exa
mple
Valu
e:

true

Infor
matio
nal
Note:

Control if the statistics pages should be only shown to authorized users. If enabled, only the administrators for the DSpaceObject will be able to
view the statistics. If disabled, anyone with READ permissions on the DSpaceObject will be able to view the statistics.

Google Analytics development and debugging

Identifying outgoing events in Chrome Dev Tools

Through "Inspect Element" in Chrome dev tools, you can identify outgoing requests to Google Analytics filtering on requests starting with "collect?"

The GA4 Measurement protocol and event parameters

https://www.thyngster.com/ga4-measurement-protocol-cheatsheet/ provides a handy overview of the parameters that are sent along

Analytics Debug View and Debugger Chrome extension

DebugView documentation: https://support.google.com/analytics/answer/7201382?hl=en

305

https://www.thyngster.com/ga4-measurement-protocol-cheatsheet/
https://support.google.com/analytics/answer/7201382?hl=en

SOLR Statistics
DSpace uses the Apache SOLR application underlying the statistics. SOLR enables performant searching and adding to vast amounts of (usage) data.
Unlike previous versions, enabling statistics in DSpace does not require additional installation or customization. All the necessary software is included.

1 What is exactly being logged ?
1.1 Common stored fields for all usage events
1.2 Unique stored fields for bitstream downloads
1.3 Unique stored fields for search queries
1.4 Unique stored fields for workflow events

2 Web User Interface Elements
2.1 Pageview and Download statistics

2.1.1 Home page
2.1.2 Community home page
2.1.3 Collection home page
2.1.4 Item home page

2.2 Search Query Statistics
2.3 Workflow Event Statistics

3 Architecture
4 Configuration settings for Statistics

4.1 Pre-1.6 Statistics settings
5 Statistics Administration

5.1 Converting older DSpace logs into SOLR usage data
5.2 Statistics Client Utility
5.3 Anonymizing Statistics

6 Custom Reporting - Querying SOLR Directly
6.1 Resources
6.2 Examples

6.2.1 Top downloaded items by a specific user
7 Managing the City Database File

What is exactly being logged ?

After the introduction of the SOLR Statistics logging, every pageview and file download is logged in a dedicated SOLR statistics core.

In addition to the already existing logging of pageviews and downloads, DSpace also logs search queries users enter in the DSpace search dialog and
workflow events.

DSpace 7.0 does not yet support all features

In DSpace 7.0, only usage statistics (pageview, downloads) are logged. Search statistics and workflow reports (which were available in v6) are not yet
supported, but are both scheduled to be restored in a later 7.x release (currently 7.1 for workflow reports, and 7.2 for search statistics), see DSpace
Release 7.0 Status
Workflow Events logging

Only workflow events, initiated and executed by a physical user are being logged. Automated workflow steps or ingest procedures are currently being not
logged by the workflow events logger.

The logging happens at the server side, and doesn't require a javascript like Google Analytics does, to provide usage data. Definition of which fields are to
be stored happens in the file .dspace/solr/statistics/conf/schema.xml

Although they are stored in the same index, the stored fields for views, search queries and workflow events are different. A new field, statistics_type
determines which kind of a usage event you are dealing with. The three possible values for this field are andview, search workflow.

<field name="statistics_type" type="string" indexed="true" stored="true" required="true" />

Common stored fields for all usage events

306

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status

<field name="type" type="integer" indexed="true" stored="true" required="true" />
<field name="id" type="integer" indexed="true" stored="true" required="true" />
<field name="ip" type="string" indexed="true" stored="true" required="false" />
<field name="time" type="date" indexed="true" stored="true" required="true" />
<field name="epersonid" type="integer" indexed="true" stored="true" required="false" />
<field name="continent" type="string" indexed="true" stored="true" required="false"/>
<field name="country" type="string" indexed="true" stored="true" required="false"/>
<field name="countryCode" type="string" indexed="true" stored="true" required="false"/>
<field name="city" type="string" indexed="true" stored="true" required="false"/>
<field name="longitude" type="float" indexed="true" stored="true" required="false"/>
<field name="latitude" type="float" indexed="true" stored="true" required="false"/>
<field name="owningComm" type="integer" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="owningColl" type="integer" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="owningItem" type="integer" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="dns" type="string" indexed="true" stored="true" required="false"/>
<field name="userAgent" type="string" indexed="true" stored="true" required="false"/>
<field name="isBot" type="boolean" indexed="true" stored="true" required="false"/>
<field name="referrer" type="string" indexed="true" stored="true" required="false"/>
<field name="uid" type="uuid" indexed="true" stored="true" default="NEW" />
<field name="statistics_type" type="string" indexed="true" stored="true" required="true" default="view" />

The combination of and id determines which resource (either community, collection, item page or file download) has been requested.type

Unique stored fields for bitstream downloads

<field name="bundleName" type="string" indexed="true" stored="true" required="false" multiValued="true" />

Unique stored fields for search queries

<field name="query" type="string" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="scopeType" type="integer" indexed="true" stored="true" required="false" />
<field name="scopeId" type="integer" indexed="true" stored="true" required="false" />
<field name="rpp" type="integer" indexed="true" stored="true" required="false" />
<field name="sortBy" type="string" indexed="true" stored="true" required="false" />
<field name="sortOrder" type="string" indexed="true" stored="true" required="false" />
<field name="page" type="integer" indexed="true" stored="true" required="false" />

Unique stored fields for workflow events

<field name="workflowStep" type="string" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="previousWorkflowStep" type="string" indexed="true" stored="true" required="false" multiValued="
true"/>
<field name="owner" type="string" indexed="true" stored="true" required="false" multiValued="true"/>
<field name="submitter" type="integer" indexed="true" stored="true" required="false" />
<field name="actor" type="integer" indexed="true" stored="true" required="false" />
<field name="workflowItemId" type="integer" indexed="true" stored="true" required="false" />

Web User Interface Elements

Pageview and Download statistics

In the UI, pageview and download statistics can be accessed from the "Statistics" navigation menu near the header. That statistics page is "context
aware", so it will show the usage statistics for whatever page (site, Community, Collection) you are currently on.

If you are not seeing the menu, it's likely that they are only enabled for administrators in your installation. Change the configuration parameter
"authorization.admin.usage" in usage-statistics.cfg to false in order to make statistics visible for all repository visitors.

Home page

Starting from the repository homepage, the statistics page displays the top 10 most popular items of the entire repository.

307

https://wiki.lyrasis.org/display/DSDOC8x/Business+Logic+Layer#BusinessLogicLayer-Constants

Community home page

The following statistics are available for the community home pages:

Total visits of the current community home page
Visits of the community home page over a timespan of the last 7 months
Top 10 country from where the visits originate
Top 10 cities from where the visits originate

Collection home page

The following statistics are available for the collection home pages:

Total visits of the current collection home page
Visits of the collection home over a timespan of the last 7 months
Top 10 country from where the visits originate
Top 10 cities from where the visits originate

Item home page

The following statistics are available for the item home pages:

Total visits of the item
Total visits for the bitstreams attached to the item
Visits of the item over a timespan of the last 7 months
Top 10 country views from where the visits originate
Top 10 cities from where the visits originate

Search Query Statistics
DSpace 7.0 does not yet support

Search query statistics are not supported in 7.0, but are scheduled to be released in a later 7.x release (currently 7.2), see .DSpace Release 7.0 Status

The below screenshots and instructions are for 6.x and will need updating for 7.x once this feature is completed.

In the UI, search query statistics can be accessed from the lower end of the navigation menu.

If you are not seeing the link labelled "search statistics", it is likely that they are only enabled for administrators in your installation. Change the
configuration parameter "authorization.admin.search" in usage-statistics.cfg to false in order to make statistics visible for all repository visitors.

The dropdown on top of the page allows you to modify the time frame for the displayed statistics.

The Pageviews/Search column tracks the amount of pages visited after a particular search term. Therefor a zero in this column means that after executing
a search for a specific keyword, not a single user has clicked a single result in the list.

If you are using Discovery, note that clicking the also counts as a search, because clicking a sends a search query to the Discovery index.facets facet

Workflow Event Statistics

308

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.duraspace.org/display/DSDOC3x/Discovery#Discovery-WhatisaSidebarFacet
https://wiki.duraspace.org/display/DSDOC3x/Discovery#Discovery-WhatisaSidebarFacet

DSpace 7.0 does not yet support

Workflow event statistics are not supported in 7.0, but are scheduled to be released in a later 7.x release (currently 7.1), see .DSpace Release 7.0 Status

The below screenshots and instructions are for 6.x and will need updating for 7.x once this feature is completed.

In the UI, search query statistics can be accessed from the lower end of the navigation menu.

If you are not seeing the link labelled "Workflow statistics", it is likely that they are only enabled for administrators in your installation. Change the
configuration parameter "authorization.admin.workflow" in usage-statistics.cfg to false in order to make statistics visible for all repository visitors.

The dropdown on top of the page allows you to modify the time frame for the displayed statistics.

Architecture

The DSpace Statistics Implementation is a Client/Server architecture based on Solr for collecting usage events in the User Interface or REST API
applications of DSpace. Solr must be installed separately from DSpace.

Configuration settings for Statistics

In the file review the following fields. These fields can be edited in place, or overridden in {dspace.dir}/config/modules/ .cfgsolr-statistics
your own local.cfg config file (see).Configuration Reference

Property: solr-statistics.server

Example
Values:

solr-statistics.server = http://127.0.0.1/solr/statistics
solr-statistics.server = ${solr.server}/statistics

Informati
onal
Note:

Is used by the SolrLogger Client class to connect to the Solr server over http and perform updates and queries. In most cases, this can (and
should) be set to localhost (or 127.0.0.1).

To determine the correct path, you can use a tool like to see where Solr is responding on your server. For example, you'd want to wget
send a query to Solr like the following:

wget http://127.0.0.1/solr/statistics/select?q=*:*

Assuming you get an HTTP 200 OK response, then you should set to the '/statistics' URL of 'http://127.0.0.1/solrsolr.log.server
/statistics' (essentially removing the "/select?q= " query off the end of the responding URL.):

Property: solr-statistics.query.filter.bundles

Example
Value:

solr-statistics.query.filter.bundles=ORIGINAL

309

https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
http://127.0.0.1/solr/statistics

Informati
onal
Note:

A comma seperated list that contains the bundles for which the file statistics will be displayed.

Property: solr-statistics.query.filter.isBot

Example
Value:

solr-statistics.query.filter.isBot = true

Informati
onal
Note:

If true, statistics queries will filter out events flagged with the "isBot" field. This is the recommended method of filtering spiders from statistics.

Property: solr-statistics.autoCommit

Example
Value:

solr-statistics.autoCommit = true

Informati
onal
Note:

If true (default), then all view statistics will be committed to Solr whenever the next autoCommit is triggered. This is recommended behavior.
If false, then view statistics will be committed to Solr (i.e. via an explicit commit call). This setting is untested in Production immediately
scenarios, and is primarily used by automated integration tests (to verify that the statistics engine is working properly).

Property: solr-statistics.spiderips.urls

Example
Value:

solr-statistics.spiderips.urls =

http://iplists.com/google.txt, \
http://iplists.com/inktomi.txt, \
http://iplists.com/lycos.txt, \
http://iplists.com/infoseek.txt, \
http://iplists.com/altavista.txt, \
http://iplists.com/excite.txt, \
http://iplists.com/misc.txt

Informati
onal
Note:

List of URLs to download spiders files into [dspace]/config/spiders. These files contain lists of known spider IPs and are utilized by the
SolrLogger to flag usage events with an "isBot" field, or ignore them entirely.

The "stats-util" command can be used to force an update of spider files, regenerate "isBot" fields on indexed events, and delete spiders from
the index. For usage, run:

dspace stats-util -h

from your [dspace]/bin directory

In the file review the following fields. These fields can be edited in place, or overridden in {dspace.dir}/config/modules/ .cfgusage-statistics
your own local.cfg config file (see).Configuration Reference

Prope
rty:

usage-statistics.dbfile

Exam
ple
Value:

usage-statistics.dbfile = ${dspace.dir}/config/GeoLite2-City.mmdb

Infor
matio
nal
Note:

References the location of the installed GeoLite or DB-IP City "mmdb" database file. This file is utilized by the LocationUtils to calculate the
location of client requests based on IP address.

NOTE: This database file MUST be downloaded, installed and updated using third-party tools. See the " " Managing the City Database File
section below.

Prope
rty:

usage-statistics.resolver.timeout

310

https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics#SOLRStatistics-ManagingtheCityDatabaseFile

Exam
ple
Value:

usage-statistics.resolver.timeout = 200

Infor
matio
nal
Note:

Timeout in milliseconds for DNS resolution of origin hosts/IPs. Setting this value too high may result in solr exhausting your connection pool.

Prope
rty:

useProxies (Set in dspace.cfg)

Exam
ple
Value:

useProxies = true

Infor
matio
nal
Note:

Will cause Statistics logging to look for X-Forward URI to detect clients IP that have accessed it through a Proxy service (e.g. the Apache
mod_proxy). Allows detection of client IP when accessing DSpace. [Note: This setting is found in the DSpace Logging section of dspace.cfg]

Prope
rty:

usage-statistics.authorization.admin.usage

Exam
ple
Value:

usage-statistics.authorization.admin.usage = true

Infor
matio
nal
Note:

When set to true, only general administrators, collection and community administrators are able to access the pageview and download statistics
from the web user interface. As a result, the links to access statistics are hidden for non logged-in admin users. Setting this property to "false"
will display the links to access statistics to anyone, making them publicly available.

Prope
rty:

usage-statistics.authorization.admin.search

Exam
ple
Value:

usage-statistics.authorization.admin.search = true

Infor
matio
nal
Note:

When set to true, only system, collection or community administrators are able to access statistics on search queries.

Prope
rty:

usage-statistics.authorization.admin.workflow

Exam
ple
Value:

usage-statistics.authorization.admin.workflow = true

Infor
matio
nal
Note:

 When set to true, only system, collection or community administrators are able to access statistics on workflow events.

Prope
rty:

usage-statistics.logBots

Exam
ple
Value:

usage-statistics.logBots = true

Infor
matio
nal
Note:

When this property is set to false, and IP is detected as a spider, the event is not logged.
When this property is set to true, the event will be logged with the "isBot" field set to true.
(see solr-statistics.query.filter.* for query filter options)

311

Prope
rty:

usage-statistics.shardedByYear

Exam
ple
Value:

usage-statistics.shardedByYear = false

Infor
matio
nal
Note:

When set to "true", the DSpace statistics engine will look for additional Solr Shards (per year) when compiling all usage statistics. Therefore, if
you are regularly running "stats-utils -s" (as documented in the section of the "SOLR Statistics Maintenance" page), "Solr Sharding By Year"
then you should set this to "true".
By default, it is "false", which tells the statistics engine to only compile usage statistics based on what is found in the current Solr core.

Pre-1.6 Statistics settings
DSpace 7.0 does not yet support

Log-based statistics not supported in 7.0. They are under discussion as this feature is not widely used. Tentatively they are scheduled for a possible
release/replacement in 7.1, see .DSpace Release 7.0 Status

Older versions of DSpace featured static reports generated from the log files. They still persist in DSpace today but are completely independent from the
SOLR based statistics.
The following configuration parameters applicable to these reports can be found in dspace.cfg.

Statistical Report Configuration Settings

 # should the stats be publicly available? should be set to false if you only
 # want administrators to access the stats, or you do not intend to generate
 # any
 report.public = false

 # directory where live reports are stored
 report.dir = ${dspace.dir}/reports/

These fields are not used by the new 1.6 Statistics, but are only related to the Statistics from previous DSpace releases

Statistics Administration

Converting older DSpace logs into SOLR usage data

If you have upgraded from a previous version of DSpace, converting older log files ensures that you carry over older usage stats from before the upgrade.

Statistics Client Utility

The command line interface (CLI) scripts can be used to clean the usage database from additional spider traffic and other maintenance tasks. As of
DSpace 3.0, a script has been added to split up the monolithic SOLR core into individual cores each containing a year of statistics.

Anonymizing Statistics

DSpace provides a commandline script (./dspace anonymize-statistics) which allows you to anonymize your statistics to better comply with GDPR and
similar privacy regulations.

The script will anonymise the IP values by rewriting (‘masking’) the last part. This mask is configurable, both for ipv4 and ipv6 addresses.

For IPv4 addresses, the last number will be replaced by the mask, defined by the configuration key ‘anonymise_statistics.ip_v4_mask’ which
defaults to ‘254’.
For example, 109.74.16.171 is rewritten as 109.74.16.254
For IPv6 address, the last two numbers will be replaced by the mask, defined by the configuration key ‘anonymise_statistics.ip_v6_mask’ which
defaults to ‘FFFF:FFFF’. For example, 2001:0db8:85a3:0000:0000:8a2e:0370:7334 is rewritten as 2001:0db8:85a3:0000:0000:8a2e:FFFF:FFFF

For each anonymised record, the DNS field is also replaced by “anonymised”.

Script options available:

The program only processes records older than 90 days. This period can be altered with the config ‘anonymise_statistics.time_limit’ (expressed in
days) in usage-statistics.cfg.
"-s [sleep]" : The script takes an optional parameter ‘-s [sleep]’ (expressed in ms), which will make the Java thread sleep between the calls to Solr
to reduce the load impact.
"-t [threads]" : The Solr service commit mechanism is also optimised by adding multi-threading support. The script takes an optional parameter ‘-t
[threads]’ to indicate how many threads the Solr service can use for this, if not given the thread count defaults to 2.

Statistical records can also be anonymised the moment they are created. Enabling this feature can be done by setting the configuration parameter
"anonymise_statistics.anonymise_on_log" to true in "usage-statististics.cfg" When this configuration property is not set, the feature is disabled by default.

312

https://wiki.lyrasis.org/display/DSDOC6x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-SolrShardingByYear
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSDOC8x/SOLR+Statistics+Maintenance#SOLRStatisticsMaintenance-DSpaceLogConverter

Custom Reporting - Querying SOLR Directly

When the web user interface does not offer you the statistics you need, you can greatly expand the reports by querying the SOLR index directly.

Resources

https://www.safaribooksonline.com/library/view/apache-solr-enterprise/9781782161363/
https://lucidworks.com/blog/faceted-search-with-solr/

Examples

Top downloaded items by a specific user

Query:

http://localhost:8983/solr/statistics/select?indent=on&version=2.2&start=0&rows=10&fl=*%
2Cscore&qt=standard&wt=standard&explainOther=&hl.fl=&facet=true&facet.field=epersonid&q=type:0

Explained:

facet.field=epersonid — You want to group by epersonid, which is the user id.
type:0 — Interested in bitstreams only

<lst name="facet_counts">
 <lst name="facet_fields">
 <lst name="epersonid">
 <int name="66">1167</int>

<int name="117">251</int>

<int name="52">42</int>

<int name="19">36</int>

<int name="88">20</int>

<int name="112">18</int>

<int name="110">9</int>

<int name="96">0</int>

</lst>
 </lst>
</lst>

Managing the City Database File

If you wish to record the geographic locations of clients in your DSpace statistics records (e.g. the City or Country where they are accessing your DSpace),
you install (and regularly update) one of the following IP to City Database Files (in MMDB format). We recommend installing a City-level database, must
as it provides more granular location information than a Country-level database (which can only provide the country where the access originated).

Either install a copy of MaxMind's GeoLite City database (in MMDB format)
Installing MaxMind GeoLite2 is However, you sign up for a (free) MaxMind account in order to obtain a license key to use the free. must
GeoLite2 database.
You will need to arrange regular downloads of the GeoLite2 database. MaxMind to do the offers an updater tool (geoipupdate)
downloading/updating, and a number of Linux distributions package it (as). geoipupdate You will still need to configure your license

Use it before restarting DSpace, to get an up-to-date database.key prior to usage.
Once the "GeoLite2-City.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
NOTE: This file is frequently updated by , so you will need to refresh it regularly (ideally by scheduling the updater tool via MaxMind.com
a cron job or similar). As this is written, the database is updated monthly, and to be allowed to obtain it you need to agree to keep your
copy updated.

Or, you can alternatively use/install (in MMDB format)DB-IP's City Lite database
This database is also free to use, but does require an account to download.not
You will need to arrange regular downloads of the City Lite database. DB-IP to do the downloadingoffers an updater tool (dbip-update)
/updating, but it requires PHP to run.

313

https://www.safaribooksonline.com/library/view/apache-solr-enterprise/9781782161363/
https://lucidworks.com/blog/faceted-search-with-solr/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoipupdate/#For_Free_GeoLite2_Databases
http://MaxMind.com
https://db-ip.com/db/download/ip-to-city-lite
https://db-ip.com/tutorials/database-file-update

Once the "dbip-city-lite.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
NOTE: This file is frequently updated by , so you will need to refresh it regularly (ideally by scheduling the updater tool via a DB-IP.com
cron job or similar). As this is written, the database is updated monthly with the latest available at https://db-ip.com/db/download/ip-to-city-
lite

314

https://db-ip.com/
https://db-ip.com/db/download/ip-to-city-lite
https://db-ip.com/db/download/ip-to-city-lite

SOLR Statistics Maintenance

1 DSpace Log Converter
2 Filtering and Pruning Spiders
3 Export SOLR records to intermediate format for import into another tool/instance
4 Export SOLR statistics, for backup and moving to another server
5 Import SOLR statistics, for restoring lost data or moving to another server
6 Reindex SOLR statistics, for upgrades or whenever the Solr schema for statistics is changed
7 Upgrade Legacy DSpace Object Identifiers (pre-6x statistics) to DSpace 6x UUID Identifiers
8 Solr Sharding By Year

8.1 Technical implementation details
8.2 Testing Solr Shards

DSpace Log Converter

The use of Solr for statistics in DSpace makes it possible to have a database of statistics. With this in mind, there is the issue of the older log files and how
a site can use them. The following command process is able to convert the existing log files and then import them for Solr use. The user will need to
perform this conversion only once.

The Log Converter program converts log files from dspace.log into an intermediate format that can be inserted into Solr.

Command used: [dspace]/bin/dspace stats-log-converter

Java class: org.dspace.statistics.util.ClassicDSpaceLogConverter

Arguments short
and long forms):

Description

-i or --in Input file

-o or --out Output file

-m or --
multiple

Adds a wildcard at the end of input and output, so it would mean dspace.log* would be if -i dspace.log -m was specified,
converted. (i.e. all of the following: etc.)dspace.log, dspace.log.1, dspace.log.2, dspace.log.3,

-n or --
newformat

If the log files have been created with DSpace 1.6 or newer

-v or --verbose Display verbose output (helpful for debugging)

-h or --help Help

The command loads the intermediate log files that have been created by the aforementioned script into Solr.

Command used: [dspace]/bin/dspace stats-log-importer

Java class: org.dspace.statistics.util.StatisticsImporter

Arguments
(short and long
forms):

Description

-i or --in input file

-m or --
multiple

Adds a wildcard at the end of the input, so it would mean dspace.log* would be imported

-s or --
skipdns

To skip the reverse DNS lookups that work out where a user is from. (The DNS lookup finds the information about the host from its
IP address, such as geographical location, etc. This can be slow, and wouldn't work on a server not connected to the internet.)

-v or --
verbose

Display verbose ouput (helpful for debugging)

-l or --local For developers: allows you to import a log file from another system, so because the handles won't exist, it looks up random items in
your local system to add hits to instead.

-h or --help Help

Although the DSpace Log Convertor applies basic spider filtering (googlebot, yahoo slurp, msnbot), it is far from complete. Please refer to Filtering and
 for spider removal operations, after converting your old logs.Pruning Spiders

Filtering and Pruning Spiders

315

Command used: [dspace]/bin/dspace stats-util

Java class: org.dspace.statistics.util.StatisticsClient

Arguments (short and
long forms):

Description

-b or --reindex-
bitstreams

Reindex the bitstreams to ensure we have the bundle name

-r or --remove-
deleted-bitstreams

While indexing the bundle names remove the statistics about deleted bitstreams

-u or --update-
spider-files

Update Spider IP Files from internet into . Downloads Spider files identified in [dspace]/config/spiders dspace.cfg
under property . See solr.spiderips.urls Configuration settings for Statistics

-f or --delete-
spiders-by-flag

Delete Spiders in Solr By isBot Flag. Will prune out all records that have isBot:true

-m or --mark-spiders Update isBot Flag in Solr. Marks any records currently stored in statistics that match entries in spiders files

-h or --help Calls up this brief help table at command line.

Notes:

The usage of these options is open for the user to choose. If you want to keep spider entries in your repository, you can just mark them using " " and -m
they will be excluded from statistics queries when " " in the . If you want to keep the solr.statistics.query.filter.isBot = true dspace.cfg
spiders out of the solr repository, just use the " " option and they will be removed immediately.-f

Spider IPs are specified in files containing one pattern per line. A line may be a comment (starting with "#" in column 1), empty, or a single IP address or
DNS name. If a name is given, it will be resolved to an address. Unresolvable names are discarded and will be noted in the log.

There are guards in place to control what can be defined as an IP range for a bot. In , spider IP address ranges have to be [dspace]/config/spiders
at least 3 subnet sections in length 123.123.123 and IP Ranges can only be on the smallest subnet [123.123.123.0 - 123.123.123.255]. If not, loading that
row will cause exceptions in the dspace logs and exclude that IP entry.

Spiders may also be excluded by DNS name or Agent header value. Place one or more files of patterns in the directories [dspace]/config/spiders
 and/or . Each line in a pattern file should be either empty, a comment starting with "#" in column 1, or /domains [dspace]/config/spiders/agents

a regular expression which matches some names to be recognized as spiders.

Export SOLR records to intermediate format for import into another tool/instance

Command used: [dspace]/bin/dspace stats-util

Java class: org.dspace.statistics.util.StatisticsClient

Arguments (short and long forms): Description

-e or --export Export SOLR view statistics data to usage statistics intermediate format

This exports the records to . This will chunk the files at 10,000 records to new files. This can be imported with [dspace]/temp/usagestats_0.csv sta
 to ts-log-importer SOLR Statistics

Export SOLR statistics, for backup and moving to another server

Command used: [dspace]/bin/dspace solr-export-statistics

Java class: org.dspace.util.SolrImportExport

Arguments (short
and long forms):

Description

- i or - -index-
name

optional, the name of the index to process. "statistics" is the default. "authority" can also be exported.

-l or --last i
nteger

optionally export only many days worth of statisticsinteger

-d or --
directory

optional, directory to use for storing the exported files. By default, t is used. If that is not appropriate (due [dspace]/solr-expor
to storage concerns), we recommend you use this option to specify a more appropriate location.

- f or - -force-
overwrite

optional, overwrite export file if it exists (DSpace 6.1 and later)

316

https://wiki.duraspace.org/display/DSDOC3x/DSpace+Statistics#DSpaceStatistics-ConfigurationsettingsforStatistics

Import SOLR statistics, for restoring lost data or moving to another server

Command used: [dspace]/bin/dspace solr-import-statistics

Java class: org.dspace.util.SolrImportExport

Arguments (short
and long forms):

Description

- i or - -index-
name

optional, the name of the index to process. "statistics" is the default. "authority" can also be imported.

-c or --clear optional, clears the contents of the existing stats core before importing

-d or --
directory

optional, directory which contains the files for importing. By default, is used. If that is not appropriate [dspace]/solr-export
(due to storage concerns), we recommend you use this option to specify a more appropriate location.

Reindex SOLR statistics, for upgrades or whenever the Solr schema for statistics is changed

Comman
d used:

[dspace]/bin/dspace solr-reindex-statistics

Java
class:

org.dspace.util.SolrImportExport

Argumen
ts (short
and long
forms):

Description

- i or - -
index-
name

optional, the name of the index to process. "statistics" is the default

-k or
--keep

optional, tells the script to keep the intermediate export files for possible later use (by default all exported files are removed at the end of the
reindex process).

-d or
--
directo
ry

optional, directory to use for storing the exported files (temporarily, unless you also specify , see above). By default, --keep [dspace]
 is used. If that is not appropriate (due to storage concerns), we recommend you use this option to specify a more /solr-export

appropriate location. Not sure about your space requirements? You can estimate the space required by looking at the current size of [dspac
e]/solr/statistics

- f or - -
force-
overwrite

optional, overwrite export file if it exists (DSpace 6.1 and later)

NOTE: is safe to run on a live site. The script stores incoming usage data in a temporary SOLR core, and then merges that solr-reindex-statistics
new data into the reindexed data when the reindex process completes.

Upgrade Legacy DSpace Object Identifiers (pre-6x statistics) to DSpace 6x UUID Identifiers
This command was introduced in and will be included in the release as well.DSpace 7.0 DSpace 6.4

It is recommended that all DSpace instances with legacy identifiers perform this one-time upgrade of legacy statistics records.

This action is safe to run on a live site. As a precaution, it is recommended that you backup you statistics shards before performing this action.

Note: a link to this section of the documentation should be added to the DSpace 6.4 Release Notes. (It is already noted in the DSpace 7.0 Upgrading
 page, step 11d)DSpace

The DSpace 6x code base changed the primary key for all DSpace objects from an integer id to UUID identifiers. Statistics records that were created
before upgrading to DSpace 6x contain the legacy identifiers.

While the DSpace user interfaces make some attempt to correlate legacy identifiers with uuid identifiers, it is recommended that users perform this one
time upgrade of legacy statistics records.

If you have sharded your statistics repository, this action must be performed on each shard.

Command used: [dspace]/bin/dspace solr-upgrade-statistics-6x

Java class: org.dspace.util.SolrUpgradePre6xStatistics

Arguments (short and long forms): Description

- i or - -index-name Optional, the name of the index to process. "statistics" is the default

317

-n or --num_rec Optional. Total number of records to update (defaut=100,000).

To process all records, set -n to 10000000 or to 100000000 (10M or 100M)
If possible, please allocate 2GB of memory to this process (e.g. -Xmx2000m)

-b or --batch_size Number of records to batch update to SOLR at one time (default=10,000).

NOTE: This process will rewrite most solr statistics records and may temporarily double the size of your statistics repositories.

If a UUID value cannot be found for a legacy id, the legacy id will be converted to the form "xxxx-unmigrated" where xxxx is the legacy id.

Solr Sharding By Year
The DSpace tool described below for managing Solr data through yearly sharding no longer functions in DSpace 7.x (see also https://github.com/DSpace

). Using these tools to manage Solr shards is no longer recommended. Alternative approaches are being explored and this page will /DSpace/issues/8478
be updated to reflect those findings.

Command used: [dspace]/bin/dspace stats-util

Java class: org.dspace.statistics.util.StatisticsClient

Arguments (short and long
forms):

Description

-s or --shard-solr-index Splits the data in the main Solr core up into a separate core for each year. This will upgrade the performance of
Solr.

Notes:

Yearly Solr sharding is a routine that can drastically improve the performance of your DSpace SOLR statistics. It was introduced in DSpace 3.0 and is not
backwards compatible. The routine decreases the load created by the logging of new usage events by reducing the size of the SOLR Core in which new
usage data are being logged. By running the script, you effectively split your current SOLR core, containing all of your usage events, into different SOLR
cores that each contain the data for one year. In case your DSpace has been logging usage events for less than one year, you will see no notable
performance improvements until you run the script after the start of a new year. Both writing new usage events as well as read operations should be more
performant over several smaller SOLR Shards instead of one monolithic one.

It is highly recommended that you execute this script once at the start of every year. To ensure this is not forgotten, you can include it in your crontab or
other system scheduling software. Here's an example cron entry (just replace [dspace] with the full path of your DSpace installation):

At 12:00AM on January 1, "shard" the DSpace Statistics Solr index. Ensures each year has its own Solr index
- this improves performance.
0 0 1 1 * [dspace]/bin/dspace stats-util -s

You MUST restart Tomcat after sharding

After running the statistics shard process, the "View Usage Statistics" page(s) in DSpace will automatically recognize the new shard.not

Restart tomcat to ensure that the new shard is recognized & included in usage statistics queries.

318

https://github.com/DSpace/DSpace/issues/8478
https://github.com/DSpace/DSpace/issues/8478

1.
2.
3.

4.

5.

Repair of Shards Created Before DSpace 5.7 or DSpace 6.1

If you ran the shard process before upgrading to DSpace 5.7 or DSpace 6.1, the multi-value fields such as owningComm and onwningColl are likely be
corrupted. Previous versions of the shard process lost the multi-valued nature of these fields. Without the multi-valued nature of these fields, it is difficult to
query for statistics records by community / collection / bundle.

You can verify this problem in the solr admin console by looking at the owningComm field on existing records and looking for the presence of "\\," within
that field.

The following process may be used to repair these records.

Backup your solr statistics-xxxx directories while tomcat is down.
Backup and delete the contents of the dspace-install/solr-export directory
For each "statistics-xxxx" shard that exists, export the repository

dspace solr-export-statistics -i statistics-xxxx -f

Run the following to repair records in the dspace-install/solr-export directory

for file in *
do
sed -E -e "s/[\\]+,/,/g" -i $file
done

For each shard that was exported, run the following import

dspace solr-import-statistics -i statistics-xxxx -f

If you repeat the query that was run previously, the fields containing "\\," should now contain an array of owning community ids.
Shard Naming

Prior to the release of DSpace 6.1, the shard names created were off by one year in timezones with a positive offset from GMT.

Shards created subsequent to this release may appear to skip by one year.

See

Technical implementation details

After sharding, the Solr data cores are located in the [dspace.dir]/solr directory. There is no need to define the location of each individual core in solr.xml
because they are automatically retrieved at runtime. This retrieval happens in the method located in the class. static org.dspace.statistics.SolrLogger
These cores are stored in the list. Each time a query is made to Solr, these cores are added as shards by the statisticYearCores addAdditionalSolrYearCor

 method. The cores share a common configuration copied from your original core. Therefore, no issues should be resulting from subsequent es statistics an
s.t update

The actual sharding of the of the original Solr core into individual cores by year is done in the method in the shardSolrIndex org.dspace.statistics.
 class. The sharding is done by first running a facet on the time to get the facets split by year. Once we have our years from our logs we query SolrLogger

the main Solr data server for all information on each year & download these as CSVs. When we have all data for one year, we upload it to the newly
created core of that year by using the handler. Once all data of one year have been uploaded, those data are removed from the main Solr (by update csv
doing it this way if our Solr crashes we do not need to start from scratch).

Multiple Shard Fix (DSpace 6.1)

A bug exists in the DSpace 6.0 release that prevents tomcat from starting when multiple shards are present.

To address this issue, the initialization of SOLR shards is deferred until the first SOLR related requests are processed.

See

Testing Solr Shards

Testing Solr Shards

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

319

http://wiki.apache.org/solr/UpdateCSV

Testing Solr Shards
These notes detail how to test and manipulate SOLR statistics shards.

Testing CSV Export

The SOLR Admin Console provides a mechanism to test the CSV Export Process and Parameters

Testing CSV Import

The SOLR Admin Console provides a mechanism to access the CSV Upload process. Unfortunately, it does not all parameters to be provided.

Note that the multi-value field is corrupted if you import by this manner.

320

It is possible to csv import parameters using curl.

Running CSV Upload with curl

curl -F "data=@statistics-2006_export_2007-04.csv" "http://localhost/solr/statistics-2006/update/csv?
skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.
owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.
separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-
8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2"

Creating a Shard in the Admin Console

While this is probably not necessary, it is possible to create an empty shard in the Solr Admin console.

Note that existing shards use the statistics directory as an "instance" directory.

Manually create a new shard

321

http://localhost/solr/statistics-2006/update/csv?skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2
http://localhost/solr/statistics-2006/update/csv?skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2
http://localhost/solr/statistics-2006/update/csv?skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2
http://localhost/solr/statistics-2006/update/csv?skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2
http://localhost/solr/statistics-2006/update/csv?skip=_version_&csv.mv.escape=%5C&f.owningColl.split=true&f.owningColl.separator=%7C&f.owningComm.split=true&f.owningComm.separator=,&f.owningItem.split=true&f.owningItem.separator=%7C&f.bundleName.split=true&f.bundleName.separator=%7C&stream.contentType=text%2Fcsv%3Bcharset%3Dutf-8&commit=true&softCommit=false&waitSearcher=true&wt=javabin&version=2

The new shard can be queried like the other ones

322

User Interface
Multilingual Support
IIIF Configuration
Contextual Help Tooltips
Discovery
Browse
Accessibility
User Interface Customization
User Interface Configuration

323

Multilingual Support
DSpace supports a number of languages & you can even add your own translation. This may also be referred to as Localization (l10n) or
Internationalization (i18n).

Multilingual Support on the Backend (REST API)
Where to find the message catalog
Where to edit the message catalog
Localization of email messages
Metadata localization
Localization of submission-forms.xml
Localization of license.default

Multilingual Support on the Frontend (UI)

Multilingual Support on the Backend (REST API)

In order to deploy a multilingual version of DSpace you have to configure two parameters in :[dspace-source]/ local.cfgdspace/config/

default.locale, e.g. default.locale = en
webui.supported locales, e.g. webui.supported.locales = en, de

The Locales might have the form country, country_language, country_language_variant.

According to the languages you wish to support, you have to make sure that all the i18n related files are available.

Where to find the message catalog

The latest message catalog is part of the main DSpace distribution and can be found at: English [dspace-source]/dspace-api/src/main
/resources/Messages.properties

The for this message catalog are being managed separately from the DSpace core project, in order to release updates for these different translations
files more frequently than the DSpace software itself. Visit the .dspace-api-lang project on Github

Where to edit the message catalog

In some cases you may want to add additional keys to the message catalog or changing the particular wording of DSpace concepts. For example, you may
want to change "Communities" into "Departments". These kind of changes may get automatically overwritten again when you upgrade to the newest
version of DSpace. It is therefore advised to keep such changes isolated in the following location: [dspace-source]/dspace/modules/server/src
/main/resources/Messages.properties

After rebuilding DSpace, any messages files placed in this directory will be automatically included in the Server web application. Files of the same name
will override any default files. By default, this full directory path may not exist or may be empty. If it does not exist, you can simply create it. You can place
any number of translation catalogues in this directory. To add additional translations, just add another copy of the M file translated into essages.properties
the specific language and country variant you need.

For more information about the directory, and how it may be used to "overlay" (or customize) the default Server [dspace-source]/dspace/modules/
Webapp, classes and files, please see: Advanced Customisation

Localization of email messages

All email templates used by DSpace can be found in [dspace]/config/emails/

The contents of the emails can be edited and translated.

Metadata localization

DSpace associates each metadata field value with a language code (though it may be left empty, e.g. for numeric values).

Localization of submission-forms.xml

The display labels for submission-forms.xml are currently not managed in the messages catalogs. To localize this file, you can create versions of this file in
the same folders, appending _COUNTRY at the end of the filename, before the extension. For example, can be used to submission-forms_de.xml
translate the submission form labels in German.

There is a known bug that any translated submission forms (e.g. submission-forms_de.xml) must include all the form-definitions available in the
system. When they are not all included, DSpace will fall back to the default submission forms / locale. See https://github.com/DSpace/DSpace/issues
/2827

Localization of license.default

324

https://github.com/DSpace/dspace-api-lang
https://wiki.lyrasis.org/display/DSDOC7x/Advanced+Customisation
https://github.com/DSpace/DSpace/issues/2827
https://github.com/DSpace/DSpace/issues/2827

The text in the default submission license (license.default) is currently not managed in the messages catalogs. It is translatable by appending _COUNTRY
at the end of the filename, before the extension like for the localization of the input-forms.xml.

Multilingual Support on the Frontend (UI)

By default, DSpace will look at the user's browser language. If it has a language file in the user's language, it will render the interface in that language. If
not, it will default to English or another default that you have configured.

The User Interface translations can be found in the folder of your UI's codebase. You can add additional translations & contribute /src/assets/i18n/
them back to the project. For details see DSpace 7 Translation - Internationalization (i18n) - Localization (l10n)

All translations of the UI are provided in format, which includes support for inline comments.JSON5

You can choose which languages you wish to enable/support in your UI by modifying the language section of your config.prod.yml file, which in turn, will
generate a section like this in your configuration file:environment.prod.ts

 // Default Language in which the UI will be rendered if the user's browser language is not an active language
 defaultLanguage: 'en',
 // Languages. DSpace Angular holds a message catalog for each of the following languages.
 // When set to active, users will be able to switch to the use of this language in the user interface.
 languages: [{
 code: 'en',
 label: 'English',
 active: true,
 }, {
 code: 'de',
 label: 'Deutsch',
 active: true,
 }, {
 code: 'cs',
 label: 'eština',
 active: true,
 }, {
 code: 'nl',
 label: 'Nederlands',
 active: true,
 }],

As shown above, the "defaultLanguage" is the language that your UI will use , if the user's browser has not specified a preferred languageby default

The array of "languages" are all of the additional languages you wish to support.

The "code" must match the prefix of a language file located in your folder*.json5 /src/assets/i18n/
The "label" is the text you want to display in the UI language selector (the globe in the header)
The "active" setting allows you to decide whether that language appears in the UI language selector or not.

Any changes to the language settings require rebuilding & redeploying your UI.

325

https://wiki.lyrasis.org/pages/viewpage.action?pageId=117735441
https://json5.org/

IIIF Configuration

Overview
Format Support

Enable IIIF Support on Backend
Install a IIIF Image Server

Installing and Configuring Cantaloupe
Required IIIF Configuration
Additional Configuration Options
CORS Configuration
IIIF Search API

Enable/Install the Mirador Viewer on Frontend
Configuring Mirador

Configure IIIF viewer via Metadata Fields

Overview
Supported in 7.1 or above

IIIF support was first added to DSpace in version 7.1. It was not available in 7.0 or below.

DSpace supports the I . The DSpace REST API implements the , nternational Image Interoperability Framework (IIIF) IIIF Presentation API version 2.1.1 IIIF
, and the (experimental). The DSpace Angular frontend uses the viewer.Image API version 2.1.1 IIIF Search API version 1.0 Mirador 3.0

Administrators can configure IIIF behavior at the Collection, Item, Bundle and Bitstream levels using metadata. To support additional sharing, viewing,
 DSpace can be configured to share IIIF metadata with external IIIF clients (see)comparing, and annotating, CORS Configuration . IIIF REST endpoints

implement the same security protocol as the primary REST API so that DSpace authorization policies are enforced for IIIF access as well.

IIIF Image Server

Running IIIF in production requires an IIIF-compatible image server. You are free to use any compatible image server you choose. However, instructions
for configuring the are included below. A to simplify Cantaloupe Image Server preconfigured Cantaloupe image server can be started via docker-compose
evaluation and testing.

Format Support

Currently, DSpace only supports IIIF viewing of Image formats (any format whose MIME type starts with "image/*"). For example, PDF viewing is not
currently supported.

326

https://iiif.io/
https://iiif.io/api/presentation/2.1/
https://iiif.io/api/image/2.1/#status-of-this-document
https://iiif.io/api/image/2.1/#status-of-this-document
https://iiif.io/api/search/1.0/
https://projectmirador.org/
https://wiki.lyrasis.org/pages/viewpage.action?pageId=225149960#IIIFConfiguration(Draft)-CORSConfiguration
https://cantaloupe-project.github.io/
https://github.com/DSpace/DSpace/tree/main/dspace/src/main/docker-compose#run-dspace-7-rest-with-a-iiif-image-server-from-your-branch

Enable IIIF Support on Backend
DSpace IIIF support is not enabled by default. To enable IIIF, you first need to install a IIIF Image Server, and then update your DSpace configuration as
described below.

Install a IIIF Image Server

The is currently recommended for use with DSpace, but you are free to use the image server of your choice. Cantaloupe Image Server A list of IIIF-
 is maintained by the IIIF community.compliant image servers

Here is a brief overview of how the IIIF image server works with DSpace.

First, the base path to the image server is defined in config/modules/iiif.cfg.

iiif.image.server = https://imageserver.mycampus.edu/image-server/cantaloupe/iiif/2/

Given this configuration, the IIIF returned by the DSpace backend will include an image resource annotation like the following:manifest

IIIF Image Resource Annotation

resource: {
 @id: "https://imageserver.mycampus.edu/image-server/cantaloupe/iiif/2/4b415036-57a8-42f4-a971-
c5e982f55f92/full/full/0/default.jpg",
 @type: "dctypes:Image",
 service: {
 @context: "http://iiif.io/api/image/2/context.json",
 @id: "https://imageserver.mycampus.edu/image-server/cantaloupe/iiif/2/4b415036-57a8-42f4-a971-
c5e982f55f92",
 profile: "http://iiif.io/api/image/2/level1.json",
 protocol: "http://iiif.io/api/image"
 },
 format: "image/jp2"
}

The Mirador viewer (see below) uses this annotation to communicate with the image server using the IIIF Image API.

Finally, notice that the image server needs to retrieve the requested bitstream from DSpace. There are a number of ways to do this and the details vary
with the image server chosen. The easiest approach is for the image server to request the bitstream via HTTP and the DSpace API, e.g.:

 http:/dspace.mycampus.edu:8080/server/api/core/bitstreams/4b415036-57a8-42f4-a971-c5e982f55f92/content

Installing and Configuring Cantaloupe

The Cantaloupe provides installation instructions. The basic installation process is simple. getting started page

The simplest way to configure Cantaloupe to retrieve images from DSpace is to use with the following configuration.HTTPSource

HttpSource.BasicLookupStrategy.url_prefix = <dspace-url>/server/api/core/bitstreams/
HttpSource.BasicLookupStrategy.url_suffix = /content

Required IIIF Configuration

To enable IIIF, edit or your true"config/modules/iiif.cfg local.cfg file and set iiif.enabled to be " .

iiif.enabled = true

In addition, you need to provide the URL for your newly installed IIIF image server. e.g.:

iiif.image.server = http://localhost:8182/iiif/2/

Finally, update or your file by adding "iiif" to the default event dispatcher, as shown below:dspace.cfg local.cfg

327

https://cantaloupe-project.github.io/
https://iiif.io/apps-demos/#image-servers
https://iiif.io/apps-demos/#image-servers
https://cantaloupe-project.github.io/manual/4.1/getting-started.html
https://cantaloupe-project.github.io/manual/5.0/sources.html#HttpSource

event.dispatcher.default.consumers = versioning, discovery, eperson, iiif

With these changes in place, DSpace will be ready to respond to IIIF requests. Restart your DSpace backend (i.e. Tomcat) for these changes to all take
effect.

Additional Configuration Options

The full set if IIIF configuration options can be found in . config/modules/iiif.cfg

Property Description

iiif.enabled Enables the DSpace IIIF service.

iiif.image.server Base URL path for the IIIF image server. e.g. http://localhost:8182/iiif/2/

iiif.document.viewing.
hint

Default viewing hint. Can be overridden with the metadata setting described below.

iiif.logo.image Optional URL for a small image. This will be included in all IIIF manifests.

iiif.cors.allowed-origins Comma separated list of allowed CORS origins. The list must include the default value: ${dspace.ui.url}.

iiif.metadata.item Sets the Dublin Core metadata that will be added to the IIIF resource manifest. This property can be repeated.

iiif.metadata.bitstream Sets the Bitstream metadata that will be added to the IIIF canvas metadata for individual images. This property can be
repeated.

iiif.license.uri Sets the metadata used for information about the resource usage rights.

iiif.attribution The text to use as attribution in the iiif manifests. Defaults to: ${dspace.name}

iiif.document.viewing.
hint

Either "individuals", "paged" or "continuous". Can be overridden with the metadata setting described below.

iiif.canvas.default-width Default value for the canvas size. Can be overridden at the item, bundle or bitstream level.

iiif.canvas.default-height Default value for the canvas size. Can be overridden at the item, bundle or bitstream level.

Canvas Dimensions

As of 7.2, the canvas dimension options (and) are updated with additional behaviors.iiif.canvas.default-width iiif.canvas.default-height

If you do not provide your own default dimensions in , DSpace will attempt to optimize canvas dimensions when dimension metadata is iiif.cfg
missing from the first bitstream in the item. This will often produce more accurate viewer layouts, but note that it is not sufficient to assure
accurate layouts in all cases.
If you decide to add your own default dimensions in file your dimensions are used for every bitstream that lacks dimension metadata.iiif.cfg
You may also set both default dimensions in to the value . In this case, DSpace creates accurate default dimensions for every iiif.cfg -1
bitstream that lacks dimension metadata. Note that this impacts performance.

It is recommended that and metadata be added to Item, Bundle, or Bitstream metadata to assure accurate layout and top iiif.image.width iiif.image.height
performance. Default dimension configurations are intended to improve the user experience when dimension metadata has not yet been added.

CORS Configuration

The wildcard "*" configuration is the default CORS setting for IIIF. With this setting, all remote viewers and applications can retrieve manifests, assuring
maximum interoperability. You can restrict CORS origins using the property defined in . Remove the wildcard iiif.cors.allowed-origins iiif.cfg
and add a comma-separated list of origins instead.

IIIF Search API

DSpace includes a plugin to support the IIIF Search API. This plugin is designed to work specifically with the and METSSolr OCR Highlighting Plugin
/ALTO data. You are welcome to experiment with the plugin. To do so,uncomment the following settings in :config/modules/iiif.cfg

iiif.search.url = ${solr.server}/word_highlighting
iiif.search.plugin = org.dspace.app.rest.iiif.service.WordHighlightSolrSearch

Once you have successfully indexed ALTO files using the Solr plugin, you can enable search within a DSpace Item by adding the iiif.search.
 field. enabled metadata

Indexing Support

Support for indexing OCR files using the the Solr OCR Highlighting Plugin or other services is not currently provided by DSpace. Institutions will need to
develop their own approach to indexing their data.

328

https://github.com/DSpace/DSpace/blob/main/dspace/config/modules/iiif.cfg
http://localhost:8182/iiif/2/
https://dbmdz.github.io/solr-ocrhighlighting/

Enable/Install the Mirador Viewer on Frontend

The is included in the dspace-angular (UI) source code. Before enabling Mirador, be sure to review Mirador 3.0 viewer the instructions for installing the
 if you haven't already.Angular frontend

To add the Mirador viewer to your DSpace frontend installation, run the following command:

This builds and runs the DSpace UI with the Mirador Viewer in a single step
yarn run start:mirador:prod

This will build and copy Mirador to your directory and start the frontend server.dist/

The actual steps for deploying the Angular UI with Mirador into Production will likely vary with your setup. However, one possible command-line scenario is
the following:

Build Mirador viewer
yarn run build:mirador
Build DSpace UI for production
yarn run build:prod
Run the DSpace UI with Mirador viewer
yarn run serve:ssr

Running in Development

In the Dspace 7.1 release, the Mirador viewer cannot be used when running in development mode. For now, you need to use a production build.

Configuring Mirador

The Mirador viewer is highly configurable. The includes a number of settings that you can override manually, Mirador configuration file for DSpace
including CSS values for styling. Note that some of the Mirador behavior (like the inclusion of thumbnail navigation on the right) is set by the Angular
component at runtime. You can choose to override these runtime settings if you like.

Configure IIIF viewer via Metadata Fields

IIIF configuration at the Item-level is quite flexible and is managed using metadata. Canvas sizes, image labels, ranges and and other settings are
controlled by using the following fields.

Required Field

Note that the metadata field be added to the Item and set to "true". Otherwise, the Item display will use the default dspace.iiif.enabled MUST
DSpace view.

Schema Element Qualifier Scope Description

dspace iiif enabled Item Stores a boolean text value (true or false) to indicate if the iiif feature is enabled or not
for the dspace object. If absent the value is derived from the parent dspace object.

iiif label Bitstream Metadata field used to set the IIIF label associated with the canvas resource otherwise the
system
will derive one according to the configuration setting or the canvas.naming metadata field.

iiif description Item Metadata field used to set the IIIF description associated with the resource.

iiif canvas naming Item Metadata field used to set the base label used to name all the canvas in the Item. The canvas
label will be generated using the value of this metadata as prefix and the canvas position.
e.g. Page 1, Page 2, etc.

iiif viewing hint Item Metadata field used to set the viewing hint overriding the configuration value if any. Possible
values are "individuals" and "paged". Default value: individuals.

iiif image width Item, Bundle, or Bitstream Metadata field used to store the width of an image in pixels. Determines the canvas size.

iiif image height Item, Bundle, or Bitstream Metadata field used to store the height of an image in pixels. Determines the canvas size.

iiif toc Bitstream Metadata field used to set the position of the iiif resource in the "table of contents" structure.

iiif search enabled Item Metadata field used to enable the IIIF Search service at the item level. This feature is
experimental and requires additional setup.

329

https://projectmirador.org/
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-InstallingtheFrontend(UserInterface)
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-InstallingtheFrontend(UserInterface)
https://github.com/DSpace/dspace-angular/blob/main/src/mirador-viewer/index.js

Contextual Help Tooltips
Available in 7.5 or later.

Contextual help tooltips are a feature to provide additional information about how to use DSpace to less experienced users without cluttering the interface
for more advanced users who do not need additional instruction.

User perspective
Adding new tooltips

User perspective

If the user visits a page where contextual help tooltips are available, a "toggle context help" button appears in the header, in between the language switch
menu and user profile menu. Clicking this button toggles the visibility of the tooltips on the page (by default, they are invisible).

When tooltip visibility is turned on, similar looking buttons appear on the page where ever a tooltip is available.

Clicking any of these buttons makes a text bubble appear containing the contextual help; clicking anywhere outside of the bubble makes it disappear again.

Adding new tooltips

Any HTML element can be given a tooltip by setting the attribute.*dsContextHelp

The value assigned to the attribute should be an object of type :ContextHelpDirectiveInput

export interface ContextHelpDirectiveInput {
 content: string;
 id: string;
 tooltipPlacement?: PlacementArray;
 iconPlacement?: PlacementDir;
}

The mandatory `content` field represents a key in i18n files (src/assets/i18n/*.json5). You will need to add a new key to this file to store the help
text.
`id` should be a unique identifier for this tooltip, to distinguish it from other tooltips on the page.
`tooltipPlacement` (optional) determines where the text bubble appears relative to the help button. Its type is an array of s; see the Placement
 for more information.ng-bootstrap documentation
`iconPlacement` (optional) should be assigned either 'left' or 'right', and determines whether the tooltip will be
placed on the left or on the right of the element.

This is what the template looks like for the "Edit group" example in the "User Perspective" picture above:

330

https://ng-bootstrap.github.io/#/guides/positioning#api

<h2 class="border-bottom pb-2">
 <span
 *dsContextHelp="{
 content: 'admin.access-control.groups.form.tooltip.editGroupPage',
 id: 'edit-group-page',
 iconPlacement: 'right',
 tooltipPlacement: ['right', 'bottom']
 }"
 >
 {{messagePrefix + '.head.edit' | translate}}

</h2>

A few important notes:

Note the use of the `span` tags: setting ` ` directly on the `h2` element makes the help button appear all the way on the right of *dsContextHelp
the page, instead of directly to the right of the "Edit group" text.
The 'content' field maps to the i18n key which is used to display the help text. This i18n key's value may include markdown-style (only) At links .
this time, other formatting is not supported. To display a link, use the following markdown syntax in your i18n value:

"admin.access-control.groups.form.tooltip.editGroupPage": "This is the text that would be displayed in
the tooltip. And here is a link to the [DSpace 7 documentation](https://wiki.lyrasis.org/display/DSDOC7x
/)."

331

Discovery

1 What is DSpace Discovery
1.1 What is a Sidebar Facet
1.2 What is a Search Filter
1.3 What is a tag cloud facet

2 Configuration files
3 General Discovery settings (config/modules/discovery.cfg)
4 Browse settings (config/dspace.cfg)
5 Modifying the Discovery User Interface (config/spring/api/discovery.xml)

5.1 Structure Summary
5.2 Default settings
5.3 Non indexed metadata fields
5.4 Search filters & sidebar facets Customization

5.4.1 Hierarchical (taxonomies based) sidebar facets
5.5 Sort option customization for search results
5.6 DiscoveryConfiguration

5.6.1 Configuring lists of sidebarFacets and searchFilters
5.6.2 Configuring and customizing search sort fields
5.6.3 Adding default filter queries (OPTIONAL)
5.6.4 Access Rights Awareness

5.6.4.1 Access Rights Awareness - technical details
5.6.5 Customizing the Recent Submissions display
5.6.6 Customizing hit highlighting & search snippets

5.6.6.1 Hit highlighting technical details
5.6.7 "More like this" configuration

5.6.7.1 "More like this" technical details
5.6.8 "Did you mean" spellcheck aid for search configuration

5.6.8.1 "Did you mean" spellcheck aid for search technical details
5.6.9 Customizing the "Tag Cloud" facet
5.6.10 Disabling the "Has file(s)" facet

6 Discovery Solr Index Maintenance
7 Advanced Solr Configuration

What is DSpace Discovery

The Discovery Module enables faceted searching & browsing for your repository.

Although these techniques are new in DSpace, they might feel familiar from other platforms like Aquabrowser or Amazon, where facets help you to select
the right product according to facets like price and brand. DSpace Discovery offers very powerful browse and search configurations that were only possible
with code customization in the past.

Watch the DSpace Discovery introduction video

Since 6.0, Discovery is the only out-of-the-box Search and Browse infrastructure provided in DSpace.

What is a Sidebar Facet

From the user perspective, faceted search (also called faceted navigation, guided navigation, or parametric search) breaks up search results into multiple
categories, typically showing counts for each, and allows the user to "drill down" or further restrict their search results based on those facets.

When you have successfully enabled Discovery in your DSpace, you will notice that the different enabled facets are visualized in a "Discover" section in
your sidebar, by default, right below the Browse options.

332

http://www.youtube.com/v/abRSXTUEwws

In this example, there are 3 Sidebar Facets: Author, Subject and Date Issued. It's important to know that multiple metadata fields can be included in one
facet. For example, the Author facet above includes values from both dc.contributor.author as well as dc.creator.

Another important property of Sidebar Facets is that their contents are automatically updated to the context of the page. On collection homepages or
community homepages it will include information about the items included in that particular collection or community.

What is a Search Filter

In a standard search operation, a user specifies his complete query prior to launching the operation. If the results are not satisfactory, the user starts over
again with a (slightly) altered query.

In a faceted search, a user can modify the list of displayed search results by specifying additional "filters" that will be applied on the list of search results. In
DSpace, a filter is a contain condition applied to specific facets. In the example below, a user started with the search term "health", which yielded 500
results. After applying the filter "public" on the facet "Subject", only 227 results remain. Each time a user selects a sidebar facet it will be added as a filter.
Active filters can be altered or removed in the 'filters' section of the search interface.

Another example: Using the standard search, a user would search for something like [wetland + "dc.author=Mitsch, William J" + dc.subject="water
]. With filtered search, they can start by searching for [], and then filter the results by the other attributes, author and subject.quality" wetland

What is a tag cloud facet

Tag cloud facet is another way to display facets of your repository in a "tag cloud" form in which the importance of each tag is show with font size or color.
This format is useful for quickly perceiving the most prominent terms.

333

 This is a classic "tag cloud" facet in a DSpace repository.

Configuration files

The configuration for discovery is located in 2 separate files.

General settings: The file located in the .discovery.cfg [dspace-install-dir]/config/modules directory
Browse settings: The dspace.cfg file located in includes "webui.browse.index.*" settings[dspace-install-dir]/config/
User Interface Configuration: The file is located in directory.discovery.xml [dspace-install-dir]/config/spring/api/

General Discovery settings ()config/modules/discovery.cfg

The file is located in the directory and contains following properties. Any of these properties may be discovery.cfg [dspace]/config/modules
overridden in your (see):local.cfg Configuration Reference

Pr
op
er
ty:

discovery.search.server

E
xa
m
pl
e
V
al
ue:

discovery.search.server=[http://localhost:8080/solr/search]

Inf
or
m
ati
on
al
N
ot
e:

Discovery relies on a Solr index for storage and retrieval of its information. This parameter determines the location of the Solr index.

If you are uncertain whether this property is set correctly, you can use a commandline tool like "wget" to perform a query against the Solr index
(and ensure Solr responds). For example, the below query searches the Solr index for "test" and returns the response on standard out:

wget -O - http://localhost:8080/solr/search/select?q=test

Pr
op
er
ty:

discovery.index.authority.ignore[.field]

E
xa
m
pl
e
V
al
ue:

index.authority.ignore=truediscovery.

index.authority.ignore.dc.contributor.author=falsediscovery.

Inf
or
m
ati
on
al
N
ot
e:

By default, Discovery will use the authority information in the metadata to disambiguate homonyms. Setting this property to false will make the
doesn't include authority information. The configuration can be different on a field (<schema>.indexing process the same as the metadata

<element>.<qualifier>) basis. Setting the property without a field will change the default value.

Pr
op
er
ty:

discovery.browse.authority.ignore[.browse-index]

334

E
xa
m
pl
e
V
al
ue:

discovery.browse.authority.ignore=true

discovery.browse.authority.ignore.author=false

Inf
or
m
ati
on
al
N
ot
e:

Similar property to "discovery.index.authority.ignore", except specific to the "Browse By" indexes. By default, Discovery will use the authority
information in the metadata to disambiguate doehomonyms. Setting this property to false will make the indexing process the same as the metadata
sn't include authority information. The configuration can be different on a browse index basis. Setting the property without a browse index will
change the default value.

Pr
op
er
ty:

discovery.index.authority.ignore-prefered[.field]

E
xa
m
pl
e
V
al
ue:

index.authority.ignore-prefered=truediscovery.

index.authority.ignore-prefered.dc.contributor.author=falsediscovery.

Inf
or
m
ati
on
al
N
ot
e:

By default, Discovery will use the authority information in the metadata to query the authority for the preferred label. Setting this property to false
doesn't include authority information (i.e. the preferred form is the one recorded in the will make the indexing process the same as the metadata

metadata value). The configuration can be different on a field (<schema>.<element>.<qualifier>) basis. Setting the property without a field will
change the default value. If the authority is a remote service, disabling this feature can greatly improve performance.

Pr
op
er
ty:

discovery.browse.authority.ignore-prefered[.browse-index]

E
xa
m
pl
e
V
al
ue:

discovery.browse.authority.ignore-prefered=true

discovery.browse.authority.ignore-prefered.author=false

Inf
or
m
ati
on
al
N
ot
e:

Similar property to "discovery.index.authority.ignore-prefered", except specific to the "Browse By" indexes. By default, Discovery will use the
authority information in the metadata to query the authority for the preferred label. Setting this property to false will make the indexing process the

doesn't include authority information (i.e. the preferred form is the one recorded in the metadata value). The configuration same as the metadata
can be different on a browse index basis. Setting the property without a browse index will change the default value. If the authority is a remote
service, disabling this feature can greatly improve performance.

Pr
op
er
ty:

discovery.index.authority.ignore-variants[.field]

335

E
xa
m
pl
e
V
al
ue:

index.authority.ignore-variants=truediscovery.

index.authority.ignore-variants.dc.contributor.author=falsediscovery.

Inf
or
m
ati
on
al
N
ot
e:

By default, Discovery will use the authority information in the metadata to query the authority for variants. Setting this property to false will make
doesn't include authority information. The configuration can be different on a per-field (<schema>.the indexing process the same, as the metadata

<element>.<qualifier>) basis. Setting the property without a field will change the default value. If authority is a remote service, disabling this
feature can greatly improve performance.

Pr
op
er
ty:

discovery.browse.authority.ignore-variants[.browse-index]

E
xa
m
pl
e
V
al
ue:

discovery.browse.authority.ignore-variants=true

discovery.browse.authority.ignore-variants.author=false

Inf
or
m
ati
on
al
N
ot
e:

Similar property to "discovery.index.authority.ignore-variants", except specific to the "Browse By" indexes. By default, Discovery will use the
authority information in the metadata to query the authority for variants. Setting this property to false will make the indexing process the same, as

doesn't include authority information. The configuration can be different on a browse index basis. Setting the property without a the metadata
browse index will change the default value. If authority is a remote service, disabling this feature can greatly improve performance.

Browse settings ()config/dspace.cfg

See the "Browse Index Configuration" section of the for all "Browse By" configurations. These Configurations control both which Configuration Reference
fields are indexed for browsing, as well as which Browse by options appear in the user interface. Changing these configurations requires reindexing.

If you add new browse fields then you should coordinate changes here with the message catalog(s) in the UI. You will need to add several entries:

key value

browse.comcol.by.* label the browse field in the Browse menu of a community or collection page

menu.section.browse_global_by_* label the browse field in the "browse" dropdown at the top of the page

browse.metadata.* label the browse field in the body of the browsing page

browse.metadata.*.breadcrumbs label the browse field in the page's "breadcrumb trail"

Modifying the Discovery User Interface ()config/spring/api/discovery.xml

The file is located in the directory. Modifying these settings can change the behavior of the Search discovery.xml [dspace]/config/spring/api
pages in the user interface, allowing you to customize the facets, filters, sort options, etc.

If you add new search fields, sorts, etc. then you should coordinate changes here with the message catalog(s) in the UI. You will need to add e.g. search
 (where NAME is the of the field definition) to label a new search field..filters.filter.NAME.head indexFieldName

Structure Summary

This file is in XML format. You should be familiar with XML before editing this file. The configurations are organized together in beans, depending on the
purpose these properties are used for.
This purpose can be derived from the class of the beans. Here's a short summary of classes you will encounter throughout the file and what the
corresponding properties in the bean are used for.

336

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-BrowseIndexConfiguration

Download the configuration file and review it together with the following parameters

Clas
s:

DiscoveryConfigurationService

Purp
ose:

Defines the mapping between separate Discovery configurations and individual collections/communities

Defa
ult:

All communities, collections and the homepage (key=default) are mapped to defaultConfiguration. Also controls the metadata fields that should
not be indexed in the search core (item provenance for example).

Clas
s:

DiscoveryConfiguration

Purp
ose:

Groups configurations for sidebar facets, search filters, search sort options and recent submissions

Defa
ult:

There is one configuration by default called defaultConfiguration

Clas
s:

DiscoverySearchFilter

Purp
ose:

Defines that specific metadata fields should be enabled as a search filter

Defa
ult:

dc.title, dc.contributor.author, dc.creator, dc.subject.* and dc.date.issued are defined as search filters

Clas
s:

DiscoverySearchFilterFacet

Purp
ose:

Defines which metadata fields should be offered as a contextual sidebar browse options, each of these facets has also got to be a search filter

Defa
ult:

dc.contributor.author, dc.creator, dc.subject.* and dc.date.issued

Clas
s:

HierarchicalSidebarFacetConfiguration

Purp
ose:

Defines which metadata fields contain hierarchical data and should be offered as a contextual sidebar option

Clas
s:

DiscoverySortConfiguration

Purp
ose:

Further specifies the sort options to which a DiscoveryConfiguration refers

Defa
ult:

dc.title and dc.date.issued are defined as alternatives for sorting, other than Relevance (hard-coded)

Clas
s:

DiscoveryHitHighlightingConfiguration

Purp
ose:

Defines which metadata fields can contain hit highlighting & search snippets

Defa
ult:

dc.title, dc.contributor.author, dc.subject, dc.description.abstract & full text from text files.

Clas
s:

TagCloudFacetConfiguration

Purp
ose:

Defines the tag cloud appearance configuration bean and the search filter facets to appear in the tag cloud form. You can have different "TagClo
" per community or collection or the home pageudFacetConfiguration

Default settings

In addition to the summarized descriptions of the default values, following details help you to better understand these defaults. If you haven't already done
so, .download the configuration file and review it together with the following parameters
The file contains one default configuration that defines following sidebar facets, search filters, sort fields and recent submissions display:

Sidebar facets
searchFilterAuthor: groups the metadata fields dc.contributor.author & dc.creator with a facet limit of 10, sorted by occurrence count
searchFilterSubject: groups all subject metadata fields (dc.subject.*) with a facet limit of 10, sorted by occurrence count
searchFilterIssued: contains the dc.date.issued metadata field, which is identified with the type "date" and sorted by specific date values

337

https://wiki.lyrasis.org/download/attachments/315720794/discovery.xml?version=1&modificationDate=1701973380624&api=v2
https://wiki.lyrasis.org/download/attachments/315720794/discovery.xml?version=1&modificationDate=1701973380624&api=v2

Search filters
searchFilterTitle: contains the dc.title metadata field
searchFilterAuthor: contains the dc.contributor.author & dc.creator metadata fields
searchFilterSubject: contains the dc.subject.* metadata fields
searchFilterIssued: contains the dc.date.issued metadata field with the type "date"

Sort fields
sortTitle: contains the dc.title metadata field
sortDateIssued: contains the dc.date.issued metadata field, this sort has the type date configured.

defaultFilterQueries
The default configuration contains no defaultFilterQueries
The default filter queries are disabled by default but there is an example in the default configuration in comments which allows discovery
to only return items (as opposed to also communities/collections).

Recent Submissions
The recent submissions are sorted by dc.date. accessioned which is a date and a maximum number of 5 recent submissions are
displayed.

Hit highlighting
The fields dc.title, dc.contributor.author & dc.subject can contain hit highlighting.
The dc.description.abstract & full text field are used to render search snippets.

Non indexed metadata fields
Community/Collections: dc.rights (copyright text)
Items: dc.description.provenance

Many of the properties contain lists that use references to point to the configuration elements. This way a certain configuration type can be used in multiple
discovery configurations so there is no need to duplicate them.

Non indexed metadata fields

The discovery.xml file has configuration to not index certain metadata fields for communities/collections/items. The configuration is handled in the
"toIgnoreMetadataFields" property located in the "org.dspace.discovery.configuration.DiscoveryConfigurationService" bean. Below is an example
configuration that excludes dc.description.provenance for items & dc.rights for communities/collections:

<property name="toIgnoreMetadataFields">
 <map>
 <entry>
 <key><util:constant static-field="org.dspace.core.Constants.COMMUNITY"/></key>
 <list>
 <!--Introduction text-->
 <!--<value>dc.description</value>-->
 <!--Short description-->
 <!--<value>dc.description.abstract</value>-->
 <!--News-->
 <!--<value>dc.description.tableofcontents</value>-->
 <!--Copyright text-->
 <value>dc.rights</value>
 <!--Community name-->
 <!--<value>dc.title</value>-->
 </list>
 </entry>
 <entry>
 <key><util:constant static-field="org.dspace.core.Constants.COLLECTION"/></key>
 <list>
 <!--Introduction text-->
 <!--<value>dc.description</value>-->
 <!--Short description-->
 <!--<value>dc.description.abstract</value>-->
 <!--News-->
 <!--<value>dc.description.tableofcontents</value>-->
 <!--Copyright text-->
 <value>dc.rights</value>
 <!--Collection name-->
 <!--<value>dc.title</value>-->
 </list>
 </entry>
 <entry>
 <key><util:constant static-field="org.dspace.core.Constants.ITEM"/></key>
 <list>
 <value>dc.description.provenance</value>
 </list>
 </entry>
 </map>
</property>

338

By adding additional values to the appropriate lists additional metadata can be excluded from the search core, a reindex is required after altering this file to
ensure that the values are removed from the index.

Search filters & sidebar facets Customization

This section explains the properties for search filters & sidebar facets. Each sidebar facet must occur in the reference list of the search filters. Below is an
example configuration of a search filter that is not used as a sidebar facet.

<bean id="searchFilterTitle" class="org.dspace.discovery.configuration.DiscoverySearchFilter">
 <property name="indexFieldName" value="title"/>
 <property name="metadataFields">
 <list>
 <value>dc.title</value>
 </list>
 </property>
 <property name="pageSize" value="10"/>
</bean>

The id & class attributes are mandatory for this type of bean. The properties that it contains are discussed below.

indexFieldName (Required) A unique search filter name, the metadata will be indexed in Solr under this field name.:
metadataFields (Required): A list of the metadata fields that need to be included in the facet.

Sidebar facets extend the search filter and add some extra properties to it. Below is an example of a search filter that is also used as a sidebar facet.

<bean id="searchFilterAuthor" class="org.dspace.discovery.configuration.DiscoverySearchFilterFacet">
 <property name="indexFieldName" value="author"/>
 <property name="metadataFields">
 <list>
 <value>dc.contributor.author</value>
 <value>dc.creator</value>
 </list>
 </property>
 <property name="facetLimit" value="5"/>
 <property name="sortOrderSidebar" value="COUNT"/>
 <property name="sortOrderFilterPage" value="COUNT"/>
 <property name="isOpenByDefault" value="true"/>
 <property name="type" value="text"/>
 </bean>

Note that the class has changed from to . This is needed to support the extra properties.DiscoverySearchFilter DiscoverySerachFilterFacet

facetLimit (optional) The maximum number of values to be shown by default. This property is optional, if none is specified the default value "10" :
will be used. If the filter has the type , this property will not be used since dates are automatically grouped together.date
sortOrder (optional) The sort order for the sidebar facets, it can either be COUNT or VALUE. The default value is COUNT.:

COUNT Facets will be sorted by the number of times they appear in the repository
VALUE Facets will be sorted alphabetically

type (optional): the type of the sidebar facet it can either be "date" or "text". "text" is the default value.
text: The facets will be treated as is (DEFAULT)
date: Only the year will be stored in the Solr index. These years are automatically displayed in ranges that get smaller when you select
one.

Hierarchical (taxonomies based) sidebar facets

Discovery supports specialized drill down in hierarchically structured metadata fields. For this drill down to work, the metadata in the field for which you
enable this must be composed out of terms, divided by a splitter. For example, you could have a dc.subject.taxonomy field in which you keep metadata like
"CARTOGRAPHY::PHOTOGRAMMETRY", in which Cartography and Photogrammetry are both terms, divided by the splitter "::". Initially the sidebar will
only display the top level facets. When clicking on "view more" all the facet options will be displayed.

339

<bean id="searchFilterSubject" class="org.dspace.discovery.configuration.HierarchicalSidebarFacetConfiguration">
 <property name="indexFieldName" value="subject"/>
 <property name="metadataFields">
 <list>
 <value>dc.subject</value>
 </list>
 </property>
 <property name="sortOrder" value="COUNT"/>
 <property name="splitter" value="::"/>
 <property name="skipFirstNodeLevel" value="false"/>
</bean>

Note that the class has changed from to . This is needed to support the extra SidebarFacetConfiguration HierarchicalSidebarFacetConfiguration
properties.

splitter (required) The splitter used to split up the separate nodes:
skipFirstNodeLevel (optional) Whether or not to show the root node level. For some hierarchical data there is a single root node. In most cases :
it doesn't need to be shown since it isn't relevant. This property is true by default.

Sort option customization for search results

This section explains the properties of an individual SortConfiguration, like sortTitle and sortDateIssued from the default configuration. In order to create
custom sort options, you can either modify specific properties of those that already exist or create a totally new one from scratch.

Here's what the sortTitle SortConfiguration looks like:

<bean id="sortTitle" class="org.dspace.discovery.configuration.DiscoverySortFieldConfiguration">
 <property name="metadataField" value="dc.title"/>
 <property name="type" value="text"/>
 </bean>

The and attributes are mandatory for this type of bean. The properties that it contains are discussed below.id class

metadataField (Required): The metadata field indicating the sort values
type (optional): the type of the sort option can either be date or text, if none is defined text will be used.

DiscoveryConfiguration

The DiscoveryConfiguration groups configurations for sidebar facets, search filters, search sort options and recent submissions. If you want to show the
same sidebar facets, use the same search filters, search options and recent submissions everywhere in your repository, you will only need one
DiscoveryConfiguration and you might as well just edit the defaultConfiguration.

The DiscoveryConfiguration makes it very easy to use custom sidebar facets, search filters, ... on specific communities or collection homepage. This is
particularly useful if your collections are heterogeneous. For example, in a collection with conference papers, you might want to offer a sidebar facet for
conference date, which might be more relevant than the actual issued date of the proceedings. In a collection with papers, you might want to offer a facet
for funding bodies or publisher, while these fields are irrelevant for items like learning objects.

A DiscoveryConfiguration consists of six parts:

The list of applicable sidebarFacets
The list of applicable searchFilters
The list of applicable searchSortFields
Any default filter queries (optional)
The configuration for the Recent submissions display
The configuration of the tag cloud facet

Configuring lists of sidebarFacets and searchFilters
After modifying sidebarFacets and searchFilters, don't forget to reindex existing items by running [dspace]/bin/dspace index-discovery , -b
otherwise the changes will not appear.

Below is an example of how one of these lists can be configured. It's important that each of the bean references corresponds to the exact name of the
earlier defined facets, filters or sort options.

Each sidebar facet must also occur in the list of the search filters.

340

<property name="sidebarFacets">
 <list>
 <ref bean="sidebarFacetAuthor" />
 <ref bean="sidebarFacetSubject" />
 <ref bean="sidebarFacetDateIssued" />
 </list>
</property>

Configuring and customizing search sort fields

The search sort field configuration block contains the available sort fields and the possibility to configure a default sort field and sort order.
Below is an example of the sort configuration.

<property name="searchSortConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoverySortConfiguration">
 <!--<property name="defaultSort" ref="sortDateIssued"/>-->
 <!--DefaultSortOrder can either be desc or asc (desc is default)-->
 <property name="defaultSortOrder" value="desc"/>
 <property name="sortFields">
 <list>
 <ref bean="sortTitle" />
 <ref bean="sortDateIssued" />
 </list>
 </property>
 </bean>
</property>

The property name & the bean class are mandatory. The property field names are discusses below.

defaultSort (optional): The default field on which the search results will be sorted. This must be a reference to an existing search sort field bean.
If none is given relevance will be the default. Sorting according to the internal relevance algorithm is always available, even though it's not
explicitly mentioned in the sortFields section.
defaultSortOrder (optional): The default sort order can either be asc or desc.
sortFields (mandatory): The list of available sort options, each element in this list must link to an existing sort field configuration bean.

Adding default filter queries (OPTIONAL)

Default filter queries are applied on all search operations and sidebar facet clicks. One useful application of default filter queries is ensuring that all
returned results are items. As a result, subcommunities and collections that are returned as results of the search operation, are filtered out.
Similar to the lists above, the default filter queries are defined as a list. They are optional.

<property name="defaultFilterQueries">
 <list>
 <value>query1</value>
 <value>query2</value>
 </list>
</property>

This property contains a simple list which in turn contains the queries. Some examples of possible queries:

search.resourcetype:2
dc.subject:test
dc.contributor.author: "Van de Velde, Kevin"
...

Access Rights Awareness

By default, when searching and browsing using Discovery, you will only see items that you have access to. So, your search/browse results may differ if
you are logged into DSpace. This Access Rights Awareness feature ensures that anonymous users (and search engines) are not able to access
information (both files and metadata) about embargoed or private items. It also provides you with more direct control over who can see individual items
within your DSpace.

How does Access Rights Awareness work?

Access Rights Awareness checks the "READ" access on the Item.

341

If the "Anonymous" group has "READ" access on the Item, then anonymous/public users will be able to view that Item's metadata and locate that Item via
DSpace's search/browse system. In addition, search engines will also be able to index that Item's metadata. However, even with Anonymous READ set at
the Item-level, you may still choose to access-restrict the downloading/viewing of within the Item. To do so, you would restrict "READ" access on files
individual Bitstream(s) attached to the Item.

If the "Anonymous" group does NOT have "READ" access on the Item, then anonymous users will never see that Item appear within their search/browse
results (essentially the Item is "invisible" to them). In addition, that Item will be invisible to search engines, so it will never be indexed by them. However,
any users who have been given READ access will be able to find/locate the item after logging into DSpace. For example, if a "Staff" group was provided
"READ" access on the Item, then members of that "Staff" group would be able to locate the item via search/browse after logging into DSpace.

How can I disable Access Rights Awareness?

If you prefer to allow all access-restricted or embargoed Items to be findable within your DSpace, you can choose to turn off Access Rights
Awareness. However, please be aware that this means that restricting "READ" access on an Item will not really do anything – the Item metadata will be
available to the public no matter what group(s) were given READ access on that Item.

This feature can be switched off by going to the file & commenting out the bean & the alias [dspace.dir]/config/spring/api/discovery.xml
shown below.

<bean class="org.dspace.discovery.SolrServiceResourceRestrictionPlugin" id="solrServiceResourceIndexPlugin"/>

<alias name="solrServiceResourceIndexPlugin" alias="org.dspace.discovery.SolrServiceResourceRestrictionPlugin"/>

The Browse Engine only supports the "Access Rights Awareness" if the Solr/Discovery backend is enabled (see). Defining the Storage of the Browse Data
However, it is enabled by default for DSpace 3.x and above.

Access Rights Awareness - technical details

The class has an method which will be triggered each time an authorization policy changes. This method is only DSpaceObject updateLastModified()
implemented in the item class where the last_modified timestamp will be updated and a modify event will be fired. By doing this we ensure that the
discovery consumer is called and the item is reindexed. Since this feature can be switched off a separate plugin has been created: the SolrServiceResourc

 Whenever we reindex a DSpace object all the read rights will be stored in the read field. We make a distinction between groups and eRestrictionPlugin.
users by adding a ' prefix for groups and the ' prefix for epersons.g' e'

When searching in discovery all the groups the user belongs to will be added as a filter query as well as the users identifier. If the user is an admin all
items will be returned since an admin has read rights on everything.

Customizing the Recent Submissions display

The recent submissions configuration element contains all the configuration settings to display the list of recently submitted items on the home page or
community/collection page. Because the recent submission configuration is in the discovery configuration block, it is possible to show 10 recently
submitted items on the home page but 5 on the community/collection pages.

Below is an example configuration of the recent submissions.

<property name="recentSubmissionConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryRecentSubmissionsConfiguration">
 <property name="metadataSortField" value="dc.date.accessioned"/>
 <property name="type" value="date"/>
 <property name="max" value="5"/>
 </bean>
</property>

The property name and the bean class are mandatory. The property field names are discusses below.

metadataSortField (mandatory): The metadata field to sort on to retrieve the recent submissions
max (mandatory): The maximum number of results to be displayed as recent submissions
type (optional): the type of the search filter. It can either be date or text, if none is defined text will be used.

Customizing hit highlighting & search snippets

The hit highlighting configuration element contains all settings necessary to display search snippets & enable hit highlighting.

342

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-DefiningthestorageoftheBrowseData

Disabling hit highlighting / search snippets

You can disable hit highlighting / search snippets by commenting out the entire <property name="hitHighlightingConfiguration">
Configuration in the configuration file.[dspace]/config/spring/api/discovery.xml

PLEASE BE AWARE there are two sections where this <property> definition exists. You should comment out both. One is under the <bean id="
 and one is under the defaultConfiguration"> <bean id="homepageConfiguration">

Alternatively, you may also choose to tweak which fields are shown in hit highlighting, or modify the number of matching words shown (snippets) and/or
number of characters shown around the matching word (maxSize).

For this change to take effect in the User Interface, you will need to restart Tomcat.
Changes made to the configuration will not automatically be displayed in the user interface. By default, only the following fields are displayed: dc.title, dc.
contributor.author, dc.creator, dc.contributor, dc.date.issued, dc.publisher, dc.description.abstract and fulltext.

If additional fields are required, look for the "itemSummaryList" template.

Below is an example configuration of hit highlighting.

<property name="hitHighlightingConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightingConfiguration">
 <property name="metadataFields">
 <list>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.title"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.contributor.author"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.subject"/>
 <property name="snippets" value="5"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <property name="field" value="dc.description.abstract"/>
 <!-- Max number of characters to display around the matching word (Warning setting to 0
returns entire field) -->
 <property name="maxSize" value="250"/>
 <!-- Max number of snippets (matching words) to show -->
 <property name="snippets" value="2"/>
 </bean>
 <bean class="org.dspace.discovery.configuration.DiscoveryHitHighlightFieldConfiguration">
 <!-- Displays snippets from indexed full text of document (for
supported formats) -->
 <property name="field" value="fulltext"/>
 <!-- Max number of characters to display around the matching word (Warning setting to 0
returns entire field) -->
 <property name="maxSize" value="250"/>
 <!-- Max number of snippets (matching words) to show -->
 <property name="snippets" value="2"/>
 </bean>
 </list>
 </property>
 </bean>
</property>

The property name and the bean class are mandatory. The property field names are:

field (mandatory) The metadata field to be highlighted (can also be if all the metadata fields should be highlighted).: *
maxSize (optional): Limit the number of characters displayed to only the relevant part (use metadata field as search snippet).
snippets (optional) The maximum number of snippets that can be found in one metadata field.:

Hit highlighting technical details

The object has a setter & getter for the hit highlighting configuration set in Discovery configuration. If this org.dspace.discovery.DiscoveryQuery
configuration is given the method located in the class will use the standard Solr highlighting resolveToSolrQuery org.dspace.discovery.SolrServiceImpl
feature (). The class has a method to set the highlighted fields for http://wiki.apache.org/solr/HighlightingParameters org.dspace.discovery.DiscoverResult
each object & field.

343

http://wiki.apache.org/solr/HighlightingParameters

The rendering of search results is no longer handled by the METS format but uses a special type of list named "TYPE_DSO_LIST". Each metadata field (&
fulltext if configured) is added in the DRI and IF the field contains hit higlighting the Java code will split up the string & add to the list. The DRI highlights
XSL for the themes also contains special rendering XSL for the DRI; for Mirage, the changes are located in the file. For themes using the old discovery.xsl
themes based on structural.xsl, look for the template matching " .dri:list[@type='dsolist']"

"More like this" configuration

The "more like this"-configuration element contains all the settings for displaying related items on an item display page.
Below is an example of the "more like this" configuration.

<property name="moreLikeThisConfiguration">
 <bean class="org.dspace.discovery.configuration.DiscoveryMoreLikeThisConfiguration">
 <property name="similarityMetadataFields">
 <list>
 <value>dc.title</value>
 <value>dc.contributor.author</value>
 <value>dc.creator</value>
 <value>dc.subject</value>
 </list>
 </property>
 <!--The minimum number of matching terms across the metadata fields above before an item is found as
related -->
 <property name="minTermFrequency" value="5"/>
 <!--The maximum number of related items displayed-->
 <property name="max" value="3"/>
 <!--The minimum word length below which words will be ignored-->
 <property name="minWordLength" value="5"/>
 </bean>
</property>

The property name and the bean class are mandatory. The property field names are discussed below.

similarityMetadataFields: the metadata fields checked for similarity
minTermFrequency: The minimum number of matching terms accross the metadata fields above before an item is found as related
max: The maximum number of related items displayed
minWordLength: The minimum word length below which words will be ignored

"More like this" technical details

The object has received a method. This method requires an item & the more-like-this configuration org.dspace.discovery.SearchService getRelatedItems()
bean from above. This method is implemented in the which uses the item as a query & uses the default Solr org.dspace.discovery.SolrServiceImpl
parameters for more-like-this to pass the bean configuration to solr (). The result will be a list https://cwiki.apache.org/confluence/display/solr/MoreLikeThis
of items or if none found an empty list.

"Did you mean" spellcheck aid for search configuration

DSpace 4 introduces the use of SOLR's SpellCheckComponent as an aid for search. When a user's search does not return any hits, the user is presented
with a suggestion for an alternative search query.

The feature currently only one line of configuration to discovery.xml. Changing the value from true to false will disable the feature.

<property name="spellCheckEnabled" value="true" />

"Did you mean" spellcheck aid for search technical details

Similar to the More like this configuration, SOLR's spell check component is used with default configuration values. Any of these values can be overridden
in the solrconfig.xml file located in dspace/solr/search/conf/. Following links provide more information about the SOLR SpellCheckComponent:

344

https://cwiki.apache.org/confluence/display/solr/MoreLikeThis

http://wiki.apache.org/solr/SpellCheckComponent

https://cwiki.apache.org/confluence/display/solr/Spell+Checking

Customizing the "Tag Cloud" facet
Not yet supported in DSpace 7.0

<!-- Set TagCloud configuration per discovery configuration -->
<property name="tagCloudFacetConfiguration" ref="defaultTagCloudFacetConfiguration"/>

Declare the bean (of class:) that holds the configuration for the tag cloud facet.TagCloudFacetConfiguration

<!--TagCloud configuration bean for homepage discovery configuration-->
<bean id="homepageTagCloudFacetConfiguration" class="org.dspace.discovery.configuration.
TagCloudFacetConfiguration">
 <!-- Actual configuration of the tagcloud (colors, sorting, etc.) -->
 <property name="tagCloudConfiguration" ref="tagCloudConfiguration"/>
 <!-- List of tagclouds to appear, one for every search filter, one after the other -->
 <property name="tagCloudFacets">
 <list>
 <ref bean="searchFilterSubject" />
 </list>
 </property>
</bean>

This bean has two properties:

tagCloudConfiguration: is the bean which describes the actual appearance parameters
tagCloudFacets: the search filter facets which will be used for the tag cloud. If you leave the list empty, no tag cloud will appear. If you declare
more than one, such number of tag clouds will appear for each search filter, one after the other.

The appearance configuration can have the following properties, as shown in the following bean:

345

http://wiki.apache.org/solr/SpellCheckComponent
https://cwiki.apache.org/confluence/display/solr/Spell+Checking

<bean id="tagCloudConfiguration" class="org.dspace.discovery.configuration.TagCloudConfiguration">
 <!-- Should display the score of each tag next to it? Default: false -->
 <property name="displayScore" value="true"/>
 <!-- Should display the tag as center aligned in the page or left aligned? Possible values: true
| false. Default: true -->
 <property name="shouldCenter" value="true"/>
 <!-- How many tags will be shown. Value -1 means all of them. Default: -1 -->
 <property name="totalTags" value="-1"/>
 <!-- The letter case of the tags.
 Possible values: Case.LOWER | Case.UPPER | Case.CAPITALIZATION | Case.PRESERVE_CASE |
Case.CASE_SENSITIVE
 Default: Case.PRESERVE_CASE -->
 <property name="cloudCase" value="Case.PRESERVE_CASE"/>
 <!-- If the 3 CSS classes of the tag cloud should be independent of score (random=yes) or based
on the score. Possible values: true | false . Default: true-->
 <property name="randomColors" value="true"/>
 <!-- The font size (in em) for the tag with the lowest score. Possible values: any decimal.
Default: 1.1 -->
 <property name="fontFrom" value="1.1"/>
 <!-- The font size (in em) for the tag with the lowest score. Possible values: any decimal.
Default: 3.2 -->
 <property name="fontTo" value="3.2"/>
 <!-- The score that tags with lower than that will not appear in the rag cloud. Possible values:
any integer from 1 to infinity. Default: 0 -->
 <property name="cuttingLevel" value="0"/>
 <!-- The distance (in px) between the tags. Default: 5 -->
 <property name="marginRight" value="5"/>
 <!-- The ordering of the tags (based either on the name or the score of the tag)
 Possible values: Tag.NameComparatorAsc | Tag.NameComparatorDesc | Tag.ScoreComparatorAsc
| Tag.ScoreComparatorDesc
 Default: Tag.NameComparatorAsc -->
 <property name="ordering" value="Tag.NameComparatorAsc"/>
 </bean>

When tagCloud is rendered there are some CSS classes that you can change in order to change the appearance of the .tag cloud

Class Note

tagcloud General class for the whole tagcloud

tagcloud_1 Specific tag class for tag of type 1 (based on score)

tagcloud_2 Specific tag class for tag of type 2 (based on score)

tagcloud_3 Specific tag class for tag of type 3 (based on score)

Disabling the "Has file(s)" facet
Since DSpace 6, a new "Has file(s)" facet has been enabled by default. This facet shows whether items have or do not have any bitstreams in the
"ORIGINAL" bundle.
Should you want to turn this off, you can edit remove the following line from the [dspace]/ to config/spring/api/discovery.xml defaultConfig

 and beans (in the property):uration homepageConfiguration sidebarFacets

<ref bean="searchFilterContentInOriginalBundle"/>

Then restart your servlet container.

Discovery Solr Index Maintenance

Command
used:

[dspace]/bin/dspace index-discovery [-cbhf[r <item handle>]]

Java class: org.dspace.discovery.IndexClient

Arguments
(short and
long forms):

Description

346

called without any options, will update/clean an existing index

-b (re)build index, wiping out current one if it exists

-c clean existing index removing any documents that no longer exist in the db

-f if updating existing index, force each handle to be reindexed even if uptodate

-h print this help message

-i <objec
t handle>

Reindex an individual object (and any child objects). When run on an Item, it just reindexes that single Item. When run on a Collection, it
reindexes the Collection itself and all Items in that Collection. When run on a Community, it reindexes the Community itself and all sub-
Communities, contained Collections and contained Items.

-r
<object
handle>

remove an Item, Collection or Community from index based on its handle

-s Rebuild the spellchecker, can be combined with -b and -f.

-t
<object
type>

Only index objects of a specific type (e.g. Collection, Community, Item, ClaimedTask, PoolTask, XmlWorkflowItem,
WorkspaceItem). May be combined with other options. For example when combined with "-f" you can force reindex only Items ("-f -t
Item").

It is recommended to run maintenance on the Discovery Solr index occasionally (from crontab or your system's scheduler), to prevent your servlet
container from running out of memory:

[dspace]/bin/dspace index-discovery

Advanced Solr Configuration

Discovery is built as an application layer on top of the Solr open source enterprise search server. Therefore, Solr configuration can be applied to the
Solr cores that are shipped with DSpace.
The DSpace Solr instance currently runs several cores (which means indexes in Solr parlance). The "statistics" core is for collection of DSpace usage
events for statistical purposes (if you have been collecting statistics for multiple years, you may have chosen to use and you will see one core per sharding
each year collected). The "search" core is used by Discovery for for search and faceting, for displaying the collection/community hierarchy and item
counts. The "authority" core is used by to store information about authors, including their data imported from the ORCID registry.SolrAuthority

solr
 search
 conf
 protwords.txt
 schema.xml
 solrconfig.xml
 stopwords.txt
 synonyms.txt
|
 ...
 statistics
 conf
 protwords.txt
 schema.xml
 solrconfig.xml
 stopwords.txt
 synonyms.txt

347

Browse

Browse By Subject Category

Browse By Subject Category

You can find the link to this page by hovering over the "All of DSpace" menu option. On the page, you are presented with the values of the "srsc"
vocabulary in a hierarchical tree structure. You can open/close different "branches" of the tree and you can select/deselect values you wish to search on.

You can search for specific values by using the search bar on top of the tree and clicking "Search". Clicking "Reset" will not only reset the tree itself, but
also the values you previously selected.

After you're done (de)selecting values, click "Browse". This will redirect you to the search page, where your selected values are used as search filters:

348

If one value was selected, the search results will consist of every item which has that value in their metadata field.dc.subject
If multiple values were selected, the search results will consist of the items which have all of the values in their metadata field. (E.g. dc.subject
if you selected TECHNOLOGY and MEDICINE, only items with will show up.)both subjects

To configure Browse by Subject Category options, see " " in the Configuration Reference.Hierarchical Browse Indexes

349

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-HierarchicalBrowseIndexes

1.
2.

a.

3.

a.

b.

Accessibility

Accessibility Statement
Conformance status
How we test for accessibility
Known limitations
Report accessibility issues

Accessibility Statement

DSpace is an international, open-source digital repository application that aspires to be as inclusive as possible for all users, including people with
disabilities. As a community of users and developers who build and maintain this application, we are dedicated to creating an accessible and interoperable
user interface. We are guided by the recommendations of the Web Content Accessibility Guidelines (WCAG) and we continually strive to meet and
exceed these standards.

Conformance status

The Web Content Accessibility Guidelines (WCAG) defines requirements for designers and developers to improve accessibility for people with disabilities.
It defines three levels of conformance: Level A, Level AA, and Level AAA.

DSpace strives to conform with level AA. the current version of WCAG However, we acknowledge that achieving full accessibility is a work-in-
progress at this time.

How we test for accessibility

Development on DSpace is active and ongoing and we use several methods to ensure accessibility for both existing and new development.

We use design principles and coding standards informed by accessibility concerns as documented in User Interface Design Principles &
. Accessibility

We run automated accessibility scanning tools () across the user interface in our end-to-end tests (run via). These Axe by Deque Cypress
automated tests run for every GitHub pull request submitted to our user interface codebase.
We ask institutions who use DSpace to share any of their own accessibility testing results with DSpace developers. Accessibility issues
discovered are turned into bug tickets for developers to address in upcoming DSpace releases.

If your institution has accessibility testing results to share, please contact or anyone on our .Tim Donohue DSpace Steering Group
In 2021, we conducted an accessibility audit of the DSpace application with to get specific feedback on our accessibility conformance. Deque
Their feedback has guided our design and coding standards mentioned above.

Known limitations

Despite our best efforts to ensure accessibility of DSpace, there may be some limitations. Below is a description of known limitations:

We track all known DSpace accessibility issues in our .GitHub issue tracker with the "accessibility" label
DSpace development is primarily volunteer-based, and therefore some accessibility tickets may be waiting on a volunteer to claim them. While
we do our best to ensure critical issues are addressed quickly, non-critical issues may not receive attention until a volunteer gets to them. We
accept from anyone (in the form of GitHub Pull Requests). code contributions

If an issue is important to you and you have developers on staff (or can hire a), please consider contributing a fix back to service provider
DSpace. Please claim open tickets by commenting on the issue ticket - this ensures that no other institutions will duplicate efforts.

Since the DSpace User Interface allows users to upload content, we cannot ensure the accessibility of user contributions. DSpace has some
features that allow administrators to make uploaded content more accessible, but some limitations exist

The (used to view video/audio content) supports subtitles/captioning. However, at this time, the WebVTT captioning files MediaViewer mu
 st be uploaded separately alongside the original video.

At this time, (alt text) for either thumbnail images (generated from uploaded files) or DSpace does not support custom alternative text
Community/Collection logos.

Report accessibility issues

We consider all accessibility issues to be bugs. Please report any accessibility issues as a . We will prioritize accessibility issues all of GitHub issue ticket
our future .releases

In the ticket, please include the following details:

What is the accessibility issue you've found? If you know of a way to fix the issue, please include it as well.
Which page(s) of the DSpace web application can this issue be found on? For example, provide the URL of the page or a description of how to
get to that page.
How could someone reproduce this issue? For example, what tool or browser plugin did you use when you found this issue? If the issue is
browser-specific, also note which browser(s) are affected.
If possible, provide links/screenshots to document the issue or potential fixes. This might include a screenshot showing the issue, a link to WCAG
describing the issue or a description from an internal accessibility audit.

We also welcome contributions / accessibility fixes from anyone. If you've found a way to fix the issue, please submit a GitHub pull request to our codebase
. are also available for hire to fix issues and donate them back to the DSpace codebase.Service providers

350

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://wiki.lyrasis.org/pages/viewpage.action?pageId=313851976
https://wiki.lyrasis.org/pages/viewpage.action?pageId=313851976
https://www.deque.com/axe/
https://www.cypress.io/
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/DSPACE/DSpace+Steering+Group
https://www.deque.com/
https://github.com/DSpace/dspace-angular/issues?q=is%3Aissue+is%3Aopen+label%3Aaccessibility
https://github.com/DSpace/dspace-angular/blob/main/CONTRIBUTING.md
https://dspace.lyrasis.org/rsp/
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration#UserInterfaceConfiguration-MediaViewerSettings
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration#UserInterfaceConfiguration-Uploadingvideocaptioningfiles
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration#UserInterfaceConfiguration-Uploadingvideocaptioningfiles
https://github.com/DSpace/dspace-angular/issues/1306
https://github.com/DSpace/dspace-angular/issues
https://wiki.lyrasis.org/display/DSPACE/Releases
https://github.com/DSpace/dspace-angular/blob/main/CONTRIBUTING.md
https://dspace.lyrasis.org/rsp/

351

User Interface Customization

Angular Overview
Theme Technologies
Running the UI in Developer Mode
Creating a Custom Theme

Theme Directories & Design Principles
Getting Started
Global style/font/color customizations
Customize Logo in Header
Customize Navigation Links in Header
Customize Footer
Customize Favicon for site or theme
Customize Home Page News
Customize the simple Item page
Customize other Components in your Theme
Customize UI labels using Internationalization (i18n) files
Extending other Themes
Adding Component Directories to your Theme
Removing Component Directories from your Theme
Debugging which theme is being used
Finding which component is generating the content on a page

Additional Theming Resources

Angular Overview

The DSpace User Interface (UI) is built on the framework. All data comes from the (DSpace Backend), and the final HTML pages Angular.io REST API
are generated via .TypeScript

Before getting started in customizing or branding the UI, there are some basic Angular concepts to be aware of. You do not need to know Angular or
 But, understanding a few basic concepts will allow you to better understand the folder structure / layout of the TypeScript to theme or brand the UI.

codebase.

Angular Components: In Angular, every webpage consists of a number of "components" which define the structure of a page. They are the main
"building block" of any Angular application. Components are reusable across many pages. So, for example, there's only one "header" and "footer"
component, even though they appear across all pages.

Each Component has:

A () file which contains the logic & name ("selector") of the component*.component.ts TypeScript
A (HTML) file which contains the HTML markup for the component (and possibly references to other embedded *.component.html
components). This is also called the "template".

In HTML files, components are named/referenced as HTML-like tags (e.g. ,). In DSpace's UI, every <ds-header> <ds-footer>
component starts with "ds-" in order to distinguish it as an out-of-the-box DSpace component.

A (/ CSS) file which contains the style for the component.*.component.scss Sass

If you want a deeper dive into Angular concepts of Components and Templates, see https://angular.io/guide/architecture-components

Theme Technologies

The DSpace UI uses:

Bootstrap (v4.x) website framework for general layout & webpage components (buttons, alerts, etc)
Sass, a CSS preprocessor, for stylesheets. Sass is very similar to CSS (an in fact, any CSS is valid Sass). But, Sass allows you to nest CSS
rules & have variables and functions. For a brief overview on Sass, see https://sass-lang.com/guide
HTML5, the latest specification of the HTML language

Familiarity with these technologies (or even just CSS + HTML) is all you need to do basic theming of the DSpace UI.

Running the UI in Developer Mode

Whenever you are testing changes in the User Interface, may wish to see you changes "live" instead of rebuilding after each change. The easiest way to
achieve this is to run the User Interface locally (i.e. on localhost) in developer mode by running:

yarn start:dev

This mode has several development-specific advantages:

UI starts more rapidly
UI will use a separate "config.dev.yml" configuration file (in 7.1 or 7.0 this file was named "environment.dev.ts"). This lets you have development
specific configs, separate from your Production settings in "config.prod.yml" (in 7.1 or 7.0 this file was named "environment.prod.ts")

352

https://angular.io/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://sass-lang.com/
https://angular.io/guide/architecture-components
https://getbootstrap.com/
https://sass-lang.com/
https://sass-lang.com/guide
https://html.spec.whatwg.org/dev/

1.

a.

i.

ii.

b.

i.

ii.

2.

3.

a.

UI will automatically reload anytime you modify a file. Essentially the UI will constantly "watch" for changes (as you make them) & will reload
anytime you modify a file. This lets you find issues/bugs more rapidly and also test more rapidly.

Keep in mind, you should NEVER run the UI in developer mode in production scenarios. Production mode provides much better performance and ensures
your site fully supports SEO, etc.

Creating a Custom Theme

Theme Directories & Design Principles

A theme's directory should include the following files and directories

app/ contains the theme's Angular components and should mirror the structure of src/app/
assets/ contains the theme's custom assets, such as fonts or images
styles/ contains the theme's global styles
eager-theme.module.ts declares the components that should be included in the app's main bundle, such as

Eager components are those that should be available immediately when first loading, such as the main parts of the homepage and
components that are present on every page.
Entry components that are registered via a decorator such as . These must also be included in the@listableObjectComponent
module's .providers

lazy-theme.module.ts declares all the other components of the theme.

Out of the box, there are three theming layers/directories to be aware of:

Base Theme (directories): The primary look & feel of DSpace (e.g. HTML layout, header/footer, etc) is defined by the HTML5 src/app/
templates under this directory. Each HTML5 template is stored in a subdirectory named for the Angular component where that template is used.
The base theme includes very limited styling (CSS, etc), based heavily on and only allowing for minor tweaks to ,default Bootstrap (4.x) styling
improve WCAG 2.1 AA accessibility.
Custom Theme (directories): This directory acts as the scaffolding or template for creating a new custom theme. src/themes/custom It
provides (empty) Angular components/templates which allow you to change the theme of individual components. Since all files are empty by
default, if you enable this theme (without modifying it), it will look to the Base Theme. identical
DSpace Theme (directories): This is the default theme for DSpace 7. It's a very simple example theme providing a src/themes/dspace
custom color scheme, header & homepage on top of the Base Theme. It's important to note that this theme ONLY provides custom CSS/images
to override our Base Theme. All HTML5 templates are included at the Base Theme level, as this ensures those HTML5 templates are also
available to the Custom Theme.

The DSpace UI design principles & technologies are described in more detail at DSpace UI Design principles and guidelines

Getting Started

Choose a theme to start from: As documented above, there are two "src/theme/" directories provided out of the box: "custom" or "dspace". You
should select one to use as the basis for your theme. Which you choose is up to you, but here are a few things to consider:

DSpace Theme (): This is a simple, example theme for novice users. Primarily, in this theme, you can src/themes/dspace
immediately customize the CSS, header & homepage components. You can add other components as needed (see "Adding Component

" below).Directories to your Theme
Advantages: This theme is small and simple. It provides an easy starting point / example for basic themes. Future User
Interface upgrades (e.g. from 7.1 7.2) are likely to be easier because the theme is smaller in size.
Disadvantages: It has very few component directories by default. But you can always add more. See "Adding Component

" below.Directories to your Theme
Custom Theme (): This theme provides all available theme-able components for more advanced or complex src/themes/custom
theming options. This provides you full control over everything that is theme-able in the User Interface

Advantages: All theme-able components are provided in subdirectories. This makes it easier to modify the look and feel of any
area of the User Interface.
Disadvantages: After creating your theme, you may wish to remove any component directories that you didn't modify (see "Rem

" below). Generally speaking, upgrades (e.g. from 7.1 7.2) are often easier if oving Component Directories from your Theme
your theme includes fewer components (as your theme may require updates if any component it references change
significantly).

Create your own theme folder OR edit the existing theme folder: Either edit the theme directory in place, or copy it (and all its contents) into a new
folder under (choose whatever folder name you want)src/themes/
Register your theme folder (only necessary if you create a new folder in previous step): Now, we need to make the UI aware of this new theme
folder, before it can be used in configuration.

Modify (in the root folder), adding your theme folder's main "theme.scss" file to the "styles" list. The below example is angular.json
for a new theme folder named src/themes/mydspacesite/

353

https://angular.io/guide/entry-components
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://wiki.lyrasis.org/display/DSPACE/DSpace+UI+Design+principles+and+guidelines

3.

a.

4.

5.

"styles": [
 "src/styles/startup.scss",
 {
 "input": "src/styles/base-theme.scss",
 "inject": false,
 "bundleName": "base-theme"
 },
 ...
 {
 "input": "src/themes/mydspacesite/styles/theme.scss",
 "inject": false,
 "bundleName": "mydspacesite-theme"
 },
]

NOTE: the "bundleName" for your custom them MUST use the format "${folder-name}-theme". E.g. if the folder is named "src/themes
/amazingtheme", then the "bundleName" MUST be "amazingtheme-theme"

(As of 7.3 or above) Import the new theme's eager-theme.module.ts in themes/eager-themes.module.ts. If you're switching from one
theme to another, remove the old theme from the imports. Below is an example for a theme named "my-theme":

themes/eager-themes.module.ts

// COMMENT out the imports for any themes you are NOT using
//import { EagerThemeModule as DSpaceEagerThemeModule } from './dspace/eager-theme.module';
//import { EagerThemeModule as CustomEagerThemeModule } from './custom/eager-theme.module';

// Add a new import for your custom theme. Give its EagerThemeModule a unique name (e.g. "as [choose-a-
unique-name]").
// Make sure the path points at its "eager-theme.module.ts" (see 'from' portion of the import statement).
// NOTE: You can import multiple themes if you plan to use multiple themes
import { EagerThemeModule as MyThemeEagerThemeModule } from './my-theme/eager-theme.module';

...
@NgModule({
 imports: [
 // Again, comment out any themes you are NOT using
 //DSpaceEagerThemeModule,
 //CustomEagerThemeModule,

 // Add your custom theme's EagerThemeModule to this list
 // NOTE: you can add multiple theme's to this list if you plan to use multiple themes.
 MyThemeEagerThemeModule,
],
})

Enable your theme: Modify your configuration file (in 7.1 or 7.0 this file was named config/config.*.yml src/environments
, adding your new theme to the "themes" array in that file. Pay close attention to modify the correct configuration file (e.g. /environment.*.ts)

modify config.dev.yml if running in dev mode, or config.prod.yml if running in prod mode). We recommend starting in "dev mode" (config.dev.yml)
as this mode lets you see your changes immediately in a browser without a full rebuild of the UI – see next step.

Format for 7.2 or above (config.*.yml)

In this example, we only show one theme enabled. It's possible to enable multiple (see below note)
themes:
 - name: 'mydspacesite'

354

5.

6.

7.

1.

a.

b.

c.

d.

2.

a.

b.
i.
ii.

Format for 7.1 or 7.0 (environment.*.ts)

// In this example, we only show one theme enabled. It's possible to enable multiple (see below note)
themes: [
 {
 name: 'mydspacesite'
 },
]

NOTE: The "name" used is the name of the theme's folder, so the example is for enabling a theme at src/themes/mydspacesite/
globally. You should also comment out the default "dspace" theme, if you intend to replace it entirely.
NOTE #2: You may also choose to enable multiple themes for your site, and even specify a different theme for different Communities,
Collections, Items or URL paths. See for more details on "Theme Settings"User Interface Configuration
Verify your settings by starting the UI (ideally in Dev mode): At this point, you should verify the basic settings you've made all "work". We
recommend doing your theme work while running the UI in "dev mode", as the UI will auto-restart anytime you save a new change. This will allow
you to quickly see the impact of each change in your browser.

Start in dev mode (which uses config.dev.yml)
yarn start:dev

At this point, you can start making changes to your theme. See the following sections for examples of how to make common changes.

Global style/font/color customizations

Changes to the global Bootstrap variables or styles will apply to all pages / Angular components across the entire site.

Global style changes: All global style changes can be made in your theme's folder (e.g.). There styles src/themes/mydspacesite/styles
are four main files in that folder:

_theme_sass_variable_overrides.scss - May be used to override Bootstrap's default Sass variables. This is the file you may
wish to use for style changes. There are a large number of Bootstrap variables available which control everything from fonts, most
colors and the base style for all Bootstrap web components. For a full list of Bootstrap variables you can override in this file, see the nod

 file (which is installed in your source directory when you run "yarn install"). More e_modules/bootstrap/scss/_variables.scss
information may also be found in the Bootstrap Sass documentation at https://getbootstrap.com/docs/4.0/getting-started/theming/#sass
_theme_css_variable_overrides.scss - May be used to override DSpace's default CSS variables. DSpace's UI uses CSS
variables for all its components. These variables all start with "--ds-*", and are listed in Yosrc/styles/_custom_variables.scss.
u can also use this file to add your own, custom CSS variables which you want to use for your theme. If you create custom variables,
avoid naming them with a "--ds-*" or a "--bs-*" prefix, as those are reserved for DSpace and Bootstrap variables.
_global-styles.scss - May be used to modify the global CSS/SCSS for the site. This file may be used to override the default global
style contained in . Keep in mind, many styles can be more quickly changed by simply src/styles/_global-styles.scss
updating a variable in one of the above "*_variable_overrides.scss" files. So, it's often easier to use those first, where possible.
theme.scss - This just imports all the necessary Sass files to create the theme. It's unnecessary to modify directly, unless you with to
add new Sass files to your theme.

Modifying the default font: By default, DSpace uses , which just uses system UI fonts. However, the font used in Bootstrap's "native font stack"
your site can be quickly updated via Bootstrap variables in your theme's file. _theme_sass_variable_overrides.scss

One option is to add a new import statement and modify the "$font-family-sans-serif" variable:

// Import the font (from a URL)
@import url('https://fonts.googleapis.com/css?family=Source+Sans+Pro');

// Configure Bootstrap to use this font (and list a number of backup fonts to use on various
systems)
$font-family-sans-serif: 'Source Sans Pro', -apple-system, BlinkMacSystemFont, "Segoe UI",
"Roboto", "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI
Symbol" !default;

If your font requires installing local files, you can do the following
Copy your font file(s) in your theme's folderassets/fonts/
Create a new ".scss" file specific to your font in that folder, e.g. , and use the assets/fonts/open-sans.scss "@font-face"

 to load that font:CSS rule

355

https://getbootstrap.com/docs/4.0/getting-started/theming/#sass
https://getbootstrap.com/docs/4.0/content/reboot/#native-font-stack
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face

2.

b.

ii.

iii.

c.

3.

a.
b.
c.

4.

1.

2.

3.

4.

open-sans.scss

@font-face {
 font-family: "Open Sans";
 src: url("/assets/fonts/OpenSans-Regular-webfont.woff2") format("woff2"),
 url("/assets/fonts/OpenSans-Regular-webfont.woff") format("woff");
}

Then, import that new "open-sans.scss" file and use it in the "$font-family-sans-serif" variable

// Import the font via the custom SCSS file
@import '../assets/fonts/open-sans';

// Configure Bootstrap to use this font (and list a number of backup fonts to use on
various systems)
$font-family-sans-serif: 'Open Sans', -apple-system, BlinkMacSystemFont, "Segoe UI",
"Roboto", "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji",
"Segoe UI Symbol" !default;

Keep in mind, as changing the font just requires adjusting Bootstrap Sass variables, there are a lot of Bootstrap guides out there that can
help you make more advanced changes

Modifying default color scheme: The colors used in your site can be quickly updated via Bootstrap variables in your theme's _theme_sass_vari
 file. able_overrides.scss

Again, you can use entirely Bootstrap variables to adjust color schemes. See the Bootstrap Theming Colors documentation
A list of all Bootstrap color variables can be found in the filenode_modules/bootstrap/scss/_variables.scss
Additional examples can be found in the out-of-the-box "dspace" theme, which adjusts the default Bootstrap colors slightly for both
accessibility & to match the DSpace logo.

Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.

CSS custom properties vs. SASS variables

Support for theme switching at runtime requires that components use CSS custom properties (which vary at runtime) rather than SASS variables (which
are fixed at build time). Thus, SASS variables will be undefined in individual components' stylesheets. The Bootstrap SASS variables are mapped to CSS
properties for use in these places. For example, is mapped to and may be referenced as .$red --bs-red var("--bs-red")

Customize Logo in Header

Copy your logo to your theme's folder. Anything in this theme folder will be deployed to assets/images/ /assets/[theme-name]/images/
URL path.
Edit your theme's file. Swap the "templateUrl" property that your theme is using the local copy of "header.app/header/header.component.ts
component.html"

header.component.ts

@Component({
 selector: 'ds-header',
 // styleUrls: ['header.component.scss'],
 styleUrls: ['../../../../app/header/header.component.scss'],
 // Uncomment the templateUrl which references the "header.component.html" file in your theme directory
 templateUrl: 'header.component.html',
 // Comment out the templateUrl which references the default "src/app/header/header.component.html"
file.
 //templateUrl: '../../../../app/header/header.component.html',
})

Your theme's version of the file will be empty by default. Copy over the default HTML code from header.component.html src/app/header
 into your version of this file./header.component.html

Then, modify your copy of header.component.html to use your logo. In this example, we're assuming your theme name is "mytheme" and the logo
file is named "my-logo.svg"

356

https://getbootstrap.com/docs/4.1/getting-started/theming/#color

4.

5.

6.

7.

a.
b.

1.

2.

a.
3.

1.
a.
b.

2.

<header>
 <div class="container">
 <div class="d-flex flex-row justify-content-between">

 <!-- Modify the logo on the next line -->

 ...
</header>

Obviously, you can also make additional modifications to the HTML of the header in this file! You'll also see that the header references several
other DSpace UI components (e.g. is the search icon in the header). You can easily comment out these tags to disable <ds-search-navbar>
them, or move them around to change where that component appears in the header.
Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.
NOTE: If you have a theme based on the "dspace" theme, be aware that theme places the header logo in two locations. This allows the "dspace"
theme to support a single-line header (whereas the "custom" theme's header is multi-line):

The Header component () is only used on user profile pagesas described above
The Navbar component () is used everywhere else. The Navbar component can be src/app/navbar/navbar.component.html
customized in the same way as the Header Component. Just edit the logo path in the "navbar.component.html".

Customize Navigation Links in Header

This provides a basic example of adding in a hardcoded link to the header menu (displayed on every page in DSpace).

Edit your theme's existing file. This file defines the entire <nav> which displays the navigation header app/navbar/navbar.component.html
across the entire DSpace site. While much of the content in this <nav> is loaded dynamically via other Angular components, it is possible to
easily add a hardcoded link to the existing header. Find the section of this <nav> which is the <div id="collapsingNav">, as that's where you'll
want to add your new link. See inline comments in the example below.

navbar.component.html

<nav>
...
 <!-- This DIV is where the header links are added dynamically.
 You should see it surrounding all links in the header if you view HTML source -->
 <div id="collapsingNav" ... >
 <!-- The links themselves are in an unordered list (UL) -->
 <ul class="navbar-nav" ... >
 ...
 <!-- Add your new link at the end (or beginning) of this UL in a new LI tag -->
 <!-- NOTE: All classes used below are the same Bootstrap CSS classes used by our 'dspace' and
'custom' themes.
 You can modify them if the link doesn't look correct in your theme. -->
 <li class="nav-item d-flex align-items-center">
 <div class="text-md-center">
 DSpace.org
 </div>

 </div>
</nav>

Obviously, you can also make additional modifications to the HTML of the header in this file, as necessary for your navigation header. Keep in
mind though that anything you remove may impact the dynamic content that is pulled into this navigation header.

An example is that the header logo for the "dspace" theme also exists in this same file.
Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.

Customize Footer

First, you'll want to decide if you want to modify just the footer's HTML, or the footer's styles (CSS/Sass), or both.
If you want to modify the HTML, you'll need to create a copy of "footer.component.html" in your theme, where you place your changes.
If you want to modify the styles, you'll need to create a copy of "footer.component.scss" in your theme, where you place your changes.

Edit your theme's file. Swap the "templateUrl" and "styleUrls" properties, based on which you want to app/footer/footer.component.ts
modify in your theme.

357

2.

3.

a.

b.

4.
a.

b.

5.

6.

footer.component.ts

@Component({
 selector: 'ds-footer',
 // If you want to modify styles, then...
 // Uncomment the styleUrls which references the "footer.component.scss" file in your theme's directory
 // and comment out the one that references the default "src/app/footer/footer.component.scss"
 styleUrls: ['footer.component.scss'],
 //styleUrls: ['../../../../app/footer/footer.component.scss'],
 // If you want to modify HTML, then...
 // Uncomment the templateUrl which references the "footer.component.html" file in your theme's
directory
 // and comment out the one that references the default "src/app/footer/footer.component.html"
 templateUrl: 'footer.component.html'
 //templateUrl: '../../../../app/footer/footer.component.html'
})

Now, based on what you want to modify, you will need to either update your theme's copy of or footer.component.html footer.
 or both.component.scss

To change footer HTML: Your theme's version of the file will be empty by default. Copy over the default footer.component.html
HTML code from into your version of this file.src/app/footer/footer.component.html
To change footer Styles: Your theme's version of the file will be empty by default. Copy over the default footer.component.scss
Sass code from into your version of this file.src/app/footer/footer.component.scss

Modify the HTML or Sass as you see fit.
If you want to add images, add them to your theme's folder. Then reference them at the assets/images /assets/[theme-name]

 URL path./images/
Keep in mind, all Bootstrap variables, utility classes & styles can be used in these files. Take advantage of Bootstrap when you can do
so.

DSpace also has a option to display a two-level footer, which is becoming more common these days. By default. DSpace just displays a small,
bottom footer. But, you can enable a top footer (above that default footer) by add this line into your theme's footer.component.ts

footer.component.ts

export class FooterComponent extends BaseComponent {
 // This line will enable the top footer in your theme
 showTopFooter = true;
}

This top footer appears in the within a div. Notice the " ", which only shows that div footer.component.html *ngIf='showTopFooter'
when that variable is set to "true"

footer.component.html

<footer class="text-lg-start">
 <!-- This div and everything within it only displays if showTopFooter=true -->
 <div *ngIf="showTopFooter" class="top-footer">
 ...
 </div>
 <!-- The bottom footer always displays -->
 <div class="bottom-footer ...">
 ...
 </div>
</footer>

Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.

Customize Favicon for site or theme

In 7.1 or 7.0, the only way to change the favicon is to modify the file.Available in 7.2 or above. src/assets/images/favicon.ico

358

1.

2.

3.

1.
a.

b.

2.

Each theme has the ability to add a set of (attribute-only) HTML tags in the <head> section of the page. This is useful for example to change the favicon b
ased on the active theme. Whenever the theme changes, the head tags are reset. A theme can inherit head tags from the parent theme only if it doesn't
have any head tags itself. (E.g. theme B extends theme A; if theme B does not have head tags, the head tags of theme A will be used (if any). However, if
theme B does have head tags, only the tags from theme B will be used.) If none of the themes in the inheritance hierarchy have head tags configured, the
head tags of the default theme (if any) will be used.

Note that a simple hardcoded favicon is set in case no head tags are currently active. The hardcoded favicon is stored at src/assets/images
. This implies that if head tags are added to a theme, the favicon should also be configured explicitly for that theme, else the behavior is /favicon.ico

undefined.

In the "themes" section of your configuration file, add (one or more) "headTags", pointing at the favicon file you want to config/config.*.yml
use. For example:

themes:
 # The default dspace theme
 - name: dspace
 # Whenever this theme is active, the following tags will be injected into the <head> of the page.
 # Example use case: set the favicon based on the active theme.
 headTags:
 # Insert <link rel="icon" href="assets/dspace/images/favicons/favicon.ico" sizes="any"/> into the
<head> of the page.
 - tagName: link
 attributes:
 rel: icon
 href: assets/dspace/images/favicons/favicon.ico
 sizes: any
 # Insert <link rel="icon" href="assets/dspace/images/favicons/favicon.svg" type="image/svg+xml"/>
into the <head> of the page.
 - tagName: link
 attributes:
 rel: icon
 href: assets/dspace/images/favicons/favicon.svg
 type: image/svg+xml
 # Insert <link rel="apple-touch-icon" href="assets/dspace/images/favicons/apple-touch-icon.png"/>
into the <head> of the page.
 - tagName: link
 attributes:
 rel: apple-touch-icon
 href: assets/dspace/images/favicons/apple-touch-icon.png
 # Insert <link rel="manifest" href="assets/dspace/images/favicons/manifest.webmanifest"/> into the
<head> of the page.
 - tagName: link
 attributes:
 rel: manifest
 href: assets/dspace/images/favicons/manifest.webmanifest

In 7.2 or above, any changes to this configuration just require restarting your site (no rebuild necessary). In 7.1 or 7.0, you must rebuild your site
after modifying the favicon.ico.
NOTE: If you specify multiple formats for your favicon (e.g. favicon.svg and favicon.ico), then your browser will select which one it prefers (e.g.
Chrome seems to favor SVG over ICO). However, if you want to force all browser to use a single favicon, then you may wish to only specify one
"icon" format in your section.headTags

Customize Home Page News

The primary Home page content is all included in the source code under "src/app/home-page". The News section is specifically under "src/app/home-page
/home-news".

First, you'll want to decide if you want to modify just the Home Page News HTML, or styles (CSS/Sass), or both.
If you want to modify the HTML, you'll need to create a copy of the HTML in "app/home-page/home-news/home-news.component.html"
in your theme. This is where you place your changes.
If you want to modify the styles, you'll need to create a copy of the CSS in "app/home-page/home-news/home-news.component.scss" in
your theme. This is where you place your changes.

Edit your theme's file. Swap the "templateUrl" and "styleUrls" properties, based on app/home-page/home-news/home-news.component.ts
which you want to modify in your theme.

359

2.

3.

a.

b.

4.
a.

b.

5.

1.
a.

b.

2.

home-news.component.ts

@Component({
 selector: 'ds-home-news',
 // If you want to modify styles, then...
 // Uncomment the styleUrls which references the "home-news.component.scss" file in your theme's
directory
 // and comment out the one that references the default "src/app/home-page/home-news/home-news.
component.scss"
 styleUrls: ['./home-news.component.scss'],
 //styleUrls: ['../../../../../app/home-page/home-news/home-news.component.scss'],
 // If you want to modify HTML, then...
 // Uncomment the templateUrl which references the "home-news.component.html" file in your theme's
directory
 // and comment out the one that references the default "src/app/home-page/home-news/home-news.
component.html"
 templateUrl: './home-news.component.html'
 //templateUrl: '../../../../../app/home-page/home-news/home-news.component.html'
})

Now, based on what you want to modify, you will need to either update your theme's copy of or home-news.component.html home-news.
 or both.component.scss

To change HTML: Your theme's version of the file will be empty by default. Copy over the default HTML home-news.component.html
code from into your version of this file.src/app/home-page/home-news/home-news.component.html
To change Styles: Your theme's version of the file will be empty by default. Copy over the default Sass home-news.component.scss
code from into your version of this file.src/app/home-page/home-news/home-news.component.scss

Modify the HTML or Sass as you see fit.
If you want to add images, add them to your theme's folder. Then reference them at the assets/images /assets/[theme-name]

 URL path./images/
Keep in mind, all Bootstrap variables, utility classes & styles can be used in these files. Take advantage of Bootstrap when you can do
so.

Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.

Customize the simple Item page

The "simple" Item page is the default display for an Item (when you visit any item via a URL like [dspace.ui.url]/items/[uuid]). If you want to modify the
metadata fields displayed on that page by default, that can be done quite easily.

Normal Item: The code for the simple Item page for a normal Item (i.e. not an Entity) can be found in the source code at "src/app/item-page
" /simple/item-types/untyped-item/

Publication Entity: If you are wanting to modify the display of Publication Entities, it has separate source code under "src/app/item-page
"/simple/item-types/publication/

Here's the basics of modifying this page. The below examples assume you are working with a normal Item. But the same logic would work for modifying
the Publication pages (you'd just need to modify it's HTML/CSS instead)

First, you'll want to decide if you want to modify just the Item Page HTML, or styles (CSS/Sass), or both.
If you want to modify the HTML, you'll need to create a copy of the HTML in "src/app/item-page/simple/item-types/untyped-

" in your theme. This is where you place your changes.item/untyped-item.component.html
If you want to modify the styles, you'll need to create a copy of the CSS in "src/app/item-page/simple/item-types/untyped-

" in your theme. This is where you place your changes.item/untyped-item.component.scss
Edit your theme's file. Swap the "templateUrl" and app/item-page/simple/item-types/untyped-item/untyped-item.component.ts
"styleUrls" properties, based on which you want to modify in your theme. Also, MAKE SURE the "@listableObjectComponent" is using your
theme... the last parameter should be the name of your theme!

360

2.

3.

a.

b.

4.

a.
i.
ii.

iii.

b.

i.
c.

5.

6.

1.
a.
b.

2.
a.

b.

3.
a.

b.

4.

untyped-item.component.ts

// MAKE SURE that the final parameter here is the name of your theme. This one assumes your theme is
named "custom".
@listableObjectComponent(Item, ViewMode.StandalonePage, Context.Any, 'custom')
@Component({
 selector: 'ds-untyped-item',
 // If you want to modify styles, then...
 // Uncomment the styleUrls which references the "untyped-item.component.scss" file in your theme's
directory
 // and comment out the one that references the default in "src/app/"
 styleUrls: ['./untyped-item.component.scss'],
 //styleUrls: ['../../../../../../../app/item-page/simple/item-types/untyped-item/untyped-item.
component.scss'],
 // If you want to modify HTML, then...
 // Uncomment the templateUrl which references the "untyped-item.component.html" file in your theme's
directory
 // and comment out the one that references the default "src/app/"
 templateUrl: './untyped-item.component.html',
 //templateUrl: '../../../../../../../app/item-page/simple/item-types/untyped-item/untyped-item.
component.html',
})

Now, based on what you want to modify, you will need to either update your theme's copy of or untyped-item.component.html untyped-
 or both.item.component.scss

To change HTML: Your theme's version of the file may be empty by default. Copy over the default untyped-item.component.html
HTML code from into your version of src/item-page/simple/item-types/untyped-item/untyped-item.component.html
this file.
To change Styles: Your theme's version of the file may be empty by default. Copy over the default untyped-item.component.scss
Sass code from into your version of src/item-page/simple/item-types/untyped-item/untyped-item.component.scss
this file

In the HTML of the Simple Item page, you'll see a number of custom "ds-" HTML-like tags which make displaying individual metadata fields
easier. These tags make it easier to add/remove metadata fields on this page.

<ds-generic-item-page-field> - This tag can be used to display the value of any metadata field (as a string).
Put the name of the metadata field in the "[fields]" attribute... see existing fields as an example.
Put the i18n label you want to use for this field in the "[label]" attribute. Again, see existing fields as an example. This i18n tag
MUST then be added to your " " file (or corresponding file depending on your language)src/assets/i18n/en.json5
For example, here's a new ds-generic-item-page-field which displays the value of the "dc.title.alternative" field with a label
defined in the "

<ds-item-page-uri-field> - This tag can be used to display the value of any metadata field as an HTML link. (The value must
already be a URL)

This field has the same attributes at above.<ds-generic-item-page-field>
Some specific tags exist for other fields (e.g. and). These are <ds-item-page-date-field> <ds-item-page-abstract-field>
currently separate components under " " directories. They src/app/item-page/simple/field-components/specific-field/
are hardcoded to use a specific metadata field and label, but you could customize the components in that location.

To add new fields, just add new "<ds-generic-item-page-field>" tags (or similar). To remove fields, just comment them out or remove the
HTML. You can also restructure the columns on that page using simple HTML and Bootstrap CSS.
Any changes require rebuilding your UI. If you are running in "dev mode" (yarn start:dev), then the UI will restart automatically whenever changes
are detected.

NOTE: If your changes to the simple item page don't appear to be working, make sure that you have updated the to load your eager-theme.module.ts
custom theme as described in the "Getting Started" section above! This small change is REQUIRED for the untyped-item component to work in a custom
theme. You also may wish to restart your dev server to ensure nothing is being cached.

Customize other Components in your Theme

By now, if you've followed this entire guide, you'll notice a pattern! Customizing specific DSpace UI components requires just three steps:

Configure your theme to use its copies of files: Modify the corresponding in your theme. *.component.ts
If you want to modify component style, replace the "styleUrls" in that file to point at the copy of in your theme.*.component.scss
If you want to modify component HTML, replace the "template" in that file to point at the copy of in your theme.*.component.html

Copy the default UI code into your theme file(s)
If you want to modify component style, copy the default code (from) into your theme's *.component.scss src/app/ component.

 file.scss
If you want to modify component HTML, copy the default code (from) into your theme's *.component.html src/app/ component.

 file.html
Modify those theme-specific files

If you want to add images, add them to your theme's folder. Then reference them at the assets/images /assets/[theme-name]
 URL path./images/

Keep in mind, all Bootstrap variables, utility classes & styles can be used in these files. Take advantage of Bootstrap when you can do
so.

361

4.

1.
a.

2.

1.
2.

3.

Remember to either rebuild the UI after each change, or run in dev mode (yarn start:dev) while you are doing theme work.

Customize UI labels using Internationalization (i18n) files

Much of the text (like headers and labels) displayed by the DSpace UI is captured in translation (language pack) files to support the use of DSpace in
multiple languages. This model of multi-language support is called internationalization (abbreviated i18n). The default set of these i18n files are stored in sr

 and named using the language code, so is the English translation, is the French translation, etc. In each of these c/assets/i18n en.json5 fr.json5
files, a set of "keys" is mapped to text in the given language.

If you would like to change the text displayed in the UI, you will need to edit the i18n translation files. There are two approaches you can take:

You can edit the file(s) directlysrc/assets/i18n/*.json5
For example, to change the label for the browse menu when viewing the UI in English (which defaults to "All of DSpace"), you would edit
src/assets/i18n/en.json5 and change the value for menu.section.browse_global .

And/or, you can create a separate *.json5 file in your theme which only lists the keys you have changed. This can keep your language changes
in your theme, and will override the default keys in the files. However, a specific setup is necessary, see the "Theme src/assets/i18n/
override approach" instructions below.

Theme override approach

The following "theme override" approach to capture i18n changes within a theme is only supported in DSpace 7.1 or above.

While editing the default i18n files directly is effective, the recommended approach is to capture i18n changes in your theme. This ensures that your
changes to the default values are easy to find and review and also removes the risk of losing your changes when upgrading to newer versions of DSpace.

To capture i18n changes in your theme, you will need to:

Create an i18n directory under src/themes/[theme-name]/assets
For each language you would like to update, add a file to the new i18n directory following the naming scheme in the default i18n directory (en.
json5 for English, fr.json5 for French, etc)
In each translation file add only the settings that you wish to add or override

There is an example of this configuration in the custom theme, which you can find in . src/themes/custom/assets/i18n

Once you have changes in place within your theme, they need to be applied by executing a script:

yarn merge-i18n -s src/themes/[theme-name]/assets/i18n

The script will merge the changes captured in your theme with the default settings, resulting in updated versions of the default i18n files. Any merge-i18n
setting you included in your theme will override the default setting. Any new properties will be added. Files will be merged based on file name, so en.json5
in your theme will be merged with the en.json5 file in the default i18n directory.

Extending other Themes
This is only supported in 7.1 and above

Themes can extend other themes using the "extends" configuration. See for more examples.User Interface Configuration

Extending another theme means that you inherit all the settings of the extended theme. So, if the current theme does NOT specify a component style, its
ancestor theme(s) will be checked recursively for their styles before falling back to the default. In other words, this "extends" setting allows for a theme to in

 all styles/components from the extended theme, and only override those styles/components you wish to override.herit

Here's a basic example:

Format for 7.2 or above (config.*.yml)

themes:
 # grandchild theme
 - name: custom-A
 extends: custom-B
 handle: '10673/34'
 # child theme
 - name: custom-B
 extends: custom
 handle: 10673/2
 # default theme
 - name: custom

362

1.

a.

b.

2.

3.

4.

5.

Format for 7.1 or 7.0 (environment.*.ts)

themes: [
 // grandchild theme
 {
 name: 'custom-A',
 extends: 'custom-B',
 handle: '10673/34',
 },
 // child theme
 {
 name: 'custom-B',
 extends: 'custom',
 handle: '10673/2',
 },
 // default theme
 {
 name: 'custom',
 },
],

In the above examples:

When the object at Handle '10673/2' (and any child objects) is viewed, the 'custom-B' theme will be used. By default, you'll have the same styles
as the extended 'custom' theme. However, you can override individual styles in your 'custom-B' theme.
When the object at Handle '10673/34' (and any child objects) is viewed, the 'custom-A' theme will be used. By default, your overall theme will be
based on the 'custom' theme (in this case a "grandparent" theme). But, you can override those styles in your 'custom-B' theme or 'custom-A'
theme.

The order of priority is 'custom-A', then 'custom-B', then 'custom'. If a style/component is in 'custom-A' it will be used. If not, 'custom-B'
will be checked and if it's there, that version will be used. If not in either 'custom-A' or 'custom-B', then the style/component from
'custom' will be used. If the style/component is not in ANY of those themes, then the default (base theme) style will be used.

Adding Component Directories to your Theme

If you come across an Angular Component which is NOT in your theme but want to customize it, you can add it into your theme directory. This involves
copying the component from the "Custom" theme over into your theme.

You can add/copy over a Component Directory as follows:

First, copy the Angular Component directory in question from the "Custom" theme folder (src/themes/custom) into your theme's folder. NOTE: at
this time, not all components are theme-able. So, if it doesn't exist in the "Custom" theme folder, then it may not be possible to theme.

For example, if you wanted to add the Footer Component to your theme, it can be found in the "Custom" theme at "src/themes/custom
/app/footer".
Copy that entire folder into your theme folder, retaining the same relative path. For example, to add the Footer Component, copy "src
/themes/custom/app/footer" (and all contents) into "src/themes/[your-theme]/app/footer".

Now, you need to "register" that component in one of your theme's module files: lazy-theme.module.ts or eager-theme.module.ts. For
performance it's best to put as many components into lazy-theme.module.ts as that means they'll only be downloaded if they're needed.
Components in eager-theme.module.ts are included in the initial JS download for the app, so you should only add components there that are
necessary on every page, such as the header and footer, these You should also include should be added to the array. DECLARATIONS
components using one of our custom decorators (such as @listableObjectComponent), because those decorators need to be registered when the
app starts to be able to be picked up. These should be added to the ENTRY_COMPONENTS array, which will both declare them as well as ensure
they're loaded when the app starts.
Add an import of the new component file, or the corresponding import from "src/themes/custom/lazy-theme.module.ts" or "src/themescopy
/custom/eager-theme.module.ts". For example, the Footer Component import can be found in "src/themes/custom/eager-theme.module.ts" and
looks like this:

import { FooterComponent } from './app/footer/footer.component';

In that same module file, also add this imported component to the "DECLARATIONS" section. (Again, you can optionally look in the custom
theme's module files to see how its done). For example, the Footer Component would then be added to the list of DECLARATIONS (the order of
the declarations list doesn't matter):

const DECLARATIONS = [

 FooterComponent,

];

363

5.

6.

1.

a.

b.

c.

2.
3.

a.

1.

At this point, you should rebuild/restart your UI to ensure nothing has broken. If you did everything correctly, no build errors will occur. Generally
speaking, it's best to add Components one by one, rebuilding in between.
Now, you can customize your newly added Component by following the " " instructions above.Customizing Other Components in your Theme

Removing Component Directories from your Theme

While there is no harm in keeping extra, unmodified component directories in your theme, it can be beneficial to remove component directories which are
unchanged.

The main advantage to keeping your theme simple/small is that it can make future upgrades easier. Generally speaking, the fewer components you have
in your theme, the less likely your theme will need modification in a future upgrade (as generally your theme may require updates if one of the components
it references underwent structural/major changes).

You can remove a Component directory as follows:

First you MUST remove all references to that directory/component from your theme's lazy-theme.module.ts and eager-theme.module.ts
. files

For example, to delete the "./app/login-page" directory, you'd want to find which component(s) use that directory in your lazy-theme.
 file. module.ts

If you search that file, you'd fine this reference:

import { LoginPageComponent } from './app/login-page/login-page.component';

That means you not only need to remove that "import" statement. You'd also need to remove all other references to
"LoginPageComponent" in that same file. So, you'd also need to remove it from the DECLARATIONS lazy-theme.module.ts
section:

const DECLARATIONS = [

 LoginPageComponent,

];

Finally, delete the directory in question from your theme.
At this point, you should rebuild/restart your UI to verify nothing has broken. If you did everything correctly, no build errors will occur.

If you failed to edit your correctly, you may see "Cannot find module [path-to-module]" errors which lazy-theme.module.ts
reference the directories that Angular/Node can no longer find in your theme. Either restore those directories, or remove the reference
(s) from the similar to step 1 above.lazy-theme.module.ts

Debugging which theme is being used

While you are working on themes, sometimes you may discover that it's difficult to tell which theme is being used to generate specific HTML elements.
Luckily, there's an easy way to determine which theme is used on every HTML element.

Simply view the HTML source of the page, and look for the "data-used-theme" attribute. This attribute will tell you which named theme matched that HTML
element. By default, a name of "base" references the core or "base" code (under ./src/app) was used.

For example:

HTML source

<!-- This example shows the theme named "dspace" was used for the "themed-header-navbar-wrapper.component.ts" --
>
<ds-themed-header-navbar-wrapper ... data-used-theme="dspace"></ds-themed-header-navabar-wrapper>

<main>
 <!-- But, on the same page, the theme named "base" (core code) was used for the "themed-breadcrumbs.
component.ts" -->
 <ds-themed-breadcrumbs ... data-used-theme="base"></ds-themed-breadcrumbs>
</main>

Finding which component is generating the content on a page

Every DSpace Angular component has a corresponding HTML-like tag. The HTML tag is called the "selector" (or CSS selector), and it is defined <ds-*>
in the "*.component.ts" tag using the "@Component" decorator (see Angular's for the basics). The key point to remember is that Component Overview if

!you can find the "<ds-* >" tag, then it is easy to determine which component generated that tag

So, supposing you are trying to determine which component is generating part of a DSpace page.

364

https://angular.io/guide/component-overview

1.

a.
2.

a.

b.

3.

a.

b.

4.
a.

View the HTML source of the page in your browser. Search for that section of the page. (Or, right click on that part of the page and select
"Inspect")

For example, on the homepage view the source of the "Communities in DSpace" heading
Look for a parent HTML tag that begins with "ds-". This is the component selector!

Continuing the example, if you view the source of the "Communities in DSpace" heading, you'll see something like this (all HTML
attributes have been removed to make the example simplier):

<ds-top-level-community-list>
 <div>
 <h2> Communities in DSpace </h2>
 <p>Select a community to browse its collections.</p>
 </div>
</ds-top-level-community-list>

Based on the above HTML source, you can see that the "Communities in DSpace" header/content is coming from a component who's
selector is "ds-top-level-community-list"

Now, search the source code (./src/app/) directories for a ".component.ts" file which includes that "ds-" tag name. This can most easily be done in
an IDE, but also could be done using command line tools (e.g. grep).like this

Continuing the example, if you search the directories for "ds-top-level-community-list" you'll find a match in the "./src/app/ src/app
" file:/home-page/top-level-community-list/top-level-community-list.component.ts

@Component({
 selector: 'ds-top-level-community-list',
 ...
})

This lets you know that to modify the display of that section of the page, you may need to edit either the "top-level-community-
" file it's corresponding HTML file at " "list.component.ts or top-level-community-list.component.html

Once you've located the component, you can edit that component's HTML file (ending in "component.html") to change that section of the page.
Keep in mind, the component's HTML file may reference other "ds-" tags! Those are other components in DSpace which you can find
again by searching the "./src/app" directories for that tag.

Additional Theming Resources

"Getting Started with DSpace 7.0" Basic Workshop at OR2021 Conference
Bootstrap Documentation - DSpace's UI strives to be compliant with "out-of-the-box" Bootstrap as much as possible. Therefore, Bootstrap
knowledge is very beneficial in customizing DSpace.
Sass Documentation - Bootstrap and DSpace both use Sass to enhance your ability to customize styles quickly via variables, etc. Some
familiarity with Sass is recommended, though you need not be an expert.

365

https://stackoverflow.com/a/16957078/3750035
https://wiki.lyrasis.org/display/DSPACE/DSpace+7+at+OR2021
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://sass-lang.com/documentation

User Interface Configuration

Overview
Configuration File Format
Configuration Override
Configuration Reference

UI Core Settings
REST API Settings
Cache Settings - General
Cache Settings - Server Side Rendering (SSR)
Authentication Settings
Form Settings
Notification Settings
Submission Settings
Language Settings
Browse By Settings
Community-List Settings
Homepage Settings
Undo Settings
Item Access Labels
Item Page Settings
Community Page Settings
Collection Page Settings
Theme Settings
Bundle Settings
Media Viewer Settings

Uploading video captioning files
Toggle end-user agreement and privacy policy
Settings for rendering Markdown, HTML and MathJax in metadata
Controlled Vocabularies in Search Filters
Search settings
Debug Settings

Overview

As the DSpace 7 User Interface is built on , it aligns with many of the best practices of that platform & the surrounding community. One example Angular.io
is that our UI uses the . That said, you do NOT need to be deeply familiar with TypeScript to edit themes or other configuration.TypeScript language

In DSpace 7.2 and later, the UI Configuration format changed to support runtime configuration loading

As of DSpace 7.2, the UI configuration format has changed to YAML in order to support runtime configuration. This means that reloading configurations
now simply requires restarting the UI (which generally takes a few seconds).

In DSpace 7.1 and below, you had to rebuild the UI anytime you modified a configuration setting. The UI configuration format was Typescript which
required recompiling each time a setting changed. See the for details and examples.v7 UI configuration documentation

Configuration File Format
As of DSpace 7.2, the Configuration format is now YAML and is located at ../config/config.*.yaml

In DSpace 7.1 and 7.0, the Configuration format was a Typescript file and was located at . The structure of ./src/environments/environment.*.ts
this file was essentially a JSON like format.

If you are upgrading from 7.0 or 7.1 to 7.2 (or later), you will either need to migrate your old configuration file (from Typescript to YAML) or start fresh. You
can migrate your old (7.0 or 7.1) "environment.*.ts" configuration file to the new "config.*.yml" format (see the).v7 UI configuration documentation

Configuration Override
The UI configuration files reside in the folder in the . The default configuration is provided in ./config/ Angular UI source code config.yml.

To change the default configuration values, you simply create (one or more) local files that override the parameters you need to modify. You can use conf
 ig.example.yml as a starting point.

For example, create a new file in for a environment; config.dev.yml config/ development
For example, create a new file in for a environment; config.prod.yml config/ production

Configurations can also be overridden via one of the following

Using Environment variables. All environment variables MUST (1) be prefixed with "DSPACE_", (2) use underscores as separators (no dots
allowed), and (3) use all uppercase. Some examples are below:

366

https://angular.io/
https://www.typescriptlang.org/
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://github.com/DSpace/dspace-angular/

1.
2.
3.
4.
5.

"ui" settings environment variables
ui.host => DSPACE_UI_HOST # The host name
ui.port => DSPACE_UI_PORT # The port number
ui.nameSpace => DSPACE_UI_NAMESPACE # The namespace
ui.ssl => DSPACE_UI_SSL # Whether the angular application uses SSL [true/false]

"rest" settings environment variables
rest.host => DSPACE_REST_HOST # The host name of the REST application
rest.port => DSPACE_REST_PORT # The port number of the REST application
rest.nameSpace => DSPACE_REST_NAMESPACE # The namespace of the REST application
rest.ssl => DSPACE_REST_SSL # Whether the angular REST uses SSL [true/false]

Other examples
defaultLanguage => DSPACE_DEFAULTLANGUAGE
mediaViewer.video => DSPACE_MEDIAVIEWER_VIDEO

Multi-valued setting examples
If a setting can have multiple values (e.g. theme names), then use an index number (starting with zero)
to specify the multiple values.
The below example is equivalent to:
themes:
- name: 'dspace'
- name: 'mytheme'
handle: '10673/123'
DSPACE_THEMES_0_NAME = 'dspace'
DSPACE_THEMES_1_NAME = 'mytheme'
DSPACE_THEMES_1_HANDLE = '10673/123'

Or, by creating a (environment) file in the project root directory and setting the environment variables in that location..env

The override priority ordering is as follows (with items listed at the top overriding all other settings)

Environment variables
The file.env
The , or files (depending on current mode)./config/config.prod.yml ./config/config.dev.yml ./config/config.test.yml
The file./config/config.yml
The hardcoded defaults in ./src/config/default-app-config.ts

Configuration Reference

The following configurations are available in These settings may be overridden as described above../config/config.example.yml

UI Core Settings

The "ui" (user interface) section defines where you want Node.js to run/respond. It may correspond to your primary/public URL, but it also may not (if you
are running behind a proxy). In this example, we are setting up our UI to just use localhost, port 4000. This is a common setup for when you want to use
Apache or Nginx to handle HTTPS and proxy requests to Node.js running on port 4000.

config.*.yml

ui:
 ssl: false
 host: localhost
 port: 4000
 # NOTE: Space is capitalized because 'namespace' is a reserved string in TypeScript
 nameSpace: /
 # The rateLimiter settings limit each IP to a 'max' of 500 requests per 'windowMs' (1 minute).
 rateLimiter:
 windowMs: 60000 # 1 minute
 max: 500 # limit each IP to 500 requests per windowMs

The "rateLimiter" sub-section can be used to protect against a DOS (denial of service) attack when the UI is processed on the server side (i.e. server-side
rendering). Default settings are usually OK. In Angular, server-side rendering occurs to support better (SEO), as well as to Search Engine Optimization
support clients which cannot use Javascript. See also .Angular's docs on Server-side rendering

REST API Settings

367

https://angular.io/guide/universal

The "rest" (REST API) section defines which REST API the UI will use. The REST settings MUST correspond to the primary URL of the backend. Usually,
this means they must be kept in sync
with the value of in the backend's dspace.server.url local.cfg

This example is valid if your Backend is publicly available at https://api.mydspace.edu/server/ . Keep in mind that the "port" must always be specified even
if it's a standard port (i.e. port 80 for HTTP and port 443 for HTTPS).

config.*.yml

rest:
 ssl: true
 host: api.mydspace.edu
 port: 443
 # NOTE: Space is capitalized because 'namespace' is a reserved string in TypeScript
 nameSpace: /server

Cache Settings - General

The "cache" section controls how long objects/responses will remain in the UI cache. The defaults should be OK for most sites.

config.*.yml

cache:
 # NOTE: how long should objects be cached for by default
 msToLive:
 default: 900000 # 15 minutes
 # Default 'Cache-Control' HTTP Header to set for all static content (including compiled *.js files)
 # Defaults to one week. This lets a user's browser know that it can cache these files for one week,
 # after which they will be "stale" and need to be redownloaded.
 control: max-age=604800 # one week
 autoSync:
 defaultTime: 0
 maxBufferSize: 100
 timePerMethod:
 PATCH: 3 # time in seconds

Cache Settings - Server Side Rendering (SSR)

Caching options are also available for the User Interface's "server-side rendering" (which uses). Server-side rendering is used to pre-Angular Universal
generate full HTML pages and pass those back to users. This is necessary for Search Engine Optimization (SEO) as some web crawlers cannot use
Javascript. It also can be used to immediately show the first HTML page to users while the Javascript app loads in the user's browser.

While server-side-rendering is highly recommended on all sites, it can result in Node.js having to pre-generate many HTML pages at once when a site has
a large number of simultaneous users/bots. This may cause Node.js to spend a lot of time processing server-side-rendered content, slowing down the
entire site.

Therefore, DSpace provides some basic caching of server-side rendered pages, which allows the same pre-generated HTML to be sent to many users
/bots at once & decreases the frequency of server-side rendering.

Two cache options are provide: and . As the names suggest, the botCache is used for known web crawlers / bots, while botCache anonymousCache
the anonymousCache may be used for all anonymous (non-authenticated) users. By default, only the botCache is enabled. But highly active sites may
wish to enable the anonymousCache as well, since it can provide users with a more immediate response when they encounter cached pages.

Keep in mind, when the "anonymousCache" is enabled, this means that all non-authenticated users will utilize this cache. This cache can result in
massive speed improvements (for initial page load), as the majority of users may be interacting with cached content. However, these users may
occasionally encounter cached pages which are outdated or "stale" (based on values of "timeToLive" and "allowStale"). This means that these users will
not immediately see new updates or newly added content (Communities, Collections, Items) until the cache has refreshed itself. That said, when
"timeToLive" is set to a low value (like 10 seconds), this risk is minimal for highly active pages/content.

368

https://angular.io/guide/universal

config.*.yml

cache:
 ...
 serverSide:
 # Set to true to see all cache hits/misses/refreshes in your console logs. Useful for debugging SSR caching
issues.
 debug: false
 # When enabled (i.e. max > 0), known bots will be sent pages from a server side cache specific for bots.
 # (Keep in mind, bot detection cannot be guarranteed. It is possible some bots will bypass this cache.)
 botCache:
 # Maximum number of pages to cache for known bots. Set to zero (0) to disable server side caching for
bots.
 # Default is 1000, which means the 1000 most recently accessed public pages will be cached.
 # As all pages are cached in server memory, increasing this value will increase memory needs.
 # Individual cached pages are usually small (<100KB), so max=1000 should only require ~100MB of memory.
 max: 1000
 # Amount of time after which cached pages are considered stale (in ms). After becoming stale, the cached
 # copy is automatically refreshed on the next request.
 # NOTE: For the bot cache, this setting may impact how quickly search engine bots will index new content
on your site.
 # For example, setting this to one week may mean that search engine bots may not find all new content for
one week.
 timeToLive: 86400000 # 1 day
 # When set to true, after timeToLive expires, the next request will receive the *cached* page & then re-
render the page
 # behind the scenes to update the cache. This ensures users primarily interact with the cache, but may
receive stale pages (older than timeToLive).
 # When set to false, after timeToLive expires, the next request will wait on SSR to complete & receive a
fresh page (which is then saved to cache).
 # This ensures stale pages (older than timeToLive) are never returned from the cache, but some users will
wait on SSR.
 allowStale: true
 # When enabled (i.e. max > 0), all anonymous users will be sent pages from a server side cache.
 # This allows anonymous users to interact more quickly with the site, but also means they may see slightly
 # outdated content (based on timeToLive)
 anonymousCache:
 # Maximum number of pages to cache. Default is zero (0) which means anonymous user cache is disabled.
 # As all pages are cached in server memory, increasing this value will increase memory needs.
 # Individual cached pages are usually small (<100KB), so a value of max=1000 would only require ~100MB of
memory.
 max: 0
 # Amount of time after which cached pages are considered stale (in ms). After becoming stale, the cached
 # copy is automatically refreshed on the next request.
 # NOTE: For the anonymous cache, it is recommended to keep this value low to avoid anonymous users seeing
outdated content.
 timeToLive: 10000 # 10 seconds
 # When set to true, after timeToLive expires, the next request will receive the *cached* page & then re-
render the page
 # behind the scenes to update the cache. This ensures users primarily interact with the cache, but may
receive stale pages (older than timeToLive).
 # When set to false, after timeToLive expires, the next request will wait on SSR to complete & receive a
fresh page (which is then saved to cache).
 # This ensures stale pages (older than timeToLive) are never returned from the cache, but some users will
wait on SSR.
 allowStale: true

Authentication Settings

The "auth" section provides some basic authentication-related settings. Currently, it's primarily settings related to when a session timeout warning will be
showed to your users, etc.

369

config.*.yml

auth:
 # Authentication UI settings
 ui:
 # the amount of time before the idle warning is shown
 timeUntilIdle: 900000 # 15 minutes
 # the amount of time the user has to react after the idle warning is shown before they are logged out.
 idleGracePeriod: 300000 # 5 minutes
 # Authentication REST settings
 rest:
 # If the rest token expires in less than this amount of time, it will be refreshed automatically.
 # This is independent from the idle warning. Defaults to automatic refresh when the token will
 # expire within 2 minutes. Because token expires after 30 minutes by default, this means automatic
 # refresh would occur every ~28 minutes.
 timeLeftBeforeTokenRefresh: 120000 # 2 minutes

Form Settings

The "form" section provides basic settings for any forms displayed in the UI. At this time, these settings only include a validatorMap, which is not necessary
to modify for most sites

config.*.yml

form:
 # (7.5 and above) Whether to enable "spellcheck" attribute of textareas in forms.
 spellCheck: true
 # NOTE: Map server-side validators to comparative Angular form validators
 validatorMap:
 required: required
 regex: pattern

Notification Settings

The "notifications" section provides options related to where user notifications will appear in your UI. By default, they appear in the top right corner, and
timeout after 5 seconds.

config.*.yml

notifications:
 rtl: false
 position:
 - top
 - right
 maxStack: 8
 # NOTE: after how many seconds notification is closed automatically. If set to zero notifications are not
closed automatically
 timeOut: 5000 # 5 second
 clickToClose: true
 # NOTE: 'fade' | 'fromTop' | 'fromRight' | 'fromBottom' | 'fromLeft' | 'rotate' | 'scale'
 animate: scale

The set of valid animations can be found in the , and are implemented in NotificationAnimationsType ./src/shared/animations/

Submission Settings

The "submission" section provides some basic Submission/Deposit UI options. These allow you to optionally enable an autosave (disabled by default),
and custom styles/icons for metadata fields or authority confidence values.

370

https://github.com/DSpace/dspace-angular/blob/main/src/app/shared/notifications/models/notification-animations-type.ts

config.*.yml

submission:
 autosave:
 # NOTE: which metadata trigger an autosave
 metadata: []
 # NOTE: after how many time (milliseconds) submission is saved automatically
 # eg. timer: 300000 # 5 minutes
 timer: 0
 icons:
 metadata:
 # NOTE: example of configuration
 # # NOTE: metadata name
 # - name: dc.author
 # # NOTE: fontawesome (v6.x) icon classes and bootstrap utility classes can be used
 # style: fas fa-user
 - name: dc.author
 style: fas fa-user
 # default configuration
 - name: default
 style: ''
 authority:
 confidence:
 # NOTE: example of configuration
 # # NOTE: confidence value
 # - value: 600
 # # NOTE: fontawesome (v6.x) icon classes and bootstrap utility classes can be used
 # style: text-success
 # icon: fa-circle-check
 # # NOTE: the class configured in property style is used by default, the icon property could be used
in component
 # configured to use a 'icon mode' display (mainly in edit-item page)
 - value: 600
 style: text-success
 icon: fa-circle-check
 - value: 500
 style: text-info
 icon: fa-gear
 - value: 400
 style: text-warning
 icon: fa-circle-question
 - value: 300
 style: text-muted
 icon: fa-thumbs-down
 - value: 200
 style: text-muted
 icon: fa-circle-exclamation
 - value: 100
 style: text-muted
 icon: fa-circle-stop
 - value: 0
 style: text-muted
 icon: fa-ban
 - value: -1
 style: text-muted
 icon: fa-circle-xmark
 # default configuration
 - value: default
 style: text-muted
 icon: fa-circle-xmark

Language Settings

The "defaultLanguage" and "languages" sections allow you to customize which languages to support in your User Interface. See also .Multilingual Support

371

config.*.yml

Default Language in which the UI will be rendered if the user's browser language is not an active language
defaultLanguage: en

Languages. DSpace Angular holds a message catalog for each of the following languages.
When set to active, users will be able to switch to the use of this language in the user interface.
All out of the box language packs may be found in the ./src/assets/i18n/ directory
languages:
 - code: en
 label: English
 active: true
 - code: cs
 label: eština
 active: true
 - code: de
 label: Deutsch
 active: true
 - ...

The DSpace UI requires that a corresponding language pack file (named with the language code and ending in ".json5") be placed in ./src/assets
. See also for information about how to create and contribute these files./i18n/ DSpace 7 Translation - Internationalization (i18n) - Localization (l10n)

Browse By Settings

The "browseBy" section provides basic UI configurations for "Browse by" pages (/browse path). The "Browse by" options that appear in the "All of
DSpace" header menu . This allows the UI to change dynamically based on the configured browse are determined dynamically from the REST API
indexes in .Discovery

config.*.yml

browseBy:
 # Amount of years to display using jumps of one year (current year - oneYearLimit)
 oneYearLimit: 10
 # Limit for years to display using jumps of five years (current year - fiveYearLimit)
 fiveYearLimit: 30
 # The absolute lowest year to display in the dropdown (only used when no lowest date can be found for all
items)
 defaultLowerLimit: 1900
 # If true, thumbnail images for items will be added to BOTH search and browse result lists. (default: true)
 showThumbnails: true
 # The number of entries in a paginated browse results list.
 # Rounded to the nearest size in the list of selectable sizes on the settings menu.
 pageSize: 20

NOTE: The "types" section no longer exists, as it is determined dynamically via the REST API

NOTE: The "pageSize" configuration will always round to the closest "pageSizeOptions" value listed in "page-component-options.model.ts"

Community-List Settings

The "communityList" section allows you to configure the behavior of the "Communities & Collections" page (/community-list path), which is linked in the
header.

config.*.yml

communityList:
 # Number of communities to list per expansion (i.e. each time you click "show more")
 pageSize: 20

NOTE: The "pageSize" configuration will always round to the closest "pageSizeOptions" value listed in "page-component-options.model.ts"

Homepage Settings

372

https://wiki.lyrasis.org/pages/viewpage.action?pageId=117735441
https://github.com/DSpace/dspace-angular/blob/main/src/app/shared/pagination/pagination-component-options.model.ts#L25
https://github.com/DSpace/dspace-angular/blob/main/src/app/shared/pagination/pagination-component-options.model.ts#L25

The "homePage" section allows you to configure the behavior of the DSpace homepage (/ path).

config.*.yml

homePage:
 recentSubmissions:
 # The number of item showing in recent submissions list. Set to "0" to hide all recent submissions
 pageSize: 5
 # Date field to use to sort recent submissions
 sortField: 'dc.date.accessioned'
 topLevelCommunityList:
 # Number of communities to list (per page) on the home page
 # This will always round to the nearest number from the list of page sizes. e.g. if you set it to 7 it'll
use 10
 pageSize: 5
 # Enable or disable the Discover filters on the homepage
 showDiscoverFilters: false

NOTE: The "pageSize" configuration will always round to the closest "pageSizeOptions" value listed in "page-component-options.model.ts"

Undo Settings

Both the "item" edit and "collection" edit screens allow you to undo changes within a specific time. This is controlled by these settings:

config.*.yml

item:
 edit:
 undoTimeout: 10000 # 10 seconds

collection:
 edit:
 undoTimeout: 10000 # 10 seconds

Item Access Labels

Item access labels allow to display for each item in search results if it is Open Access, under embargo, restricted or metadata only (does not contain any
file/bitstream). This feature is disabled by default, but can be enabled in your config.*.yml.

config.*.yml

Item Config
item:
 # Show the item access status label in items lists (default=false)
 showAccessStatuses: true

Item Page Settings

The "item" section allows you to configure the behavior of the Item pages.

config.*.yml

item:
 ...
 bitstream:
 # Number of entries in the bitstream list in the item view page.
 pageSize: 5

NOTE: The "pageSize" configuration will always round to the closest "pageSizeOptions" value listed in "page-component-options.model.ts"

Community Page Settings

373

https://github.com/DSpace/dspace-angular/blob/main/src/app/shared/pagination/pagination-component-options.model.ts#L25
https://github.com/DSpace/dspace-angular/blob/main/src/app/shared/pagination/pagination-component-options.model.ts#L25

The "community" section allows you to configure the behavior of the Community pages (Path: /community/[uuid]).

config.*.yml

community:
 # Search tab config
 searchSection:
 # When set to "true", the search filter sidebar will be displayed on the "Search" tab
 showSidebar: true

Collection Page Settings

The "collection" section allows you to configure the behavior of the Collection pages (Path: /collection/[uuid]).

config.*.yml

collection:
 # Search tab config
 searchSection:
 # When set to "true", the search filter sidebar will be displayed on the "Search" tab
 showSidebar: true

Theme Settings

The "themes" section allows you to configure which theme(s) are enabled for your DSpace site (with the default theme being the "dspace" one). You can
enable a single theme across all pages, and/or enable specific alternative themes based on a specific Community, Collection or Item (by UUID or Handle),
or based on a Regex match of a URL pattern. This allows you fine grained control over how your site looks, including the ability to customize it per
Community or Collection or even per specific pages in the site. See for details of how to create a new, custom theme.User Interface Customization

374

config.*.yml

themes:
 # Add additional themes here. In the case where multiple themes match a route, the first one
 # in this list will get priority. It is advisable to always have a theme that matches
 # every route as the last one
 #
 # # A theme with a handle property will match the community, collection or item with the given
 # # handle, and all collections and/or items within it
 # - name: 'custom',
 # handle: '10673/1233'
 #
 # # A theme with a regex property will match the route using a regular expression. If it
 # # matches the route for a community or collection it will also apply to all collections
 # # and/or items within it
 # - name: 'custom',
 # regex: 'collections\/e8043bc2.*'
 #
 # # A theme with a uuid property will match the community, collection or item with the given
 # # ID, and all collections and/or items within it
 # - name: 'custom',
 # uuid: '0958c910-2037-42a9-81c7-dca80e3892b4'
 #
 # # The extends property specifies an ancestor theme (by name). Whenever a themed component is not found
 # # in the current theme, its ancestor theme(s) will be checked recursively before falling back to default.
 # - name: 'custom-A',
 # extends: 'custom-B',
 # # Any of the matching properties above can be used
 # handle: '10673/34'
 #
 # - name: 'custom-B',
 # extends: 'custom',
 # handle: '10673/12'
 #
 # # A theme with only a name will match every route
 # name: 'custom'
 #
 # # This theme will use the default bootstrap styling for DSpace components
 # - name: BASE_THEME_NAME
 #
 - name: dspace
 # Whenever this theme is active, the following tags will be injected into the <head> of the page.
 # Example use case: set the favicon based on the active theme.
 headTags:
 - tagName: link
 attributes:
 rel: icon
 href: assets/dspace/images/favicons/favicon.ico
 sizes: any
 - tagName: link
 attributes:
 rel: icon
 href: assets/dspace/images/favicons/favicon.svg
 type: image/svg+xml
 - tagName: link
 attributes:
 rel: apple-touch-icon
 href: assets/dspace/images/favicons/apple-touch-icon.png
 - tagName: link
 attributes:
 rel: manifest
 href: assets/dspace/images/favicons/manifest.webmanifest

Bundle Settings

The "bundle" section allows you to customize which bundles will be displayed as suggestions whenever you upload a new Bitstream:

375

bundle:
 standardBundles: [ORIGINAL, THUMBNAIL, LICENSE]

Media Viewer Settings

The DSpace UI comes with a basic, out-of-the-box Media Viewer (disabled by default). This media viewer can support any files which have a MIME Type
that either "image/*", "video/*", or "audio/*".begins with

config.*.yml

Whether to enable media viewer for image and/or video Bitstreams (i.e. Bitstreams whose MIME type starts with
'image' or 'video').
When "image: true", this enables a gallery viewer where you can zoom or page through images.
When "video: true", this enables embedded video streaming. This embedded video streamer also supports audio
files.
mediaViewer:
 image: false
 video: false

Uploading video captioning files

As of 7.5 (or later), the Video viewer also supports (or VTT) Captioning. Video captioning requires that a WebVTT Caption file (.vtt) be uploaded WebVTT
into the DSpace Item (DSpace is not able to create or generate these .vtt files). Here's an example of how to setup captioning:

The Item must already have a Bitstream which is a video file (in a "video/*" format) in the ORIGINAL bundle. In this example, we'll assume it is
named "myVideo.mp4"
Upload a corresponding WebVTT Caption file named " " to the ORIGINAL bundle. [video-filename]-[languageCode].vtt

For a video named "myVideo.mp4", an English caption file would be named "myVideo.mp4-en.vtt".
If an additional Spanish language caption file was uploaded, it should be named "myVideo.mp4-es.vtt".
All WebVTT Caption files MUST use two-letter ISO 639-1 Language Codes. A list of all supported Language Codes can be found in "src
/app/item-page/media-viewer/media-viewer-video/language-helper.ts"

Once the Caption file is uploaded, reload the video viewer (on the Item page). You should now see the "Captions" (or CC) option is now available.
(Depending on the browser you use, this option may appear in the lower menu of the video, or require you to open an options menu.) Selecting it
will enable captioning in your language of choice.

Toggle end-user agreement and privacy policy

The DSpace UI comes with basic end-user agreement and privacy policy functionality. Since release 7.4 these features can be disabled in a configuration
file. More information on what disabling on of these features results in is documented in the default app configuration (see code snippet below).

config.*.yml

info:
 # Whether the end user agreement is required before users may use the repository.
 # If enabled, the user will be required to accept the agreement before they can use the repository.
 # If disabled, the page will not exist and no agreement is required to use the repository
 enableEndUserAgreement: false
 # Whether the privacy statement should exist or not.
 enablePrivacyStatement: false

By default the features are enabled.

Settings for rendering Markdown, HTML and MathJax in metadata

The DSpace UI can support Markdown (using) and MathJax () in metadata field values. Both Markdown https://commonmark.org/ https://www.mathjax.org
and MathJax are disabled by default.

HTML is a part of markdown, so enabling the markdown option will ensure HTML tags in metadata field values get rendered as well

376

https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API
https://commonmark.org/
https://www.mathjax.org

config.*.yml

Whether to enable Markdown (https://commonmark.org/) and MathJax (https://www.mathjax.org/)
display in supported metadata fields. By default, only dc.description.abstract is supported.
markdown:
 enabled: false
 mathjax: false

Mathjax will only be rendered if markdown is enabled, so configuring 'markdown.mathjax = true' with 'markdown.enabled = false' will have no effect.

By default, only the "dc.description.abstract" metadata supports these formats when enabled. To enable markdown for other metadata fields, a custom sub-
component of the has to be created for that metadata field, with the field set to true. Refer to the ItemPageFieldComponent enableMarkdown ItemPageAbst

 component for an example.ractFieldComponent

Controlled Vocabularies in Search Filters

When using hierarchical controlled vocabularies (e.g. SRSC as described in), it's possible to search using the Authority Control of Metadata Values
controlled vocabulary hierarchy via the search filters. To enable this feature, you must specify the filter and vocabulary to enable as follows:

config.*.yml

Which vocabularies should be used for which search filters
and whether to show the filter in the search sidebar
Take a look at the filter-vocabulary-config.ts file for documentation on how the options are obtained
vocabularies:
 - filter: 'subject'
 vocabulary: 'srsc'
 enabled: true

Keep in mind, the "filter" MUST be a valid search filter (e.g. subject, author) as seen on the "/api/discover/facets" REST API endpoint. The "vocabulary"
MUST be a valid controlled vocabulary installed in your DSpace backend (under "[dspace]/config/controlled-vocab/" folder based on the documentation at A

.uthority Control of Metadata Values

When this feature is enabled, you should see a "Browse [filter] tree" link in the search filter on the search results page (and anywhere search filters are
shown). This "Browse [filter] tree" link will allow you to select a search filter from within the configured hierarchical vocabulary.

Search settings

The "search" section allows you to customize how the Search page works (Path: /search)

config.*.yml

search:
 # Settings to enable/disable or configure Advanced Search filters.
 advancedFilters:
 enabled: false
 # List of filters to enable in "Advanced Search" dropdown
 filter: ['title', 'author', 'subject', 'entityType']

Debug Settings

The "debug" property allows you to turn on debugging in the Angular UI. When enabled, your environment and all actions/transfers are logged to Redux
the console. This is only ever needed if you are debugging a tricky issue.

config.*.yml

NOTE: will log all redux actions and transfers in console
debug: false

377

https://github.com/DSpace/dspace-angular/blob/main/src/app/item-page/simple/field-components/specific-field/item-page-field.component.ts
https://github.com/DSpace/dspace-angular/blob/main/src/app/item-page/simple/field-components/specific-field/item-page-field.component.ts#L23
https://github.com/DSpace/dspace-angular/blob/main/src/app/item-page/simple/field-components/specific-field/abstract/item-page-abstract-field.component.ts
https://github.com/DSpace/dspace-angular/blob/main/src/app/item-page/simple/field-components/specific-field/abstract/item-page-abstract-field.component.ts
https://redux.js.org/

Learning DSpace
The DSpace Community Advisory Team (DCAT) is developing this user-facing guide to DSpace 8. All are welcome to participate.

Pages
Community and Collection management

Collection Management
Create Collection
Delete Collection
Edit Collection
Export Collection

Community Management
Create a Community
Delete Community
Edit Community

Content (Item) management
Add item
Delete item
Edit Item

Authorizations (Manage access to an item)
Collection Mapper
Edit Bitstream
Edit Metadata
Edit Relationship
Make an item discoverable
Make an item non-discoverable
Move an Item
Versioned Item
Withdraw an item

Embargo an item
Lease an item

DSpace Demo Quick Start
Management sidebar

Administrator Reports (Beta feature)
COAR Notify

COAR Notify - Dashboard
COAR Notify - LDN Services

Notifications
Publication Claim
Quality Assurance

COAR Notify Integration
OpenAIRE Integration

Menus
Registry management

Metadata Registry Management
Request-a-copy
Search - Advanced
Submitter actions
User management

Add or Manage an E-Person
Create or manage a user group

Videos

https://new.d2t.co/knowledge-center

For repository/DSpace administrators

Community and Collection management

Content (Item) management

User management

Registry management

Draft page not yet transferred -

Administrative search

Pages not yet created; please feel free to add, and start writing, these pages for topics requested by the DCAT DSpace Community Advisory Team:

Perform curation tasks

378

https://new.d2t.co/knowledge-center

1.
2.
3.

Manage active workflow tasks

For submitters

Submitter actions

For DSpace users

Request-a-copy

Editing Guidelines

Crop images before loading.
Add a border around each image.
Add an image as "large" if text is small.
Avoid tables, if possible.

Transfer images from Google Doc to the Wiki

Download the Google Doc as an HTML file. This will include an images folder.
Crop the images, if needed. (, free open source;)GIMP cropping instructions
Upload those images to the Wiki storage area.

379

https://www.gimp.org/
https://www.gimp.org/tutorials/GIMP_Quickies/#crop-an-image

Community and Collection management
Documentation for repository managers.

Collection Management
Create Collection
Delete Collection
Edit Collection
Export Collection

Community Management
Create a Community
Delete Community
Edit Community

380

Collection Management
The collection is a level within a community or sub-community that holds items. This document provides an overview of creating, editing, and deleting a
collection.

The documentation below assumes that the user has the relevant authorizations. For example, the admin menu and edit buttons would appear to a user
having collection administration permission.

If you’re unsure about collection administration permissions assigned to your account for the target community, contact your system administrator.

Create Collection
Delete Collection
Edit Collection
Export Collection

381

Create Collection

Audience
Create Collection

Audience
Repository Administrator
Community Administrator
Collection Administrator

Create Collection
Step 1: Login using your credentials

Step 2: Rollover your cursor on the “+” sign

Step 3: Click on “New” and click on “Collection” to proceed with the collection creation process.

382

Step 4: A pop-up window showing a list of communities will appear. Type the community’s name in the search field where you want to add this collection.
Upon typing a few letters of the community’s name, a list of communities having those letters or words will appear. Click on the community name to initiate
collection creation.

Step 5: The application will take the user to the create collection form to populate information regarding the collection. Please find below the description of
this form.

383

1.

2.
3.

4.

5.

6.
7.
8.
9.

Collection logo – Click on the ‘browse’ link to select an image file user wants to add as the collection’s logo. It is advisable
to maintain uniform dimensions of the logo across the repository.
Name – Enter the collection’s name here. It is a mandatory field and marked in ‘*.’
Introduction text (HTML) – Users can enter introductory text providing an overview of the contents stored in this collection.
One can utilize HTML tags to format the text or continue entering the plain text content.
Short Description – This field can have a one-liner description of the collection that appears with the collection name on the
community homepage.
Copyright text (HTML) – Users can enter copyrights related information here. Fields marked with (HTML) support HTML
tags-based formatting.
New (HTML) – Enter news about this collection. Users can update this by going to this section via edit collection regularly.
License – Add license-related information here.
Entity Type – Select Entity from the drop-down that must be uploaded in the collection.
Action Button – Users can click on the appropriate button as determined. Clicking on the Save button will add the collection
into the repository.

Step 6: Click on the ‘Save’ button to complete the Collection creation process. A success prompt will pop up upon collection creation, and the application
will automatically open the collection homepage.

384

Success prompt upon collection creation

Collection homepage

385

Delete Collection

Audience
Delete Collection

Audience
Repository Administrator
Community Administrator
Collection Administrator

Delete Collection
Step 1: Login using your credentials

Step 2: There are multiple ways to initiate the delete collection process. One of them is by going to the target collection using Admin options. Rollover your
cursor on the”Edit“ sign.

Step 3: Click on “Edit” and click on “Collection” to proceed with the edit collection process.

386

Step 4: A pop-up with the list of collections will appear. Type the Collection’s name in the search field you want to delete. A list of collections having typed
values will appear upon typing a few letters of the Collection’s title. Click on the Collection to continue with the deletion.

Step 5: The application will take the user to the edit collection form. To initiate the collection deletion, the user must click the ‘Delete this collection’ button.

Step 6: Click on the Confirm button to continue with the collection deletion or click on the Cancel button to return to the previous page.

387

A success prompt confirming the deletion will appear, and the DSpace homepage will open.

388

Edit Collection

Audience
Edit Collection
Edit Metadata

Template Item
Assign Roles
Content Source
Curate
Access Controls
Authorizations
Item Mapper

Manage mapped items
Map new items

Audience
Repository Administrator
Community Administrator
Collection Administrator

Edit Collection
Step 1: Login using your credentials

Step 2: There are multiple ways to initiate the Edit collection process. One of them is by going to the target collection using Admin options. Rollover your
cursor on the "Edit" sign.

Step 3: Click on “Edit” and click on “Collection” to proceed with the edit collection process.

389

1.

2.

a.
b.
c.

d.

Step 4: A pop-up window showing list of collections will appear. Type the collection’s name in the search field you want to edit. Upon typing a few letters of
the collection’s name, a list of collections with those letters or words will appear. Click on collection for initiating editing.

Step 5: The application will take the user to the edit collection form. The user can perform a range of actions to edit the collection. Each tab is explained in
a separate process in this document.

Delete this collection – The button provided for deleting the collection. Detailed steps are explained in the latter part of this
document.
Tabs – Edit collection has a variety of activities involved, which are grouped in a logical manner across various tabs. Below
is the summary of these tabs

Edit Metadata – Tab covers activities related to editing Collection’s profile information
Assign Roles – This tab allows users to create specific roles for the collection
Content Source – This tab enables harvesting the contents from various sources using OAI standards

390

2.

d.
e.

f.

g.

1.

2.
3.
4.

5.
6.
7.

Curate – Users can set up various workflows related to content curation in this tab
Access Control - The tab allow users to perform changes to the access conditions of all the items owned by the
collection. Changes may be performed to either all Item metadata or all content (bitstreams).
Authorizations – Under this tab, users can manage various groups created for managing different access rights
and workflows specific to the collection
Item Mapper - The item mapper tool allows collection administrators to map items from other collections.
Collection administrators can search items from other collections and map them, or browse the list of currently
mapped items.

Edit Metadata
Step 6: The Edit Metadata tab allows users to update the collection’s profile-related information, a.k.a. collection Metadata.

Various actions on this tab are explained immediately after the Edit Metadata illustration is added below.

 – Users can add metadata elements and values during item submission in this collection. Item submitters can update or delete Template Item
these pre-populated values during the submission process.
Collection logo – Click on the delete button to remove the existing logo or add it if no logo exists.
Name – Update the existing collection name in this field.
Introduction text (HTML) – Update introductory text if already added or add new text. One can utilize HTML tags to format the text or continue
entering the plain text content.
Short Description – Update the collection description or add a fresh short description for the collection.
Copyright text (HTML) – Update copyright-related information in this field. Fields marked with (HTML) support HTML tags-based formatting.

391

7.
8.
9.

10.

New (HTML) – Add/Update news specific to this collection in the field.
License – Add/Update license-related information here.
Entity Type – After adding an entity once to the collection, the value remains constant and uneditable.
Action Button – Clicking on the Save button will update the metadata information for the collection.

Template Item

Step 7: Click the ‘Edit’ button under the Template Item section to add metadata elements with pre-populated values for the item submission process.

Step 8: Click on the Add button to add the metadata element.

Step 9: Users can start typing metadata elements as demonstrated below and select the appropriate component from the drop-down list.

Step 10: Enter the desired value in the Value field, and enter the ISO code of the language used. Then, click on add button for adding the template
metadata element.

392

Step 11: Users can click on the action buttons appearing to the right of the element added for updating or deleting the value-added in the element.

Step 12: Click on the Save button to finish the template edit process. A pop-up notification confirming successful updates of the metadata element will
appear, as demonstrated below.

Step 13: Click on the Save button appearing at the bottom of the Edit Metadata tab to save all updates. A success prompt will appear, and the collection
homepage will open.

393

Assign Roles
Step 14: This tab helps assign users to roles designed for the collection. These roles include administrative, maker-checker, and content consumption
activities. The description for each role is provided below the screenshot.

394

395

1.

2.

3.

4.

5.

6.

7.

Administrators – The collection administrator can assign rights like item submission, edit item metadata, and map existing items from other
collections to this collection. Click the create button to create a dedicated Administrator group for the collection.
Submitters – Users or User groups part of this group can submit items to the collection. Click on the create button to add specific users and user
groups to perform item submission.
Default item read access - E-people and Groups can read new items submitted to this collection. Changes to this role are not retroactive. Existing
items in the system will still be viewable by those who had read access at the time of their addition. Click the restrict button to restrict default item
read access rights to a specific user group.
Default bitstream read access – E-People and Groups added in this section can read bitstreams (attachments) in items by default. Click the
restrict button to restrict default bitstream read access rights to a specific user group.
Editors - Editors can edit the metadata of submissions and then accept or reject them. Click on the create button to add the workflow step of
editing metadata and assigning roles to specific users or user groups.
Final editors - Final editors can edit the metadata of incoming submissions but can not reject them. Click the Create button to add this workflow
step to the collection and assign a role to specific users or user groups.
Reviewers - Reviewers can accept or reject incoming submissions. However, they can not edit the metadata. Click the Create button to add this
workflow step to the collection and assign a role to specific users or user groups.

Content Source
Step 16: This tab enables harvesting the content from external sources using OAI standards. Users can start harvesting by clicking the checkbox, “This
collection harvests its content from an external source.”

Step 17: Users will see various parameters related to OAI-based content harvesting upon clicking the checkbox as explained in the previous step. Below is
the explanation of elements appearing under Configure an external source header.

396

1.
2.
3.

4.
5.

6.

7.
8.

9.

10.

 – Enter the source OAI provider’s URL.OAI Provider
 – Enter the set ID to source content.OAI-specific set ID

 – Select a suitable metadata format using the dropdown list, e.g., Simple Dublin Core, Qualified Dublin Core, and DSpace Metadata Format
Intermediate metadata.

 – Select this option to harvest only metadata from the source.Harvest metadata only
 – Click on this option to harvest metadata and reference links to Harvest metadata and references to bitstreams (requires ORE support)

corresponding bitstreams.
 – Use this option to harvest both metadata and corresponding bitstreams into the target Harvest metadata and bitstream (requires ORE support)

repository.
Click on the 'Save' button to update harvesting settings.
Upon clicking the save button and subject to successful validation of values entered, “Harvest Status” will turn to “Ready,” as demonstrated in the

screenshot below.
After successfully configuring an OAI profile, these buttons will become active, and the user can start harvesting data immediately.

397

10.

11.

1.
2.
3.

Users can click the “Test configuration” button to test settings and see a response message, as demonstrated on the screen below.

Upon successfully testing settings, click on the “Import now” button to harvest metadata immediately.

Curate
Step 18: The Curate tab provides various workflows for curating items stored in the collection. Below are standard flows, and there can be customized
curation workflows as well

Profile bitstream formats
Check for Required Metadata
Check Links in the Metadata

Users must select a workflow from the dropdown list and click the “Start” button to initiate the curation process.

Access Controls
Step 19: The section allows the user to change access conditions of all the items owned by the collection. Changes may be performed to either all Item
metadata or all content (bitstreams).

398

1.
2.

 – Click this option to manage access rights on metadata of items stored in the collection.Item's Metadata
Bitstreams – Click this option to manage access rights on bitstreams (attachments) of items stored in the collection.

Step 20: Click the switch next to the Item's Metadata header to initiate changes to the access rights on the metadata of items.

399

Step 21: Select a Mode from the following options as per update requirements.

400

1.
2.
3.
4.

Step 22: Select the access condition type from the drop-down list as required.

 – Select the option to make the Item's metadata available to everyone.openaccess
administrator – This option will limit items' access to the administrator user group.

 - Embargo will restrict access to items until the selected future date, as explained in the following steps.embargo
 - The lease will restrict access to items after the selected future date, as explained in the following steps.lease

401

Step 23: Select the 'Embargo' from the drop-down, and in the following field, select an embargo date to limit access to items until the selected date.

Step 24: Click the 'Add more' button to add another policy by repeating the above steps, and click the 'Execute' button to apply policies to the collection.

Step 25: Users shall see the following screen upon the successful execution of policies.

402

Step 26: Click the switch next to the Bitstream header to initiate changes to the access rights on the bitstreams of items.

Step 27: Select a Mode from the following options as required.

403

1.
2.
3.
4.

Step 28: Select the access condition type from the drop-down list as required.

 – Select the option to make the bitstream's metadata available to everyone.openaccess
administrator – This option will limit bitstream access to the administrator user group.

 - Embargo will restrict access to bitstreams until the selected future date, as explained in the following steps.embargo
 - The lease will restrict access to bitstreams after the selected future date, as explained in the following steps.lease

Step 29: Select the 'Embargo' from the drop-down, and in the following field, select an embargo date to limit access to bitstream until the selected date.

404

Step 30: Click the 'Add more' button to add another policy by repeating the above steps, and click the 'Execute' button to apply policies to the collection.

Step 31: Users shall see the following screen upon the successful execution of policies.

405

1.

2.

Authorizations
Step 32: The Authorizations tab has all the policies defined for the collection. These are in addition to policies created from the “Assign Roles” tab. Key
actions available in this tab are explained below.

 – Click the Add button or select policies from the table to create a new policy. Next, click the 'Delete selected' button for a batch Manage Policies
deletion of the policies.

406

2. Edit policy and members in a policy – Click the edit button to edit an individual policy or click on the group icon to edit the user group.

Step 33: Click on the 'Add' button to create a new Authorization policy.

Step 34: Users can add information in the fields available in this form to the policy and save it by clicking the submit button. Please see the description of
each field followed by the below screenshot.

407

1.
2.
3.

a.
b.
c.
d.

4.
a.

Name: Enter the Policy name in this field.
Description: Enter the Policy description here for future reference and understanding of other users.
Select the policy type: The user can select one of the following policy classification types from the list

TYPE_SUBMISSION: a policy in place during the submission
TYPE_WORKFLOW: a policy in place during the approval workflow
TYPE_INHERITED: a policy that has been inherited from a container (the collection)
TYPE_CUSTOM: a policy defined by the user during the submission or workflow phase

Select the action type: The user can select one of the following actions from the dropdown list:

408

4.
a.
b.
c.
d.
e.
f.
g.
h.

5.
6.
7.
8.
9.

10.

READ
WRITE
REMOVE
ADMIN
DELETE
WITHDRAWN_READ
DEFAULT_BITSTREAM_READ
DEFAULT_ITEM_READ

Start date – end date: The user can select the start date and end date for using the policy, should they want to apply it for a fixed period.
The eperson or group that will be granted the permission: List of users/groups selected for granting permission under the policy
Search for an ePerson / Search for a group: Select ePerson or group for searching the entity
Search field: Enter keywords for searching the ePerson/Group
ePerson/Group list: Click on the select button against the user/group you want to add to the policy
Submit/Cancel button: Click on the Submit button to complete policy creation or click on the Cancel button to cancel the entire process.

You’ll see a confirmation prompt upon successfully creating the policy, as shown below. After that, the user will be back on the Authorizations screen.

Item Mapper

Manage mapped items

Step 35: The item mapper tab allows users to map items from other collections and manage mapped items.

Step 36: You’ll see items mapped with collections under the “Browse mapped items” tab. Click on the checkbox appearing with each item to select the item
(s) required to be unmapped.

409

Step 37: After selecting items required to be unmapped, please click on “Remove selected item mappings” to complete the operation. Click on the “Cancel”
button on the left of “Remove selected item mappings” to cancel the process.

Map new items

Step 38: Click on “Map new items” to search for items for mapping.

410

Step 39: After confirming the non-existence of the target item in the existing mapped items list, please click on “Map new items.” Then, enter keywords
/keyphrases in the search field to search for target items.

Click on the “Search” button as highlighted on the below screen.

You must know that you can enter keywords or keyphrases from any metadata field. The search field under “Map new items” works exactly like the basic
search field of DSpace.

Step 40: Users can select target items from the search results by clicking the checkbox appearing with items.

411

Step 41: After selecting target items, please click on the “Map selected items” button at the bottom of the page to complete the item mapping process.

Click the “Cancel” button to cancel the activity and return to the collection edit page.

412

Step 42: A prompt confirming the successful mapping of items will appear upon completing the task, as demonstrated below.

Mapped items will appear in the collection and under the “Browse mapped items” tab, as demonstrated below.

413

414

1.
2.
3.
4.

Export Collection
DSpace provides a feature of exporting metadata of any collection into CSV format. Users can utilize this CSV file for multiple purposes like creating ad-
hoc reports, importing metadata into other systems, or for any use case as per its requirements.

Audience
Exporting a collection

Audience
Repository Administrator
Community Administrator
Collection Administrator
Basic user

Exporting a collection
Users log in using their log-in credentials and follow the steps mentioned below to export a collection’s metadata.

Step 1: Go to the DSpace home page and click on the “Log In” link at the top right corner of the screen, as illustrated below.

Step 2: Users will see the admin menu on the left-hand side of the screen, as highlighted in the illustration.

415

Step 3: Rollover your cursor over the Export menu and click on metadata.

Step 4: Type the collection’s name in the textbox and click on the target collection from the list appearing in the popup.

416

Step 5: Click on the “Export” button in the popup to continue with the item metadata-export or click the “Cancel” button to cancel the process.

Users will see the success prompt confirming the creation of the export process upon successful completion of the process, or else the application will
show the failure promptly.

417

Step 6: Users will be redirected to the metadata export page with a csv download link, as highlighted in the screenshot below. Click on the link to download
the file.

Users can perform the following actions on this page:

Click on the CSV file link to download the metadata CSV. This file contains metadata of items stored in the exported collection.

418

Click on the log file link to download. The Logfile contains details of steps performed during the export job.

419

Community Management
The community is the primary storage level in the DSpace’s storage hierarchy that holds sub-community and collections. This document provides an
overview of creating, editing, and deleting a community. The documentation below assumes that the user has the relevant authorizations. For example, the
admin menu and edit buttons would appear to a user having community administration permission.

If you’re unsure about community administration permissions assigned to your account for the target community, contact your system administrator.

Create a Community
Delete Community
Edit Community

420

1.
2.

Create a Community

Audience
Create Community

The community is the primary storage level in the DSpace’s storage hierarchy that holds sub-community and collections. This document provides an
overview of creating, editing, and deleting a community. The documentation below assumes that the user has the relevant authorizations. For example, the
admin menu and edit buttons would appear to a user having community administration permission.

If you’re unsure about community administration permissions assigned to your account for the target community, contact your system administrator.

Audience
Repository Administrator
Community Administrator

Create Community
Step 1: Login using your credentials

Step 2: Rollover your cursor on the “+” sign

Step 3: Click on the “New” link and click on “Community” to proceed with the community creation.

421

1.

2.

Step 4: A popup providing the option to either create a Parent community or a sub-community will appear, with a list showing existing communities. Create
your new community by either:

Click on “Create a new top-level community” to create a top-level community.
… or…
Typing the name of the existing parent community in the search field to add a sub-community within. Upon typing a few letters of the community’s
name, a list of communities having those letters or words will appear. Click on the community name to create a sub-community.

Step 5: As per the user’s choice in the previous step, the application will open the create community or create a sub-community form to populate
information regarding the community’s profile. Below is the explanation of the information that needs to be populated on this form.

It is important to understand that both “Create Community” and “Create Sub-community” forms are identical. The critical difference between both is that the
“Create Community” form helps create a top-level community while the latter helps create a sub-community within a community or a sub-community.

The description provided below the following screenshot remains identical for both Community and Sub-community creation.

422

1.

2.
3.

4.

5.
6.
7.

Community logo – Select the community’s logo by clicking on the ‘browse’ link to select an image file. It is advisable to maintain uniform
dimensions of the logo across the repository.
Name – Enter the community’s name. It is marked with ‘*’ to show it is a mandatory field.
Introductory text (HTML) – Users can add introductory text providing an overview of the contents stored in the community. One can utilize HTML
tags to format the text or continue entering plain text content.
Short Description – This field can have a one-liner description of the community that appears with the community name in the list of communities
on the parent community page (or top-levelon the DSpace’s in the case of a community.
Copyright text (HTML) – Users can enter copyright information here. Fields marked with (HTML) support HTML tag-based formatting.
News (HTML) – Enter news about this community. Users can update this by regularly going to this section via the editing community.
Action Buttons – Users can click on the appropriate button as determined. Clicking on the Save button will add the community to the repository.

Step 6: Click on the ‘Save’ button to complete the Community creation. A success prompt will pop up upon community creation, and the user will be re-
directed to the community homepage.

423

Success prompt upon community creation

424

Community homepage

425

1.
2.

Delete Community

Audience
Edit Community

Audience
Repository Administrator
Community Administrator

Edit Community
Step 1: Login using your credentials

Step 2: There are multiple ways to navigate to the controls to delete a community. One of them is by going to the target community and clicking on the
button with the pencil icon next to the community title ie the ‘Edit community’ button. Alternatively, follow the steps provided here.

Step 3: Click on “Edit” and click on “Community” to proceed with the edit community process.

426

Step 4: A popup showing a search box and a list of communities will appear. Type the name of the community you want to edit in the search field. Upon
typing a few letters of the community’s name, a list of the communities having those letters or words will appear. Click on the target community to initiate
editing.

Step 5: The application will take the user to the edit community form. To initiate the community deletion process, the user needs to click on the ‘Delete this
community’ button.

427

Step 6: Click on the Confirm button to continue with the community deletion or click on the Cancel button to return to the previous page.

Users will be redirected to the homepage of DSpace upon successful completion of the community deletion, and a popup confirming the community
deletion will appear.

428

1.
2.

Edit Community

Audience
Edit Community
Edit Metadata
Assign Roles
Curate
Access Controls
Authorizations

Audience
Repository Administrator
Community Administrator

Edit Community
Step 1: Login using your credentials

Step 2: There are multiple ways to start editing a community. One of them is by going to the target community and clicking on the Edit button, the button
with the pencil icon, beside the page title. Alternatively, follow the steps provided here.

Rollover cursor on the pencil icon in the admin menu.

Step 3: Click on “Edit” and click on “Community” to proceed with the edit community process.

429

Step 4: A popup showing a list of the communities in the DSpace and a search box will appear. If you are already on the page of the community, it will
appear at the top of the list, so you can select it by clicking on it. Otherwise, type the name of the community you want to edit in the search field. Upon
typing a few letters of the community’s name, a list of the community(ies) having those word(s) will appear. Click on the target community to initiate editing.

The application will take the user to the edit community form to perform various actions to edit the community. Each tab is explained in a separate process
in this document.

430

1.
2.

a.
b.

c.
d.

e.

 – The button is provided for deleting the community. Detailed steps are explained in the latter part of this Delete this community page.
 – The edit community has a variety of Tabs functions, which are grouped logically across various tabs. Below is the summary of these tabs

Edit Metadata – The tab covers activities related to editing the community’s profile information.
Assign Roles – This tab allows users to create specific roles for the community, usually, the role of Administrator of the community, see
further detail below.
Curate – Users can set up various workflows related to content curation in this tab
Access Control – The tab allows users to perform changes to the access conditions of all the items owned by the community. Changes
may be performed to either all Item metadata or all content (bitstreams).
Authorizations – Under this tab, users can manage various groups and their different access rights in the community, for example, this
tab could be used to grant an individual the administrator role, see further detail below.

Edit Metadata
The Edit Metadata tab allows users to update the community’s profile-related information, a.k.a. community metadata.

Various actions on this tab are explained immediately after the Edit Metadata illustration is added below.

431

1.

2.
3.

4.
5.

6.

7.

Community logo – Click on the delete button to remove the existing logo. If no logo exists, then a widget allowing the user to add a logo is
displayed here.
Name – Update the existing community’s name in this field.
Introduction text (HTML) – Update introductory text if already added or add new text. One can utilize HTML tags to format the text or continue
entering plain text content.
Short Description – Update the description of the community or add a fresh short description for the community.
Copyright text (HTML) – Update copyright-related information in this field. This is usually displayed at the foot of the community landing page.
Fields marked with (HTML) support HTML tags-based formatting.
News (HTML) – Add/Update news specific to this community in the field. This is usually displayed with the heading ‘News’, underneath the
community’s introductory text, and above the list of collections and sub-communities.
Action Button – Clicking on the Save button will update the metadata information for the community.

Click on the ‘Save’ button to save the information updated in the ‘Edit Community’ tab. A success prompt will appear, confirming the successful edit of the
community.

432

1.
2.
3.

Assign Roles
This tab allows authorized users to create a Community administrator role. Click on the “create” button to assign a community administrator role.

The roles available on this tab are explained below this illustration.

Administrators - Community administrators can create and manage sub-communities and collections. This user profile can also assign rights to edit item
metadata and map existing items from other collections.

Curate
This tab provides various workflows for curating items stored in the community. Below are standard flows, and there can be customized curation workflows
as well

Profile bitstream formats
Check for Required Metadata
Check Links in the Metadata

Users must select a workflow from the dropdown list and click the “Start” button to initiate the curation process.

433

1.
2.

Access Controls
The section allows the user to change access conditions of all the items owned by the community. Changes may be performed to either all Item metadata
or all content (bitstreams).

 – Click this option to manage access rights on metadata of items stored in the collection.Item's Metadata
Bitstreams – Click this option to manage access rights on bitstreams (attachments) of items stored in the collection.

Click the switch next to the Item's Metadata header to initiate changes to the access rights on the metadata of items.

434

Select a Mode from the following options as per update requirements.

435

Select the access condition type from the drop-down list as required.

436

1.
2.
3.
4.

 – Select the option to make the Item's metadata available to everyone.openaccess
administrator – This option will limit items' access to the administrator user group.

 - Embargo will restrict access to items until the selected future date, as explained in the following steps.embargo
 - The lease will restrict access to items after the selected future date, as explained in the following steps.lease

Select the 'Embargo' from the drop-down, and in the following field, select an embargo date to limit access to items until the selected date.

Click the 'Add more' button to add another policy by repeating the above steps, and click the 'Execute' button to apply policies to the community.

437

Users shall see the following screen upon the successful execution of policies.

Click the switch next to the Bitstream header to initiate changes to the access rights on the bitstreams of items.

438

Select a Mode from the following options as required.

Select the access condition type from the drop-down list as required.

439

1.
2.
3.
4.

 – Select the option to make the bitstream's metadata available to everyone.openaccess
administrator – This option will limit bitstream access to the administrator user group.

 - Embargo will restrict access to bitstreams until the selected future date, as explained in the following steps.embargo
 - The lease will restrict access to bitstreams after the selected future date, as explained in the following steps.lease

Select the 'Embargo' from the drop-down, and in the following field, select an embargo date to limit access to bitstream until the selected date.

Click the 'Add more' button to add another policy by repeating the above steps, and click the 'Execute' button to apply policies to the community.

440

Users shall see the following screen upon the successful execution of policies.

Authorizations
Users can view and edit community resource policies defined for the community, in the Authorizations tab. Users can create policies in addition to the
standard policies created from the Assign Roles tab. Following are the key actions in this tab.

441

1.

2.

Manage Policies
 – Click on the Add button to create a new resource policy or select policies from the table, see further detail below.
 - Alternatively, click on the Delete selected button for a batch deletion of the policies.
Edit policy and members in a policy – Click on the edit button to edit an individual policy or click on the group icon to edit the user group eg to add
or remove individual ePersons.

Click on the Add button to create a new Authorization policy

Users can enter the information to create the policy and click on the submit button. Please see the description of each field followed by the below
screenshot.

442

1.
2.
3.

a.
b.
c.
d.

4.

a.

Name: Enter the Policy name in this field.
Description: Enter the Policy description here for future reference and understanding of other users.
Select the policy type: The user can select one of the following policy classification types from the list

TYPE_SUBMISSION: a policy in place during the submission
TYPE_WORKFLOW: a policy in place during the approval workflow
TYPE_INHERITED: a policy that has been inherited from a container (the community)
TYPE_CUSTOM: a policy defined by the user during the submission or workflow phase

Select the action type: The user can select one of the following actions from the dropdown list. For example, select “READ” to assign read rights
to the user or user group.:

443

a.
b.
c.
d.
e.
f.
g.
h.

5.

6.
7.
8.
9.

10.

READ
WRITE
REMOVE
ADMIN
DELETE
WITHDRAWN_READ (disables item access)
DEFAULT_BITSTREAM_READ
DEFAULT_ITEM_READ

Start date – end date: The user can select the start date and end date of the period for which the policy will be active, should they want to apply
this policy for a fixed period only. If the start date is left blank, the policy comes into effect immediately.
The ePerson or group that will be granted the permission: List of users/groups selected for granting permission under the policy
Search for an ePerson / Search for a group: Select ePerson or group to add
Search field: Enter keywords for searching the ePerson/Group
ePerson/Group list: Click on the select button against the user/group you want to add to the policy
Submit/Cancel button: Click on the Submit button to complete policy creation or click on the Cancel button to cancel the entire process.

Upon successfully creating the policy, you’ll see a confirmation prompt, and the user will be back on the Authorizations screen.

444

Content (Item) management
Documentation for repository managers.

Add item
Delete item
Edit Item

Authorizations (Manage access to an item)
Collection Mapper
Edit Bitstream
Edit Metadata
Edit Relationship
Make an item discoverable
Make an item non-discoverable
Move an Item
Versioned Item
Withdraw an item

Embargo an item
Lease an item

445

1.
2.
3.

Add item

Target Audience
Overview
Submission Form Highlights
Item Submission Process

Target Audience
Content Submitters

Overview
The item submission process lets authorized users deposit contents using metadata and bitstreams. It primarily consists of components.

Target collection where the item needs to be submitted
Submission form using which metadata and bitstreams related to the item are submitted
The submission form also helps in defining Access rights around an item

Submission Form
Highlights
1. Bitstream upload section

This section allows users to upload bitstream(s)
by browsing or drag & drop mechanism.

 2. Target Collection

It is a location where the item will be submitted.

3. General Metadata section

Users can define general or primary metadata
about an item in this section.

4. Additional Metadata section

This section allows users to add secondary or
additional metadata.

5. Bitstreams Management

Bitstreams uploaded by users list in this
section. Using various options, they can further
define these bitstreams or remove them from
the attachment list.

6. Deposit License

Users need to accept the license in this section
to submit the item to the repository.

7. Manage Item Submission

a. The user can discard the Discard:
submission by clicking this button. Action will
delete all information populated in the form
permanently.

b. This button helps save information Save:
in the submission form and helps resume
information update should the process gets
interrupted.

c. Save information in the Save for Later:
MyDSpace section to update later.

446

d. Click this button to complete the Deposit:
submission. The item will go to the next step as
per the workflow defined for the collection.

447

Item Submission Process
Step 1: Login using your credentials

448

Step 2: Roll over the cursor on the "New" link.

Step 3: Click the “Item” link to continue with the process.

449

Step 4: A popup window with a collection list will appear. The user can select the target collection by typing its name or scrolling down the collection list.
Then, click on the collection to initiate item submission.

Step 5: Users will see the item submission form after selecting the target collection. The first step is to upload the attachment(s) in the item. In DSpace
terminology, an attachment is known as a “bitstream”.

Click on the “browse” link to upload attachment(s). Users can upload multiple files by selecting them together or dragging in the space.

450

A bitstream upload progress bar will appear, as demonstrated in the illustration below. In addition, a prompt confirming success or failure will appear after a
successful bitstream upload.

Bitstream upload in progress

451

Bitstream Upload Successful

Step 6: After bitstream upload, the next step is to describe the item by adding metadata.

Metadata fields marked with “*” are mandatory, and users need to populate information in these fields to complete the submission mandatorily. A few
examples in the standard submission form are Author, Title, and Date of Issue.

Users will notice an alert mark at the top right of the “Describe” tab turning from Amber to green once mandatory fields have values. Below is an illustration
showing the state of the “Describe” section having values in all mandatory fields.

452

Step 7: The user can further update bitstreams by clicking on Buttons appearing next to the bitstream title.

Download: Click this button to download Bitstream on a local machine.

Edit: Update bitstream details and access rights using this button. More explanation is provided below.

Delete: Clicking this button will delete the bitstream from the submission form.

Step 8: By clicking the edit button next to the bitstream, users can update bitstream information, as explained below.

Update the bitstream title and add descriptions to describe the attachment further. Please refer to the illustration demonstrating both functions.

453

Users can define access conditions for the bitstream by selecting the appropriate option from the dropdown list. These options are:

Open Access: Select this option to make the bitstream available without restriction.

454

Lease: This option is applicable when a user wants to keep Bitstream accessible until a specific date in the future. The bitstream will not be
available as open-access content after the defined date under the “Grant access until” option.

Embargo: In contrast to a lease, an embargo allows the user to keep bitstream access restricted until a future date. This date is defined in the
“Grant access from” field. The bitstream will be available as open-access content to users after this date.

Administrator: Select this option if the bitstream’s access remains limited to administrators.

455

Step 9: Finally, users must click on the “I confirm the license above” checkbox to accept the deposit license and click the “Deposit” button to complete the
item submission.

456

1.
2.
3.

Delete item

Target Audience
Process Overview
Item Delete Process

Target Audience
Content Submitters

Community Administrators

System Administrators

Process Overview
As the name suggests, the Permanently Delete option is exercised when the authorized user(s) wants to permanently delete any item (Metadata +
bitstreams) from the repository.

Apart from permanently deleting an item, options like “Withdraw item from repository” and “Make item Private” can temporarily help disable the content
access.

Item Delete Process
Step 1: Login using your credentials

Step 2: Go to the target Item using a convenient method i.e.

Using search & filter options
Browsing through Communities & Collections
Browsing using Metadata elements listed under the Browse menu

Step 3: Click on the “Edit” button as highlighted on the screen below. This button will appear to the user having edit rights on the target item.

457

Step 4: Click the “Permanently Delete” Button to delete the item.

Step 5: Select entities for which virtual metadata needs to be retained, as highlighted below. To see information about the entity, click the " " icon i
appearing next to the target entity, as highlighted in the below screenshot.

458

Step 6: Click on the Delete button on the confirmation screen. Should you want to continue with deletion, click on cancel to cancel the Permanent deletion
of the item from DSpace.

459

Edit Item

Audience
Edit Item Overview

Status tab
Bitstreams tab
Metadata tab
Curate tab
Relationships tab
Version History Tab
Access Control
Collection Mapper

Audience

Content Submitters

Community Administrators

System Administrators

Edit Item Overview

Authorized users can edit various properties of items using the Edit Item function, various sub-sections are briefed below, followed by specific details in
sub-sections.

S
ta
tu
s
tab

Update authorization policies -
Managing mapped collections -
Update item status (Withdrawn/Private/Expunge)
Move the item to another collection
Permanent deletion

460

B
it
st
re
a
m
s
tab

Add or remove licenses or other bitstreams (i.e. files) attached to the item
Edit metadata associated with the bitstreams, including filename, file format, and file description

M
et
a
d
at
a
tab

Add or delete metadata fields (i.e. elements added to Item) or edit values in existing fields. See further detail below.

461

C
u
ra
te
tab

Users can perform various curation processes on the item. See further detail below.

R
el
at
io
n
s
hi
p
s
tab

Add or delete relationships with other items or edit existing relationships with items. See further details below.

Version
History
Tab

Create and manage item versions in DSpace.

462

Access
Control

Separate policies management for item's metadata and bitstreams.

Collection
Mapper

Map items to various collections and manage collections mapped with the item.

463

1.
2.
3.

Authorizations (Manage access to an item)

Overview
Add Authorization Policy
Manage Policy
Delete Policy

Overview
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click the "Edit" button on the item title's right-hand side.

464

1.
2.

Step 3: Click the "Authorizations" button under the "Status" tab to manage the Item's authorization policies.

Users can create different policies for both Item and bitstreams. These are:

Managing ADD/REMOVE/READ/WRITE policies for an item
Managing READ/WRITE policies for a bitstream

Add Authorization Policy
Step 1: Click the "Add" button to create a new resource policy for the Item.

Step 2: Users can populate information on the "Create new resource policy" page about the policy and click on the "submit" button. Please see the
description of each field followed by the below screenshot.

465

1.
2.
3.

a.
b.
c.
d.

e.

Name: Enter Policy name.
Description: Enter the policy description for future reference and understanding by other users.
Select the policy type: The user can select one of the following policy types:

TYPE_SUBMISSION: a policy in place during the submission
TYPE_WORKFLOW: a policy in place during the approval workflow
TYPE_INHERITED: a policy that has been inherited from a container (the collection)
TYPE_CUSTOM: a policy defined by the user during the submission or workflow phase

466

3.

e.
4.

a.
b.
c.
d.
e.
f.
g.
h.
i.

5.
6.
7.
8.
9.

10.

null: if the information is not available
Select the action type: The user can select one of the following actions from the drop-down list:

READ
WRITE
ADD
REMOVE
ADMIN
DELETE
WITHDRAWN_READ
DEFAULT_BITSTREAM_READ
DEFAULT_ITEM_READ

Start date – end date: The user can select a start date and end date for using the policy, should they want to apply it for a fixed period.
The eperson or group granted the permission is the list of users/groups granted authorization under the policy.
Search for an ePerson / Search for a group: Click on the "ePerson" or "group" to search for the entity.
Search field: Enter keywords to search for the ePerson/Group.
ePerson/Group list: Click on the select button against the user/group you want to add to the policy
Submit/Cancel button: Click on the "Submit" button to complete policy creation or click on the Cancel button to cancel the entire process.

As shown below, users will see a success prompt upon the policy creation and be back on the Manage Policies screen.

Manage Policy
Step 1: Click on the Edit policy icon appearing against each policy to update it.

The user group button next to the Edit policy icon will take users to the user group management. Please refer concerned section for more details.

467

1.
2.
3.

a.

b.

Step 2: Update policy information on the "Edit resource policy" page and click the "Submit" button. Please see the description of each field appearing on
the "Edit resource policy" page.

Name: Enter Policy name.
Description: Enter the policy description for future reference and understanding by other users.
Select the policy type: The user can select one of the following policy types:

TYPE_SUBMISSION: a policy in place during the submission

468

3.

b.
c.
d.
e.

4.
a.
b.
c.
d.
e.
f.
g.
h.
i.

5.
6.
7.
8.
9.

10.

TYPE_WORKFLOW: a policy in place during the approval workflow
TYPE_INHERITED: a policy that has been inherited from a container (the collection)
TYPE_CUSTOM: a policy defined by the user during the submission or workflow phase
null: if the information is not available

Select the action type: The user can select one of the following actions from the drop-down list:
READ
WRITE
ADD
REMOVE
ADMIN
DELETE
WITHDRAWN_READ
DEFAULT_BITSTREAM_READ
DEFAULT_ITEM_READ

Start date – end date: The user can select a start date and end date for using the policy, should they want to apply it for a fixed period.
The eperson or group granted the permission is the list of users/groups granted authorization under the policy.
Search for an ePerson / Search for a group: Click on the "ePerson" or "group" to search for the entity.
Search field: Enter keywords to search the ePerson/Group.
ePerson/Group list: Click on the select button against the user/group you want to add to the policy
Submit/Cancel button: Click on the "Submit" button to complete policy creation or click on the Cancel button to cancel the entire process.

As shown below, users will see a success prompt upon the policy creation and be back on the Manage Policies screen.

Delete Policy
Step 1: Click on the check box on the left-hand side of each policy, and the "Delete Selected" button will be activated.

469

Step 2: Click the "Delete selected" button to delete the policy. Please note that the deleted policy is irrecoverable.

You'll see a success prompt upon deletion of the selected policy.

470

1.
2.
3.

Collection Mapper

Manage mapped items to collections
Manage Mapped Collections
Map new collections

Manage mapped items to collections
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click the "Edit" button on the item title's right-hand side.

Step 3: Click the "Collection Mapper" tab to move to the section.

471

1.
2.

Users can perform multiple functions in the Collection Mapper tab. These are:

Manage existing collections mapped to the Item
Map fresh collections to the Item

Manage Mapped Collections
Step 1: If you want to delete an existing collection mapped with the Item, click the checkbox on the left of the collection name to select it.

The "Remove item's mapping for selected collections" button will activate upon selecting the collection.

472

Step 2: Click on “Remove item’s mapping for selected collections” to unmap selected collection(s) or click “Cancel” to cancel the operation.

A prompt confirming the successful unmapping of the collection will appear, and the selected collection will disappear from the list in the “Browse mapped
collections” tab.

473

Map new collections
Step 1: Click on the “Map new collections” tab to map a fresh collection with the Item.

Step 2: Enter the name of the collection you want to map with this Item and click on the “Search” button.

Step 3: Click the checkbox on the left of the target collections to select them. Click the “Map item to selected collections” button to complete mapping, or
use the “Cancel” button to cancel the operation.

474

A success prompt confirming collection mapping will appear. The selected collection will appear under the “Browse mapped collections” tab.

475

1.
2.
3.

Edit Bitstream

Edit Bitstream Process
Add a Bitstream or Bundle in an item
Edit a Bitstream or Bundle in an item

Edit Bitstream Process
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search for an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing on the right-hand side of the item title.

476

1.
2.
3.

Step 3: Click on the “Bitstreams” tab to edit the metadata.

Users can perform multiple functions in the bitstream tab. These are:

Adding a bitstream or bundle in an item
Updating or deleting an existing bundle in an item
Update/delete/add bitstream(s) in an existing bundle

Add a Bitstream or Bundle in an item
Step 1: Click on the “Upload” button to upload a bitstream in existing bundles or create a new bundle to add a bitstream.

477

1.

2.
3.
4.

5.

Step 2: Enter the bundle name or select existing names in the dropdown list.

Step 3: Click on the “Create bundle” button to create a bundle or click on “Cancel” to cancel the operation.

Step 4: Drag and drop the bitstream(s) you want to attach to the bundle, or you can click on the “browse” link appearing in the file upload section.

Step 5: After a successful bitstream(s) upload, the user can add more details about the bitstream on the next screen. Click the “Save” button at the bottom
of the page to save details, or click the “Cancel” button to discard updates.

Below is the description of various fields appearing on this page

Primary bitstream: Click the button to set the bitstream as the primary bitstream for that bundle. If another bitstream was the primary bitstream
beforehand, it will be replaced with this one. The thumbnail for the primary bitstream of the ORIGINAL bundle will be used as the main thumbnail
for the item.
The default value appearing in this field is the attachment’s filename. However, users can replace it with the value of their choice.
Description: Users add a description of the attachment in this field.
Embargo until date: Users can select a future date to restrict public access to the attachment. Additionally, users can grant access to a specific
set of users by selecting user groups.

478

5. Selected format: If the file extension of the uploaded attachment exists in the DSpace’s bitstream registry, the user will see the registered value
for extension in this field. Users can change the value by selecting another one using the dropdown.

After clicking the “Save” button, the user will be redirected to the bitstream tab. A prompt confirming success or failure will appear.

479

1.
2.
3.

Edit a Bitstream or Bundle in an item
Step 1: Click on a bitstream and drag it above or below another bitstream(s) in the bundle to change the bitstream’s sequence.

Step 2: Apart from adjusting the bitstream’s sequence in a bundle, below are other options available:

Download Bitstream: Click the button to download the attachment on the local device.
Edit Bitstream: The “Edit bitstream” button is used to edit details. More details are given in the following steps.
Delete Bitstream: Click on the Delete Bitstream button to delete Bitstream from the bundle.

480

1.

2.
3.
4.

5.

Step 3: Click the "Edit" button on the screen above to edit the bitstream details. Below is the description of various fields appearing on this form

Primary bitstream: Click on this button to set the bitstream as the primary bitstream for that bundle. If another bitstream was the primary bitstream
beforehand, it will be replaced with this one. The thumbnail for the primary bitstream of the ORIGINAL bundle will be used as the main thumbnail
for the item.
Filename: The default value appearing in this field is the attachment’s filename. Users can replace it with the value of their choice.
Description: Users add a description of the attachment in this field.
Embargo until date: Users can select a future date to restrict public access to the attachment. Additionally, users can grant access to a specific
set of users by selecting user groups.
Selected format: If the file extension of the uploaded attachment exists in the DSpace’s bitstream registry, the user will see the registered value
for extension in this field. Users can change the value by selecting another one using the dropdown.

481

After clicking the “Save” button, the user will be redirected to the bitstream tab. A prompt confirming success or failure will appear.

Step 4: Use the "Delete" button to delete a bitstream. The attachment you want to delete will be highlighted in the red background for confirmation.

Click the “Save” button appearing below the bitstreams list to continue with the deletion. Otherwise, click the “Discard” button to cancel the process.

482

483

1.
2.
3.

Edit Metadata

Edit Metadata Process
Add a metadata field
Edit an existing metadata field
Delete an existing metadata field
Add or edit authority-controlled metadata fields

Metadata fields controlled by a list of value-pairs
Metadata fields controlled by Hierarchical Taxonomies or Controlled Vocabularies
Authority-controlled metadata fields with authority keys

Editing or removing an authority key
Confidence values

Edit Metadata Process
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search for an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing on the right-hand side of the item title.

484

Step 3: Click on the “Metadata” tab to edit the metadata.

Step 4: Users can perform multiple actions in the Edit Metadata section, which are listed after the screenshot.

485

1.
2.
3.

a.
b.
c.

Add: Button used for adding new metadata elements in the existing Item.
Metadata fields: The fields column shows the metadata element’s value appearing in the “Value” column.
Edit: This panel contains various options to update the specific metadata field. They are

Edit value – Users click on this button to edit the existing metadata value
Delete metadata field – Click on this button to delete the metadata field from the Item
Undo changes – Click on this button to undo changes made in the metadata field

Add a metadata field
Step 1: Click on the “Add” button to add a metadata field.

Step 2: Upon typing a few characters of the metadata element, users will notice a drop-down list showing metadata elements matching the entered value.
Users can select the appropriate metadata element from the drop-down list.

486

Step 3: After selecting the required metadata element, enter the metadata value in the “Value” field and the ISO code of the language under the Lang field.
For example, enter "en" for English.

Step 4: Click on the “Complete” button as highlighted below to update the field.

487

Step 5: Click on the “Save” button to continue saving changes or “Discard” to cancel changes made in the metadata fields. A success prompt confirming
Metadata updates will appear as shown below.

Edit an existing metadata field
Step 1: Click on the “Edit” button to edit an existing metadata field.

488

Step 2: The metadata field becomes editable after clicking the “Edit” button to edit the metadata field element, value, and language.

Step 3: Click on the “Complete” button as highlighted in the screenshot below to finish the update.

489

The metadata field will highlight the successful addition of the metadata, as shown in the screenshot below. Click on the undo button if you want to undo
the addition of the metadata field.

Step 4: Click on the “Save” button to continue saving changes or “Discard” to cancel changes made in the metadata fields. A success prompt confirming
Metadata updates will appear as shown below.

490

Delete an existing metadata field
Step 1: Click on the “Delete” button to initiate the metadata field deletion.

Step 2: The deleted metadata field will be highlighted in red.

491

Step 3: Click on the “Save” button to continue saving changes or “Discard” to cancel changes made in the metadata fields. A success prompt confirming
Metadata updates will appear as shown below.

Add or edit authority-controlled metadata fields
Some metadata fields may be configured to use controlled authority values. When adding or editing metadata in fields configured with such authorities, the
metadata input field adjusts to enable the selection of these controlled values.

Three different presentations are offered for editing/selecting authority-controlled metadata:

Dropdown field: for metadata fields controlled by a list of value-pairs defined in submission-form.xml.
Pop-up tree selector: for metadata fields controlled by Hierarchical Taxonomies or Controlled Vocabularies.
Autocomplete field: for authority-controlled metadata fields with authority keys.

492

A metadata field could be configured to use controlled authority values in two ways:

Firstly, if the metadata field is globally configured to work with a ChoiceAuthority.
Secondly, if the metadata is configured to use any of these controlled fields in the submission form defined for the owning collection of the item
being edited.

If both options are defined, the first option - the configuration defined for the ChoiceAuthority - will be used to obtain the controlled values.

See Values for more information.Authority Control of Metadata

The following sections show how these fields are presented when adding new metadata. These fields will also be displayed similarly when editing an
authority-controlled metadata field.

Metadata fields controlled by a list of value-pairs

When metadata controlled by a list of value pairs is created, a dropdown is displayed to select the value:

After selecting a value and confirming it:

The new metadata is added. Note that once the change is confirmed, it will display the value that is internally stored, whereas during editing, it shows the
displayed value configured in the list of pairs.

493

As with other fields, click on the “Save” button to continue saving changes or “Discard” to cancel changes made in the metadata fields.

Metadata fields controlled by Hierarchical Taxonomies or Controlled Vocabularies

When a metadata controlled by a taxonomy list or controlled vocabulary is created, a field is displayed as follows:

Clicking on the field opens a pop-up to select the controlled value:

494

Once selected, it will be displayed in the field:

After confirming the value, the field is displayed again with the value that is internally stored once the changes are saved.

As with other fields, click on the “Save” button to continue saving changes or “Discard” to cancel changes made in the metadata fields.

Authority-controlled metadata fields with authority keys

495

When creating metadata controlled by an authority with authority keys, a group of fields with the following elements will be displayed as follows:

A main input field with the metadata value
A secondary field for the authority key
An attached icon displays the associated confidence level with the key

Entering text in the main field will suggest options to select controlled values as shown in the image:

When selecting one of the values, the selected value along with the associated key will be displayed in the corresponding fields, and the confidence value
will display the icon to confirm that it is a value accepted by a user:

496

Once the change is confirmed, the associated authority key will be displayed along with the icon showing the confidence value:

Fields that have an associated authority key with a minimum confidence value will be displayed in the metadata list with the corresponding authority and
confidence icon.

Editing or removing an authority key

It is possible to edit the authority key directly. To do so, first unlock the field for editing by clicking the button with the lock icon:

Edit the field with the desired changes:

497

To remove the authority key, empty the field. The field will be displayed without the key before saving:

To change the authority key, edit the value. The key value will be modified, and the associated confidence value will be set as accepted by the user:

Confidence values

The following table shows the possible confidence values and the icons used by default:

Icon Confidence Confidence value

(stored
in metadatavalue)

Description Displayed when
not editing

ACCEPTED 600 This authority value has been confirmed as accurate by an interactive user or
authoritative policy

Yes

UNCERTAIN 500 Authority value is singular and valid but has not been seen and accepted by a
human, so its provenance is uncertain

Yes

AMBIGUOUS 400 There are multiple matching authority values of equal validity Yes

NOTFOUND 300 There are no matching answers from the authority Yes

498

FAILED 200 The authority encountered an internal failure in trying to match the value Yes

REJECTED 100 The authority recommends this submission be rejected Yes

NOVALUE 0 No reasonable confidence value is available No

UNSET -1 No confidence value has been set (default value in the DB table) No

499

1.
2.
3.

Edit Relationship

Relationship Management
Add Relationships with other items
Delete a Relationship

Relationship Management
Entity relationships help authorized users to link two or more items by defining relationships among them. A few good examples are the Relationship
between an article & Author, a Journal and Journal Article, an Organization Unit and Individuals in the unit, etc.

Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, which are listed below

Finding an item using search functionalities of the DSpace
Reaching an item by browsing communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing towards the right-hand side of the item title.

500

Step 3: Click on the “Relationships” tab.

Add Relationships with other items
Step 1: Click on the “Add” button next to the relationship type to map Item (s) under each relationship type. For example, click on the “Add” button next to
Publications to add an item as a related publication.

501

Step 2: Identify target items for addition using Filters and Search functions. Please note that the process is identical to the advanced search process.

Step 3: Click checkboxes appearing on the left-hand side of each Item to select them for the Relationship.

502

Step 4: Scroll down to the bottom of the screen and click on the “Save” button to complete the process.

The application will redirect users to the source item’s relationship tab, highlighting newly added items for easy identification.

503

Step 5: Click on the “Save” button to confirm the item addition under the selected relationship type or click “Discard” to undo the addition.

Users will see a prompt confirming the successful mapping of items under the selected relationship type.

Delete a Relationship
Step 1: Click on the “delete” button appearing a bitstream and drag it above or below another bitstream(s) in the bundle to change the bitstream’s
sequence.

504

Step 2: A prompt showing items concerning the selected Item will appear in the prompt. Click the checkbox appearing next to items. Please refer
screenshots below for a better understanding.

List of items concerning the selected Item.

505

Click on the checkbox highlighted before the Item

Step 3: Click the “Save” button to complete the selection process and go back to the Relationship tab of the source item.

Step 4: Click on the “Save” button to confirm the deletion under the selected relationship type or click “Discard” to undo the action. Users will see a prompt
confirming the successful deletion of items under the selected relationship type.

506

1.
2.
3.

Make an item discoverable
Step 1: Login using the DSpace credentials

Step 2: Users can go to the item they want to edit

Users can reach an item through multiple methods, which are listed below

Finding an item using search functionalities of the DSpace
Getting an item by browsing communities and collections
Finding an item in the Administration section at Edit > Item

 Click on the “Edit” button on the right-hand side of the item title.

Step 3: Click the “Reinstate” button under the “Status” tab to reinstate the item into the archive.

507

Step 4: Click the “Reinstate” button to reinstate the item or click the “Cancel” button to cancel the operation.

508

509

Step 5: Users will see a success prompt confirming the item reinstate, as shown below.

Step 6: Users will notice that the “Withdrawn” tag appearing earlier on top of the item does not appear anymore.

510

1.
2.
3.

Make an item non-discoverable

Audience
Make an item non-discoverable

Audience
Content Submitters

Community Administrators

System Administrators

Make an item non-discoverable
 Login using your DSpace credentialsStep 1:

 Go to the item you want to editStep 2:

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing towards the right-hand side of the item title.

511

 Click on the “Make it private” button under the “Status” tab to make the selected Item private.Step 3:

Click on the “Make it Private” button to make the selected Item private or click the “Cancel” button to cancel the operation.Step 4:

512

513

 You will see a success prompt confirming that the Item is private, as shown below.Step 5:

 You will notice that the Item will appear with a “Private” tag.Step 6:

514

515

1.
2.
3.

Move an Item

Audience
Move an item

Audience
Content Submitters

Community Administrators

System Administrators

Move an item
 Login using your credentialsStep 1:

 Go to the item you want to editStep 2:

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing on the right-hand side of the item title.

516

1.
2.
3.

Step 3: Click on the “Status” tab and click the “Move” button.

 Understanding the Move item pageStep 4:

 The field for entering the collection name: Enter the target collection name to move the item or select the collection from the drop-down list, as
demonstrated in the following step.

Inherit policies: Click on this check box to update the item’s policies according to the collection’s policies.
Move: Click the “Move” button to complete the operation.
Cancel: Click the “Cancel” button to cancel the operation.

517

Click on the Collection name and type the target collection name to move the item or scroll the collection list to identify the appropriate collection.Step 5:

 Click on the “Move” button after selecting the target collection.Step 6:

518

 The item will move to the target collection upon completing the operation.Step 7:

519

1.
2.
3.

Versioned Item

Audience
Create a version

Few important facts
Access Item’s versions

Additional information for the version creator

DSpace provides version creation and version management functionality. This functionality enables authorized users to create multiple versions of an item
to manage changes in its metadata and attachment while keeping track of differences between two versions. Users can also roll back to the previous
version.

Audience

Content Submitters

Community Administrators

System Administrators

Create a version

Step 1: Login using the DSpace credentials

Step 2: Users can reach an item to create a version through various methods, which are listed below

Finding an item using search functionalities of the DSpace
Reaching an item by browsing communities and collections
Finding an item in the Administration section at Edit > Item

Step 3: Users will see the “Create Version” button on the item detail page highlighted below. Click it to create a new version of an item.

520

Step 4: After clicking the “Create Version” button, users will see a prompt seeking a summary of the new version. Please enter a summary of changes
users will make in the latest version.

Later, this summary plays an essential role in tracking changes made in the version that helps the broader user group and auditors.

Step 5: Users will see a success prompt confirming a new version creation, as shown below. A page similar to the item submission process will appear
with the item’s existing metadata and attachments in an editable mode.

521

Step 6: Users can update required metadata and attachments on this page the same way they would have done during the item submission process.

Few important facts

Users can update and add new metadata during the version update process
Like the metadata, one can also update attachments by updating/removing existing attachments and adding new ones.
It’s possible to assign a new collection to the latest version. However, it does not change the storage location of the old
version.
Suppose the collection where the latest version needs to be stored has approval workflows assigned. The newest version
will be published after necessary approvals.
Users can save the draft version during updates and pick it up from their workspace to complete later.

522

523

Step 7: Click on the “Deposit” button to complete the version creation process. Apart from clicking the “Deposit” button, users can perform the following
actions during the version creation:

Discard: Click this button to cancel the version creation process.
Save: Keep saving the updates intermittently and continue updating version details.
Save for later: Save the progress and pick up the item from the workspace later to complete the version creation.

 As briefed above, if the target collection has the approval workflow assigned to it, then the latest version will appear to users having an approval role for
acceptance. However, if no workflow is set to the collection, the new version will be published for public access.

Access Item’s versions

Step 1: Users can reach an item through various methods, which are listed below

524

1.
2.

Finding an item using search functionalities of the DSpace
Reaching an item by browsing communities and collections

Step 2: Users can scroll down the item details page to see its version history, as illustrated below. Version history table shows the following details:

Version: The version number of the item. The illustration shows that the selected version has * next to it.
Date: Version creation date and time as per the server.
Summary: Summary added by the user during version creation.

Step 3: The item details page shows information from the latest version. Users can click on the previous version id to see it.

Additional information for the version creator

In addition to the above details, the version creator will see the following information related to versioning.

The version in the approval workflow: If a version is unpublished due to pending approval, then the “Workflow Item” tag
will appear next to such versions. These versions are not visible to all users.
Alert about the latest version: An alert confirms the page is not the newest version, and a link to the newest version
appears at the top of the page.

525

526

1.
2.
3.

Withdraw an item
Step 1: Login using the DSpace credentials

Step 2: Users can go to the item they want to edit

Users can reach an item through multiple methods, which are listed below

Finding an item using search functionalities of the DSpace
Reaching an item by browsing communities and collections
Finding an item in the Administration section at Edit > Item

Click the “Withdraw” button on the right-hand side of the item title.

527

Step 3: Click the “Withdraw” button under the “Status” tab to withdraw the item from the archive.

528

Step 4: Click on the “Withdraw” button to withdraw the item or click the “Cancel” button to cancel the operation.

529

Step 5: Users will see a success prompt confirming the item withdrawal, as shown below.

530

Step 6: Users will notice that the item will appear with a “Withdrawn” tag.

531

1.
2.
3.
4.

Embargo an item
“Embargo an item” helps restrict the Item’s attachment’s access until a future date. A user can embargo an item while submitting it or later by editing it.
Both methods to embargo an item are explained below.

Audience
Embargo an item during the item submission
Embargo an item via edit item

Audience
Repository Administrator
Community Administrator
Collection Administrator
Item Administrator/submitter

Embargo an item during the item submission
Step 1: Login using your credentials

Step 2: Roll over the cursor on the “+” sign.

532

Step 3: Click on “New” and click on “item” to proceed further in the Item addition process

Step 4: A popup window with a collection list will appear. The user can select the target collection by typing its name or scrolling down the collection list.
Then, click on the collection to initiate item submission.

Step 5: Users will see the item submission form after selecting the target collection. The first step is to upload attachment(s) in the Item. In DSpace
terminology, an attachment is known as a “bitstream.”

Click on the “browse” link to upload attachment(s). Users can upload multiple files by selecting them together or dragging them into the space.

533

A progress bar showing bitstream upload progress will appear, as demonstrated in the illustration below. In addition, after a successful bitstream upload, a
prompt confirming success or failure will appear.

Bitstream upload in progress

534

Bitstream Upload Successful

Step 6: After uploading bitstream, the next step is to describe the Item by adding metadata.

Please refer process for detailed documentation on populating information in the metadata fields.Add Item

Step 7: Click on the edit button against any attachment to add embargo policy.

Step 8: Users can apply multiple policies on an attachment, and there are various available options. Click on the dropdown list under the “Access
condition” type and select embargo, as highlighted in the screenshot below.

After selecting embargo in the dropdown list, the “Grant access from” date field will be activated. Next, users can choose the future date, after which the
attachment should be accessible to the larger set of DSpace users.

535

Users can add multiple policies to the attachment by clicking the “Add more” link. For example, a user can define an embargo on an item until a future
date. Likewise, a lease policy can keep the attachment open access until another date in the future.

Step 9: After updating all information, the submitter clicks on the “I confirm the license above” checkbox to accept the repository’s license.

536

1.
2.
3.

Step 10: Click on the “Deposit” button to submit the Item in DSpace. Users will get to see a confirmation prompt upon successful submission of the Item.

Embargo an item via edit item
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item

Click on the “Edit” button appearing on the right-hand side of the item title.

Step 3: Click on the “Authorizations” button under the “Status” tab to continue with adding the embargo policy.

537

1.
2.
3.

Step 4: The user will see multiple options against each attachment as explained below:

Download Bitstream: Click on this button to download the attachment on your local device for view.
Edit Bitstream: Click on the “Edit bitstream” button for editing details. Explained in the next step
Delete Bitstream: Click on the “Delete Bitstream” button to delete bitstream from the bundle.

Click on the “edit bitstream” button to embargo the attachment.

Step 5: Click on “Edit bitstream’s Policies” to continue with the embargo process.

538

1.
2.
3.
4.
5.

Step 6: Click on the “Add” button to create the custom embargo policy for the attachment.

Step 7: Enter details for creating the embargo policy on this form and perform the following actions:

Select ‘TYPE_CUSTOM’ under ‘Select the policy type’ dropdown menu
Select ‘READ’ under the ‘Select the action type’ dropdown list.
Select a future date under the End Date to determine when the embargo will end.
Select E-Person or a User group
Click on Save to create the policy

539

Detailed documentation on various possibilities on this form is available under ‘Edit Bitstream’ user documentation.

Users will see a success prompt upon creating the policy and will be redirected to the bitstream policy page.

540

1.
2.
3.
4.

Lease an item
“Lease an item” helps restrict the Item’s attachment’s access after a future date. A user can lease an item during the submission or later by editing it. Both
methods to lease an item are explained below.

Audience
Lease an item during the item submission
Lease an item via edit item

Audience
Repository Administrator
Community Administrator
Collection Administrator
Item Administrator/submitter

Lease an item during the item submission
Step 1: Login using your credentials

Step 2: Roll over the cursor on the “+” sign.

541

Step 3: Click on “New” and click on “item” to proceed further in the Item addition process

Step 4: A popup window with a collection list will appear. The user can select the target collection by typing its name or scrolling down the collection list.
Then, click on the collection to initiate item submission.

Step 5: Users will see the item submission form after selecting the target collection. The first step is to upload attachment(s) in the Item. In DSpace
terminology, an attachment is known as a “bitstream.”

Click on the “browse” link to upload attachment(s). Users can upload multiple files by selecting them together or dragging them into the space.

542

A progress bar showing bitstream upload progress will appear, as demonstrated in the illustration below. In addition, after a successful bitstream upload, a
prompt confirming success or failure will appear.

Bitstream upload in progress

543

Bitstream Upload Successful

Step 6: After uploading bitstream, the next step is to describe the Item by adding metadata.

Please refer process for detailed documentation on populating information in the metadata fields.Add Item

Step 7: Click on the “edit” button against any attachment to lease it.

Step 8: Users can apply multiple policies on an attachment from available options. Click on the dropdown list under the “Access condition” and select
lease, as highlighted in the screenshot below.

After selecting the lease, the “Grant access until” date field will be activated. Next, choose the future date, after which the attachment should be restricted
to the larger set of DSpace users.

544

Users can add multiple policies to the attachment by clicking the “Add more” link. For example, a user can define a lease on an item until a future date.
And after that date, another policy can be defined for the next period.

Step 9: After updating all information, the submitter clicks on the “I confirm the license above” checkbox to accept the repository’s license.

545

1.
2.
3.
4.

Step 10: Click on the “Deposit” button to submit the Item in DSpace. Users will get to see a confirmation prompt upon successful submission of the Item.

Lease an item via edit item
Step 1: Login using your credentials

Step 2: Go to the Item you want to edit

Users can reach an item through multiple methods, as listed below:

Search an item
Browse communities and collections
Finding an item in the Administration section at Edit > Item
Click the “Edit” button on the right side of the item title.

546

1.
2.
3.

Step 3: Click on the “Authorizations” button under the “Status” tab to continue with leasing attachment(s).

Step 4: The user will see multiple options against each attachment as explained below:

Download Bitstream: Click on this button to download the attachment on your local device for view.
Edit Bitstream: Click on the “Edit bitstream” button for editing details. Explained in the next step
Delete Bitstream: Click on the “Delete Bitstream” button to delete bitstream from the bundle.

Click on the “edit bitstream” button to lease the attachment.

547

Step 5: Click on “Edit bitstream’s Policies” to continue the leasing process.

Step 6: Click on the “Add” button to create the custom lease policy for the attachment.

548

1.
2.
3.
4.
5.

Step 7: Enter details for creating the lease policy on this form and perform the following actions:

Select ‘TYPE_CUSTOM’ under ‘Select the policy type’ dropdown menu
Select ‘READ’ under the ‘Select the action type’ dropdown list.
Select a future date under the End Date to determine when the embargo will end.
Select E-Person or a User group
Click on Save to create the policy

549

Detailed documentation on various possibilities on this form is available under ‘Edit Bitstream’ user documentation.

Users will see a success prompt upon creating the policy and be redirected to the bitstream policy page.

550

DSpace Demo Quick Start
Front end

https://demo.dspace.org

OAI-PMH

https://demo.dspace.org/server/oai/request?verb=Identify

REST-API

https://demo.dspace.org/server/

SWORD v1

https://demo.dspace.org/server/sword/servicedocument

SWORD v2

https://demo.dspace.org/server/swordv2/servicedocument

551

https://demo.dspace.org
https://demo.dspace.org/server/oai/request?verb=Identify
https://demo.dspace.org/server/
https://demo.dspace.org/server/sword/servicedocument
https://demo.dspace.org/server/swordv2/servicedocument

Management sidebar
Many of the administrative functions can be accessed from the Management sidebar. This list maps the menu to more detailed information.

New
Community
Collection
Add item
Process

Edit
Community
Collection
Item

Import
Metadata

Export
Metadata

Notifications
Access Control

People
Groups

Admin Search
Reports (Beta release)
Registries

Metadata
Format Aligner à droite

Curation Task
Processes
Administer Workflow
Health
COAR Notify

New

Quickly create or edit objects from anywhere in the system. Either browse to the object first, or search for it using the Admin sidebar. - Release
Notes

Community

Collection

Add item

Process

Processes UI () allows Administrators to run backend scripts/processes while monitoring their progress & completion. - video Release
Notes

See for more detail about these commands.Command Line Operations

Edit

Quickly create or edit objects from anywhere in the system. Either browse to the object first, or search for it using the Admin sidebar.
Bitstream Editing (video) has a drag-and-drop interface for re-ordering bitstreams and makes adding and editing bitstreams more intuitive.
Metadata Editing (video) introduces suggest-as-you-type for field name selection of new metadata. - Release Notes

Community

Edit
Delete

Collection

Edit
Delete

Item

Edit
Delete

552

https://wiki.lyrasis.org/display/DSDOC7x/Create+a+Community
https://wiki.lyrasis.org/display/DSDOC7x/Create+Collection
https://www.youtube.com/watch?v=vcsWkWQONkY
https://youtu.be/s1msEKK0f68
https://youtu.be/6KVB2ugUgjI
https://wiki.lyrasis.org/display/DSDOC7x/Edit+Community
https://wiki.lyrasis.org/display/DSDOC7x/Delete+Community
https://wiki.lyrasis.org/display/DSDOC7x/Edit+Collection
https://wiki.lyrasis.org/display/DSDOC7x/Delete+Collection
https://wiki.lyrasis.org/display/DSDOC7x/Edit+Item
https://wiki.lyrasis.org/display/DSDOC7x/Delete+item

Import

You can drop or browse CSV files that contain batch metadata operations on files. When " " selected, the uploaded CSV will be Validate Only
validated. You will receive a report of detected changes, but no changes will be saved.

Metadata

Export

Metadata

Notifications

The Notifications include the possibility to claim publication suggested by external system, for example ORCID and the Quality assurance. You
can find more information in .Quality Assurance

Access Control

Login As (Impersonate) another account allows Administrators to debug issues that a specific user is seeing, or do some work on behalf of that
user. (Login as an Admin, Click "Access Control" in sidebar, Click "People". Search for the user account & edit it. Click the "Impersonate
EPerson" button. You will be authenticated as that user until you click "Stop Impersonating EPerson" in the upper right.) - Release Notes

People

Groups

Admin Search

Administrative Search (video) combines retrieval of withdrawn items and private items, together with a series of quick action buttons. - Release
Notes

Reports (Beta release)

Two different kind of reports are available to administrator: Filtered Collection and Metadata Query. DSpace report are released in DSpace 8
as a . See for detailsBeta release DSpace 8 Administrator Reports (Beta Release)

Registries

Metadata

Format Aligner à droite

Curation Task

Processes

Processes UI () allows Administrators to run backend scripts/processes while monitoring their progress & completion. - video Release Notes

Details about each of the available processes/scripts can be found in the "scripts" directory of the REST API docs: https://github.com/DSpace
/RestContract/blob/main/script

Additional information can also be found in the documentation.Command Line Operations

Administer Workflow

Administer Active Workflows () allows Administrators to see every submission that is currently in the workflow approval process. - video Release
Notes

Health

553

https://wiki.lyrasis.org/display/DSDOC7x/Batch+Metadata+Editing#BatchMetadataEditing-ImportFunction
https://wiki.lyrasis.org/display/DSDOC7x/Batch+Metadata+Editing#BatchMetadataEditing-ExportFunction
https://www.youtube.com/watch?v=JV8Rb-9cByo&t=1s
https://wiki.lyrasis.org/pages/resumedraft.action?draftId=316407821&draftShareId=02e96b9b-f02a-4d98-8ad2-e7d53882336e&
https://wiki.lyrasis.org/display/DSDOC7x/Curation+System
https://www.youtube.com/watch?v=vcsWkWQONkY
https://github.com/DSpace/RestContract/blob/main/scripts/
https://github.com/DSpace/RestContract/blob/main/scripts/
https://www.youtube.com/watch?v=CjH8VS2WDjE

Admin "Health" menu provides basic control panel functionality When logged in as an Administrator, select (based on 6.x Control Panel).
"Health" from the side menu. You'll see a "Status" tab which provides useful information about the status of the DSpace backend, and an "Info"
tab which provides an overview of backend configurations and Java information. - Release Notes

COAR Notify

COAR Notify supports the exchange of linked data notifications across partner organisations and the workflows to manage notifications in those
platforms and systems. The application can receive and send LDN messages concerning items with external systems. The LDN system is the
protocol of message exchanging; the Quality Assurance system is the mechanism used to approve or reject item updates. See for COAR Notify
functionality details.

554

Administrator Reports (Beta feature)

Beta Release

The DSpace Reports are released in DSpace 8.0 as beta feature. This mean some fonctionalities need improvments and they are not completly production
ready. The reports are still actively developed. Be aware that in their current state, DSpace reports can cause performance issues. The following issues
can help improve the reports:

[DSpace 8 Admin Reports] Performance issues caused by high number of item loadings. https://github.com/DSpace/dspace-angular/issues/2906
[DSpace 8 Admin Reports] Performance issues caused by large page sizes. https://github.com/DSpace/dspace-angular/issues/2907
[DSpace 8 Admin Reports] Move part of the code to a full-featured DataService. https://github.com/DSpace/dspace-angular/issues/2908
[DSpace 8 Admin Reports] Allow Metadata Query report results to be exported in CSV format. https://github.com/DSpace/dspace-angular/issues
/2909

The Beta release of the DSpace reports only provides the ability to run the reports and display the results in the Angular UI. As such, reports feature must
be used with caution.

The reports are an Administrator tool. Only users with Administrator permissions can access them.

There are 2 reports:

Filtered Collection: this report is counting the numbers of item per community/collection. A large variety of filter can be used (ex: Discoverable
Items - Not Private ; Item has No Original Bitstreams, Has unusually large PDF, Has document bitstream without TEXT item, Item Image
Bitstreams are Supported, Item has Restricted Original Bitstream etc.). Results table is displayed in the UI.
The filtered collection reports is documented in .DSpace Filtered Collections report endpoint
Metadata Query : this report build a report based on different main criterias (Collection Selector, Metadata Field Queries, Limit/Paginate Queries,
Filters, Additional data to return). Item Results are displayed in the UI
The metadata query report is documented in DSpace .Metadata query (aka Filtered Items) report endpoint

How to enable
The reports are desabled by default. The reports can be enable or desable in contentreport.cfg

contentreport.enable = true|false true =>the 2 reports will be enable
=> the 2 reports will be desablefalse

Once enable, the reports are available in the admin menu as shown below:

Filtered collection report
The filter collection report will display total number of item in each available collection in DSpace. By default, if no filter are selected, all item are counted,
no matter their status (available, withdrown, non discavarable)

Filter section
555

https://github.com/DSpace/dspace-angular/issues/2906
https://github.com/DSpace/dspace-angular/issues/2907
https://github.com/DSpace/dspace-angular/issues/2908
https://github.com/DSpace/dspace-angular/issues/2909
https://github.com/DSpace/dspace-angular/issues/2909
https://github.com/DSpace/RestContract/blob/main/contentreport-filteredcollections.md
https://github.com/DSpace/RestContract/blob/main/contentreport-filtereditems.md

1.
2.
3.
4.
5.
6.

The filtered collection report provide 6 catagory of filter:

Item Property Filters
Basic Bitstream Filters
Bitstream Filters by MIME Type
Supported MIME Type Filters
Bitstream Bundle Filters
Permission Filters

List of filters and their meaning

Category Filter Expected behavior

Display Filtered
collections report
page

The report page is displayed.

Is it structured in 2 sections : Filters and Collection reports that can be expended or
reduced.

All filter available are expended by default.

A “Show collection” button appears on top and bottom of the Filters Section

Display all item per
collections

Count all item no matter their property (public, withdrawn, private, etc.)

Results are display in the “Collection report” section in table form.

First column is Community ; second Collection ; third total count ; fourth filtered count.

Item are shown by communities and collections

Item Property
Filters

Is Item - always true The filtered count column only counts items

Withdrawn Items The filtered count column only counts the withdrawn items

556

Available Items - Not Withdrawn The filtered count column only counts available items

Discoverable Items - Not Private The filtered count column only counts findable items

Not Discoverable - Private Item The filtered count column only count private item

Basic Bitstream
Filters

Item has Multiple Original Bitstreams Count items that have more than one bitstreams in the ORIGINAL Bundle

Item has No Original Bitstreams Count items that have no bitstreams in the ORIGINAL Bundle

Item has One Original Bitstream Count items that have only one bitstreams in the ORIGINAL Bundle

Bitstream Filters
by MIME Type

Item has a Doc Original Bitstream
(PDF, Office, Text, HTML, XML, etc)

Item has an Image Original Bitstream

Has Other Bitstream Types (not Doc
or Image)

Item has multiple types of Original
Bitstreams (Doc, Image, Other)

Item has a PDF Original Bitstream

Item has JPG Original Bitstream

Has unusually small PDF File must be < 20ko to be considered unusually small.

Has unusually large PDF Test with a > 100Mo file

Has document bitstream without
TEXT item”

Count item for which at least one of the documents in the ORIGINAL Bundle as not
corresponding file in the TEXT Bundle (contains OCR text file for indexing).

Supported MIME
Type Filters

Item Image Bitstreams are Supported

Item has Image Bitstream that is
Unsupported

Item Document Bitstreams are
Supported

Item has Document Bitstream that is
Unsupported

Bitstream Bundle
Filters

Has bitstream in an unsupported
bundle

Has unusually small thumbnail

Has original bitstream without
thumbnail

Has invalid thumbnail name (assumes
one thumbnail for each original)

Has non-generated thumbnail

Doesn't have a license Count Items that do not have a LICENCE Bundle

Has documentation in the license
bundle

Permission Filters

Check “Item has Restricted Original
Bitstream”

557

1.
2.
3.
4.
5.
6.

Check “Item has Restricted
Thumbnail”

Check “Item has Restricted Metadata”

Filtered collection results

The results will always give the total count (without any filters applyied) and the filtered count.

Metadata Query Report
The metadata query offer the capability to search for items using a variety of operators, conditions and filters.

The report contains 6 sections, each of which is a step in building a query:

Collection selector : select one or many collections
Metadata fields query: where to build your query using predefine query or custom query.
Limit/Paginate Query: select the number of results per page (optional)
Use Filters (optional): they are exactly the same that those of the Filtered Collection report.
Additional metadata: select additional metadata to return. By default, only UUI, Collection URI and Title are returned.
Item Results : the section where the results will be displayed.

558

Queries documentation

Category Description Expected behavior

Collection selector Running a request with no queries and filters selecting individual collection List all items of the selected collection

Running a request with no queries and filters selecting multiple collection List all items of the selected collections

Running a request with no queries and filters selecting Whole repository List all items

Metadata fields predefined
queries

Has No Title

(use “does not exist” operator)

Has No dc.identifier.uri

(use “does not exist” operator)

Has c dc.contributor.author Must contain the “and” operator

(Smith, John and Doe, John)

Has compound dc.creator Must contain the “and” operator

(Smith, John and Doe, John)

Has URL in dc.description

(use “matches” operator)

Has unbreaking metadata in description

Has full text in dc.description.provenance

Has non-full text in dc.description.provenance

Has non-ascii character in metadata

559

Has empty metadata

Has XML entity in metadata

(use “matches” operator)

New Query Report

Exists

does not exist

equals Need exact, complete character string

does not equal Need exact, complete character string

Like (permet d’ajouter des troncature ex % (0, 1 ou plusieurs caractères) ou
_ (un seul caractère)

not like

contains

does not contain

matches (permet de mettre des expressions régulières dans la requête –
regex ou regexp)

Does not match

Multi-field queries

Limit/Paginate Queries Limit to 100 then 25 First 100 items are shown, then 25.

Addition data to return Select 3 additional metadata Appears in results

Item Results Run a query Default results display UUID Collection,
URI and Title

Metadata Query Results

By default, Additionnal metadata can be added when building the query.only UUI, Collection URI and Title are included in the results.

560

COAR Notify

The is developing and accelerating community adoption of a standard, interoperable, and decentralised approach to linking research COAR Notify Initiative
outputs hosted in the distributed network of repositories with resources from external services such as overlay-journals and open peer review services,
using linked data notifications. As part of this project, COAR is funding the development of platforms and systems to support the exchange of linked data
notifications across partner organisations and the workflows to manage notifications in those platforms and systems.

The application can receive and send messages concerning items with external systems. The LDN system is the protocol LDN (Linked Data Notifications)
of message exchanging; the Quality Assurance system is the mechanism used to approve or reject item updates.

Enable COAR Notify

To enable COAR Notify, you MUST first enable the following:

Quality Assurance

In addition, the following settings MUST be added to your local.cfg:

ldn.enabled = true
Add the "ldnmessage" consumer to the list of consumers in "event.dispatcher.default.consumers"

Available COAR Notify configurations:

ldn.enabled = true|false (REQUIRED) true => message is received and managed the server responds with an HTTP 202 code
=> message is refused and the server responds with an HTTP 404 codefalse

(event.dispatcher.default.consumers
REQUIRED)

Add the "ldnmessage" consumer to this list of default consumers. This consumer is used to store LDN
(Linked Data Notification) messages.

ldn.notify.inbox =${dspace.server.url}
/ldn/inbox

Where the ldn inbox rest service is mapped on the current DSpace instance. Default is ${dspace.server.url}
/ldn/inbox

coar-notify.ip-range.enabled =
true|false

enables the validation against the IP of received ldn message against the registered range

COAR Notify Support page in User Interface

By default, when COAR Notify is enabled, the COAR Notify logo will appear in the footer of the site. Clicking that logo will bring you to a basic Support
Page (/info/coar-notify-support) which provides details for how other systems may send notifications to your DSpace.

If you wish to disable the COAR Notify logo & Support page from appearing, that can be done in the following User Interface configuration (in your "config.*.
yml"):

config.*.yml

When set to "true", the COAR Notify logo will appear in the footer linking to the Support page.
When set to "false", the COAR Notify logo will not appear, and the Support page will return a 404.
NOTE: This setting only impacts the logo & support page. If you have enabled COAR Notify,
it will still function even when this logo / support page is not displayed.
info:
 enableCOARNotifySupport: true

561

https://notify.coar-repositories.org/
https://www.w3.org/TR/ldn/

562

COAR Notify - Dashboard

Introduction
Dashboard tabs

Metrics
Meaning of each box

Accepted
Processed LDN
Failure
Untrusted
Delivered
Queued
Queued for retry
Failure
Involved Items

Boxes configuration
REST (Discovery configuration)
Angular

User Interface
Logs Inbound Tab

Why a LDN notification should be reprocessed?
Logs Outbound Tab

Why a LDN notification should be reprocessed?

Introduction
To complement the developments for the COAR Notify protocol , the Notify Administrative Dashboard has been implemented COAR Notify Documentation
to monitor the general usage of the COAR Notify protocol across the repository.

The dashboard is accessible to repository administrators only via the menu voice > COAR Notify Dashboard.

The dashboard is organised in three tabs:

Metrics
Logs/Inbound
Logs/Outbound

Dashboard tabs

Metrics

The “Metrics” tab displays data about usage of the COAR Notify protocol, showing the number of received (accepted/processed/failure/untrusted) and
generated (delivered/queued/queued for retry/failure) LDNs, and the total number of items involved.

563

Any LDN Message is considered in this view as long as the Notification is stored.

Meaning of each box

Each box describes a different status the notifications are

Accepted

This box displays the number of LDN received as an to a previous request sent from the repository.acceptance

This means We have received an from the external service (Notice this is not the same as receiving the Review/Endorsement or acceptance notification
any other object)
so the external service has accepted our previous notification an has replied with a confirmation to the LDN.

When an LDN is received as reply to a previously sent notification this counter is increased.Acceptance

Processed LDN

This box displays the number of LDN received and (acceptance notifications are included as well since acceptance might be defined processed correctly
as a subset of processed notification)

Notifications in this status have been correctly processed and a corresponding action was triggered

Failure

This box displays the number of LDN received but .not correctly processed

This status includes and . So any failing notification is reported to be reviewed by QUEUE_STATUS_FAILED QUEUE_STATUS_UNMAPPED_ACTION
the user

Untrusted

This box displays the number of LDN received but .not even processed

Any notification in this status has not even been evaluated since the or the Service was not recognized IP range was not respected

Delivered

This box displays the number of .LDN Sent without any error

564

Any notification successfully delivered will increase this counter

Queued

This box displays the number of (LDN is still queued)LDN waiting to be sent

Since LDN are not immediately sent to the external service this status is displaying how many items are still queued

Queued for retry

This box displays the number of LDN waiting for reprocessing

This means the notification has been re-queued to be reprocessed failing (outgoing)

Failure

This box displays the number of Failing LDN

Generally in this case the the notification (an error code is expected when delivering the LDN)external service didn't receive

Involved Items

These boxes are duplicated for each row for and LDN.Incoming Outgoing

They display the total number of items in the repository involved in the workflow process for COAR NOTIFY.

In few words these boxes display the number of items a LDN was receive/generated for

Boxes configuration

REST (Discovery configuration)

Each box is related to a different discovery configuration as mentioned above

ldnMessageEntityBaseConfig is the "base" configuration for all the different LDN discovery config.
This configuration mainly defines the and used by any discovery config.search filter facets
NOTIFY.incoming.accepted is the configuration for the " " boxAccepted
NOTIFY.incoming.processed is the configuration for the " " boxProcessed LDN
NOTIFY.incoming.failure is the configuration for the " " boxFailure (for incoming)
NOTIFY.incoming.untrusted is the configuration for the " " boxUntrusted
NOTIFY.incoming.involvedItems is the configuration for the " " boxInvolved items (for incoming)
NOTIFY.outgoing.delivered is the configuration for the " " boxDelivered
NOTIFY.outgoing.queued is the configuration for the " " boxQueued
NOTIFY.outgoing.queued_for_retry is the configuration for the " " boxQueued for retry
NOTIFY.outgoing.failure is the configuration for the " " boxFailure (for outgoing)
NOTIFY.outgoing.involvedItems is the configuration for the " " boxInvolved items)for outgoing)

Angular

On the angular application we can decide which box has to be displayed, the text color, the background color and the title for each one

The angular configuration involved is found in default-app-config.ts

Here's an example of the angular configuration

565

notifyMetrics: AdminNotifyMetricsRow[] = [

 {
 title: "admin-notify-dashboard.received-ldn",
 boxes: [
 {
 color: "#B8DAFF",
 title: "admin-notify-dashboard.NOTIFY.incoming.accepted",
 config: "NOTIFY.incoming.accepted",
 description: "admin-notify-dashboard.NOTIFY.incoming.accepted.description",
 },

 {
 color: "#43515F",
 title: "admin-notify-dashboard.NOTIFY.incoming.involvedItems",
 textColor: "#fff",
 config: "NOTIFY.incoming.involvedItems",
 description: "admin-notify-dashboard.NOTIFY.incoming.involvedItems.description",
 },
],
 },
 {
 title: "admin-notify-dashboard.generated-ldn",
 boxes: [
 {
 color: "#D4EDDA",
 title: "admin-notify-dashboard.NOTIFY.outgoing.delivered",
 config: "NOTIFY.outgoing.delivered",
 description: "admin-notify-dashboard.NOTIFY.outgoing.delivered.description",
 },

 {
 color: "#FDBBC7",
 title: "admin-notify-dashboard.NOTIFY.outgoing.failure",
 config: "NOTIFY.outgoing.failure",
 description: "admin-notify-dashboard.NOTIFY.outgoing.failure.description",
 },
 {
 color: "#43515F",
 title: "admin-notify-dashboard.NOTIFY.outgoing.involvedItems",
 textColor: "#fff",
 config: "NOTIFY.outgoing.involvedItems",
 description: "admin-notify-dashboard.NOTIFY.outgoing.involvedItems.description",
 },
],
 },
];

The above layout configuration allows to configure the whole Dashboard/Metrics Tab

Using we are allowed to define a (The default is two)AdminNotifyMetricsRow custom number of rows

Each has and elementsRow title boxes

title is the title being displayed on the row
boxes is the list of boxes in the current row

Each object has the following mandatory fields: , , and and one optional parameter Box color title config description textColor

color is the background color for the box (as)HEX color code
title is the text displayed on the box (as key for the label)
config is the discovery configuration to use
description is the tool-tip text displayed (as key for the label)
textColor is the font color used for the title of the box (as) HEX color code

User Interface

Each colored box is clickable and behind each box there's a different discovery configuration:

566

Statuses Boxes will redirect the user to the corresponding log’s tab (either or), showing the LDN messages filtered by the inbound outbound
corresponding selected criteria

Involved item boxes will redirect the user to the , where only the involved items, either by incoming or outgoing Administrative Search page
LDN messages, will be shown in the results list.
Items can than be further filtered also for any COAR Notify metadata (, , and notify.relation.endorsedBy datacite.relation.isReviewedBy datacit

) using the facets.e.relation.isReferencedBy

Logs Inbound Tab

In the “Logs/Inbound” tab it’s possible to search and check the individual status of each LDN message received by the repository.

Logs are listed in a table displaying the following columns:

Timestamp
Repository item
LDN Service
Type

567

Status
Action

Logs can be scrolled and/or filtered by:

Related item
LDN Service
Queue status
Activity stream type
COAR Notify type
Last processing time

In the logs' table, the value in the “Repository Item” column links to the involved item in the repository.

By clicking on the 'detail' button corresponding to each log, a modal will open displaying the technical information of the received LDN message
and it is also be possible to inspect the JSON notification which might be relevant for some purposes.

568

In case of messages with a queue status equal to “ ” and “ ”, a second button ”Reprocess” will be displayed.untrusted unmapped action

By clicking this button, a request to reprocess the LDN message is triggered.
This allows administrators to reprocess, for instance, messages received from LDN services that have not yet been registered (once the proper mapping
has been added on the related spring config file),
or notification which hadn't been correctly processed the first time.

In case of deleted items, LDN services, etc., “n/a” will be shown in the logs' table in the corresponding "Repository Item" coloumn.

Logs with “Unmapped Action” status don’t display a timestamp, as they have not been processed.

Why a LDN notification should be reprocessed?

The external service might have changed the IP and it doesn't match any longer with the rage provided on the LDN Service
The LDN Notification had an unsupported type an this led to an status.unmapped action
In this case we should configure a new mapping for the missing type before reprocessing the notification

Logs Outbound Tab

In the “Logs/Outbound” tab it’s possible to search and check the individual status of each LDN message received by the repository.

Logs are listed in a table displaying the following columns:

Timestamp
Repository item
LDN Service
Type
Status
Action

569

Logs can be scrolled and/or filtered by:

Related item
LDN Service
Queue status
Activity stream type
COAR Notify type
Last processing time

In the logs' table, the value in the “Repository Item” column links to the involved item in the repository.

By clicking on the 'detail' button corresponding to each log, a modal will open displaying the technical information of the received LDN message
and it is also be possible to inspect the JSON notification which might be relevant for some purposes.

570

In case of messages with a queue status equal to “ ”, a second button ” ” will be displayed. By clicking this button, a request to reprocess failed Reprocess
the message is triggered.
This allows administrators to reprocess messages received from LDN services that have not yet been registered in the repository, or whose data (i.e.
service URL and IP range) have not been correctly entered in the LDN service registry.

Why a LDN notification should be reprocessed?

The Service was temporarily down at the moment the LDN notification was sent
The Service changed the Inbox Url and the notification was not deliverable

In case of deleted items, LDN services, etc., “n/a” will be shown in the logs' table.

Logs with “Untrusted” status don’t display a timestamp, as they have not been processed.

571

COAR Notify - LDN Services

Relation with the Quality Assurance Correction Service
LDN Autodiscovery mechanism
LDN Services Directory (Registering Services)
LDN Inbox queueing
Notify status boxes
Configuring automatic QA evaluation using the Level of Trust
Sending LDN Notifications during the submission of an item
Automatic Inbound pattern triggering
Item filters for Inbound pattern
The LDN Consumer
Understanding the structure of the LDN Notification

@context
actor
context
id
inReplyTo
object
origin
target
type

POSTMAN COLLECTION

Relation with the Quality Assurance Correction Service
The LDN system, as a message exchanging i/o system, has an inbox and an outbox. Every LDN message refers to a Notify Service: all the Notify Services
are configured manually from the admin application form. A Notify Service is just like an authority labelled on LDN messages.

The is the implementation of item metadata updates operations. A Quality Assurance Event contains informations for item Quality Assurance system
metadata updates: QAEvent are stored into QAEvent solr collection. All of the QAEvent are shown on an administration form. Every QAEvent can be
accepted, ignored or removed: if accepted some metadata of the referred item are modified, if ignored or removed nothing about the item is modified.
Every QAEvent has a property named : qa events created by processing an LDNMessage has source .source="coar-notify"

To process an LDN message means to create a QAEvents; as soon as the QAEvent is accepted the referred item is updated. We do it by routing LDN
Messages from the queue to the LDN Router. The LDN Router is designed into the spring file on the bean /dspace/config/spring/api/ldn-coar-notify.xml ldn

. The router de-multiplex two attributes read from the LDN Message (two string values inside the array called) content to java classes called Router type
Processors: see package to view them all.org.dspace.app.ldn.processor.*

The match between LDN message and the QAEvent (suddenly created by the evaluation of the ldn message from the queue) is configured type topic
onto spring file. Every Processor owns a list of actions. An action is often an email to be sent and an action to create the qa event. The ldn-coar-notify.xml
LDN processor receives the QAEvent topic as a parameter and creates the relative QAEvent.

LDN Autodiscovery mechanism
Third party system can retrieve the location of the repository LDN InBox via the LDN autodiscovery mechanism, nevertheless to be able to interact with
DSpace they need to be approved by a Repository Administrators and listed in the LDN Services Directory (see next paragraph); otherwise their messages
will be flagged as untrusted and not processed at all.

LDN Services Directory (Registering Services)

You need to register the external services to allow the handling of the incoming LDN messages.

These services are also used to send LDN notification during the submission process of an item (Please take a look at LDN Inbound pattern)

572

Administrators can manage services using the menu .LDN Services

The following page is used to submit a new LDN Service:

Name: a label for the Notify Service used on the UI

Description: the description of the Notify Service - add details here

573

Service URL: the url of the remote Notify Service. This is mostly used as a descriptive URL when sending notification to an external system.

The service URL must not be confused with the inbox url. As said this url is descriptive so we expect the main application URL to be added here

Level of Trust: floating point number value accepted between 0 and 1.

This value is used to assign to the service a TRUST value that describes how much reliable the external service is.

This value is not used if the automatic processing of QA Events is disabled

Check the configuration file to enable the automatic approvaldspace/config/spring/api/qaevents.xml

When the automatic approval is configured the trust value of the LDN Service is check against configured score thresholds.

Thresholds for automatic Approval/Rejection/Ignoring can be set.

Also within a specified range QA Events will need a manual approval

Service IP Range: two IP addresses expected as minimum and maximum.

This range is used to validate the received LDN Messages.

When the LDN notification doesn't match the configured IP Range the notification is stored as UNTRUSTED

LDN Inbox URL: this is the url used to send the LDN Notifications.

This url is also used when a notification is received to retrieve the registered LDN service it belongs to

This URL must is unique among the registered LDN Services

Inbound Pattern: the section for Inbound pattern is the section which describes what operations/actions are supported by the external service

The itself can be selected from the dropdown as there's a list of pattern. To better understand pattern usage please pattern
refer to the official documentation https://notify.coar-repositories.org/patterns/

The is used to describe which item can be processed for the current LDN Service/Inbound pattern. item filter
if the item filter is not set any item is allowed. If the filter is selected only for matching items the LDN Notification will be sent
(in case of automatic LDN Notification the notification is not sent, In case of NON-automatic service a validation will prevent requests
to be sent to the external service)

The flag when set to true the ldn message exchange is performed automatically right after the item submission has finished.automatic
this Automatic workflow generates an Outgoing LDN message targeting the Notify service for the just submitted item.
The automatic flag involves only the submission phase of an item.
If no item filter is set - the LDN notification is generated for any submitted item.

LDN Inbox queueing
LDN incoming messages are stored into the database table. As far as the property is true and the incoming json is valid, the ldn_message ldn.enabled
LDN Message is stored on the table. Together with the storage of the record, the queue status of the message is initialized. The column of queue_status
the table contains the status of the LDN message inside the queue. All the possible queue_status values are described into the java class org.dspace.app.

as integer constants.ldn.LDNMessageEntity

Status name Value in
DB

Description

QUEUE_STATUS_UNTRUS
TED_IP

QUEUE_STATUS_UNTRUS
TED

0

5

Message must not be routed as it is not trusted.
This may occur if the IP address of the notifications' sender doesn't match the provided "IP Range"
 or if the service inbox URL in the origin section of the message doesn't match with any registered LDN
Service entry's Inbox URL.

QUEUE_STATUS_QUEUED 1 Message is waiting in the queue to be processed by the Extractor

QUEUE_STATUS_PROCES
SING

2 Message is currently being processed by the Extractor

QUEUE_STATUS_PROCES
SED

3 Message has been processed by the Extractorsuccessfully

QUEUE_STATUS_FAILED 4 Message has been evaluated but its routing has failed

574

https://notify.coar-repositories.org/patterns/

If all validations are run successfully the LDN Notification status is set as and the notification be processed as soon as QUEUE_STATUS_QUEUED will
the extractor retrieves it from the queue.

The LDN Message logical queue is managed by:

The is an asynchronous DSpace task which retrieves the oldest processable LDN message.LDN Message Extractor
A LDN notification is processable by the Extractor only if its queue status is other status will not be considered by QUEUE_STATUS_QUEUED
the extractor.
The extractor process ends as soon as the LDN extracted message is routed and processed (either with success of failure).

The r is an asynchronous DSpace task that looks for timed-out messages with attempts less than Y, where LDN Message Timeout Checke
Y= the value of the configuration property . Cron configuration at property ldn.processor.max.attempts ldn.queue.timeout.checker.cron
Each notification if not successfully processed is retrieved in the next execution of the Checker and attempts are kept up to date (increased by 1
and the timeout is increased by X minutes), where X= the value of the configuration property | defaulted to 60.ldn.processor.queue.msg.timeout

Please consider that this means that the corresponding QAEvent is not automatically created as soon as the LDN Message is received.
The QA Event related to the LDN Notification will be created only once the notification is successfully processed by the extractor (LDN queue status set to

).QUEUE_STATUS_PROCESSED

Notify status boxes
Considering these possible scenarios here at: COAR Notify Protocol: Example Scenarios

We have to keep the user updated about the item situation. We do it with colored boxes on its landing (handle) page.

When the Offer message (being it review, endorsement or ingest) has been sent as an outgoing LDN message, and nothing else about it has been
received, the yellow box is shown.

When the Offer message has been followed by a related incoming Acknowledgement message: if the ack is a tentative rejct the box shown is red.

When Offer message has been followed by a related Announce incoming message, the box shown is blue! It is blue because receiving an Announce
means - then the message is extracted - we produce a new QA Event. As every QA Event it is shown on Item Page and myDSpace page.

Configuring automatic QA evaluation using the Level of Trust

575

https://notify.coar-repositories.org/scenarios/

Score is a number 0 < # < 1.
If the proper configuration is enabled an automatic check for approval of QAEvents is run once the LDN message is extracted.
On file the bean we can configure three different boundaries to automatically approve/reject/ignore the level of trust:qaevents.xml qaScoreEvaluation

<property name=" " value="0.3" />scoreToReject
<property name=" " value="0.5" />scoreToIgnore
<property name=" " value="0.8" />scoreToApprove

if score <= rejection deletes the QAEvent;
if score <= ignore discards the QAEvent;
if score >= approval accepts the QAEvent automatically
if score respects the following: < score < scoreToIgnore scoreToApprove
no automatic action is performed and the user must check manually the QA event

This feature must not be confused with the automatic triggering for LDN Inbound pattern

Sending LDN Notifications during the submission of an item
In the example below it is shown the submission of an Item with a new section for COAR-Notify.
In this section we can manually choose () in order to ask for Review, Endorsement and Ingest to ldn-services which were not marked as automatic
external services.
If No (non-automatic) pattern has been configured for the LDN Service this service will not be displayed in any of the dropdown.

Automatic Inbound pattern triggering
When adding new LDN Inbound pattern to a LDN Service we can select if a pattern has to be automatic or not.

Flagging a pattern as automatic means that the request described by the current pattern is sent automatically to the external service:

No action is required during the submission to select the LDN Service for a specific pattern
The service in not even listed in the COAR notify step of the submission

Item filters for Inbound pattern
When adding inbound pattern to a service we have the possibility to add an item-filter for each described pattern

An item filter allows to filter items according to specified criteria.

If the pattern is flagged as automatic the item filter is evaluated automatically
if the item filter is respected the LDN Notification is stored and queued for sending
if the item filter is not respected the LDN Notification is not even generated an nothing will be sent to the external service

If the pattern is flagged as automatic the item filter is evaluated when choosing the service from the dropdown for Notify in the submissionnot
if the pattern is not respected an error message will be displayed saying the selected LDN service cannot be used for the current item
if the pattern is respected no error message is displayed

576

Item Filter is a non-mandatory field. It activates a filter to be applied to the item during the submission.
If the item matches the item filter condition the submission will be successful: otherwise the submission will fail with a talkative message.
Visible item filters are configured into a static list mapped into file - on a bean named . We established for the following item item-filters.xml ldnItemFilters
filter to be shown:

Has one Bitstream = the item must have exactly one bundle named "ORIGINAL";
 = anonymous user can see/read the item;Item is public

 = the dc.title metadata of the item must start with 'Pattern';Title starts with pattern
 = the dc.type metadata of the item must be 'Dataset';Type equals dataset
 = the dc.type metadata of the item must be 'Journal Article';Type equals dataset

item-filter.xml has all item filters declarations: only the ones declared inside the map are shown.ldnItemFilters

The LDN Consumer
The LDN Consumer is the consume responsible for generating the LDN Notification.outgoing

This consumer is triggered any time an Item is successfully installed and a check against the registered LDN Services/patterns is done to generate the
appropriate LDN Notification

This consumer is responsible for the handling of both automatic a non-automatic patterns

event.consumer.ldnmessage.class = org.dspace.app.ldn.LDNMessageConsumer
event.consumer.ldnmessage.filters = Item+Install

Understanding the structure of the LDN Notification
The LDN Notification includes some important section many of these if improperly set might led to errors in evaluations on the notification

Let's take a deeper look at the LDN Notification structure

@context

The context section is the same for any LDN Notification

577

 : ["@context"
 "https://www.w3.org/ns

,/activitystreams"
 "https://purl.org/coar/notify"
]

actor

This section describes the actor which performs the request
This is a descriptive section and doesn't include important information

 : {"actor"
 : "id" "https://review-

,service.com"
 : "name" "Review Service"
,
 : "type" "Service"
 }

context

This is one of the most important section.
In this section we have a description of the Item being involved in the LDN Notification

id is the identifier URL of the item in the repository
this field is really important to identify and link the Item to the current notification

other fields are descriptive fields for the item

 : {"context"
 : ,"id" "https://research-organisation.org/repository/preprint/201203/421/"
 : ,"ietf:cite-as" "https://doi.org/10.5555/12345680"
 : ,"type" "sorg:AboutPage"
 : {"ietf:item"
 : "id" "https://research-organisation.org/repository/preprint/201203/421

,/content.pdf"
 : ,"mediaType" "application/pdf"
 : ["type"
 ,"Article"
 "sorg:ScholarlyArticle"
]
 }
 }

id

The identifier of the LDN notification (Each notification has a different id)

"id": "urn:uuid:94ecae35-dcfd-4182-8550-22c7164fe23f"

inReplyTo

This field is used to reply to other LDN notification so that the system knows if the current notification is a response

"inReplyTo": "urn:uuid:0370c0fb-bb78-4a9b-87f5-bed307a509dd"

object

This is a descriptive section of the received Review, Endorsement etc..

id is the URL of the review/endorsement etc.

578

 : {"object"
 : "id" "https://review-service.com/review/geo

,/202103/0021"
 : "ietf:cite-as" "https://doi.org/10.3214

,/987654"
 : ["type"
 ,"Document"
 "sorg:Review"
]
 }

origin

This is an important section since it is used (for incoming notifications) to determine the service among the registered ones.
If the service is not recognized as registered the notification is untrusted

The field being used for this check is inbox

 : {"origin"
 : "id" "https://review-service.

,com/system"
 : "inbox" "https://review-

,service.com/inbox/"
 : "type" "Service"
 }

target

This section is used to describe the target system involved in the notification workflow

 : {"target"
 : "id" "https://generic-service.com

,/system"
 : "inbox" "https://generic-service.com

,/system/inbox/"
 : "type" "Service"
 }

type

This type section is important since it's determining how to process/evaluate any received notification

 : ["type"
 ,"Announce"
 "coar-notify:
ReviewAction"
]

POSTMAN COLLECTION

579

580

Notifications
The Notifications include the possibility to claim publication suggested by external system, for example ORCID and the Quality assurance.

See more in the pages:

Publication Claim
Quality Assurance

581

Publication Claim
Publication Claim

Scenario: A new researcher joins the institution and logins for the first time in the repository. The publication claim services found
most of their publications in the OpenAIRE network and prompts for import. The researcher reviews the list, confirms the authorship
and imports the publication saving a significant amount of (often publicly payed) time. Moreover, the authorship confirmation will
come back later to OpenAIRE offering useful information about the data quality and potential enrichment. The same applies for
publications authored by researchers in different institutes, having the data in multiple repositories makes the data more reliable and
raises the chance to get more information and content from any of the authors.

The goal of the Publication Claim service is to support the scenario above.

The service has been designed to be independent from a specific provider or implementation so that it can be easily extended and maintained over time.
Moreover, multiple providers can be active at the same time improving the chance to save researchers time.

This feature currently only supports the via the . Other good (future) candidates to be integrated via OpenAIRE Research Graph Publication REST API
such framework are ORCID or commercial databases via their authors' IDs.

Enabling Publication Claim

In order to use Publication Claim, you MUST first enable:

Configurable Entities
Researcher Profiles
Quality Assurance

No additional settings are required, but this feature only works for users who have a Researcher Profile established, and when Quality Assurance is
enabled.

Data source

The OpenAIRE Publication REST API are used to retrieve publication that could be authored by researcher at the Institution. The OpenAIRE Publication
REST API are queried using the names known by the repository for its researchers, the retrieve list is later reduced passing identified publications to a
pipeline of JAVA classes that can promote or reject his inclusion in the suggestion list. Publications previously discarded by the researcher are
automatically filter out avoiding to re-present the same publication again and again.

The suggestion providers are defined in the spring configuration file. Indeed, the system can be dspace/config/spring/api/suggestions.xml
extended to more provider than the one implemented to query the OpenAIRE Researcher Graph

582

https://4science.github.io/oaire-eld/#/publication-claim?id=publication-claim
https://graph.openaire.eu/
https://graph.openaire.eu/docs/apis/search-api/research-products
https://4science.github.io/oaire-eld/#/publication-claim?id=data-source

 map <util: id suggestionProviders=" " map-class java.util.HashMap=" "
 key-type java.lang.String=" " value-type org.dspace.app.suggestion.SuggestionProvider=" ">
 entry < key oaire=" " value-ref OAIREPublicationLoader=" " />
 map</util: >

 bean < id OAIREPublicationLoader=" " class org.dspace.app.suggestion.oaire.OAIREPublicationLoader=" ">
 property < name sourceName=" " value oaire=" " />
 property < name primaryProvider=" " ref openaireLiveImportDataProviderByAuthor=" " />
 property < name otherProviders=" ">
 list< >
 ref < bean openaireLiveImportDataProviderByTitle=" "/>
 list</ >
 property</ >
 property < name names=" ">
 list< >
 dc.titlevalue< > value</ >
 crisrp.namevalue< > value</ >
 crisrp.name.translatedvalue< > value</ >
 crisrp.name.variantvalue< > value</ >
 list</ >
 property</ >
 property < name pipeline=" ">
 list< >
 bean<
 class org.dspace.app.suggestion.oaire.AuthorNamesScorer=" ">
 property < name contributorMetadata=" ">
 list< >
 dc.contributor.authorvalue< > value</ >
 list</ >
 property</ >
 property < name names=" ">
 list< >
 dc.titlevalue< > value</ >
 crisrp.namevalue< > value</ >
 crisrp.name.translatedvalue< > value</ >
 crisrp.name.variantvalue< > value</ >
 list</ >
 property</ >
 bean</ >
 bean<
 class org.dspace.app.suggestion.oaire.DateScorer=" ">
 property < name birthDateMetadata=" " value person.birthDate=" " />
 property < name educationDateMetadata=" " value crisrp.education.end=" " />
 property < name publicationDateMetadata=" " value dc.date.issued=" " />
 bean</ >
 list</ >
 property</ >
 bean</ >

Each suggestionProvider is identified by an unique name used as key in the map. suggestionProviders

The OpenAIRE implementation is represented by the java class and configured org.dspace.app.suggestion.oaire.OAIREPublicationLoader
via the following properties:

the primaryProvider property defines which DSpace ExternalDataProvider use to retrieve the record
the otherProviders property defines which DSpace ExternalDataProviders other than the primary could offer the same records. This is used to
automatically remove from the suggestion list records that are imported manually by the researcher from these other providers
the names property defines the metadata to use to build the search query over the openAIRE Research Graph to retrieve the list of publications
to evaluate as suggestions. It is responsibility of the scorers defined in the pipeline to compute a score for each retrieved publication and
eventually discard the ones that are not good enough.
the pipelines property allows a future refinement of the procedure introducing for instance support for researcher preference that could exclude
specific sources (pubmed, crossref, datacite, etc.) or keywords/subjects unrelated with his research interests. Right now two scorers are in place:

AuthorNamesScorer to validate the finding against the researcher name as it has been found that searching the openAIRE Publication
API for author such as Bollini Susanna would find also publications co-authored by Andrea Bollini and Susanna Mornati;
DateScorer to validate the finding against a guessed range of years that the system expect to be the productivity or interested
windows for the researcher. This range is calculated using the graduation date if available or the birthday but can be also set manually
by the researcher in his profile

The dspace script class is used to run the queries and store the identified org.dspace.app.suggestion.OAIREPublicationLoaderRunnableCli
publication in the dedicated SOLR core for further processing. suggestion

The dspace script can be run both from the CLI than from the UI.

To run the loader from the dspace installation bin folder

./dspace import-oaire-suggestions [-s uuid-of-single-researcher]

without the parameter the script will process all the researcher available in the system. s

The script can be also run from the Script UI so that it is also available to repository manager that cannot be access the CLI

583

Two external source providers, openAIRE Publications By Title and By Author have been defined according to the standard DSpace External Sources
. It is activated in the as followframework config/spring/api/external-services.xml

 bean < id openaireLiveImportDataProviderByAuthor=" " class org.dspace.external.provider.impl.="
LiveImportDataProvider">
 property < name metadataSource=" " ref openaireImportServiceByAuthor=" "/>
 property < name sourceIdentifier=" " value openaire=" "/>
 property < name recordIdMetadata=" " value dc.identifier.other=" "/>
 property < name supportedEntityTypes=" ">
 list< >
 Publicationvalue< > value</ >
 list</ >
 property</ >
 bean</ >

 bean < id openaireLiveImportDataProviderByTitle=" " class org.dspace.external.provider.impl.="
LiveImportDataProvider">
 property < name metadataSource=" " ref openaireImportServiceByTitle=" "/>
 property < name sourceIdentifier=" " value openaireTitle=" "/>
 property < name recordIdMetadata=" " value dc.identifier.other=" "/>
 property < name supportedEntityTypes=" ">
 list< >
 Publicationvalue< > value</ >
 list</ >
 property</ >
 bean</ >

with the importer services defined via the Live Import Framework in /dspace-api/src/main/resources/spring/spring-dspace-addon-
as followimport-services.xml

584

https://github.com/DSpace/RestContract/blob/main/external-authority-sources.md
https://github.com/DSpace/RestContract/blob/main/external-authority-sources.md

 bean < id openaireImportServiceByAuthor=" "
 class org.dspace.importer.external.openaire.service.OpenAireImportMetadataSourceServiceImpl=" " scope sin="
gleton">
 property < name metadataFieldMapping=" " ref openaireMetadataFieldMapping=" "/>
 property < name queryParam=" " value author=" "/>
 bean</ >
 bean < id openaireImportServiceByTitle=" "
 class org.dspace.importer.external.openaire.service.OpenAireImportMetadataSourceServiceImpl=" " scope sin="
gleton">
 property < name metadataFieldMapping=" " ref openaireMetadataFieldMapping=" "/>
 property < name queryParam=" " value title=" "/>
 bean</ >
 bean < id openaireMetadataFieldMapping=" "
 class org.dspace.importer.external.openaire.service.metadatamapping.OpenAireFieldMapping=" ">
 bean</ >

The mapping between the openAIRE Publications metadata and the dspace metadata is provided in the config/spring/api/openaire-
using the usual xpath approach of the DSpace Live Import Framework.integration.xml

Having used the Live Import Framework internally to the loader to perform the query has had the side benefit to make available the
publication data of the openAIRE Research Graph also to the direct import functionality of DSpace, so that the researcher can now
query the openAIRE graph and import publication on demand.

The SOLR core has the following structure suggestion

fields< >
 field < name source=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name suggestion_fullid=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name suggestion_id=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name target_id=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name title=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name date=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name display=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name contributors=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " multiValued true=" " />
 field < name abstract=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name category=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " multiValued true=" "/>
 field < name external-uri=" " type string=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name processed=" " type boolean=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name trust=" " type double=" " indexed true=" " stored true=" " omitNorms true=" " />
 field < name evidences=" " type string=" " indexed false=" " stored true=" " omitNorms true=" " />

 fields</ >
suggestion_iduniqueKey< > uniqueKey</ >

the field would allow the reuse of such structure by other sources than openAIRE. source

Three endpoints have been designed to expose the result of the processing to the DSpace UI and so to the Repository Managers and single researchers:

/api/integration/suggestionsources to provide access to summary information about the available suggestion from each source
(openaire, orcid, etc.)
/api/integration/suggestiontargets to provide access to summary information about the available suggestions for a specific researcher
/api/integration/suggestions to provide access to the detailed suggestions so that they can be reviewed and managed by the repository
manager or the researcher to whom they related

The detailed REST contract for such endpoints are available on the and embedded at the bottom of the page for easy 4Science Rest7Contract repository
reference.

Repository Manager UI

The resulting UI is accessible for the Repository Manager from the administrative menu. As entry point for the features a “Notifications” menu entry has
been added to the DSpace administrative menu, from where the repository manager will be able to manage the suggestions got from the different sources.

585

https://github.com/4Science/Rest7Contract/tree/dspace-oaire-eld
https://4science.github.io/oaire-eld/#/publication-claim?id=repository-manager-ui

A list of local profiles with candidate publications will be shown so that the repository manager can review them directly or support the researcher:

586

For each candidate the available suggestions are shown, sorted by the evaluated total score (summing up all the processed evidences). Using the buttom
see evidence is possible to get detailed information about the score

The suggested authorship of each article can be confirmed importing the data locally, or rejected. This operation can be performed individually but also
simultaneously for all the selected suggestions, speeding up the process. The decision can also be guided by inspecting the matching evidences which are
displayed for each suggestion by clicking on 'See evidence'

587

The suggestions list can be sorted by total score descending or ascending (highlighting the weakest candidates).

588

Researcher UI

This functionality requires to implement a mechanism to uniquely link user accounts with Person profiles. Such mechanism is
implemented out-of-box in DSpace-CRIS. Where the link is not implemented, the Repository Manager UI can still be used.

The single researcher is also allowed to directly review his suggestions. Upon login he is informed about the availability of suggestions from one or more
providers

and can proceed to review the suggestions list in the same way than the Repository Manager, the notification message is also always available at the top
of the mydspace

589

https://4science.github.io/oaire-eld/#/publication-claim?id=researcher-ui

Processing the decisions

The backend is responsible to process the repository manager or researcher decisions taken over the received suggestions. The publication to be
imported are processed according to the Import from External Sources normal data flow of DSpace 7. Upon import the suggestion document is removed
from the SOLR core, in case of rejection the document is updated flagging it as so that it will be not longer proposed to the user. rejected

Rest Contract

Three endpoints have been designed to interact with the publication claim service. They are documented in our .REST Contract

/api/integration/suggestionsources to provide access to summary information about the available suggestion from each source
(openaire, orcid, etc.)
/api/integration/suggestiontargets to provide access to summary information about the available suggestions for a specific researcher
/api/integration/suggestions to provide access to the detailed suggestions so that they can be reviewed and managed by the repository
manager or the researcher to whom they related

590

https://4science.github.io/oaire-eld/#/publication-claim?id=processing-the-decisions
https://4science.github.io/oaire-eld/#/publication-claim?id=rest-contract
https://github.com/DSpace/RestContract/
https://github.com/DSpace/RestContract/blob/main/suggestionsources.md
https://github.com/DSpace/RestContract/blob/main/suggestiontargets.md
https://github.com/DSpace/RestContract/blob/main/suggestions.md

Quality Assurance

Quality Assurance Event

A QA event is an entity stored on the solr collection.qaevent

{
"source":"openaire",
"event_id":"a542103b9dda29afc320fb36116fc761",
"original_id":"oai: :123456789/1122"www.openstarts.units.it ,
"title":"The Impact of Longevity and Investment Risk on a Portfolio of Life Insurance Liabilities",

"topic":"ENRICH/MORE/PID",
"trust":1.0,
"message":"{\"pids[0].type\":\"doi\",\"pids[0].value\":\"10.1007/s13385-018-0175-5\"}",
"last_update":"2024-02-29T15:08:43.892Z",
"resource_uuid":"8572c238-18ed-42ed-a471-175acd5d1565"
}

A QA Event owns data related to an item archived in the repository: into it's property it may have values for new metadata to be added to the message
Item.

The entity has properties such as: Source, Topic, Target (resource_uuid) and Message.

Enabling Quality Assurance

All the system described here is turned off and on with the configuration property: . It defaults to false. To enable this feature, you must qaevents.enabled
set it to "true" in your local.cfg

qaevents.enabled
= true

Quality Assurance Source
A QA Source is the recognized authority through which the qa event has landed on the repository. Source names are stored into the configuration key:

 . It is defaulted as:qaevents.source

qaevents.sources = openaire,
DSpaceUsers, coar-notify

Every QA Event must have a recognized source: this means that at time of writing we recognize 3 possible sources.

Quality Assurance Topic
The QA Topic describes the type of event. As the topic is known - it is expected for the content to have a certain format. All the topic managed by message
the source are stored into the configuration key: . it is defaulted as:openaire qaevents.openaire.import.topic

591

http://www.openstarts.units.it

qaevents.openaire.import.topic =
ENRICH/MISSING/ABSTRACT
add missing publication id
suggestion

= qaevents.openaire.import.topic
ENRICH/MISSING/PID
add more publication id suggestion

= qaevents.openaire.import.topic
ENRICH/MORE/PID
add missing project suggestion

= qaevents.openaire.import.topic
ENRICH/MISSING/PROJECT
add more project suggestion

= qaevents.openaire.import.topic
ENRICH/MORE/PROJECT
add more review

= qaevents.openaire.import.topic
ENRICH/MORE/REVIEW
add more endorsement

= qaevents.openaire.import.topic
ENRICH/MORE/ENDORSEMENT
add more release/relationship

= qaevents.openaire.import.topic
ENRICH/MORE/LINK

Quality Assurance Target
the target of a qa event is an item archived into the repository. The qa event solr document owns the item system uuid into the property.resource_uuid

Quality Assurance Message
the message of a qa event is a json-formatted string that contains all the new values related to the item.

Quality Assurance Management
A qa events lands on the repository according to its source. for example: Openaire has an import batch for qaevents in json format to be loaded, Coar-
Notify creates new qa event solr document when certain ldn messages are received.

QA Events are visible at Menu -< Notifications Quality Assurance

592

This is the main page of the Quality Assurance.

The first column shows the Sources the user can see.
The last column shows the counter of the events the user can see.

By clicking at the counter the source page is shown. Here there's the list of all the qa events the user can see,

grouped by their topic

593

Every qa event can be accepted, discarded or rejected.

When accepted an action is triggered. There's a configured correspondence between the topic of the event and an action to be performed.

When discarded or rejected the solr document of the qa event is deleted.

594

Processing the decision
Every decision been made from this panel (about qa events) is reported on the outside through an http post call. It is directed to all the receivers
configured at the configuration key: + qaevents. source + .acknowledge-url

it contains a simple json as payload as:

{
"eventId":" "a542103b9dda29afc320fb36116fc761 ,
"status":"accepted| "discarded|rejected
}

On the Repository side what is performed is encapsulated in a JAVA class specialized to deal with a specific TOPIC. The /config/spring/api
spring configuration file map each TOPIC to a specific implementation/qaevents.xml

<bean id="org.dspace.qaevent.service.QAEventActionService" class="org.dspace.qaevent.service.impl.
QAEventActionServiceImpl">
 <property name="topicsToActions">
 <map>
 <!--The key are the TOPIC, the value must be a valid implementation of the
 org.dspace.qaevent.QAEventAction interface -->
 <entry value-ref="ProjectLinkedEntityAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.TOPIC_ENRICH_MORE_PROJECT"
/></key>
 </entry>
 <entry value-ref="ProjectLinkedEntityAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.
TOPIC_ENRICH_MISSING_PROJECT"/></key>
 </entry>
 <entry value-ref="AbstractMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.
TOPIC_ENRICH_MISSING_ABSTRACT"/></key>
 </entry>
 <entry value-ref="AddReviewMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.TOPIC_ENRICH_MORE_REVIEW"
/></key>
 </entry>
 <entry value-ref="AddEndorsedMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.
TOPIC_ENRICH_MORE_ENDORSEMENT"/></key>
 </entry>
 <entry value-ref="PIDMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.TOPIC_ENRICH_MORE_PID"/><
/key>
 </entry>
 <entry value-ref="PIDMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.TOPIC_ENRICH_MISSING_PID"
/></key>
 </entry>
 <entry value-ref="AddLinkMetadataAction">
 <key><util:constant static-field="org.dspace.qaevent.QANotifyPatterns.TOPIC_ENRICH_MORE_LINK"/><
/key>
 </entry>
 </map>
 </property>
 </bean>

Each implementation allows to configure additional parameters to deal with the event as needed, ranging from the simple definition of the metadata to use
to save the information as in the case of the Abstract related events

 <bean id="AbstractMetadataAction" class="org.dspace.qaevent.action.QAOpenaireSimpleMetadataAction">
 <property name="metadata" value="dc.description.abstract" />
 </bean>

to a dynamic mapping used for SUBJECT and PID related events

595

 <!-- Add a new identifier to the given item, using the defined types mapping -->
 <bean id="PIDMetadataAction" class="org.dspace.qaevent.action.QAOpenaireMetadataMapAction">
 <property name="types">
 <map>
 <!--The key are the type of identifier (or subject) reported in the message, the value is the metadata in
 the linked entity where the information should be stored -->
 <entry key="default" value="dc.identifier.other" />
 <!-- <entry key="doi" value="dc.identifier.doi" />
 <entry key="pmid" value="dc.identifier.pmid" /> -->
 </map>
 </property>
 </bean>

to the definition of the metadata used in linked entity for Project related events

 <!-- This action bind the publication to the project, otherwise if the project has not been specified,
 create a new project with the available data and then bind it to the publication -->
 <bean id="ProjectLinkedEntityAction" class="org.dspace.qaevent.action.QAEntityOpenaireMetadataAction">
 <!-- which metadata will hold the relation between the publication and the project -->
 <property name="relation" value="isPublicationOfProject" />
 <!-- the type of local entity used to store the project details -->
 <property name="entityType" value="Project" />
 <property name="entityMetadata">
 <map>
 <!--The key are the json path of qa message, the value is the metadata in
 the linked entity where the information should be stored -->
 <!-- <entry key="acronym" value="" /> -->
 <entry key="code" value="dc.identifier" />
 <!-- <entry key="funder" value="oairecerif.funder" /> -->
 <entry key="title" value="dc.title" />
 <!-- <entry key="fundingProgram" value="oairecerif.fundingProgram" /> -->
 <!-- <entry key="openaireId" value="oairecerif.funding.identifier" /> -->
 </map>
 </property>
 </bean>

Quality Assurance Security
QA Events are filtered by a security system. The system is defined on the spring context (see qaevents.xml in specific) on the QAEVentSecurityService
bean. The default security system is set as only DSpace administrators can see and manage all sources. A security system can be assigned to none, one
or more qa sources. The default one is used for Openaire source. Two more security system are defined at time of writing: one for each managed source:
DSpaceUsers and coar-notify. Security filters help to hide qa events to the logged user. IE coar-notify security filter allow users to see qa events only to
administrators and to targeted-item submitters.

596

COAR Notify Integration
Coar-Notify is a source managed for Quality Assurance Events. It has been introduced with the COAR Notify integration, mainly due to the integration of
LDN Message exchange.

The processing of incoming LDN Messages is configured and it may create new QA Events solr documents - surely with the .source="coar-notify"

For more information about COAR Notify, see .COAR Notify

Configuration
When an incoming LDN Message is processed a QA E vent is built. The event message content is taken from the content of the corresponding LDN
message. QA Event creation

Security
The QA security applied to the coar-notify source is the "submitterQASecurity" - which shows all events to the administrators and to the submitters.

597

OpenAIRE Integration
Data Correction

Scenario : A repository manager of a repository indexed in OpenAIRE can subscribe the event for Missed/More PIDs and Project
links in the Content Provider Dashboard using “a repository callback” as notification mechanism instead of the current email alert.
They login in the repository and see the list of events received, among others one publication that has a PMID that was unknown to
the repository and a link to a project. They click on the “accept the suggestion” button and the new information is stored in the local
record. OpenAIRE could “flag” the data as confirmed.

The goal of the Data Correction service is to support the scenario above.

As the doesn't allow yet to create a subscription setting up a callback mechanism, we agree with the OpenAIRE OpenAIRE Content Provider Dashboard
team to read the data generated by from a JSON file postponing to the last phase of the project the discussion and openAIRE's Notification Broker Service
the implementation about the delivery mechanism (polling new versions from a stable URL, receive it as payload of a repository URL, etc.).

Data source

The JSON file contains an array of JSON Events, where each event has the following structure

 {
 : ,"originalId" oai:www.openstarts.units.it:10077/21838" "
 : "title" Egypt, crossroad of translations and literary interweavings (3rd-6th centuries). A "

,reconsideration of earlier Coptic literature"
 : ,"topic" ENRICH/MORE/PROJECT" "
 : ,"trust" 1.0
 : {"message"
 : ,"projects[0].acronym" PAThs" "
 : ,"projects[0].code" 687567" "
 : ,"projects[0].funder" EC" "
 : ,"projects[0].fundingProgram" H2020" "
 : ,"projects[0].jurisdiction" EU" "
 : ,"projects[0].openaireId" 40|corda__h2020::6e32f5eb912688f2424c68b851483ea4" "
 : "projects[0].title" Tracking Papyrus and Parchment Paths: An Archaeological Atlas of Coptic "
Literature. Literary Texts in their Geographical Context: Production, Copying, Usage, Dissemination and Storage\n "
 }
 }

please note that the message sub-object depends on the event TOPIC. A more complete set of sample events can be seen here: qaevents-sample.json

The java class provides a convenient method to process this json file loading the data in a org.dspace.app.qaevent.qaeventsRunnableCli
dedicated new DSpace SOLR Core named , to use it run from the dspace installation bin folder qaevent

./dspace import-qaevents -f <path-to-the-json-file>

the same script is also available via the administrative runnable process UI

598

https://provide.openaire.eu/home
http://catalogue.openaire.eu/service/openaire.openaire_broker
https://github.com/4Science/oaire-eld/blob/main/oaire-eld/_media/nbevents-sample.json

The file allows to configure witch Topic should be processed, indeed some Topics could have no configured action on config/modules/qaevents.cfg
the repository

qaevents.openaire.import.topic = ENRICH/MISSING/ABSTRACT
qaevents.openaire.import.topic = ENRICH/MORE/PID
qaevents.openaire.import.topic = ...

and a list of URLs to acknowledge the decision made by the Repository Manager via the DSpace UI

qaevents.openaire.acknowledge-url = https://httpdump.io/...

Such configuration file is also expected in future to hold settings related to the delivery mechanism (such as the URL from where the json file can be
download, the credentials to use, etc.)

The qaevent core has the following structure

<fields>
 <field name="event_id" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="original_id" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="title" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="topic" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="trust" type="double" indexed="true" stored="true" omitNorms="true" />
 <field name="message" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="resource_uuid" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="related_uuid" type="string" indexed="true" stored="true" omitNorms="true" />
 <field name="last_update" type="date" indexed="true" stored="true" omitNorms="true" />
</fields>
<uniqueKey>event_id</uniqueKey>

the is currently generated on the repository side as an hash of the business information included in the event itself but it is envisioned that such event_id
information will be made available by openAIRE directly in the json file so that feedback from the Repository can linked back to the original event and
further processed.

The field contains the uuid of the related object that has been associated with the correction suggestion, this is the case for the PROJECT related_uuid
related TOPICS where a link between the publication and a project should be established. In the case the suggested project can be found in the system,
the field will hold its internal identifier otherwise the user will be allowed to created on the fly a new item also for the project and connect it related_uuid
to the publication item with a single click.

Two REST endpoints have been developed to expose the data so collected

/api/integration/qualityassurancetopic to provide access to summary information about the available topic and number of events to
deal with

599

/api/integration/qualityassuranceevent to provide access to the detailed events so that they can be reviewed and managed by the
repository manager

The detailed REST contract for such endpoints are available on the and embedded at the bottom of the page for easy 4Science Rest7Contract repository
reference.

Repository Manager UI

The resulting UI is accessible from the administrative menu - if the configuration key is true: (it can be found onto file and qaevents.enabled qaevents.cfg
is defaulted as). As entry point for the features a “Notifications” menu entry has been added to the DSpace administrative menu, from where the false
repository manager will be able to manage the OpenAIRE subscription and access the details of received events.

The main page list the topics found in the events loaded in the system

By default the system sort the events within a topic by trust descending (most accurate correction first)

600

https://github.com/4Science/Rest7Contract/tree/dspace-oaire-eld

but it is also possible to revert the direction

601

In the detail view of events in a specific topic links always open in a new tab so that the repository manager can quickly check the details without loosing
the overview

602

Below a screen of possible missing abstract events, where the repository manager will be able to check the current local publication record clicking on the
title and scroll the abstract reported by OpenAIRE. Accepting the suggestion, the local record will be enriched with this extra information. The Ignore
suggestions button is instead intent to be used to discard a notification without flagging it as wrong. This is important because the OpenAIRE Graph
process the data from the repository not in real-time so it can happen that a local record has been updated recently with information not yet known to
OpenAIRE. In such scenarios it could be possible that the repository manager prefers to keep the local version but this should be not reported to
OpenAIRE a wrong suggestion as this feedback can be used to improve the OpenAIRE guessing capabilities. In contrast a wrong suggestion should be
rejected so that OpenAIRE can learn from that.

For PROJECT related events, alternative additional actions are needed. This is usually the case for information that is related to linked entities that can be
tracked on the local repository as flat metadata (in such case the “abstract approach UI” will be used) or as individual entity. In this later case the below
screen applies:

603

The system will attempt to identify a local record for the information reported by OpenAIRE (the project) and will offer to the repository manager the option
to manually lookup the record or fix the automatic match

604

if the related project is found in the system the repository manager can proceed to accept the correction linking the publication to the local copy of the
project otherwise it is possible to import and connect the project in one click as shown in the first project related screen above

605

For PID related events, the system offers where available (doi, handle, pmid, pmc, arXiv, NCID, urn/url) the resolution of the identifier to a details page

606

607

Menus

Communities & Collections
All of DSpace

By Issue Date
By Author
By Title
By Subject

Statistics
Search box
Language
Log In

Profile
MyDSpace

Communities & Collections

This is an alphabetical and hierarchical list of communities in the repository. Communities may contain sub-communities and collections. Use the
left chevons to expand the hierarchy.

All of DSpace

Browse by Issue Date, Author, Title, or Subject. Use the gear icon to set the sorting and number of results per page.

By Issue Date

By Author

By Title

By Subject

Statistics

(Once logged in with correct access)

On the Home page, this lists the 10 items with most visits to the item page. (This does not count the downloads of the files contained in the item.)

On a Community page, this lists the total cumulative visits to the community's main page (not all the collections and items that community
contains), visits to the community main page broken out by month for the past 7 months, and by top cumulative country and city views.

On a Collection page, this lists the total cumulative visits to the collection's main page (not all the items that collection contains), visits to the
collection page broken out by month for the past 7 months, and by top cumulative country and city views.

On an Item page, this lists the total cumulative visits to the item page, (This does not count the downloads of the files contained in the item.),
visits to that page broken out by month for the past 7 months, and by top cumulative country and city views.

Search box

Use this search box to retrieve search results that can be further refined by search filters, such as date, subject, author, and item type.

608

See for tips for creating Boolean searches.Search - Advanced

Language

Choose your preferred supported language for the DSpace system. Repository files and metadata will be in their source language.

Log In

(Once logged in)

Profile

If enabled in the repository, one can set up a .Researcher Profile

One can reset their password and view your group memberships.

MyDSpace

View or edit your submissions:

Items that you are preparing (Status=Workspace),
Items that are in the approval process (Status=Workflow),
Items that have been approved and completed (Status=Archived).

609

Registry management
Info for repository managers, covering topics such as metadata registry management and format registry management.

Metadata Registry Management

610

1.
2.

Metadata Registry Management
The metadata registry maintains a list of various metadata schemas in DSpace. These metadata schemas consist of different metadata elements.
However, DSpace requires the qualified Dublin Core schema.

Audience
Create Metadata Registry
Metadata Registry Management
Delete Metadata Schema

Audience
Repository Administrator
Community Administrator

Create Metadata Registry
This process is for System and Community Administrator user profiles.

Step 1: Click on the “Log In” link appearing at the top right corner of the DSpace home page, and the pop-up will open, as illustrated in the below screen.

Step 2: Enter your user id and password and click on the login button for logging in to DSpace.

611

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown in the below illustration.

Step 4: Roll over your cursor over the administration menu and click on Registries. Click on Metadata to go to the Metadata Registries.

612

Step 5: Enter the value of your choice in the ‘Namespace’ field and the short value in the ‘Name’ field.

Step 6: Click on the Save button to create a Metadata schema. A success prompt will appear upon metadata schema creation in the DSpace.

613

1.

2.

3.

Step 7: Scroll down the list to see the schema added. Click on the namespace or name value to access the metadata schema.

Step 8: Enter desired values in ‘Element,’ ‘Qualifier,’ and ‘scope note.’

Element is the primary value in the metadata schema. For example, suppose the date is required to be added as a metadata element. In that
case, the element’s value can be the date.
Qualifier – Use the Qualifier to segregate the metadata element further. For example, suppose you want to add multiple dates under an element.
In that case, users can add various qualifiers for each date type. For example, there can be a content listing date, content de-listing date, and
other types of dates.
Scope Note – Users can enter the definition of the metadata element created to benefit other users.

614

Step 9: Click on the Save button to add an element to the selected metadata schema. You will see a confirmation prompt upon the successful addition of
the element.

Metadata Registry Management
This process is for System and Community Administrator user profiles. Under metadata registry management, users can update or delete metadata
elements or metadata registries.

Step 1: Go to the home page of DSpace and click on the “Log In” link appearing at the top right corner of the screen, and the pop-up will open, as
illustrated in the below screen.

615

Step 2: Enter your user id and password and click on the login button for logging in to DSpace.

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown in the below illustration.

616

Step 4: Roll over your cursor over the administration menu and click on Registries. Click on Metadata to go to the Metadata Registries.

Step 5: Click on the namespace or name of the Metadata schema you want to edit.

617

Step 6: Click on the metadata element you want to edit. Upon clicking the target element, its values will be populated in the corresponding fields under the
Edit Metadata fields section, as shown below.

Step 7: Update the value under the target field(s) and click on the ‘Save’ button to save them. A success prompt will appear upon successful update. In
addition, an updated metadata element will appear in the metadata schema.

618

Delete Metadata Schema
Step 1: Go to the home page of DSpace and click on the “Log In” link appearing at the top right corner of the screen, and the pop-up will open, as
illustrated in the below screen.

Step 2: Enter your user id and password and click on the login button for logging in to DSpace.

619

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown in the below illustration.

Step 4: Roll over your cursor over the administration menu and click on Registries. Click on Metadata to go to the Metadata Registries.

620

Step 5: Click on the namespace or name of the Metadata schema under which you want to delete an element.

Step 6: Click on the checkbox appearing on the left of the metadata element you want to delete.

621

Step 7: Click on the ‘Delete selected’ button appearing in red at the bottom of the page. Upon successful deletion of the element, you will see a prompt
confirming deletion of the field.

Step 8: To delete the entire metadata schema, click on the checkbox appearing on the left of the target metadata schema(s).

622

Step 9: Click on the ‘Delete selected’ button appearing in red at the bottom of the page. Upon successful deletion of the element, you will see a prompt
confirming deletion of the field.

623

Request-a-copy
Scope
Covering the use of the request-a-copy feature which allows users to request bitstreams which are under embargo. This information does not cover how to
activate or de-activate the feature.

Use Case

The repository manager wants to be able to advise their depositors on the existence of the feature, that they should be prepared to receive requests.

Audience

Repository managers, anonymous users, submitters

Feature description
If the file(s) (ie bitstreams) in a deposit are under embargo, they will not be available for users to download directly. However, users can send the depositor
a request for the file(s) through DSpace, by double-clicking on a filename hyperlink and completing the form. DSpace sends the details of the request to
the depositor by email. The depositor is offered the option to agree or decline to the request. If the depositor then uses the link in the email and the form it
opens in DSpace to transmit their agreement to the request, the system will attempt to email the file(s) to the user.

Known limitation

Of course some files are too large for many email servers to cope with. For example files over 150 MB have been impossible for some systems to send.

624

Search - Advanced
Advanced Search (including boolean options) is already supported in the DSpace 7 search page. Boolean keywords can be used, and you can also
specify to search within specific fields by name. Some examples:

Basic searching: Searching will return results with both these words in them (this is equivalent to an "AND" boolean search). E.g. test power htt
ps://demo.dspace.org/search?query=test%20power
Boolean searching options

Searching will return results with both these words in them. E.g. test AND power https://demo.dspace.org/search?query=test%
20AND%20power
Searching will return results with either of these words in them. E.g. test OR power https://demo.dspace.org/search?query=test%
20OR%20power
Searching will return results with "test" but not including "power". E.g. test NOT power https://demo.dspace.org/search?query=test%
20NOT%20power

Phrase searching: Searching (in quotes) will return results with the exact phrase "test power" in them. E.g. "test power" https://demo.dspace.
org/search?query=%22test%20power%22
Searching within specific fields

Searching will only return results where the includes "test". E.g. dc.title:test dc.title https://demo.dspace.org/search?query=dc.
title:test
Searching will only return results where the field includes dc.title:test AND dc.description.abstract:green dc.title
"test" and the field returns "green". E.g. dc.description.abstract https://demo.dspace.org/search?query=dc.title:test%20and%
20dc.description.abstract:green
Searching will only return results where one (or more) dc.subject fields start with "fin" (e.g. finance, financial, finish, dc.subject:fin*
etc), e.g. https://demo.dspace.org/search?query=dc.subject:fin*

Wildcard searching:
Searching will return results including "test" and any word starting with "pow". E.g. test pow* https://demo.dspace.org/search?
query=test%20pow*
Searching will return results that include the "dc.description.abstract" metadata field (with any value in dc.description.abstract:*
it). E.g. https://demo.dspace.org/search?query=dc.description:*

Range searching:
Searching will return results that have a "dc.date.issued" metadata field that has a date between dc.date.issued:[1999 TO 2003]
1999 and 2003 (inclusive). E.g. https://demo.dspace.org/search?query=dc.date.issued:%5B1999%20TO%202003%5D
Searching will return results that have a "dc.date.issued" metadata field that has a date after (or dc.date.issued:[2010 TO *]
including) 2010 . E.g. https://demo.dspace.org/search?query=dc.date.issued:%5B2010%20TO%20*%5D

Special characters: Some characters have special meaning in searches, e.g. colon (:), asterisk (*), boolean operators, etc. If you need to search
for these characters exactly, surround them with double quotes.

Searching will search for that string (including the colon character). (NOTE: Without the quotes, DSpace would "test:power" exactly
attempt to perform "Searching within specific fields" (see above) as the colon is a special character.)

DSpace supports all Solr search syntax options, as all searches in DSpace are sent directly to Solr. For more examples, see the Solr documentation for
.the "Specifying Terms for the Standard Query Parser"

625

https://demo.dspace.org/search?query=test%20power
https://demo.dspace.org/search?query=test%20power
https://demo.dspace.org/search?query=test%20AND%20power
https://demo.dspace.org/search?query=test%20AND%20power
https://demo.dspace.org/search?query=test%20OR%20power
https://demo.dspace.org/search?query=test%20OR%20power
https://demo.dspace.org/search?query=test%20NOT%20power
https://demo.dspace.org/search?query=test%20NOT%20power
https://demo.dspace.org/search?query=%22test%20power%22
https://demo.dspace.org/search?query=%22test%20power%22
https://demo.dspace.org/search?query=dc.title:test
https://demo.dspace.org/search?query=dc.title:test
https://demo.dspace.org/search?query=dc.title:test%20and%20dc.description.abstract:green
https://demo.dspace.org/search?query=dc.title:test%20and%20dc.description.abstract:green
https://demo.dspace.org/search?query=dc.subject:fin*
https://demo.dspace.org/search?query=test%20pow*
https://demo.dspace.org/search?query=test%20pow*
https://demo.dspace.org/search?query=dc.description:*
https://demo.dspace.org/search?query=dc.date.issued:%5B1999%20TO%202003%5D
https://demo.dspace.org/search?query=dc.date.issued:%5B2010%20TO%20*%5D
https://solr.apache.org/guide/solr/latest/query-guide/standard-query-parser.html#specifying-terms-for-the-standard-query-parser
https://solr.apache.org/guide/solr/latest/query-guide/standard-query-parser.html#specifying-terms-for-the-standard-query-parser

Submitter actions
Documentation for submitters.

626

User management
Documentation for repository managers.

Add or Manage an E-Person
Create or manage a user group

627

1.
2.
3.
4.

Add or Manage an E-Person
An E Person is a user in DSpace who can be assigned various rights to perform activities or manage content access in the repository.

This section provides details about various methods to create or update an E Person in DSpace. For example, DSpace allows users to self-register. In
addition, users with administrative rights can create and update E Person in the system. Both methods are explained in the latter part of this document.

Audience
Add E Person – Self Registration
Add E Person – Registration by Administrator
Update an Eperson

Update an Eperson – Update details & Manage Log in
Update an Eperson – Manage user groups membership
Update an Eperson – Delete Eperson

Audience
Repository Administrator
Community Administrator
Collection Administrator
Base User

Add E Person – Self Registration
Step 1: Go to DSpace’s home page and click on the “Log In” link appearing at the top right corner of the screen, and the pop-up will open, as illustrated
below screen.

Step 2: Click on the New User to add an E Person in DSpace.

628

Step 3: Enter the user’s Email ID who needs to be registered as E Person in DSpace and click on the Register button.

Step 4: After clicking the register button, an email will be sent to the user’s email id, and the user will be redirected to the home page. This E Mail will go
from the communication mail ID registered in the DSpace instance.

629

Step 5: Click on the unique registration link received in the email to continue with the registration process. Suppose your email client or server security
settings do not show hyperlinks. In that case, you can copy the link and paste it into your browser.

Step 6: Enter a password of your choice and re-enter the same password. Followed by this, click on the “Submit Password” button to complete the
registration process.

Add E Person – Registration by Administrator
This process is for the user having System, Community, and Collection Administrator rights. Only users with these rights can manage E People.

Step 1: Go to DSpace’s home page and click on the “Log In” link appearing at the top right corner of the screen, and the pop-up will open, as illustrated
below screen.

630

Step 2: Enter your user id and password and click on the login button for logging in to DSpace

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown below illustration.

631

Step 4: Rollover your cursor over the administration menu and click on Access control. Click on the People link to go to the EPeople module.

Step 5: Click on the “Add EPerson” button for initiating the E-Person creation process.

632

Step 6: Enter “First Name”, “Last Name,” and “E-Mail”. Select the “Can log in” check box for enabling id to login into the DSpace.

Step 7: Upon populating values in mandatory fields “Save” button will get activated. Click on the Save button to complete the process.

Step 8: Upon successfully adding EPerson in DSpace, you will see a success prompt on the screen.

633

Step 9: The administrator can inform the user to generate its password using forgot password mechanism. The same is explained in the following steps.

Step 10: The user to go to the home page of DSpace and click on the “Log In” link appearing at the top right corner of the screen and pop up will open, as
illustrated below screen.

Step 11: Click on the “Have you forgotten your password?” password link reset page.

634

Step 12: Enter the Email ID used for Eperson creation in the DSpace and click on the “Save” button.

Step 13: A prompt confirming a password reset link dispatch to the registered email id will appear and the user will be redirected to the home page. This E
Mail will go from the communication mail ID registered in the DSpace instance.

635

1.
2.
3.
4.
5.

Step 14: Click on the unique registration link received in the email to continue the password reset process. Suppose the user’s email client or server
security settings do not show hyperlinks. In that case, the user can copy the link and paste it into its browser.

Step 15: Enter a password of your choice and re-enter the same password. Followed by this, click on the “Submit Password” button to complete the
password generation process.

Update an Eperson
Eperson updates can be performed by users having System, Community, and Collection Administrator rights. These users can perform the following
activities:

Update Eperson details
Manage Eperson Log in
Impersonate Eperson
Manage user groups membership
Delete Eperson from DSpace

Update an Eperson – Update details & Manage Log in

Step 1: Go to DSpace’s home page and click on the “Log In” link appearing at the top right corner of the screen, and the pop-up will open, as illustrated
below screen.

636

Step 2: Enter your user id and password and click on the login button for logging in to DSpace.

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown below illustration.

637

Step 4: Rollover your cursor over the administration menu and click on Access control. Click on the People link to go to the EPeople module.

Step 5: Scroll or search the eperson’s name in the epeople list.

Step 6: Epeople table has the following elements:

 – Unique ID generated in DSpace for each EpersonID
 – Full name of Eperson as entered during registrationName
 – Email id used for registering userEmail

 – Buttons showing various actions available for Eperson management. It has “Edit” and “Delete buttons. Click on the “Edit” button if you want Edit
to edit details of the Eperson, or click on the “Delete” button if you want to delete Eperson from DSpace permanently.

638

1.
2.

3.
4.
5.

6.
7.

Step 7: Click on the “Edit” button to continue with Eperson editing.

Step 8: You can make the following updates on the Edit Eperson page

Update Eperson details – You can update First Name, Last Name, and Email ID as the user’s identification details.
Enable/Disable User Login – Uncheck this option to disable the user’s login into the DSpace without deleting it. This option is helpful for scenarios
where users need to be disabled from logging in and performing specific actions temporarily.
Requires Certificate – Configure this option if a certificate is to be used for the login.
Reset Password – Password can be reset for Eperson using this option. A Password field should be present for utilizing this option.
Impersonate Eperson – The user with rights to Impersonate EPerson can impersonate the selected Eperson and perform all activities that the
Eperson is entitled to.
Delete Eperson – Using this option, Eperson can be deleted permanently from DSpace
Update User group(s) – This button allows the administrator to add selected Eperson to multiple user groups.

You can make options # 1 to 3 and click on Save for updating the Eperson record.

639

Step 9: Upon successful execution of the update, you will notice a success prompt on the screen.

Update an Eperson – Manage user groups membership

Step 10: Click on the “Add to group” button to initiate the process of adding selected Eperson to a user group.

640

Step 11: Please click on the “Edit” button next to the user group you want to select for this Eperson.

641

Step 12: Enter the eperson’s name or any other metadata value in the search field to find the target user.

642

Step 13: You will see Epeople appearing as a result of a search made. Click on the + button appearing next to Eperson you want to add to this group.

Step 14: Upon successfully adding Eperson to the group, a success prompt will appear on the screen, and Eperson will appear in the Current Members list
of the group.

643

Step 15: You will see this group on the profile page of Eperson as well.

Update an Eperson – Delete Eperson

Step 16: Click the “Delete Eperson” button if you want to delete Eperson from DSpace permanently.

644

Step 17: DSpace will show you a confirmation prompt to re-confirm your decision of deleting the selected Eperson. Click on “Delete” if you want to continue
with the deletion, or click on “Cancel” if you want to cancel the deletion.

Step 18: Successful deletion of the user will be confirmed by displaying a success promptly. You will be redirected to the Epeople page.

645

646

Create or manage a user group
User groups in DSpace are meant for creating a group of E-People. These groups can be assigned access rights to allow users to perform multiple
activities or manage content access in the repository.

This section provides steps to add or update a User group in the application.

Audience
Add a user group
Manage a user group

Update group details
Delete Group
Add/Manage EPeople
Add/Manage subgroups

Audience
Repository Administrator
Community Administrator

Add a user group
This process is for users having System and Community Administrator rights. As these user profiles can add and manage E People.

Step 1: Click on the "Log In" link at the top right corner of the DSpace's homepage, and the pop-up will open, as illustrated below the screen.

Step 2: Enter your user id and password and click on the "Log in" button to enter into DSpace.

647

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown in the below illustration.

Step 4: Rollover your cursor over the administration menu, click on "Access Control," and click on the "Groups" link.

648

Step 5: Click on the "Add Group" button to create a Group.

Step 6: The "Group Name" is compulsory. To benefit a broader user base, a description of the Group is a good practice.

The "Save" button will get activated upon entering the group name.

649

Step 7: Upon successfully adding Group in DSpace, you will see a success prompt on the screen.

Step 8: The Group created will appear in the Group's list as highlighted below.

650

Manage a user group
The System, Community, and Collection administrator profiles can update user group(s). These users can perform the following activities:

Update group details
Delete group
Add/remove E-people
Add/Remove Subgroups

Update group details

Step 1: Click on the "Log In" link at the top right corner of the DSpace's homepage, and the pop-up will open, as illustrated below the screen.

651

Step 2: Enter your user id and password and click on the "Log in" button to enter into DSpace.

Step 3: Users with administrative rights will see the admin menu on the left-hand side of the screen, as shown in the below illustration.

652

Step 4: Rollover your cursor over the administration menu, click on "Access Control," and click on the "Groups" link.

Step 5: Users can find the Group required to be edited or deleted by scrolling down the Groups list or entering Group's metadata in the search field on the
group page. Please see the illustration below showing an example.

The user group table shows the following details

ID: Unique ID generated in DSpace for each Group
Name: Name of Group as entered during group creation
Members: A count of Epeople were added to the Group as members.

653

1.
2.

Step 6: Click on the

"Edit" button in the Edit column to edit the Group.
"Delete" button to delete the Group from DSpace permanently.

654

1.
2.
3.
4.

Step 7: You can make the following updates on the Edit group page

Update group details: Update the Group name and description.
Delete Group: Permanently delete the Group from DSpace.
Add/Manage People: Add Epeople to the Group using the search and browse function. Or delete existing group members using the delete option.
Add/Manage subgroups: Add existing groups as subgroups using the search and browse function. Or delete existing subgroups using the
delete option.

Step 8: Update the group name and description to update the group details and click on the "Save" button.

Step 9: A success prompt will appear, confirming a successful update as displayed below.

655

Delete Group

Step 10: Click on the "Delete Group" button to permanently delete the Group from DSpace.

Step 11: DSpace will show you a confirmation prompt to re-assess your decision of deleting the Group. Click on "Delete" if you want to continue, or click
"Cancel" to return.

Please note that the Group, once deleted, can not be recovered.

656

Step 12: Users will see a success prompt confirming the user group deletion, as demonstrated below.

Add/Manage EPeople

Step 13: Scroll down to the Epeople section to find the user(s). Use metadata values to search Epeople and click the "Search" button, or click the "Browse
All" button to list EPeople.

657

Step 14: Click on the add button '+' next to each user name to add that user as a group member.

Step 15: A prompt will appear confirming the addition of users to the Group. As illustrated below, the "Delete" button will appear next to the user names.

658

Success prompt confirming user added as members

Users appearing as Members under the Current Members section

Add/Manage subgroups

Step 16: Scroll down to the Group section to find the Group (s). Enter a group name and click the "Search" button, or click the "Browse All" button to list
groups.

659

Step 17: Click on the add button '+' next to each group name to add it as a sub-group.

Step 18: A prompt will appear to confirm a subgroup in the Group. As illustrated below, the "Delete" button will appear next to the group names.

660

Success prompt confirming groups added as subgroups

Groups appearing as subgroups under the Current Subgroups section

661

System Administration
This top level node intends to hold all system administration aspects of DSpace including but not limited to:

Installation
Upgrading
Troubleshooting system errors
Managing Dependencies

In this context System administration is defined as all technical tasks required to get DSpace in a state in which it operates properly so its behaviour is
predictable and can be used according to all the guidelines under "Using DSpace".

Introduction to DSpace System Administration
DSpace operates on several levels: as a Java servlet (in a servlet container like Tomcat), cron jobs, and on-demand operations. This section explains
many of the on-demand operations. Some of the command operations may be also set up as cron jobs. Many of these operations are performed at the
Command Line Interface (CLI) also known as the Unix prompt (). Future references will use the term CLI when a command needs to be run at the $
command line.

Below is the "Command Help Table". This table explains what data is contained in the individual command/help tables in the sections that follow.

Command used: The directory and where the command is to be found.

Java class: The actual java program doing the work.

Arguments: The required/mandatory or optional arguments available to the user.

DSpace Command Launcher

Many/most commands and scripts have a simple command. See the Application Layer chapter for the details of [dspace]/bin/dspace <command>
the , and the guide for common commands.DSpace Command Launcher Command Line Operations

AIP Backup and Restore
DSpace AIP Format

Ant targets and options
Command Line Operations

Executing streams of commands
Database Utilities

Handle.Net Registry Support
Logical Item Filtering and DOI Filtered Provider for DSpace
Mediafilters for Transforming DSpace Content

ImageMagick Media Filters
Performance Tuning DSpace
Ping or Healthcheck endpoints for confirming DSpace services are functional
Scheduled Tasks via Cron
Search Engine Optimization

Google Scholar Metadata Mappings
Troubleshooting Information
Validating CheckSums of Bitstreams

662

https://wiki.lyrasis.org/display/DSDOC8x/Application+Layer#ApplicationLayer-DSpaceCommandLauncher

AIP Backup and Restore

1 Background & Overview
1.1 How does this differ from traditional DSpace Backups? Which Backup route is better?
1.2 How does this help backup your DSpace to remote storage or cloud services (like DuraCloud)?
1.3 AIPs are Archival Information Packages
1.4 AIP Structure / Format

2 Running the Code
2.1 Exporting AIPs

2.1.1 Export Modes & Options
2.1.2 Exporting just a single AIP
2.1.3 Exporting AIP Hierarchy

2.1.3.1 Exporting Entire Site
2.2 Ingesting / Restoring AIPs

2.2.1 Ingestion Modes & Options
2.2.1.1 The difference between "Submit" and "Restore/Replace" modes

2.2.2 Submitting AIP(s) to create a new object
2.2.2.1 Submitting a Single AIP
2.2.2.2 Submitting an AIP Hierarchy
2.2.2.3 Submitting AIP(s) while skipping any Collection Approval Workflows

2.2.3 Restoring/Replacing using AIP(s)
2.2.3.1 Default Restore Mode
2.2.3.2 Restore, Keep Existing Mode
2.2.3.3 Force Replace Mode
2.2.3.4 Restoring Entire Site

2.3 Cleaning up from a failed import
2.4 Performance considerations
2.5 Disable User Interaction for Cron

3 Command Line Reference
3.1 Additional Packager Options

3.1.1 How to use additional options
4 Configuration in 'dspace.cfg'

4.1 AIP Metadata Dissemination Configurations
4.2 AIP Ingestion Metadata Crosswalk Configurations
4.3 AIP Ingestion EPerson Configurations
4.4 AIP Configurations To Improve Ingestion Speed while Validating

5 Common Issues or Error Messages

Background & Overview
AIP Backup & Restore doesn't yet work for Configurable Entities

Configurable Entities are not fully supported by AIP Backup & Restore. Since Entities are Items, their metadata and files can be exported/imported via
AIPs. However, their relationships to other Entities cannot yet be exported (or imported) via AIPs. Therefore, restoring Entities via AIP Backup &

 (namely loss of relationships). See for more information.Restore may result in accidental data loss https://github.com/DSpace/DSpace/issues/2882
AIP Backup & Restore functionality only works with the Latest Version of Items

If you are using the functionality (disabled by default), you must be aware that this "Item Level Versioning" feature is Item Level Versioning not yet
 with AIP Backup & Restore. Currently the AIPs that DSpace generates only store compatible Using them together may result in accidental data loss.

the of an Item. Therefore, past versions of Items will always be lost when you perform a restore / replace using AIP tools.latest version
Additional background information available in the Open Repositories 2010 Presentation entitled Improving DSpace Backups, Restores & Migrations

DSpace can backup and restore all of its contents as a set of . This includes all Communities, Collections, Items, Groups and People in the AIP Files
system.

This feature came out of a requirement for DSpace to better integrate with , and other backup storage systems. One of these requirements is to DuraCloud
be able to essentially "backup" local DSpace contents into the cloud (as a type of offsite backup), and "restore" those contents at a later time.

Essentially, this means DSpace can export the entire hierarchy (i.e. bitstreams, metadata and relationships between Communities/Collections/Items) into a
relatively standard format (a METS-based,). This entire hierarchy can also be re-imported into DSpace in the same format (essentially a restore AIP format
of that content in the same or different DSpace installation).

Benefits for the DSpace community:

Allows one to more easily move entire Communities or Collections between DSpace instances.
Allows for a potentially more consistent backup of this hierarchy (e.g. to DuraCloud, or just to your own local backup system), rather than relying
on synchronizing a backup of your Database (stores metadata/relationships) and assetstore (stores files/bitstreams).
Provides a way for people to more easily get their data out of DSpace (whatever the purpose may be).
Provides a relatively standard format for people to migrate entire hierarchies (Communities/Collections) from one DSpace to another (or from
another system into DSpace).

How does this differ from traditional DSpace Backups? Which Backup route is better?

Traditionally, it has always been recommended to backup and restore DSpace's database and files (also known as the "assetstore") separately. This is
described in more detail in the section of the DSpace System Documentation. The traditional backup and restore route is still a Storage Layer
recommended and supported option.

663

https://github.com/DSpace/DSpace/issues/2882
http://www.slideshare.net/tdonohue/improving-dspace-backups-restores-migrations
http://www.duracloud.org

However, the new AIP Backup & Restore option seeks to try and resolve many of the complexities of a traditional backup and restore. The below table
details some of the differences between these two valid Backup and Restore options.

Traditional Backup & Restore
(Database and Files)

AIP Backup & Restore

Supported Backup
/Restore Types

Can Backup & Restore all
DSpace Content easily

Yes (Requires two backups/restores –
one for Database and one for Files)

Yes (Though, will not backup/restore items which are not officially "in archive")

Can Backup & Restore a
Single Community
/Collection/Item easily

No (It is possible, but requires a strong
understanding of DSpace database
structure & folder organization in order
to only backup & restore metadata/files
belonging to that single object)

Yes

Backups can be used to
move one or more
Community/Collection
/Items to another DSpace
system easily.

No (Again, it is possible, but requires a
strong understanding of DSpace
database structure & folder organization
in order to only move metadata/files
belonging to that object)

Yes

Can Backup & Restore Item
Versions

Yes (Requires two backups/restores –
one for Database and one for Files)

No (Currently, AIP Backup & Restore is not fully compatible with Item Level
. AIP Backup & Restore can only backup/restore the Versioning latest version

of an Item)

Can Backup & Restore Conf
igurable Entities

Yes (Requires two backups/restores –
one for Database and one for Files)

No (Currently, AIP Backup & Restore is not fully compatible with Configurable
Entities. AIP Backup & Restore can only backup/restore the metadata & files
of the Entity, but cannot backup/restore relationships to other Entities)

Supported Object
Types During Backup &
Restore

Supports backup/restore of
all Communities/Collections
/Items (including metadata,
files, logos, etc.)

Yes Yes

Supports backup/restore of
all People/Groups
/Permissions

Yes Yes

Supports backup/restore of
all Collection-specific Item
Templates

Yes Yes

Supports backup/restore of
all Collection Harvesting
settings (only for
Collections which pull in all
Items via OAI-PMH or OAI-
ORE)

Yes No (This is a known issue. All previously harvested Items will be restored, but
the OAI-PMH/OAI-ORE harvesting settings will be lost during the restore
process.)

Supports backup/restore of
all Withdrawn (but not
deleted) Items

Yes Yes

Supports backup/restore of
Item Mappings between
Collections

Yes Yes (During restore, the AIP Ingester may throw a false "Could not find a
parent DSpaceObject" error (see), if it Common Issues or Error Messages
tries to restore an Item Mapping to a Collection that it hasn't yet restored. But
this error can be safely bypassed using the 'skipIfParentMissing' flag (see Add

 for more details).itional Packager Options

Supports backup/restore of
all in-process, uncompleted
Submissions (or those
currently in an approval
workflow)

Yes No (AIPs are only generated for objects which are completed and considered
"in archive")

Supports backup/restore of
Items using custom
Metadata Schemas & Fields

Yes Yes (Custom Metadata Fields will be automatically recreated. Custom
Metadata Schemas must be manually created first, in order for DSpace to be
able to recreate custom fields belonging to that schema. See Common Issues

 for more details.)or Error Messages

664

Supports backup/restore of
all local DSpace
Configurations and
Customizations

Yes (if you backup your DSpace entire
directory as part of backing up your files)

Not by default (unless you also backup parts of your DSpace directory – note,
you wouldn't need to backup the '[dspace]/assetstore' folder again, as those
files are already included in AIPs)

Based on your local institutions needs, you will want to choose the backup & restore process which is most appropriate to you. You may also find it
beneficial to use both types of backups on different time schedules, in order to keep to a minimum the likelihood of losing your DSpace installation settings
or its contents. For example, you may choose to perform a Traditional Backup once per week (to backup your local system configurations and
customizations) and an AIP Backup on a daily basis. Alternatively, you may choose to perform daily Traditional Backups and only use the AIP Backup as a
"permanent archives" option (perhaps performed on a weekly or monthly basis).

Don't Forget to Backup your Configurations and Customizations

If you choose to use the AIP Backup and Restore option, do not forget to also backup your local DSpace configurations and customizations. Depending on
how you manage your own local DSpace, these configurations and customizations are likely in one or more of the following locations:

[dspace] - The DSpace installation directory (Please note, if you also use the AIP Backup & Restore option, you do need to backup your not [d
 directory, as those files already exist in your AIPs).space]/assetstore

[dspace-source] - The DSpace source directory

How does this help backup your DSpace to remote storage or cloud services (like DuraCloud)?

While AIP Backup and Restore is primarily a way to export your DSpace content objects to a local filesystem (or mounted drive), it can also be used as the
basis for ensuring your content is safely backed up in a remote location (e.g. or other cloud backup services).DuraCloud

Simply put, these AIPs can be generated and then replicated off to remote storage or a cloud backup service for safe keeping. You can then pull them
down either as an entire set, or individually, in order to restore one or more objects into your DSpace instance. While you could simply backup your entire
DSpace database and "assetstore" to a cloud service, you'd have to download the database backup again in order to restore any content. With entire
AIPs, you can instead just download the individual AIP files you need (which can decrease your I/O costs, if any exist) for that restoration.

This upload/download of your AIPs to a backup location can be managed in a manual fashion (e.g. via your own custom code or shell scripts), or you can
use a DSpace add-on to help ease this processReplication Task Suite

The Replication Task Suite add-on for DSpace allows you the ability to backup and restore DSpace contents to
/from AIPs via the DSpace Administrative Web Interface. It also includes "connectors" to the API, DuraCloud
so you can configure it to automatically backup/retrieve your AIPs to/from DuraCloud. Installing this add-on
means you can now easily backup and restore DSpace to DuraCloud (or other systems) simply via the
DSpace Administrative Web Interface. More information on installing and configuring this add-on can be
found on the page.Replication Task Suite

Makeup and Definition of AIPs

AIPs are Archival Information Packages

AIP is a package describing in DSpace.one archival object
The may be a single , , , or (Site AIPs contain site-wide information). Bitstreams are archival object Item Collection Community Site
included in an Item's AIP.
Each AIP is logically self-contained, can be restored without rest of the archive. (So you could restore a single Item, Collection or
Community)
Collection or Community AIPs do include all child objects (e.g. Items in those Collections or Communities), as each AIP only not
describes object. However, these container AIPs do contain references (links) to all child objects. These references can be used by one
DSpace to automatically restore all referenced AIPs when restoring a Collection or Community.
AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted
submissions are not described in AIPs and cannot be restored after a disaster. Permanently removed objects will also no longer be
exported as AIPs after their removal. However, withdrawn objects will continue to be exported as AIPs, since they are still considered
under the "in archive" status.
AIPs with identical contents will always have identical . This provides a basic means of validating whether the contents within checksums
an AIP have changed. For example, if a Collection's AIP has the same checksum at two different points in time, it means that Collection
has not changed during that time period.
AIP profile favors completeness and accuracy rather than presenting the semantics of an object in a standard format. It conforms to the
quirks of DSpace's internal object model rather than attempting to produce a universally understandable representation of the object.
When possible, an AIP tries to use common standards to express objects.
An AIP serve as a DIP (Dissemination Information Package) or SIP (Submission Information Package), especially when transferring can
custody of objects to another DSpace implementation.
In contrast to SIP or DIP, the AIP should include all available DSpace structural and administrative metadata, and basic provenance
information. AIPs also describe some basic system level information (e.g. Groups and People).

AIP Structure / Format

Generally speaking, an AIP is an Zip file containing a METS manifest and all related content bitstreams.

665

http://www.duracloud.org/
https://wiki.lyrasis.org/display/DSPACE/ReplicationTaskSuite
http://www.duracloud.org/
https://wiki.lyrasis.org/display/DSPACE/ReplicationTaskSuite
http://en.wikipedia.org/wiki/Checksum

For more specific details of AIP format / structure, along with examples, please see .DSpace AIP Format

Running the Code

Exporting AIPs

Export Modes & Options

All AIP Exports are done by using the Dissemination Mode (option) of the command.-d packager

There are two types of AIP Dissemination you can perform:

Single AIP (default, using option) - Exports just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection, -d
you'd just end up with a single Collection AIP (which would not include AIPs for all its child Items)
Hierarchy of AIPs (using the or option) - Exports the requested AIP describing an object, plus the AIP for all child objects. -d --all -d -a
Some examples follow:

For a Site - this would export Communities, Collections & Items within the site into AIP files (in a provided directory)all
For a Community - this would export that Community and all SubCommunities, Collections and Items into AIP files (in a provided
directory)
For a Collection - this would export that Collection and all contained Items into AIP files (in a provided directory)
For an Item – this just exports the Item into an AIP as normal (as it already contains its Bitstreams/Bundles by default)

Exporting just a single AIP

To export in single AIP mode (default), use this "packager" command template:

 [dspace]/bin/dspace packager -d -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". This will include any child objects for not
Communities or Collections.

Exporting AIP Hierarchy

To export an AIP hierarchy, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -d -a -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". In addition it would export all children objects
to the same directory as the "aip4567.zip" file. The child AIP files are all named using the following format:

File Name Format: <Obj-Type>@<Handle-with-dashes>.zip
e.g. COMMUNITY@123456789-1.zip, COLLECTION@123456789-2.zip, ITEM@123456789-200.zip
This general file naming convention ensures that you can easily locate an object to restore by its name (assuming you know its Object
Type and Handle).

Alternatively, if object doesn't have a Handle, it uses this File Name Format: (e.g. <Obj-Type>@internal-id-<DSpace-ID>.zip
ITEM@internal-id-234.zip)

AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted submissions are not
described in AIPs and cannot be restored after a disaster.

Exporting Entire Site

To export an entire DSpace Site, pass the packager the Handle . For example, if your site prefix is "4321", you'd run a <site-handle-prefix>/0
command similar to the following:

666

1.

2.

3.

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/0 sitewide-aip.zip

Again, this would export the DSpace Site AIP into the file "sitewide-aip.zip", and export AIPs for Communities, Collections and Items into the same all
directory as the Site AIP.

Ingesting / Restoring AIPs

Ingestion Modes & Options

Ingestion of AIPs is a bit more complex than Dissemination, as there are several different "modes" available:

Submit/Ingest Mode (option, default) – submit AIP(s) to DSpace in order to create a new object(s) (i.e. AIP is treated like a SIP – Submission -s
Information Package)
Restore Mode (option) – restore pre-existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r
(parent/child objects). This is a specialized type of "submit", where the object is created with a known Handle, known UUID and known
relationships.
Replace Mode (option) – replace existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r -f
(parent/child objects). This is a specialized type of "restore" where the contents of existing object(s) is replaced by the contents in the AIP(s). By
default, if a normal "restore" finds the object already exists, it will back out (i.e. rollback all changes) and report which object already exists.

Again, like export, there are two types of AIP Ingestion you can perform (using any of the above modes):

Single AIP (default) - Ingests just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection AIP, you'd just
create a DSpace Collection from the AIP (but not ingest any of its child objects)
Hierarchy of AIPs (by including the or option after the mode) - Ingests the requested AIP describing an object, plus the AIP for all child --all -a
objects. Some examples follow:

For a Site - this would ingest Communities, Collections & Items based on the located AIP filesall
For a Community - this would ingest that Community and all SubCommunities, Collections and Items based on the located AIP files
For a Collection - this would ingest that Collection and all contained Items based on the located AIP files
For an Item – this just ingest the Item (including all Bitstreams & Bundles) based on the AIP file.

The difference between "Submit" and "Restore/Replace" modes

It's worth understanding the primary differences between a Submission (specified by parameter) and a Restore (specified by parameter).-s -r

Submission Mode (mode) - creates a new object (AIP is treated like a SIP)-s
By default, a new Handle is always assigned

However, you can force it to use the handle specified in the AIP by specifying as one of your -o ignoreHandle=false
parameters

By default, a new Parent object be specified (using the parameter). This is the location where the new object will be created.must -p
However, you can force it to use the parent object specified in the AIP by specifying as one of your -o ignoreParent=false
parameters

By default, will respect a Collection's Workflow process when you submit an Item to a Collection
However, you can specifically any workflow approval processes by specifying parameter.skip -w

Always adds a new Deposit License to Items
Always adds new DSpace System metadata to Items (includes new "dc.date.accessioned", "dc.date.available", "dc.date.issued" and "dc.
description.provenance" entries)
WARNING: Submission mode may not be able to maintain Item Mappings between Collections. Because these mappings are recorded
via the Collection Handles, mappings may be restored improperly if the Collection handle has changed when moving content from one
DSpace instance to another.

Restore / Replace Mode (mode) - restores a previously existing object (as if from a backup)-r
By default, the Handle specified in the AIP is restored

However, for restores, you can force a new handle to be generated by specifying as one of your -o ignoreHandle=true
parameters. (NOTE: Doesn't work for mode as the new object always retains the handle of the replaced object)replace

 Restore/Replace restores Handles as well as UUIDs. ()NOTE: UUID restoration only possible in 7.1 or above
By default, the object is restored under the Parent specified in the AIP

However, for restores, you can force it to restore under a different parent object by using the parameter. (NOTE: Doesn't -p
work for mode, as the new object always retains the parent of the replaced object)replace

Always skips any Collection workflow approval processes when restoring/replacing an Item in a Collection
Never adds a new Deposit License to Items (rather it restores the previous deposit license, as long as it is stored in the AIP)
Never adds new DSpace System metadata to Items (rather it just restores the metadata as specified in the AIP)

Changing Submission/Restore Behavior

It is possible to change some of the default behaviors of both the Submission and Restore/Replace Modes. Please see the Additional Packager Options
section below for a listing of command-line options that allow you to override some of the default settings described above.

Submitting AIP(s) to create a new object

The Submission mode () always creates a new object with a newly assigned handle. In addition by default it respects all existing Collection approval -s
workflows (so items may require approval unless the workflow is skipped by using the option). For information about how the "Submission Mode" differs -w
from the "Replace / Restore mode", see above.The difference between "Submit" and "Restore/Replace" modes

667

1.
2.

Submitting a Single AIP
AIPs treated as SIPs

This option allows you to essentially use an AIP as a SIP (Submission Information Package). The default settings will create a new DSpace object (with a
new handle and a new parent object, if specified) from your AIP.

To ingest a single AIP and create a new DSpace object under a parent of your choice, specify the (or) package parameter to the command. -p --parent
Also, note that you are running the in (submit) mode.packager -s

NOTE: This only ingests the single AIP specified. It does ingest all children objects.not

 [dspace]/bin/dspace packager -s -t AIP -e <eperson> -p <parent-handle> <file-path>

If you leave out the parameter, the AIP package ingester will attempt to install the AIP under the same parent it had before. As you are also specifying -p
the (submit) parameter, the will assume you want a new Handle to be assigned (as you are effectively specifying that you are submitting a -s packager n

 object). If you want the object to retain the Handle specified in the AIP, you can specify the option to force the packager to ew -o ignoreHandle=false
 ignore the Handle specified in the AIP.not

Submitting an AIP Hierarchy
AIPs treated as SIPs

This option allows you to essentially use a set of AIPs as SIPs (Submission Information Packages). The default settings will create a new DSpace object
(with a new handle and a new parent object, if specified) from each AIP

To ingest an AIP hierarchy from a directory of AIPs, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -s -a -t AIP -e <eperson> -p <parent-handle> <file-path>

for example:

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/12 aip4567.zip

The above command will ingest the package named "aip4567.zip" as a child of the specified Parent Object (handle="4321/12"). The resulting object is
assigned a new Handle (since is specified). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (a new Handle is also -s
assigned for each child AIP).

Another example – (by using the Site Handle,):Ingesting a Top-Level Community <site-handle-prefix>/0

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/0 community-aip.zip

The above command will ingest the package named "community-aip.zip" as a (i.e. the specified parent is "4321/0" which is a Site top-level community
Handle). Again, the resulting object is assigned a new Handle. In addition, any child AIPs referenced by "community-aip.zip" are also recursively ingested
(a new Handle is also assigned for each child AIP).

May want to skip Collection Approvals Workflows

Please note: If you are submitting a larger amount of content (e.g. multiple Communities/Collections) to your DSpace, you may want to tell the 'packager'
command to skip over any existing Collection approval workflows by using the flag. By default, all Collection approval workflows will be respected. This -w
means if the content you are submitting includes a Collection with an enabled workflow, you may see the following occur:

First, the Collection will be created & its workflow enabled
Second, each Item belonging to that Collection will be created & placed into the workflow approval process

Therefore, if this content has already received some level of approval, you may want to submit it using the flag, which will skip any workflow -w
approval processes. For more information, see .Submitting AIP(s) while skipping any Collection Approval Workflows

668

1.

2.

3.

1.
2.

3.

Item Mappings may not be maintained when submitting an AIP hierachy

When an Item is mapped to one or more Collections, this mapping is recorded in the AIP using the mapped Collection's handle. Unfortunately, since the
submission mode (-s) assigns to all objects in the hierarchy, this may mean that the mapped Collection's handle will have changed (or even new handles
that a different Collection will be available at the original mapped Collection's handle). DSpace does not have a way to uniquely identify Collections other
than by handle, which means that item mappings are only able to be retained when the Collection handle is also retained.

If you encounter this issue, there are a few possible workarounds:

Use the restore/replace mode (-r) instead, as it will retain existing Collection Handles. Unfortunately though, this may not work if the content is
being moved from a Test DSpace to a Production DSpace, as these existing handles may not be valid.
OR, use the submission mode with the "--o ignoreHandle=false". This will also retain existing Collection Handles. Unfortunately though, this may
not work if the content is being moved from a Test DSpace to a Production DSpace, as these existing handles may not be valid.
OR, remove all existing Item Mappings and re-export AIPs (without Item Mappings). Then, import the hierarchy into the new DSpace instance
(again without Item Mappings). Finally, recreate the necessary Item Mappings using a different tool, e.g. the tool supports Batch Metadata Editing
bulk editing of Collection memberships/mappings.

Missing Groups or EPeople cannot be created when submitting an individual Community or Collection AIP

Please note, if you are using AIPs to move an entire Community or Collection from one DSpace to another, there is a known issue (see https://github.com
) that the new DSpace instance will be unable to (re-)create any DSpace Groups or EPeople which are referenced by a /DSpace/DSpace/issues/4477

Community or Collection AIP. The reason is that the Community or Collection AIP itself doesn't contain enough information to create those Groups or
EPeople (rather that info is stored in the SITE AIP, for usage during). Full Site Restores

However, there are two possible ways to get around this known issue:

EITHER, you can manually recreate all referenced Groups/EPeople in the new DSpace that you are submitting the Community or Collection AIP
into.
OR, you can temporarily disable the import of Group/EPeople information when submitting the Community or Collection AIP to the new DSpace.
This would mean that after you submit the AIP to the new DSpace, you'd have to manually go in and add in any special permissions (as needed).
To disable the import of Group/EPeople information, add these settings to your file, and re-run the submission of the AIP with these dspace.cfg
settings in place:

mets.dspaceAIP.ingest.crosswalk.METSRIGHTS = NIL
mets.dspaceAIP.ingest.crosswalk.DSPACE-ROLES = NIL

Don't forget to remove these settings after you import your Community or Collection AIP. Leaving them in place will mean that every time
you import an AIP, all of its Group/EPeople/Permissions would be ignored.

Submitting AIP(s) while skipping any Collection Approval Workflows

By default, the Submission mode () always respects existing Colleciton approval workflows. So, if a Collection has a workflow, then a newly submitted -s
Item will be placed into that workflow process (rather than immediately appearing in DSpace).

However, if you'd like to skip all workflow approval processes you can use the flag to do so. For example, the following command will skip any -w
Collection approval workflows and immediately add the Item to a Collection.

 [dspace]/bin/dspace packager -s -w -t AIP -e <eperson> -p <parent-handle> <file-path>

This flag may also be used when . For example, if you are migrating one or more Collections/Communities from one -w Submitting an AIP Hierarchy
DSpace to another, you may choose to submit those AIPs with the option enabled. This will ensure that, if a Collection has a workflow approval process -w
enabled, all its Items are available immediately rather than being all placed into the workflow approval process.

Restoring/Replacing using AIP(s)

Restoring is slightly different than just . When restoring, we make every attempt to restore the object as it (including its handle, submitting used to be
parent object, etc.). For more information about how the "Replace/Restore Mode" differs from the "Submit mode", see The difference between "Submit"

 above.and "Restore/Replace" modes

There are currently three restore modes:

Default Restore Mode () = Attempt to restore object (and optionally children). Rollback all changes if any object is found to already exist.-r
Restore, Keep Existing Mode () = Attempt to restore object (and optionally children). If an object is found to already exist, skip over it (and -r -k
all children objects), and continue to restore all other non-existing objects.
Force Replace Mode () = Restore an object (and optionally children) and any existing objects in DSpace. Therefore, if an object -r -f overwrite
is found to already exist in DSpace, its contents are replaced by the contents of the AIP. WARNING: This mode is potentially dangerous as it will
permanently destroy any object contents that do not currently exist in the AIP. You may want to perform a secondary backup, unless you are sure
you know what you are doing!

Default Restore Mode

By default, the restore mode (option) will throw an error and rollback all changes if any object is found to already exist. The user will be informed if -r
which object already exists within their DSpace installation.

669

https://github.com/DSpace/DSpace/issues/4477
https://github.com/DSpace/DSpace/issues/4477

Restore a Single AIP: Use this 'packager' command template to restore a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -t AIP -e <eperson> <AIP-file-path>

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -e admin@myu.edu aip4567.zip

Notice that unlike -s option (for submission/ingesting), the -r option does not require the Parent Object (-p option) to be specified if it can be determined
from the package itself.

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, all changes are rolled back (i.e. nothing is restored to DSpace)

Highly Recommended to Update Database Sequences after a Large Restore

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is re-run the "update-sequences" script on your highly recommended to always
DSpace database after a larger scale restore. This database script should be run while DSpace is stopped (you may either stop Tomcat or just the DSpace
webapps). Simply run:PostgreSQL/Oracle must be running.
[dspace]/bin/dspace database update-sequences
More Information on using Default Restore Mode with Community/Collection AIPs

Using the Default Restore Mode without the option, will only restore the for that specific Community or Collection. No child objects -a metadata
will be restored.
Using the Default Restore Mode with the option, will only successfully restore a Community or Collection if that object along with any child -a
objects (Sub-Communities, Collections or Items) do not already exist. In other words, if any objects belonging to that Community or Collection
already exist in DSpace, the Default Restore Mode will report an error that those object(s) could not be recreated. If you encounter this situation,
you will need to perform the restore using either the the (depending on whether you want to Restore, Keep Existing Mode or Force Replace Mode
keep or replace those existing child objects).

Restore, Keep Existing Mode

When the "Keep Existing" flag (option) is specified, the restore will attempt to skip over any objects found to already exist. It will report to the user that -k
the object was found to exist (and was not modified or changed). It will then continue to restore all objects which do not already exist.

One special case to note: If a Collection or Community is found to already exist, its child objects are also skipped over. So, this mode will not auto-restore
items to an existing Collection.

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -k -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -k -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively restored (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, it is skipped over (child objects are also skipped). All non-existing objects are restored.

Force Replace Mode

When the "Force Replace" flag (option) is specified, the restore will any objects found to already exist in DSpace. In other words, existing -f overwrite
content is deleted and then replaced by the contents of the AIP(s).

670

1.

2.

a.

May also be useful in some specific restoration scenarios

This mode may also be used to restore missing objects which refer to existing objects. For example, if you are restoring a missing Collection which had
existing Items linked to it, you can use this mode to auto-restore the Collection and update those existing Items so that they again link back to the newly
restored Collection.
Potential for Data Loss

Because this mode actually existing content in DSpace, it is potentially dangerous and may result in data loss! You may wish to perform a destroys
secondary full backup (assetstore files & database) before attempting to replace any existing object(s) in DSpace.

Replace using a Single AIP: Use this 'packager' command template to replace a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -f -t AIP -e <eperson> <AIP-file-path>

Replace using a Hierarchy of AIPs: Use this 'packager' command template to replace an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -f -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested. They are
also restored with the Handles & Parent Objects provided with their package. If any object is found to already exist, its contents are replaced by the
contents of the appropriate AIP.

If any error occurs, the script attempts to rollback the entire replacement process.

Restoring Entire Site

In order to restore an entire Site from a set of AIPs, you must do the following:

Install a completely "fresh" version of DSpace by following the Installation instructions in the DSpace Manual
At this point, you should have a completely empty, but fully-functional DSpace installation. You will need to create an initial Administrator
user in order to perform this restore (as a full-restore can only be performed by a DSpace Administrator).

Once DSpace is installed, run the following command to restore all its contents from AIPs

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> -i <site-handle-prefix>/0 -o
skipIfParentMissing=true /full/path/to/your/site-aip.zip

While the " " flag is optional, it is often necessary whenever you are performing a large hierarchical -o skipIfParentMissing=true
site restoration. Please see the section below.Additional Packager Options

Please note the following about the above restore command:

Notice that you are running this command in "Force Replace" mode (). This is necessary as your empty DSpace install will already include -r -f
a few default groups (Administrators and Anonymous) and your initial administrative user. You need to replace these groups in order to restore
your prior DSpace contents completely.
<eperson> should be replaced with the Email Address of the initial Administrator (who you created when you reinstalled DSpace).
<site-handle-prefix> should be replaced with your DSpace site's assigned Handle Prefix. This is equivalent to the setting handle.prefix
in your dspace.cfg
/full/path/to/your/site-aip.zip is the full path to the AIP file which represents your DSpace SITE. This file will be named whatever you
named it when you actually . All other AIPs are assumed to be referenced from this SITE AIP (in most cases, they should exported your entire site
be in the same directory as that SITE AIP).

Highly Recommended to Update Database Sequences after a Large Restore

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is highly recommended to always re-run the "update-sequences" script on your
DSpace database after a larger scale restore. This database script should be run while DSpace is stopped (you may either stop Tomcat or just the DSpace
webapps). PostgreSQL/Oracle must be running. Simply run:
 [dspace]/bin/dspace database update-sequences

Cleaning up from a failed import

671

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Installing+DSpace+%28OLD+-+to+be+removed%29

Sometimes your packager import of AIP packages can fail, due to lack of memory (see below for advice on better performance, please use JAVA_OPTS to
set your memory higher than the default). If that happens, DSpace by design will leave the bitstreams it import sucessfully, but they will be oprphaned, did
and will just occupy space in your assetstore. The standard DSpace cleanup cron job will clean up these orphaned bitstreams, however, you can also
clean them up manually by running the following command:

Clean up after a failed import

[dspace]/bin/dspace cleanup -v

Performance considerations

When importing large structures like the whole site or a large collection/community, keep in mind that this can require a lot of memory, more than the
default amount of heap allocated to the command-line launcher (256 Mb:). This memory must be JAVA_OPTS="-Xmx256m -Dfile.encoding=UTF-8"
allocated in addition to the normal amount of memory allocated to Tomcat. For example, a site of 2500 fulltext items (2 Gb altogether) requires 5 Gb of
maximum heap space and takes around 1 hour, including import and indexing.

You can raise the limit for a single run of the packager command by specifying memory options in the JAVA_OPTS environment variable, e.g.:

JAVA_OPTS="-Xmx4096m -Dfile.encoding=UTF-8" /dspace/bin/dspace packager -u -r -a -f -t AIP -e dspace@example.
com -i 123456789/0 sitewide-aip.zip

If the importer runs out of heap memory, it will crash either with "java.lang.OutOfMemoryError: GC overhead limit exceeded", which can be suppressed by
adding "-XX:-UseGCOverheadLimit" to JAVA_OPTS, or with " ". You can increase the allocated heap java.lang.OutOfMemoryError: Java heap space
memory and try again, but keep in mind that although no changes were made in the database, the unsuccessfully imported files are still left in the
assetstore (see).https://github.com/DSpace/DSpace/issues/5593

Disable User Interaction for Cron

If you wish to run any of the following commands from a cron job (or similar), then you may wish to using the (disable all user interaction -u --no-user-
) flag. For example, supposing you wanted to perform a full Site Backup (see above) via a cronjob, you could simply interaction Exporting Entire Site

run that command passing it the "-u" flage like this:

Perform a full site backup to AIPs(with user interaction disabled) every Sunday at 1:00AM
NOTE: Make sure to replace "123456789" with your actual Handle Prefix, and "admin@myu.edu" with your
Administrator account email.
0 1 * * * [dspace]/bin/dspace packager -u -d -a -t AIP -e admin@myu.edu -i 123456789/0 [full-path-to-backup-
folder]/sitewide-aip.zip

Command Line Reference

The following flags are valid to pass to the command:[dspace]/bin/dspace packager

Flag Ingest
or
Export

Description / Usage

-a (--all) both
ingest
and
export

For Ingest: recursively ingest all child AIPs (referenced from this AIP).

For Export: recursively export all child objects (referenced from this parent object)

-d (--
disseminat
e)

export-
only

This flag simply triggers the export of AIPs from the system. See Exporting AIPs

-e (–
eperson)
[email-
address]

ingest-
only

The email address of the EPerson who is ingesting the AIPs. Oftentimes this should be an Administrative account.

-f (--
force-
replace)

ingest-
only

Ingest the AIPs in " " (must be specified in conjunction with flag), where existing objects will be Force Replace Mode -r
replaced by the contents of the AIP.

672

https://github.com/DSpace/DSpace/issues/5593

-h (--
help)

both
ingest
and
export

Return help information. You should specify with for additional package specific help information-t

-i (--
identifier
) [handle]

both
ingest
and
export

For Ingest: Only valid in " ". In that mode this is the identifier of the object to replace.Force Replace Mode

For Export: The identifier of the object to export to an AIP

-k (--
keep-
existing)

ingest-
only

Specifies to use " " during ingest . In this mode, Restore, Keep Existing Mode (must be specified in conjunction with -r flag)
existing objects in DSpace will NOT be replaced by their AIPs, but missing objects will be restored from AIPs.

-o (--
option)
[setting]=
[value]

both
ingest
and
export

This flag is used to pass to the Packager command. Each type of packager may define its Additional Packager Options
own custom Additional Options. For AIPs, the valid options are documented in the section Additional Packager Options
below. This is repeatable (e.g.)-o [setting1]=[value] -o [setting2]=value

-p (--
parent)
[handle]

ingest
only

Handle(s) of the parent Community or Collection to into which an AIP should be ingested. This may be repeatable.

-r (--
restore)

ingest
only

Specifies that this ingest is either " " (when standalone), " " (when used with Restore Mode Restore, Keep Existing Mode -k
flag) or " " (when used with flag)Force Replace Mode -f

-s (--
submit)

ingest
only

Specifies that this ingest is in " " where an AIP is treated as a object and assigned a new HandleSubmit Mode new
/Identifier, etc.

-t (--
type)
[package-
type]

both
ingest
and
export

Specifies the type of package which is being ingested or exported. This controls which Ingester or Disseminator class is
called. For AIPs, this is set to " "always -t AIP

-u (--no-
user-
interactio
n)

both
ingest
and
export

Skips over all user interaction (e.g. question prompts). This flag can be used when running the packager from a script or
cron job to bypass all user interaction. See also Disable User Interaction for Cron

Additional Packager Options

In additional to the various "modes" settings described under " " above, the AIP Packager supports the following packager options. These Running the Code
options allow you to better tweak how your AIPs are processed (especially during ingests/restores/replaces).

Option Ingest
or
Export

Default
Value

Description

createM
etadata
Fields=
[value]

ingest-
only

true Tells the AIP ingester to automatically create any metadata fields which are found to be from the DSpace Metadata missing
Registry. When 'true', this means as each AIP is ingested, new fields may be added to the DSpace Metadata Registry if they don't
already exist. When 'false', an AIP ingest will fail if it encounters a metadata field that doesn't exist in the DSpace Metadata
Registry. (NOTE: This will create missing DSpace Metadata . If a schema is found to be missing, the ingest will not Schemas
always fail.)

filterB
undles=
[value]

export-
only

defaults to
exporting
all Bundles

This option can be used to limit the Bundles which are exported to AIPs for each DSpace Item. By default, all file Bundles will be
exported into Item AIPs. You could use this option to limit the size of AIPs by only exporting certain Bundles. WARNING: any

 This option can be run in two ways:bundles not included in AIPs will obviously be unable to be restored.

Exclude Bundles: By default, you can provide a comma-separated list of bundles to be excluded from AIPs (e.g. "TEXT,
THUMBNAIL")
Include Bundles: If you prepend the list with the "+" symbol, then the list specifies the bundles to be in AIPs (e.g. included
"+ORIGINAL,LICENSE" would only include those two bundles). This second option is identical to using "includeBundles"
option described below.

(NOTE: If you choose to no longer export LICENSE or CC_LICENSE bundles, you will also need to disable the License
Dissemination Crosswalks in the configuration for the changes to take affect)aip.disseminate.rightsMD

ignoreH
andle=
[value]

ingest-
only

Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Handle specified in the AIP itself, and instead create a new Handle during the ingest
process (this is the default when running in Submit mode, using the flag). If 'false', the AIP ingester attempts to restore the -s
Handles specified in the AIP (this is the default when running in Restore/replace mode, using the flag).-r

673

ignoreP
arent=
[value]

ingest-
only

Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Parent object specified in the AIP itself, and instead ingest under a new Parent object (this
is the default when running in Submit mode, using the flag). The new Parent object must be specified via the flag (run -s -p dspac

 for more help). If 'false', the AIP ingester attempts to restore the object directly under its old Parent (this is the e packager -h
default when running in Restore/replace mode, using the flag).-r

include
Bundles
=
[value]

export-
only

defaults to
"all"

This option can be used to limit the Bundles which are exported to AIPs for each DSpace Item. By default, all file Bundles will be
exported into Item AIPs. You could use this option to limit the size of AIPs by only exporting certain Bundles. WARNING: any

 This option expects a comma separated list of bundle names bundles not included in AIPs will obviously be unable to be restored.
(e.g. "ORIGINAL,LICENSE,CC_LICENSE,METADATA"), or "all" if all bundles should be included.

(See "filterBundles" option above if you wish to exclude particular Bundles. However, this "includeBundles" option be used cannot
at the same time as "filterBundles".)

(NOTE: If you choose to no longer export LICENSE or CC_LICENSE bundles, you will also need to disable the License
Dissemination Crosswalks in the configuration for the changes to take affect)aip.disseminate.rightsMD

manifes
tOnly=
[value]

both
ingest
and
export

false If 'true', the AIP Disseminator will only import/export a METS Manifest XML file (i.e. result will be an unzipped 'mets.xml' file),
instead of a full AIP. This METS Manifest contains URI references to all content files, but does not contain any content files. This
option is experimental and is meant for debugging purposes only. It should never be set to 'true' if you want to be able to
restore content files. Again, please note that when you use this option, the final result will be an XML file, NOT the normal ZIP-
based AIP format.

passwor
ds=
[value]

export-
only

false If 'true' (and the 'DSPACE-ROLES' crosswalk is enabled, see), then the AIP #AIP Metadata Dissemination Configurations
Disseminator will export user password hashes (i.e. encrypted passwords) into Site AIP's METS Manifest. This would allow you to
restore user's passwords from Site AIP. If 'false', then user password hashes are not stored in Site AIP, and passwords cannot be
restored at a later time.

skipIfP
arentMi
ssing=
[value]

ingest-
only

false If 'true', ingestion will skip over any "Could not find a parent DSpaceObject" errors that are encountered during the ingestion
process (Note: those errors will still be logged as "warning" messages in your DSpace log file). If you are performing a full site
restore (or a restore of a larger Community/Collection hierarchy), you may encounter these errors if you have a larger number of
Item mappings between Collections (i.e. Items which are mapped into several collections at once). When you are performing a
recursive ingest, skipping these errors should not cause any problems. Once the missing parent object is ingested it will
automatically restore the Item mapping that caused the error. For more information on this "Could not find a parent DSpaceObject"
error see .Common Issues or Error Messages

unautho
rized=
[value]

export-
only

unspecified If 'skip', the AIP Disseminator will skip over any unauthorized Bundle or Bitstream encountered (i.e. it will not be added to the AIP).
If 'zero', the AIP Disseminator will add a Zero-length "placeholder" file to the AIP when it encounters an unauthorized Bitstream. If
unspecified (the default value), the AIP Disseminator will throw an error if an unauthorized Bundle or Bitstream is encountered.

updated
After=
[value]

export-
only

unspecified This option works as a basic form of "incremental backup". This option requires that an is specified. When specified, ISO-8601 date
the AIP Disseminator will only export Item AIPs which have a last-modified date the specified ISO-8601 date. This option has after
no affect on the export of Site, Community or Collection AIPs as DSpace does not record a last-modified date for Sites,
Communities or Collections. For example, when this option is specified during a full-site export, the AIP Disseminator will export
the Site AIP, all Community AIPs, all Collection AIPs, and only Item AIPs modified after that date and time.

validate
=
[value]

both
ingest
and
export

Export
defaults to
'true',
Ingest
defaults to
'false'

If 'true', every METS file in AIP will be validated before ingesting or exporting. By default, DSpace will validate everything on export,
but will skip validation during import. Validation on export will ensure that all exported AIPs properly conform to the METS profile
(and will throw errors if any do not). Validation on import will ensure every METS file in every AIP is first validated before importing
into DSpace (this will cause the ingestion processing to take longer, but tips on speeding it up can be found in the "AIP

" section below). Configurations To Improve Ingestion Speed while Validating DSpace recommends minimally validating AIPs on
export. Ideally, you should validate both on export and import, but import validation is disabled by default in order to increase the
speed of AIP restores.

How to use additional options

These options can be passed in two main ways:

From the Command Line

From the command-line, you can add the option to your command by using the or parameter.-o --option

 [dspace]/bin/dspace packager -r -a -t AIP -o [option1]=[value] -o [option2]=[value] -e admin@myu.edu aip4567.
zip

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -o ignoreParent=false -o createMetadataFields=false -e admin@myu.edu
aip4567.zip

Via the Java API call

If you are programmatically calling the from your own custom script, you can specify these org.dspace.content.packager.DSpaceAIPIngester
options via the class.org.dspace.content.packager.PackageParameters

As a basic example:

674

http://en.wikipedia.org/wiki/ISO_8601

PackageParameters params = new PackageParameters;
params.addProperty("createMetadataFields", "false");
params.addProperty("ignoreParent", "true");

Configuration in 'dspace.cfg'

The following new configurations relate to AIPs:

AIP Metadata Dissemination Configurations

The following configurations allow you to specify what metadata is stored within each METS-based AIP. In 'dspace.cfg', the general format for each of
these settings is:

aip.disseminate.<setting> = <mdType>:<DSpace-crosswalk-name> [, ...]
<setting> is the setting name (see below for the full list of valid settings)
<mdType> is optional. It allows you to specify the value of the @MDTYPE or @OTHERMDTYPE attribute in the corresponding METS
element.
<DSpace-crosswalk-name> is required. It specifies the name of the DSpace Crosswalk which should be used to generate this metadata.
Zero or more may be specified for each setting<label-for-METS>:<DSpace-crosswalk-name>

AIP Metadata Recommendations

It is recommended to use the default settings when generating AIPs. DSpace can only restore information that is included within an AIP. minimally
Therefore, if you choose to no longer include some information in an AIP, DSpace will no longer be able to restore that information from an AIP backup

The default settings in 'dspace.cfg' are:

aip.disseminate.techMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS <techMD>
file within the AIP (Default:)PREMIS, DSPACE-ROLES

The crosswalk generates PREMIS metadata for the object specified by the AIPPREMIS
The crosswalk exports DSpace Group / EPerson information into AIPs in a DSpace-specific XML format. Using this DSPACE-ROLES
crosswalk means that AIPs can be used to recreated Groups & People within the system. (NOTE: The crosswalk should DSPACE-ROLES
be used alongside the crosswalk if you also wish to restore the that Groups/People have within the System. METSRights permissions
See below for more info on the crosswalk.)METSRights

aip.disseminate.sourceMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <sourceMD>
METS file within the AIP (Default:)AIP-TECHMD

The AIP-TECHMD Crosswalk generates technical metadata (in DIM format) for the object specified by the AIP
aip.disseminate.digiprovMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of <digiprovMD>
the METS file within the AIP (Default:)None
aip.disseminate.rightsMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <rightsMD>
METS file within the AIP (Default: DSpaceDepositLicense:DSPACE_DEPLICENSE, CreativeCommonsRDF:DSPACE_CCRDF,

)CreativeCommonsText:DSPACE_CCTEXT, METSRights
The crosswalk ensures the DSpace Deposit License is referenced/stored in AIPDSPACE_DEPLICENSE
The crosswalk ensures any Creative Commons RDF Licenses are reference/stored in AIPDSPACE_CCRDF
The crosswalk ensures any Creative Commons Textual Licenses are referenced/stored in AIPDSPACE_CCTEXT
The crosswalk ensures that Permissions/Rights on DSpace Objects (Communities, Collections, Items or Bitstreams) are METSRights
referenced/stored in AIP. Using this crosswalk means that AIPs can be used to restore permissions that a particular Group or Person
had on a DSpace Object. (NOTE: The crosswalk should always be used in conjunction with the crosswalk METSRights DSPACE-ROLES
(see above) or a similar crosswalk. The crosswalk can only restore permissions, and cannot re-create Groups or EPeople METSRights
in the system. The can actually re-create the Groups or EPeople as needed.)DSPACE-ROLES

aip.disseminate.dmd - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS file <dmdSec>
within the AIP (Default: MODS, DIM)

The MODS crosswalk translates the DSpace descriptive metadata (for this object) into MODS. As MODS is a relatively "standard"
metadata schema, it may be useful to include a copy of MODS metadata in your AIPs if you should ever want to import them into
another (non-DSpace) system.
The DIM crosswalk just translates the DSpace internal descriptive metadata into an XML format. This XML format is proprietary to
DSpace, but stores the metadata in a format similar to Qualified Dublin Core.

AIP Ingestion Metadata Crosswalk Configurations

The following configurations allow you to specify what DSpace Crosswalks are used during the ingestion/restoration of AIPs. These configurations also
allow you to ignore areas of the METS file (in the AIP) if you do not want that area to be restored.

In , the general format for each of these settings is:dspace.cfg

mets.dspaceAIP.ingest.crosswalk.<mdType> = <DSpace-crosswalk-name>
<mdType> is the type of metadata as specified in the METS file. This corresponds to the value of the @MDTYPE attribute (of that
metadata section in the METS). When the @MDTYPE attribute is "OTHER", then the <mdType> corresponds to the @OTHERMDTYPE
attribute value.
<DSpace-crosswalk-name> specifies the name of the DSpace Crosswalk which should be used to ingest this metadata into DSpace.
You can specify the "NULLSTREAM" crosswalk if you specifically want this metadata to be ignored (and skipped over during ingestion).

By default, the settings in are:dspace.cfg

675

mets.dspaceAIP.ingest.crosswalk.DSpaceDepositLicense = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsRDF = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsText = NULLSTREAM

The above settings tell the ingester to any metadata sections which reference DSpace Deposit Licenses or Creative Commons Licenses. These ignore
metadata sections can be safely ignored as long as the "LICENSE" and "CC_LICENSE" bundles are included in AIPs (which is the default setting). As the
Licenses are included in those Bundles, they will already be restored when restoring the bundle contents.

More Info on Default Crosswalks used

If unspecified in the above settings, the AIP ingester will automatically use the Crosswalk which is named the same as the @MDTYPE or
@OTHERMDTYPE attribute for the metadata section. For example, a metadata section with an @MDTYPE="PREMIS" will be processed by the DSpace
Crosswalk named "PREMIS".

AIP Ingestion EPerson Configurations

The following setting determines whether the AIP Ingester should create an EPerson (if necessary) when attempting to restore or ingest an Item whose
Submitter cannot be located in the system. By default it is set to "false", as for AIPs the creation of EPeople (and Groups) is generally handled by the DSPA

 crosswalk (see for more info on crosswalk.)CE-ROLES #AIP Metadata Dissemination Configurations DSPACE-ROLES

mets.dspaceAIP.ingest.createSubmitter = false

AIP Configurations To Improve Ingestion Speed while Validating

It is recommended to validate all AIPs on ingestion (when possible). But validation can be extremely slow, as each validation request first must download
all referenced Schema documents from various locations on the web (sometimes as many as 10 schemas may be necessary to download in order to
validate a single METS file). To make matters worse, the same schema will be re-downloaded each time it is used (i.e. it is not cached locally). So, if you
are validating just 20 METS files which each reference 10 schemas, that results in 200 download requests.

In order to perform validations in a speedy fashion, you can pull down a local copy of schemas. Validation will then use this local cache, which can all
sometimes increase the speed up to 10 x.

To use a local cache of XML schemas when validating, use the following settings in 'dspace.cfg'. The general format is:

mets.xsd.<abbreviation> = <namespace> <local-file-name>
<abbreviation> is a unique abbreviation (of your choice) for this schema
<namespace> is the Schema namespace
<local-file-name> the full name of the cached schema file (which should reside in your directory, [dspace]/config/schemas/
by default this directory does not exist – you will need to create it)

The default settings are all commented out. But, they provide a full listing of all schemas currently used during validation of AIPs. In order to utilize them,
uncomment the settings, download the appropriate schema file, and save it to your directory (by default this directory [dspace]/config/schemas/
does not exist – you will need to create it) using the specified file name:

#mets.xsd.mets = http://www.loc.gov/METS/ mets.xsd
#mets.xsd.xlink = http://www.w3.org/1999/xlink xlink.xsd
#mets.xsd.mods = http://www.loc.gov/mods/v3 mods.xsd
#mets.xsd.xml = http://www.w3.org/XML/1998/namespace xml.xsd
#mets.xsd.dc = http://purl.org/dc/elements/1.1/ dc.xsd
#mets.xsd.dcterms = http://purl.org/dc/terms/ dcterms.xsd
#mets.xsd.premis = http://www.loc.gov/standards/premis PREMIS.xsd
#mets.xsd.premisObject = http://www.loc.gov/standards/premis PREMIS-Object.xsd
#mets.xsd.premisEvent = http://www.loc.gov/standards/premis PREMIS-Event.xsd
#mets.xsd.premisAgent = http://www.loc.gov/standards/premis PREMIS-Agent.xsd
#mets.xsd.premisRights = http://www.loc.gov/standards/premis PREMIS-Rights.xsd

Common Issues or Error Messages

The below table lists common fixes to issues you may encounter when backing up or restoring objects using AIP Backup and Restore.

Issue /
Error
Message

How to Fix this Problem

676

Ingest
/Restore
Error:
"Group
Administrator
already
exists"

If you receive this problem, you are likely attempting to , but are not running the command in Force Replace Mode Restore an Entire Site
(). Please see the section on for more details on the flags you should be using.-r -f Restoring an Entire Site

Ingest
/Restore
Error:
"Unknown
Metadata
Schema
encountered
(mycustomsc
hema)"

If you receive this problem, one or more of your Items is using a custom metadata schema which DSpace is currently not aware of (in
the example, the schema is named "mycustomschema"). Because DSpace AIPs do not contain enough details to recreate the missing
Metadata Schema, you must create it manually via the DSpace Admin UI. Please note that you only need to create the Schema.
You do not need to manually create all the fields belonging to that schema, as DSpace will do that for you as it restores each

 Once the schema is created in DSpace, re-run your restore command. DSpace will automatically re-create all fields belonging to AIP.
that custom metadata schema as it restores each Item that uses that schema.

Ingest Error:
"Could not
find a parent
DSpaceObje
ct
referenced
as 'xxx/xxx'"

When you encounter this error message it means that an object could not be ingested/restored as it belongs to a object which parent
doesn't currently exist in your DSpace instance. During a full restore process, this error can be skipped over and treated as a warning by
specifying the ' ' option (see). If you have a larger number of Items -o skipIfParentMissing=true Additional Packager Options
which are mapped to multiple Collections, the AIP Ingester will sometimes attempt to restore an item mapping before the Collection

 has been restored (thus throwing this error). Luckily, this is not anything to be concerned about. As soon as the Collection is itself
restored, the Item Mapping which caused the error will also be automatically restored. So, if you encounter this error during a full
restore, it is safe to bypass this error message using the ' ' option. All your Item Mappings should -o skipIfParentMissing=true
still be restored correctly.

Submit
Error:
PSQLExcepti
on: ERROR:
duplicate
key value
violates
unique
constraint
"handle_han
dle_key"

This error means that while submitting one or more AIPs, DSpace encountered a Handle conflict. This is a general error the may occur
in DSpace if your Handle sequence has somehow become out-of-date. However, it's easy to fix. Just run the [dspace]/bin/dspace
database update-sequences

677

DSpace AIP Format

1 Makeup and Definition of AIPs
1.1 AIPs are Archival Information Packages.
1.2 General AIP Structure / Examples

1.2.1 Customizing What Is Stored in Your AIPs
2 AIP Details: METS Structure
3 Metadata in METS

3.1 DIM (DSpace Intermediate Metadata) Schema
3.1.1 DIM Descriptive Elements for Item objects
3.1.2 DIM Descriptive Elements for Collection objects
3.1.3 DIM Descriptive Elements for Community objects
3.1.4 DIM Descriptive Elements for Site objects

3.2 MODS Schema
3.3 AIP Technical Metadata Schema (AIP-TECHMD)

3.3.1 AIP Technical Metadata for Item
3.3.2 AIP Technical Metadata for Bitstream
3.3.3 AIP Technical Metadata for Collection
3.3.4 AIP Technical Metadata for Community
3.3.5 AIP Technical Metadata for Site

3.4 PREMIS Schema
3.4.1 PREMIS Metadata for Bitstream

3.5 DSPACE-ROLES Schema
3.5.1 Example of DSPACE-ROLES Schema for a SITE AIP
3.5.2 Example of DSPACE-ROLES Schema for a Community or Collection

3.6 METSRights Schema
3.6.1 Example of METSRights Schema for an Item
3.6.2 Example of METSRights Schema for a Collection
3.6.3 Example of METSRights Schema for a Community

Makeup and Definition of AIPs
AIPs only store the Latest Version of Items

If you are using the functionality (disabled by default), you must be aware that this "Item Level Versioning" feature is Item Level Versioning not yet
 with AIP Backup & Restore. Currently the AIPs that DSpace generates only store compatible Using them together may result in accidental data loss.

the of an Item. Therefore, past versions of Items will always be lost when you perform a restore / replace using AIP tools.latest version

AIPs are Archival Information Packages.

AIP is a package describing in DSpace.one archival object
The may be a single , , , or (Site AIPs contain site-wide information). Bitstreams are archival object Item Collection Community Site
included in an Item's AIP.
Each AIP is logically self-contained, can be restored without rest of the archive. (So you could restore a single Item, Collection or
Community)
Collection or Community AIPs do include all child objects (e.g. Items in those Collections or Communities), as each AIP only not
describes object. However, these container AIPs do contain references (links) to all child objects. These references can be used by one
DSpace to automatically restore all referenced AIPs when restoring a Collection or Community.
AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted
submissions are not described in AIPs and cannot be restored after a disaster. Permanently removed objects will also no longer be
exported as AIPs after their removal. However, withdrawn objects will continue to be exported as AIPs, since they are still considered
under the "in archive" status.
AIPs with identical contents will always have identical . This provides a basic means of validating whether the contents within checksums
an AIP have changed. For example, if a Collection's AIP has the same checksum at two different points in time, it means that Collection
has not changed during that time period.
AIP profile favors completeness and accuracy rather than presenting the semantics of an object in a standard format. It conforms to the
quirks of DSpace's internal object model rather than attempting to produce a universally understandable representation of the object.
When possible, an AIP tries to use common standards to express objects.
An AIP serve as a DIP (Dissemination Information Package) or SIP (Submission Information Package), especially when transferring can
custody of objects to another DSpace implementation.
In contrast to SIP or DIP, the AIP should include all available DSpace structural and administrative metadata, and basic provenance
information. AIPs also describe some basic system level information (e.g. Groups and People).

General AIP Structure / Examples

Generally speaking, an AIP is an Zip file containing a manifest and all related content bitstreams, license files and any other associated files.METS

Some examples include:

Site AIP (Sample:)SITE-example.zip
METS contains basic metadata about DSpace Site and persistent IDs referencing all Top Level Communities
METS also contains a list of all Groups and EPeople information defined in the DSpace system. (NOTE: By default, user passwords are
not stored in AIPs, unless you specify the 'passwords' flag. See .)Additional Packager Options

Community AIP (Sample:)COMMUNITY@123456789-1.zip

678

http://en.wikipedia.org/wiki/Checksum
https://www.loc.gov/standards/mets/METSOverview.v2.html
https://wiki.lyrasis.org/download/attachments/315720814/SITE-example.zip?version=1&modificationDate=1701973381149&api=v2
https://wiki.lyrasis.org/display/DSDOC8x/AIP+Backup+and+Restore#AIPBackupandRestore-AdditionalPackagerOptions
https://wiki.lyrasis.org/download/attachments/315720814/COMMUNITY-123456789-1.zip?version=1&modificationDate=1701973381154&api=v2

1.

2.

1.

2.

METS contains all metadata for Community and persistent IDs referencing all members (SubCommunities or Collections). Package may
also include a Logo file, if one exists.
METS contains any Group information for Community-specific groups (e.g. group).COMMUNITY_<ID>_ADMIN
METS contains all Community permissions/policies (translated into)METSRights schema

Collection AIP (Sample:)COLLECTION@123456789-2.zip
METS contains all metadata for Collection and persistent IDs referencing all members (Items). Package may also include a Logo file, if
one exists.
METS contains any Group information for Collection-specific groups (e.g. , , COLLECTION_<ID>_ADMIN COLLECTION_<ID>_SUBMIT
etc.).
METS contains all Collection permissions/policies (translated into)METSRights schema
If the Collection has an Item Template, the METS will also contain all the metadata for that Item Template.

Item AIP (Sample:)ITEM@123456789-8.zip
METS contains all metadata for Item and references to all Bundles and Bitstreams. Package also includes all Bitstream files.
METS contains all Item/Bundle/Bitstream permissions/policies (translated into)METSRights schema

Notes:

Bitstreams and Bundles are second-class archival objects; they are recorded in the context of an Item.
BitstreamFormats are not even second-class; they are described implicitly within Item technical metadata, and reconstructed from that during
restoration
EPeople are only defined in Site AIP, but may be referenced from Community or Collection AIPs
Groups may be defined in Site AIP, Community AIP or Collection AIP. Where they are defined depends on whether the Group relates specifically
to a single Community or Collection, or is just a general site-wide group.

What is NOT in AIPs

DSpace Site configurations ([dspace]/config/ directory) or customizations (themes, stylesheets, etc) are not described in AIPs
DSpace Database model (or customizations therein) is not described in AIPs
Any objects which are not currently in the "In Archive" state are not described in AIPs. This means that in-progress, unfinished submissions are
never included in AIPs.

Customizing What Is Stored in Your AIPs

If you choose, you can customize exactly what information is stored in your AIPs. However, you should be aware that you can only restore information
which is stored within your AIPs. If you choose to remove information from your AIPs, you will be unable to restore it later on (unless you are also backing
up your entire DSpace database and assetstore folder).

AIP Recommendations

It is recommended to minimally use the default settings when generating AIPs. DSpace can only restore information that is included within an AIP.
Therefore, if you choose to no longer include some information in an AIP, DSpace will no longer be able to restore that information from an AIP backup

There are two ways to go about customizing your AIP format:

You can . These configurations will allow you to specify exactly which DSpace customize your settings pertaining to AIP generationdspace.cfg
Crosswalks will be called when generating the AIP METS manifest.
You can export your AIPs using one of the .special options/flags

AIP Details: METS Structure
This METS Structure is based on the structure decided for the original , developed as part of the MIT & UCSD PLEDGE project.AipPrototype

mets element
@PROFILE fixed value="http://www.dspace.org/schema/aip/1.0/mets.xsd" (this is how we identify an AIP manifest)
@OBJID URN-format persistent identifier (i.e. Handle) if available, or else a unique identifier. (e.g. "hdl:123456789/1")
@LABEL title if available
@TYPE DSpace object type, one of "DSpace ITEM", "DSpace COLLECTION", "DSpace COMMUNITY" or "DSpace SITE".
@ID is a globally unique identifier, built using the Handle and the Object type (e.g.).dspace-COLLECTION-hdl:123456789/3

mets/metsHdr element
@LASTMODDATE last-modified date for a DSpace Item, or nothing for other objects.
agent element:

@ROLE = "CUSTODIAN",
@TYPE = "OTHER",
@OTHERTYPE = "DSpace Archive",
name = . (Note: The Site Handle is of the format , e.g. "123456789/0")Site handle [handle_prefix]/0

agent element:
@ROLE = "CREATOR",
@TYPE = "OTHER",
@OTHERTYPE = "DSpace Software",
name = "DSpace [version]" (Where "[version]" is the specific version of DSpace software which created this AIP, e.g. "1.7.0")

mets/dmdSec element(s)
By default, two elements are included for all AIPs:dmdSec

object's descriptive metadata crosswalked to MODS (specified by). See mets/dmdSec/mdWrap@MDTYPE="MODS" #MODS
 section below for more information.Schema

object's descriptive metadata in DSpace native DIM intermediate format, to serve as a complete and precise record for
restoration or ingestion into another DSpace. Specified by mets/dmdSec/mdWrap@MDTYPE="OTHER",@OTHERMDTYPE="

. See section below for more information.DIM" #DIM (DSpace Intermediate Metadata) Schema

679

http://www.loc.gov/standards/rights/METSRights.xsd
https://wiki.lyrasis.org/download/attachments/315720814/COLLECTION-123456789-2.zip?version=1&modificationDate=1701973381156&api=v2
http://www.loc.gov/standards/rights/METSRights.xsd
https://wiki.lyrasis.org/download/attachments/315720814/ITEM-123456789-8.zip?version=1&modificationDate=1701973381152&api=v2
http://www.loc.gov/standards/rights/METSRights.xsd
https://wiki.lyrasis.org/display/DSDOC8x/AIP+Backup+and+Restore#AIPBackupandRestore-Configurationin'dspace.cfg'
https://wiki.lyrasis.org/display/DSDOC8x/AIP+Backup+and+Restore#AIPBackupandRestore-AdditionalPackagerOptions
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=AipPrototype

1.

1.

a.
b.

1.

a.

b.

a.

b.

For Collection AIPs, additional elements may exist which describe the Item Template for that Collection. Since an Item template dmdSec
is not an actual Item (i.e. it only includes metadata), it is stored within the Collection AIP. The Item Template's elements will be dmdSec
referenced by a in the METS .div @TYPE="DSpace ITEM Template" structMap
When the value is , the element include a value for the attribute which names the crosswalk mdWrap @TYPE OTHER MUST @OTHERTYPE
that produced (or interprets) that metadata, e.g. .DIM

mets/amdSec element(s)
One or more elements are include for all AIPs. The first element contains administrative metadata (technical, source, amdSec amdSec
rights, and provenance) for the entire archival object. Additional elements may exist to describe parts of the archival object (e.g. amdSec
Bitstreams or Bundles in an Item).

techMD elements. By default, two types of elements may be included:techMD
PREMIS metadata about an object may be included here (). Specified by currently only specified for Bitstreams (files) md

. See section below for more information.Wrap@MDTYPE="PREMIS" #PREMIS Schema
DSPACE-ROLES metadata may appear here to describe the Groups or EPeople related to this object (_currently only
specified for Site, Community and Collection). Specified by mdWrap@MDTYPE="OTHER",@OTHERMDTYPE="DSPACE-

. See section below for more information.ROLES" #DSPACE-ROLES Schema
rightsMD elements. By default, there are four possible types of elements which may be included:rightsMD

METSRights metadata may appear here to describe the permissions on this object. Specified by mdWrap@MDTYPE="
. See section below for more information.OTHER",@OTHERMDTYPE="METSRIGHTS" #METSRights Schema

DSpaceDepositLicense if the object is an Item and it has a deposit license, it is contained here. Specified by mdWra
.p@MDTYPE="OTHER",@OTHERMDTYPE="DSpaceDepositLicense"

CreativeCommonsRDF If the object is an Item with a Creative Commons license expressed in RDF, it is included
here. Specified by .mdWrap@MDTYPE="OTHER",@OTHERMDTYPE="CreativeCommonsRDF"
CreativeCommonsText If the object is an Item with a Creative Commons license in plain text, it is included here.
Specified by .mdWrap@MDTYPE="OTHER",@OTHERMDTYPE="CreativeCommonsText"

sourceMD element. By default, there is only one type of element which may appear:sourceMD
AIP-TECHMD metadata may appear here. This stores basic technical/source metadata about in object in a DSpace
native format. Specified by . See mdWrap@MDTYPE="OTHER",@OTHERMDTYPE="AIP-TECHMD" #AIP Technical

 section below for more information.Metadata Schema (AIP-TECHMD)
digiprovMD element.

Not used at this time.
mets/fileSec element

For ITEM objects:
Each distinct Bundle in an Item goes into a . The has a attribute which corresponds to the Bundle fileGrp fileGrp @USE
name.
Bitstreams in bundles become elements under .file fileGrp
mets/fileSec/fileGrp/fileelements

Set to length of the bitstream. There is a redundant value in the <techMD> but it is more accessible here.@SIZE
Set , , to corresponding bitstream values. There is redundant info in the @MIMETYPE @CHECKSUM @CHECKSUMTYPE
<techMD>. (For DSpace, the at all times)@CHECKSUMTYPE="MD5"
SET to bitstream's SequenceID if it has one.@SEQ
SET to the list of element(s) which describe this bitstream.@ADMID <amdSec>

For COLLECTION and COMMUNITY objects:
Only if the object has a , there is a with one child of .logo bitstream fileSec fileGrp @USE="LOGO"
The contains one element, representing the logo Bitstream. It has the same , , fileGrp file @MIMETYPE @CHECKSUM @CHECK

 attributes as the Item content bitstreams, but does NOT include metadata section references (e.g.) or a SUMTYPE @ADMID @SEQ
attribute.
See the main for the reference to this logo file.structMap fptr

mets/structMap - Primary structure map, @LABEL="DSpace Object", @TYPE="LOGICAL"
For ITEM objects:

Top-Level with .div @TYPE="DSpace Object Contents"
For every Bitstream in Item it contains a with . Each Bitstream has a single div @TYPE="DSpace BITSTREAM" div f

 element which references the bitstream location.ptr
If Item has primary bitstream, put it in (i.e. directly under the with structMap/div/fptr div @TYPE="DSpace Object

)Contents"
For COLLECTION objects:

Top-Level with .div @TYPE="DSpace Object Contents"
For every Item in the Collection, it contains a with . Each Item has up to two child div @TYPE="DSpace ITEM" div mp

elements:tr
One linking to the Handle of that Item. Its , and value is the raw Handle.@LOCTYPE="HANDLE" @xlink:href
(Optional) one linking to the location of the local AIP for that Item (if known). Its , and @LOCTYPE="URL" @xli

 value is a relative link to the AIP file on the local filesystem.nk:href
If Collection has a Logo bitstream, there is an reference to it in the very first .fptr div
If the Collection includes an Item Template, there will be a with within the very first div @TYPE="DSpace ITEM Template" d

. This must have a specified, which links to the element(s) that iv div @TYPE="DSpace ITEM Template" @DMDID dmdSec
contain the metadata for the Item Template.

For COMMUNITY objects:
Top-Level with .div @TYPE="DSpace Object Contents"

For every Sub-Community in the Community it contains a with . Each Community div @TYPE="DSpace COMMUNITY"
 has up to two elements:div mptr

One linking to the Handle of that Community. Its , and value is the raw @LOCTYPE="HANDLE" @xlink:href
Handle.
(Optional) one linking to the location of the local AIP file for that Community (if known). Its , @LOCTYPE="URL"
and value is a relative link to the AIP file on the local filesystem.@xlink:href

For every Collection in the Community there is a with . Each Collection has div @TYPE="DSpace COLLECTION" div
up to two elements:mptr

One linking to the Handle of that Collection. Its , and value is the raw @LOCTYPE="HANDLE" @xlink:href
Handle.

680

1.

b.

1.

a.

b.

(Optional) one linking to the location of the local AIP file for that Collection (if known). Its , @LOCTYPE="URL"
and value is a relative link to the AIP file on the local filesystem.@xlink:href

If Community has a Logo bitstream, there is an reference to it in the very first .fptr div
For SITE objects:

Top-Level with .div @TYPE="DSpace Object Contents"
For every Top-level Community in Site, it contains a with . Each Item has up div @TYPE="DSpace COMMUNITY" div
to two child elements:mptr

One linking to the Handle of that Community. Its , and value is the raw @LOCTYPE="HANDLE" @xlink:href
Handle.
(Optional) one linking to the location of the local AIP for that Community (if known). Its , @LOCTYPE="URL"
and value is a relative link to the AIP file on the local filesystem.@xlink:href

mets/structMap - Structure Map to indicate object's Parent, @LABEL="Parent", @TYPE="LOGICAL"
Contains one element which has the unique attribute value to identify it as the older of the div TYPE="AIP Parent Link" parent

.pointer
It contains a element whose attribute value is the raw Handle of the parent object, e.g. .mptr xlink:href 1721.1/4321

Metadata in METS

The following tables describe how various metadata schemas are populated (via DSpace Crosswalks) in the METS file for an AIP.

DIM (DSpace Intermediate Metadata) Schema

DIM Schema is essentially a way of representing DSpace internal metadata structure in XML. DSpace's internal metadata is very similar to a Qualified
Dublin Core in its structure, and is primarily meant for descriptive metadata. However, DSpace's metadata allows for custom elements, qualifiers or
schemas to be created (so it is extendable to any number of schemas, elements, qualifiers). These custom fields/schemas may or may not be able to be
translated into normal Qualified Dublin Core. So, the DIM Schema must be able to express metadata schemas, elements or qualifiers which may or may
not exist within Qualified Dublin Core.

In the METS structure, DIM metadata always appears within a inside an element. For dmdSec <mdWrap MDTYPE="OTHER" OTHERMDTYPE="DIM">
example:

 <dmdSec ID="dmdSec_2190">
 <mdWrap MDTYPE="OTHER" OTHERMDTYPE="DIM">
 ...
 </mdWrap>
 </dmdSec>

By default, DIM metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

aip.disseminate.dmd = MODS, DIM

DIM Descriptive Elements for Item objects

As all DSpace Items already have user-assigned DIM (essentially Qualified Dublin Core) metadata fields, those fields are just exported into the DIM
 within the METS file.Schema

DIM Descriptive Elements for Collection objects

For Collections, the following fields are translated to the DIM schema:

DIM Metadata Field Database field or value

dc.description 'introductory_text' field

dc.description.abstract 'short_description' field

dc.description.tableofcontents 'side_bar_text' field

dc.identifier.uri Collection's handle

dc.provenance 'provenance_description' field

dc.rights 'copyright_text' field

dc.rights.license 'license' field

dc.title 'name' field

DIM Descriptive Elements for Community objects

681

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceIntermediateMetadata
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceIntermediateMetadata
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceIntermediateMetadata

For Communities, the following fields are translated to the DIM schema:

DIM Metadata Field Database field or value

dc.description 'introductory_text' field

dc.description.abstract 'short_description' field

dc.description.tableofcontents 'side_bar_text' field

dc.identifier.uri Handle of Community

dc.rights 'copyright_text' field

dc.title 'name' field

DIM Descriptive Elements for Site objects

For the Site Object, the following fields are translated to the DIM schema:

Metadata Field Value

dc.identifier.uri Handle of Site (format:)[handle_prefix]/0

dc.title Name of Site (from dspace.cfg 'dspace.name' config)

MODS Schema

By default, all DSpace descriptive metadata (DIM) is also translated into the by utilizing DSpace's . MODS Schema MODSDisseminationCrosswalk
DSpace's DIM to MODS crosswalk is defined within your configuration file. This file allows you to [dspace]/config/crosswalks/mods.properties
customize the MODS that is included within your AIPs.

For more information on the MODS Schema, see http://www.loc.gov/standards/mods/mods-schemas.html

In the METS structure, MODS metadata always appears within a inside an element. For example:dmdSec <mdWrap MDTYPE="MODS">

 <dmdSec ID="dmdSec_2189">
 <mdWrap MDTYPE="MODS">
 ...
 </mdWrap>
 </dmdSec>

By default, MODS metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

aip.disseminate.dmd = MODS, DIM

The MODS metadata is included within your AIP to support interoperability. It provides a way for other systems to interact with or ingest the AIP without
needing to understand the DIM Schema. You may choose to disable MODS if you wish, however this may decrease the likelihood that you'd be able to
easily ingest your AIPs into a non-DSpace system (unless that non-DSpace system is able to understand the DIM schema). When restoring/ingesting
AIPs, DSpace will always first attempt to restore DIM descriptive metadata. Only if no DIM metadata is found, will the MODS metadata be used during a
restore.

AIP Technical Metadata Schema (AIP-TECHMD)

The AIP Technical Metadata Schema is a way to translate technical metadata about a DSpace object into the . It is kept separate from DIM DIM Schema
as it is considered technical metadata rather than descriptive metadata.

In the METS structure, AIP-TECHMD metadata always appears within a inside an sourceMD <mdWrap MDTYPE="OTHER" OTHERMDTYPE="AIP-
 element. For example:TECHMD">

 <amdSec ID="amd_2191">
 ...
 <sourceMD ID="sourceMD_2198">
 <mdWrap MDTYPE="OTHER" OTHERMDTYPE="AIP-TECHMD">
 ...
 </mdWrap>
 </sourceMD>
 ...
 </amdSec>

682

http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/mods-schemas.html
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpaceIntermediateMetadata

By default, AIP-TECHMD metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

aip.disseminate.sourceMD = AIP-TECHMD

AIP Technical Metadata for Item

Metadata Field Value

dc.contributor Submitter's email address

dc.identifier.uri Handle of Item

dc.relation.isPartOf Owning Collection's Handle ()as a URN

dc.relation.isReferencedBy All other Collection's this item is linked to ()Handle URN of each non-owner

dc.rights.accessRights "WITHDRAWN" if item is withdrawn

AIP Technical Metadata for Bitstream

Metadata Field Value

dc.title Bitstream's name/title

dc.title.alternative Bitstream's source

dc.description Bitstream's description

dc.format Bitstream Format Description

dc.format.medium Short Name of Format

dc.format.mimetype MIMEType of Format

dc.format.supportlevel System Support Level for Format (necessary to recreate Format during restore, if the format isn't know to DSpace by default)

dc.format.internal Whether Format is internal (necessary to recreate Format during restore, if the format isn't know to DSpace by default)

Outstanding Question: Why are we recording the file format support status? That's a DSpace property, rather than an Item property. Do DSpace
instances rely on objects to tell them their support status?

Possible answer (from Larry Stone): Format support and other properties of the BitstreamFormat are recorded here in case the Item is
restored in an empty DSpace that doesn't have that format yet, and the relevant bits of the format entry have to be reconstructed from
the AIP. --lcs

AIP Technical Metadata for Collection

Metadata Field Value

dc.identifier.uri Handle of Collection

dc.relation.isPartOf Owning Community's Handle ()as a URN

dc.relation.isReferencedBy All other Communities this Collection is linked to ()Handle URN of each non-owner

AIP Technical Metadata for Community

Metadata Field Value

dc.identifier.uri Handle of Community

dc.relation.isPartOf Handle of Parent Community ()as a URN

AIP Technical Metadata for Site

Metadata Field Value

dc.identifier.uri Site Handle (format:)[handle_prefix]/0

683

PREMIS Schema

At this point in time, the is only used to represent technical metadata about DSpace Bitstreams (i.e. Files). The PREMIS metadata is PREMIS Schema
generated by DSpace's . Only the is used.PREMISCrosswalk PREMIS Object Entity Schema

In the METS structure, PREMIS metadata always appears within a inside an element. PREMIS metadata is techMD <mdWrap MDTYPE="PREMIS"> alwa
 wrapped within a element. For example:ys <premis:premis>

 <amdSec ID="amd_2209">
 ...
 <techMD ID="techMD_2210">
 <mdWrap MDTYPE="PREMIS">
 <premis:premis>
 ...
 </premis:premis>
 </mdWrap>
 </techMD>
 ...
 </amdSec>

Each Bitstream (file) has its own within a METS manifest. So, there will be a separate PREMIS for each Bitstream within a single Item.amdSec techMD

By default, PREMIS metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

aip.disseminate.techMD = PREMIS, DSPACE-ROLES

PREMIS Metadata for Bitstream

The following Bitstream information is translated into PREMIS for each DSpace Bitstream (file):

Metadata Field Value

<premis:objectIdentifier> Contains Bitstream direct URL

<premis:objectCategory> Always set to "File"

<premis:fixity> Contains MD5 Checksum of Bitstream

<premis:format> Contains File Format information of Bistream

<premis:originalName> Contains original name of file

DSPACE-ROLES Schema

All DSpace Groups and EPeople objects are translated into a custom XML Schema. This XML Schema is a very simple representation of DSPACE-ROLES
the underlying DSpace database model for Groups and EPeople. The Schemas is generated by DSpace's .DSPACE-ROLES RoleCrosswalk

Only the following DSpace Objects utilize the DSPACE-ROLES Schema in their AIPs:

Site AIP – all Groups and EPeople are represented in DSPACE-ROLES Schema
Community AIP – only Community-based groups (e.g.) are represented in DSPACE-ROLES SchemaCOMMUNITY_1_ADMIN
Collection AIP – only Collection-based groups (e.g. , , etc.) are represented in DSPACE-COLLECTION_2_ADMIN COLLECTION_2_SUBMIT
ROLES Schema

In the METS structure, DSPACE-ROLES metadata always appears within a inside an techMD <mdWrap MDTYPE="OTHER" OTHERMDTYPE="DSPACE-
 element. For example:ROLES">

 <amdSec ID="amd_2068">
 ...
 <techMD ID="techMD_2070">
 <mdWrap MDTYPE="OTHER" OTHERMDTYPE="DSPACE-ROLES">
 ...
 </mdWrap>
 </techMD>
 ...
 </amdSec>

By default, DSPACE-ROLES metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

684

http://www.loc.gov/standards/premis/
http://www.loc.gov/standards/premis/schemas.html

aip.disseminate.techMD = PREMIS, DSPACE-ROLES

Example of DSPACE-ROLES Schema for a SITE AIP

Below is a general example of the structure of a DSPACE-ROLES XML file, as it would appear in a SITE AIP.

<DSpaceRoles>
 <Groups>
 <Group ID="1" Name="Administrator">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 <Group ID="0" Name="Anonymous" />
 <Group ID="70" Name="COLLECTION_hdl:123456789/57_ADMIN">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 <Group ID="75" Name="COLLECTION_hdl:123456789/57_DEFAULT_READ">
 <MemberGroups>
 <MemberGroup ID="0" Name="Anonymous" />
 </MemberGroups>
 </Group>
 <Group ID="71" Name="COLLECTION_hdl:123456789/57_SUBMIT">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 <Group ID="72" Name="COLLECTION_hdl:123456789/57_WORKFLOW_STEP_1">
 <MemberGroups>
 <MemberGroup ID="1" Name="Administrator" />
 </MemberGroups>
 </Group>
 <Group ID="73" Name="COLLECTION_hdl:123456789/57_WORKFLOW_STEP_2">
 <MemberGroups>
 <MemberGroup ID="1" Name="Administrator" />
 </MemberGroups>
 </Group>
 <Group ID="8" Name="COLLECTION_hdl:123456789/6703_DEFAULT_READ" />
 <Group ID="9" Name="COLLECTION_hdl:123456789/2_ADMIN">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 </Groups>
 <People>
 <Person ID="1">
 <Email>bsmith@myu.edu</Email>
 <Netid>bsmith</Netid>
 <FirstName>Bob</FirstName>
 <LastName>Smith</LastName>
 <Language>en</Language>
 <CanLogin />
 </Person>
 <Person ID="2">
 <Email>jjones@myu.edu</Email>
 <FirstName>Jane</FirstName>
 <LastName>Jones</LastName>
 <Language>en</Language>
 <CanLogin />
 <SelfRegistered />
 </Person>
 </People>
</DSpaceRoles>

Why are there Group Names with Handles?

685

You may have noticed several odd looking group names in the above example, where a Handle is embedded in the name (e.g. "COLLECTION_hdl:
123456789/57_SUBMIT"). This is a translation of a Group name which included a Community or Collection (e.g. "COLLECTION_45_SUBMIT"). Internal ID
Since you are exporting these Groups outside of DSpace, the may no longer be valid or be understandable. Therefore, before export, these Internal ID
Group names are all translated to include an externally understandable identifier, in the form of a Handle. If you use this AIP to restore your groups later,
they will be translated back to the normal DSpace format (i.e. the handle will be translated back to the new).Internal ID
Orphaned Groups are Renamed on Export

If a Group name includes a Community or Collection (e.g. "COLLECTION_45_SUBMIT"), and that Community or Collection no longer exists, Internal ID
then the Group is considered "Orphaned".

In 1.8.2 and above, the Group is renamed using the following format: "ORPHANED_[object-type]_GROUP_[obj-id]_[group-type]" (e.g.
"ORPHANED_COLLECTION_GROUP_10_ADMIN").
Prior to 1.8.2, the Group was renamed with a random key: "GROUP_[random-hex-key]_[object-type]_[group-type]" (e.g.
"GROUP_123eb3a_COLLECTION_ADMIN"). This old format was discontinued as giving the groups a randomly generated name caused the
SITE AIP to have a different checksum every time it was regenerated (see).https://github.com/DSpace/DSpace/issues/4492

The reasoning is that we were unable to translate an into an (i.e. Handle). If we are unable to do that translation, re-importing or Internal ID External ID
restoring a group with an internal ID could cause conflicts or instability in your DSpace system. In order to avoid such conflicts, these groups are old
renamed using a random, unique key.

Example of DSPACE-ROLES Schema for a Community or Collection

Below is a general example of the structure of a DSPACE-ROLES XML file, as it would appear in a Community or Collection AIP.

This specific example is for a Collection, which has associated Administrator, Submitter, and Workflow approver groups. In this very simple example, each
group only has one Person as a member of it. Please notice that the Person's information (Name, NetID, etc) is NOT contained in this content (however
they are available in the DSPACE-ROLES example for a SITE, as shown above)

<DSpaceRoles>
 <Groups>
 <Group ID="9" Name="COLLECTION_hdl:123456789/2_ADMIN" Type="ADMIN">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 <Group ID="13" Name="COLLECTION_hdl:123456789/2_SUBMIT" Type="SUBMIT">
 <Members>
 <Member ID="2" Name="jjones@myu.edu" />
 </Members>
 </Group>
 <Group ID="10" Name="COLLECTION_hdl:123456789/2_WORKFLOW_STEP_1" Type="WORKFLOW_STEP_1">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 <Group ID="11" Name="COLLECTION_hdl:123456789/2_WORKFLOW_STEP_2" Type="WORKFLOW_STEP_2">
 <Members>
 <Member ID="2" Name="jjones@myu.edu" />
 </Members>
 </Group>
 <Group ID="12" Name="COLLECTION_hdl:123456789/2_WORKFLOW_STEP_3" Type="WORKFLOW_STEP_3">
 <Members>
 <Member ID="1" Name="bsmith@myu.edu" />
 </Members>
 </Group>
 </Groups>
</DSpaceRoles>

METSRights Schema

All DSpace Policies (permissions on objects) are translated into the . This is different than the above DSPACE-ROLES schema, METSRights schema
which only represents Groups and People objects. Instead, the METSRights schema is used to translate the permission statements (e.g. a group named
"Library Admins" has Administrative permissions on a Community named "University Library"). But the METSRights schema doesn't represent who is a
member of a particular group (that is defined in the DSPACE-ROLES schema, as described above).

METSRights should always be used with DSPACE-ROLES

The METSRights Schema must be used in conjunction with the DSPACE-ROLES Schema for Groups, People and Permissions to all be restored properly.
As mentioned above, the METSRights metadata can only be used to restore permissions (i.e. DSpace policies). The DSPACE-ROLES metadata must also
exist if you wish to restore the actual Group or EPeople objects to which those permissions apply.

686

https://github.com/DSpace/DSpace/issues/4492
http://www.loc.gov/standards/rights/METSRights.xsd

All DSpace Object's AIPs (except for the SITE AIP) utilize the METSRights Schema in order to define what permissions people and groups have on that
object. Although there are several sections to the METSRights Schema, DSpace AIPs the section, as this is what is only use <RightsDeclarationMD>
used to describe rights on an object.

In the METS structure, METSRights metadata always appears within a inside an rightsMD <mdWrap MDTYPE="OTHER" OTHERMDTYPE="
 element. For example:METSRIGHTS">

 <amdSec ID="amd_2068">
 ...
 <rightsMD ID="rightsMD_2074">
 <mdWrap MDTYPE="OTHER" OTHERMDTYPE="METSRIGHTS">
 ...
 </mdWrap>
 </rightsMD>
 ...
 </amdSec>

By default, METSRights metadata is always included in AIPs. It is controlled by the following configuration in your :dspace.cfg

aip.disseminate.rightsMD = DSpaceDepositLicense:DSPACE_DEPLICENSE, \
 CreativeCommonsRDF:DSPACE_CCRDF, CreativeCommonsText:DSPACE_CCTEXT, METSRIGHTS

Example of METSRights Schema for an Item

An Item AIP will almost always contain several METSRights metadata sections within its METS Manifest. A separate METSRights metadata section is
used to describe the permissions on:

the Item itself
each Bundle (group of files) in the Item
each Bitstream (file) within an Item's bundle

Below is an example of a METSRights sections for a publicly visible Bitstream, Bundle or Item. Notice it specifies that the "GENERAL PUBLIC" has the
permission to DISCOVER or DISPLAY this object.

<rights:RightsDeclarationMD xmlns:rights="http://cosimo.stanford.edu/sdr/metsrights/" RIGHTSCATEGORY="LICENSED">
 <rights:Context CONTEXTCLASS="GENERAL PUBLIC">
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="false" DELETE="false" />
 </rights:Context>
</rights:RightsDeclarationMD>

As of DSpace 3, DSpace policies/permissions may also have a "start-date" or "end-date" (to support functionality). Such a policy on an Item may Embargo
look like this. Notice it specifies that the "GENERAL PUBLIC" has the permission to DISCOVER or DISPLAY this object 2015-01-01, while the starting on
Group "Staff" has permission to DISCOVER or DISPLAY this object 2015-01-01.until

<rights:RightsDeclarationMD xmlns:rights="http://cosimo.stanford.edu/sdr/metsrights/" RIGHTSCATEGORY="LICENSED">
 <rights:Context CONTEXTCLASS="GENERAL PUBLIC" start-date="2015-01-01" in-effect="false">
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="false" DELETE="false" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="MANAGED_GRP" end-date="2015-01-01" in-effect="true">
 <rights:UserName USERTYPE="GROUP">Staff</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="false" DELETE="false" />
 </rights:Context>
</rights:RightsDeclarationMD>

Example of METSRights Schema for a Collection

A Collection AIP contains one METSRights section, which describes the permissions different Groups or People have within the Collection

Below is an example of a METSRights sections for a publicly visible Collection, which also has an Administrator group, a Submitter group, and a group for
each of the three DSpace workflow approval steps. You'll notice that each of the groups is provided with very specific permissions within the Collection.
Submitters & Workflow approvers can "ADD CONTENTS" to a collection (but cannot delete the collection). Administrators have full rights.

<rights:RightsDeclarationMD xmlns:rights="http://cosimo.stanford.edu/sdr/metsrights/" RIGHTSCATEGORY="LICENSED">
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COLLECTION_hdl:123456789/2_SUBMIT</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="true" DELETE="false" OTHER="true"

687

OTHERPERMITTYPE="ADD CONTENTS" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COLLECTION_hdl:123456789/2_WORKFLOW_STEP_3</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="true" DELETE="false" OTHER="true"
OTHERPERMITTYPE="ADD CONTENTS" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COLLECTION_hdl:123456789/2_WORKFLOW_STEP_2</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="true" DELETE="false" OTHER="true"
OTHERPERMITTYPE="ADD CONTENTS" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COLLECTION_hdl:123456789/2_WORKFLOW_STEP_1</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="true" DELETE="false" OTHER="true"
OTHERPERMITTYPE="ADD CONTENTS" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COLLECTION_hdl:123456789/2_ADMIN</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" COPY="true" DUPLICATE="true" MODIFY="true" DELETE="true"
PRINT="true" OTHER="true" OTHERPERMITTYPE="ADMIN" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="GENERAL PUBLIC">
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="false" DELETE="false" />
 </rights:Context>
</rights:RightsDeclarationMD>

Example of METSRights Schema for a Community

A Community AIP contains one METSRights section, which describes the permissions different Groups or People have within that Community.

Below is an example of a METSRights sections for a publicly visible Community, which also has an Administrator group. As you'll notice, this content looks
very similar to the Collection METSRights section (as described above)

<rights:RightsDeclarationMD xmlns:rights="http://cosimo.stanford.edu/sdr/metsrights/" RIGHTSCATEGORY="LICENSED">
 <rights:Context CONTEXTCLASS="MANAGED_GRP">
 <rights:UserName USERTYPE="GROUP">COMMUNITY_hdl:123456789/10_ADMIN</rights:UserName>
 <rights:Permissions DISCOVER="true" DISPLAY="true" COPY="true" DUPLICATE="true" MODIFY="true" DELETE="true"
PRINT="true" OTHER="true" OTHERPERMITTYPE="ADMIN" />
 </rights:Context>
 <rights:Context CONTEXTCLASS="GENERAL PUBLIC">
 <rights:Permissions DISCOVER="true" DISPLAY="true" MODIFY="false" DELETE="false" />
 </rights:Context>
</rights:RightsDeclarationMD>

688

Ant targets and options

1 Options
2 Targets

Ant targets should be run as the service user

A word of warning: in order to ensure proper permissions and file ownership are maintained, you are advised to run these ant targets as the service user
(commonly 'dspace' or 'tomcat'). Running them as any other user may cause permission problems

Options
DSpace allows three property values to be set using the -D<property>=<value> option. They may be used in other contexts than noted below, but take
care to understand how a particular property will affect a target's outcome.

overwrite

Whether to overwrite configuration files in [dspace]/config. If true, files from [dspace]/config and subdirectories are backed up with .old extension and
new files are installed from [dspace-src]/dspace/config and subdirectories; if false, existing config files are untouched, and new files are written beside
them with .new extension.

Possible values: true, false

Default: true

Context: update, init_configs

config

If a path is specified, ant uses values from the specified file and installs it in [dspace]/config in the appropriate contexts.

Possible
values:

path to configuration file to be used

Default: [dspace-src]/config/dspace.cfg

Context: update, update_configs, update_code, update_webapps, init_configs, fresh_install, test_database, setup_database, load_registries,
clean_database

wars

If true, builds .war files; if false, no .war files are built.

Possible values: true, false

Default: true

Context: update, update_webapps, fresh_install

Targets

Target Effect

update Creates backup copies of the [dspace]/bin, /etc, /lib, and /webapps directories with the form /<directory>.bak-<date-time>. Creates new
copies of [dspace]/config, /etc, and /lib directories. Does not affect data files or the database. (See , , options.)overwrite config war

update_
configs

Updates the [dspace]/config directory with new configuration files. (See option.)config

update_
code

Creates backup copies of the [dspace]/bin, /etc, and /lib directories with the form /<directory>.bak-<date-time>. Creates new copies of
[dspace]/config, /etc, and /lib directories. (See option.)config

update_
webapps

Updates [dspace]/webapps directory. (See , options.)config war

init_con
figs

Writes configuration files to [dspace]/config. (See , options.)overwrite config

689

install_c
ode

Deletes existing [dspace]/bin, /lib, and /etc directories, and installs new copies; overwrites /solr application files, leaving data intact. (See conf
 option.)ig

fresh_in
stall

Performs a fresh installation of the software, including the database & config. (See , options.)config war

test_dat
abase

Tests database connection using parameters specified in dspace.cfg. (See option.)config

clean_b
ackups

Removes [dspace]/bin, /etc, /lib, and /webapps directories with .bak* extensions.

690

Command Line Operations

1 Executing command line operations
2 Available operations

2.1 General use
2.2 Legacy statistics
2.3 SOLR Statistics

The DSpace command launcher or CLI interface offers the execution of different maintenance operations. As most of these are already documented in
related parts of the documentation, this page is mainly intended to provide an overview of all available CLI operations, with links to the appropriate
documentation.

Executing command line operations

The CLI interface is found at . Execute it without arguments or with the option to see all available operations. Execute [dspace]/bin/dspace -h dspac
 to see details about the operation.e -hop op

Examples:

bin/dspace -h

bin/dspace cleanup -h

bin/dspace cleanup

bin/dspace cleanup --verbose

Available operations
Some operations can also be run as "Processes" (or Scripts) from the administrative User Interface or . Those Scripts have a detailed REST API
description in our REST API documentation at https://github.com/DSpace/RestContract/blob/main/scripts/

General use

bitstore-migrate: Migrate all files (bitstreams) from one assetstore (bitstore) to another
checker: Run the checksum checker
checker-emailer: Send emails related to the checksum checker
classpath: Calculate and display the DSpace classpath
cleanup: Remove deleted bitstreams from the assetstore
community-filiator: Tool to manage community and sub-community relationships
create-administrator: Create a DSpace administrator account (see)Installing DSpace
curate: Perform curation tasks on DSpace objects
database: Perform various tasks / checks of the DSpace database
doi-organiser: Transmit information about DOIs to the registration agency.
dsprop: View the value of a DSpace property from any configuration file (see)Configuration Reference
dsrun: Run a (DSpace) Java class directly (used mainly for test purposes)
embargo-lifter: Pre DSpace 3.0 embargo manager tool used to check, list and lift embargoes
export: Export items or collections
filter-media: Perform the media filtering to extract full text from documents and to create thumbnails
generate-sitemaps: Generate search engine and html sitemaps (see)Search Engine Optimization
harvest: Manage the OAI-PMH harvesting of external collections (see harvesting docs)OAI
import: Import items into DSpace (see)Importing and Exporting Items via Simple Archive Format
index-authority: import authorities and keep SOLR authority index up to date
index-discovery: Update (Solr) search and browse IndexDiscovery
itemupdate: Item update tool for altering metadata and bitstream content in items (see)Updating Items via Simple Archive Format
make-handle-config: Run the handle server simple setup command
metadata-export: Export metadata for batch editing
metadata-import: Import metadata after batch editing
migrate-embargo: Embargo manager tool used to migrate old version of Embargo to the new one included in dspace3
oai: OAI script manager
packager: Execute a packager
process-cleaner: Delete old Processes from the system
rdfizer: tool to convert contents to RDF
read : execute a stream of commands from a file or pipe
registry-loader: Load entries into a registry (see)Metadata and Bitstream Format Registries
structure-builder: Build DSpace community and collection structure (see)Exporting and Importing Community and Collection Hierarchy
sub-daily: Send daily subscription notices
test-email: Test the DSpace email server settings are OK
update-handle-prefix: Update handle records and metadata when moving from one Handle prefix to another
user: Create, List, Update, Delete EPerson (user) records
validate-date: Test date-time format rules
version: Show DSpace version and other troubleshooting information

691

https://github.com/DSpace/RestContract/blob/main/scripts/
https://wiki.lyrasis.org/display/DSDOC8x/Storage+Layer#StorageLayer-MigrateBitStores
https://wiki.lyrasis.org/display/DSDOC8x/DOI+Digital+Object+Identifier#DOIDigitalObjectIdentifier-CommandLineInterface
https://wiki.duraspace.org/display/DSDOC6x/ORCID+Integration#ORCIDIntegration-Importingexistingauthors&keepingtheindexuptodate
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Installing+DSpace+%28OLD+-+to+be+removed%29
https://wiki.lyrasis.org/display/DSDOC8x/Embargo#Embargo-Pre-3.0EmbargoMigrationRoutine
https://wiki.duraspace.org/display/DSDOC6x/OAI+2.0+Server#OAI2.0Server-OAIManager(SolrDataSource)
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Installing+DSpace+%28OLD+-+to+be+removed%29
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Installing+DSpace+%28OLD+-+to+be+removed%29

Legacy statistics
DSpace 7.x does not yet support

Legacy/log based statistics are not available in DSpace 7.x. They are under discussion as this feature is not widely used. Tentatively, they are scheduled
for possible removal. See https://github.com/DSpace/DSpace/issues/2852
Legacy statistics parse the DSpace log files and compile information based on the "[dspace]/config/dstat.cfg" configuration file. They are no longer actively
maintained, but still exist in the codebase because there is information they report on that is not yet accessible in (or replaced by) . Where SOLR Statistics
possible, we recommend using and/or for more accurate data.SOLR Statistics Google Analytics

stat-general: Compile the general statistics
stat-initial: Compile the initial statistics
stat-monthly: Compile the monthly statistics
stat-report-general: Create the general statistics report
stat-report-initial: Create the initial statistics report
stat-report-monthly: Create the monthly statistics report

SOLR Statistics

Scripts for the statistics that are stored in :SOLR

solr-export-statistics:Export Solr statistics data to CSV (for backup or moving to another server)
solr-import-statistics: Import Solr statistics data from CSV (for restoration, or moving to another server)
solr-reindex-statistics: Reindex Solr statistics data (for upgrades or updates to Solr schema)
stats-log-converter: Convert dspace.log files ready for import into solr statistics
stats-log-importer: Import previously converted log files into solr statistics
stats-util: Statistics Client for Maintenance of Solr Statistics Indexes

692

https://github.com/DSpace/DSpace/issues/2852

Executing streams of commands
You can pass a sequence of commands into the command-line tool using the command.dspace read

Execute commands... this way

...from a file [dspace]/bin/dspace read a-command-file

...in a pipeline some-other-command | bin/dspace read -[dspace]/

some-other-command | bin/dspace read[dspace]/

693

Database Utilities

This command can be used at any time to manage or upgrade the Database. It will also assist in troubleshooting PostgreSQL and Oracle connection
issues with the database.

Command
used:

[dspace]/bin/dspace database

Java class: org.dspace.storage.rdbms.DatabaseUtils

Valid
Arguments:

Description

test Test the database connection settings (in or) are OK and working properly. This [dspace]/config/dspace.cfg local.cfg
command also validates the database version is compatible with DSpace.

info Provide detailed information about the DSpace database itself. This includes the database type, version, driver, schema, and any
successful/failed/pending database migrations.

This command, along with "test", is very useful in debugging issues with your database.

migrate Migrate the database to the latest version (if not already on the latest version). This uses along with embedded migrations FlywayDB
scripts to automatically update your database to the latest version.

Additional 'migrate' options:

" " will run a migration which any database migrations which are flagged as "Ignored" (or migrate ignored also includes
"Skipped") by the "info" command. If these "Ignored" migrations succeed, they will now be noted (in the "info" command) as
having run "Out Of Order" (i.e. they were successful, but they were executed out of the normal, numerical order).
" " () will run a migration (i.e. no migrations are migrate force available in 7.1 and later even when no new migrations exist
currently flagged as "Pending" when using the "info" command). This can be used to force the post-migration ("callback") scripts
to run. Normally, these post-migration scripts only run after a new migrations are applied. They will (re-)initialize your database
with required objects, like the "Site" object, default groups (Administrator/Anonymous) and default metadata registry and bitstream
format registry entries.

repair Attempt to "repair" any migrations which are flagged as "Failed" by the "info" command . This and/or resolve failed checksum validation
runs the FlywayDB repair command.

Please note however, this will NOT automatically repair corrupt or broken data in your database. It merely tries to re-run previously
"Failed" migrations and/or realign the checksums of the applied migrations to the ones of the available migrations.

skip (Available in 7.5 and later) Allows you to "skip" individual database migrations. Skipping a migration will flag it as having run
successfully (either "Success" or "Out of Order" status), but the migration will not be executed.

WARNING: You should ONLY skip migrations which are no longer required or have become obsolete. Skipping a REQUIRED
migration may result in DSpace failing to startup or function properly. The only fix to that scenario would be to run the migration
manually (by executing the SQL directly on the database). Therefore, this "skip" command should ONLY be used when the migration
is known to be obsolete or no longer valid. All other usages are unsupported.

update-
sequences

Update database sequences after running a bulk ingest (e.g.) or data migration.AIP Backup and Restore

validate Validate the checksums of all previously run database migrations. This runs the .FlywayDB 'validate' command

clean Completely and permanently delete all tables and data in this database. WARNING: There is no turning back! If you run this command,
you will lose your entire database and all its contents.

This command is only useful for testing or for reverting your database to a "fresh install" state (e.
g. running " " followed by " " will dspace database clean dspace database migrate

return your database to a fresh install state)

By default the 'clean' command is (to avoid accidental data loss). In order to enable it, disabled
you must first set in either your local.cfg or dspace.cfg.db.cleanDisabled=false

694

http://Flywaydb.org
https://flywaydb.org/documentation/command/repair
https://flywaydb.org/documentation/command/validate

1.

a.

2.

3.

4.

5.

Handle.Net Registry Support
DSpace comes with support for . This feature is , as DSpace functions the same with or without CNRI's Handle.Net Registry (HNR) completely optional
using a Handle Server/Registry.

A few things to keep in mind:

You'll notice that while you've been playing around with a test server, DSpace has apparently been creating (fake) handles for you looking like hdl:
 and so forth. These aren't really Handles, since the global Handle system doesn't actually know about them, and lots of other 123456789/24

DSpace test installs will have created the same IDs. They're only really Handles once you've registered a prefix with CNRI (see below) and have
correctly set up the Handle server included in the DSpace distribution. This Handle server communicates with the rest of the global Handle
infrastructure so that anyone that understands Handles can find the Handles your DSpace has created.
If you want to use the Handle system, you'll need to set up a Handle server. One is included with DSpace.
If you want to use the Handle system, you'll need to obtain a Handle prefix from . This requires a small yearly fee to the central CNRI Handle site
CNRI
Again, all of this is But, the key benefit is that it provides you with persistent, permanent URLs (of the form completely optional. https://hdl.

 for every object within your DSpace site. Those persistent URLs may be useful for citations or even)handle.net/[prefix]/[suffix]
during upgrades/migrations, as DSpace + Handle.Net ensures that these URLs always go to the right object, even if your site's main URL
changes.

A Handle server runs as a separate process that receives TCP requests from other Handle servers, and issues resolution requests to a global server or
servers if a Handle entered locally does not correspond to some local content. The Handle protocol is based on TCP, so it will need to be installed on a
server that can send and receive TCP on port 2641.

You can either use a Handle server running on the same machine as DSpace, or you can install it on a separate machine. Installing it on the same
machine is a little bit easier. If you install it on a separate machine, you can use one Handle server for more than one DSpace installation.

To install your Handle resolver on the host where DSpace runs
To install a Handle resolver on a separate machine
To install a Handle resolver on a separate machine using template handles
Updating Existing Handle Prefixes

To install your Handle resolver on the host where DSpace runs
We recommend configuring your Handle server , as the current DSpace scripts do not yet support startup without a passphrase start-handle-server
with a passphrase.

If you choose to set a passphrase, you may need to start the Handle Server via: [dspace]\bin\dspace dsrun net.handle.server.Main
[dspace]\handle-server

To configure your DSpace installation to run the handle server, run the following command:

[dspace]/bin/make-handle-config

If you are using Windows, the proper command is:

[dspace]/bin/dspace dsrun net.handle.server.SimpleSetup [dspace]/handle-server

Ensure that matches whatever you have in for the property. You will need to answer a [dspace]/handle-server dspace.cfg handle.dir
series of qestions to configure the server. For the most part, you can use the default options, except you should choose to encrypt not
your certificates when prompted.

Edit the resulting file to include the following lines in the clause:[dspace]/handle-server/config.dct "server_config"

"storage_type" = "CUSTOM"
"storage_class" = "org.dspace.handle.HandlePlugin"
"enable_txn_queue" = "no"

This tells the Handle server to get information about individual Handles from the DSpace code and to disable transaction replication. If you used
the make-handle-config script, these should already be set in your config.dct file.
Once the configuration file has been generated, you will need to go to to upload the generated sitebndl.zip https://hdl.handle.net/4263537/5014
file. The upload page will ask you for your contact information. An administrator will then create the naming authority/prefix on the root service
(known as the Global Handle Registry), and notify you when this has been completed. You will not be able to continue the handle server
installation until you receive further information concerning your naming authority.
When CNRI has sent you your naming authority prefix, you will need to edit the file. The file will be found in . config.dct /[dspace]/handle-server
Look for . Replace 123456789 with the assigned naming authority prefix sent to you. Also change the value of "300:0.NA/123456789" handle.

 in from "123456789" to your assigned naming authority prefix, so that DSpace will use that prefix in prefix [dspace]/config/local.cfg
assigning new Handles.
Now start your handle server (as the dspace user):

695

https://handle.net/
http://www.handle.net/
http://hdl.handle.net/4263537/5014

5.

a.

1.

2.

3.

4.

5.
6.

7.

8.
a.

[dspace]/bin/start-handle-server

If you are using Windows, there is a corresponding 'start-handle-server.bat' script:

[dspace]/bin/start-handle-server.bat

Note that since the DSpace code manages individual Handles, administrative operations such as Handle creation and modification aren't supported by
DSpace's Handle server.

To install a Handle resolver on a separate machine
This works with DSpace 7.4 and later.

The Handle server you use must be dedicated to resolve Handles from DSpace. You cannot use a Handle server that is in use with other software already.
You can use CNRI's Handle Software -- all you have to do is to add to it a plugin that is provided by DSpace. The following instructions were tested with
CNRI's Handle software version 9.1.0. You can do the following steps on another machine than the machine DSpace runs on, but you have to copy some
files from the machine on which DSpace is installed.

Set the following two configuration properties for every DSpace backend that your are running:

DSpace backend configuration to activate the endpoints used by the remote handle resolver

handle.remote-resolver.enabled = true
handle.hide.listhandles = false

Download the CNRI Handle Software: . In the tarball you'll find an with installation instructions http:s//www.handle.net/download.html README.txt
-- follow it.
After installing the CNRI Handle Software you should have two directories: once that contains the CNRI software and one that contains the
configuration of you local Handle Server. For the rest of this instruction we assume that the directory containing the CNRI Software is handle-/hs/
9.1.0 and the directory containing the configuration of your local server is . (We use the same paths here as CNRIs README.txt.)/hs/srv_1
Download the plugin from . Select a release. You can get the source and build it https://github.com/DSpace/Remote-Handle-Resolver/releases
yourself, or just use the JAR file included in the release. In either case, once you have a , dspace-remote-handle-resolver-VERSION.jar
copy it to the directory containing the CNRI software (). /hs/handle-9.1.0/lib
Create the directory ./hs/srv_1/logs
Create the following two files in ./hs/srv_1

log4j-handle-plugin.properties

log4j.rootCategory=INFO, A1
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=/hs/srv_1/logs/handle-plugin.log
log4j.appender.A1.DatePattern= '.' yyyy-MM-dd
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d %-5p %c @ %m%n
log4j.logger.org.apache.axis.handlers.http.HTTPAuthHandler=INFO

Change the path in the third line, if necessary. It must point to the DSpace 7 Rest API (as configured in $dspace.server.url).

handle-dspace-plugin.cfg

dspace.handle.endpoint1 = http: //dspace.example.org/server

If you run more than one DSpace Installation, you may add more DSpace Endpoints. Just increase the number at the end of the key for each: en
dpoint2, endpoint3....
Edit file to include the following lines in the clause: the /hs/srv_1/config.dct " server_config "

"storage_type" = "CUSTOM"
"storage_class" = "org.dspace.handle.MultiRemoteDSpaceRepositoryHandlePlugin"

Edit :/hs/handle-9.1.0/bin/hdl
Find a line that contains exec java ... net.handle.server.Main ...

696

http://www.handle.net/download.html
https://github.com/DSpace/Remote-Handle-Resolver/releases

8.

b.

9.

1.
2.

1.
2.

3.

4.

Add "-Dlog4j.configuration=file:///hs/srv_1/log4j-handle-plugin.properties -Ddspace.handle.plugin.
" right in front of .configuration=/hs/srv_1/handle-dspace-plugin.cfg net.handle.server.Main

If your handle server is running, restart it.

Please note: The Handle Server will only start if it is able to connect to at least one running DSpace Installation. It only resolves the handles of the
DSpace Installations that were running when it was started.

To install a Handle resolver on a separate machine using template handles

Instead of using the described plugin above, you can configure a Handle server (version 8+) to resolve handles based on a template. Template handle
require less configuration than the plugin, and do not require an additional download. However, there are two things to keep in mind when using template
handles:

Handles that don't exist will still generate a Handle record with a URL, even though resolving that URL will show an error page.
Handle records can only be generated based on the handle and the template. If you need to look up information in DSpace in or to geneate the
correct url for a given handle, you will need to use a storage plugin instead.

The Handle server you use must be dedicated to resolve Handles from DSpace. You cannot use a Handle server that is in use with other software already.
The following instructions were tested with CNRI's Handle software version 9.1.0.

Download the CNRI Handle Software: .https://www.handle.net/download.html
In the tarball you'll find an with installation instructions. Follow the directions to install and configure your Handle server. Importantly, README.txt
make sure your prefixes are set correctly in the "auto_homed_prefixes" setting.
Edit file to include the following line in the clause: the server's config.dct " server_config "

"namespace" = "<namespace><template delimiter'/'><value type='URL' index='1' data='https://demo.dspace.
org/handle/${handle}'/></template></namespace>"

In the "namespace" section, replace " " with the url endpoint for your DSpace server. The "${handle}" https://demo.dspace.org/handle/
part of the template will be replaced with the full handle to be resolved.
If your handle server is running, restart it.

This configuration is a minimal example of how to configure template handles for DSpace. For more details about configuring template handles, see the Ha
 (PDF download).ndle Technical Manual, Chapter 11

Updating Existing Handle Prefixes

If you need to update the handle prefix on items created before the CNRI registration process you can run the [dspace]/bin/dspace update-handle-prefix
. You may need to do this if you loaded items prior to CNRI registration (e.g. setting up a demonstration system prior to migrating it to production). script

The script takes the current and new prefix as parameters. For example:

[dspace]/bin/dspace update-handle-prefix 123456789 1303

This script will change any handles currently assigned prefix 123456789 to prefix 1303, so for example handle 123456789/23 will be updated to 1303/23 in
the database.

697

https://www.handle.net/download.html
https://hdl.handle.net/20.1000/113
https://hdl.handle.net/20.1000/113

Logical Item Filtering and DOI Filtered Provider for DSpace

Section One: DSpace Logical Item filtering (org.dspace.content.logic.*)
LogicalStatement
Filters
Operators
Conditions
Configuring Filters in Spring
Running Tests on the Command Line
Using Filters in other Spring Services

Section Two: DOI Filtered Provider
New FilteredProvider: DOIIdentifierProvider
Skip the filter

Section One: DSpace Logical Item filtering (org.dspace.content.logic.*)

Inspired by the powerful conditional filters in XOAI, this component offers a simple but flexible way to write logical statements and tests, and use the results
of those tests in other services or DSpace code.

LogicalStatement

LogicalStatement is a simple interface ultimately implemented by all the other interfaces and classes described below. It just requires that a class
implements a method.Boolean getResult(context, item)

Filters

Filters are at the root of any test definition, and it is the filter ID that is used to load up the filter in spring configurations for other services, or with DSpace
Service Manager.

A filter bean is defined with a single “statement” property - this could be an Operator, to begin a longer logical statement, or a Condition, to perform a
simple check.

There is one simple implementation of Filter included - DefaultFilter.

Operators

Operators are the basic logical building blocks that implement operations like AND, OR, NOT, NAND and NOR. An Operator can contain any number of
other Operators or Conditions.

So statements like this can be created:

(AND (OR) AND AND (OR NOT())x y z a b d

Conditions

Conditions are where the actual DSpace item evaluation code is written. A condition accepts a Map<String, Object> map of parameters. Conditions don’t
contain any other LogicalStatement classes – the are at the bottom of the chain.

A condition could be something like MetadataValueMatchCondition, where a regex pattern and field name are passed as parameters, then tested against
actual item metadata. If the regex matches, the boolean result is true.

Typically, commonly used Conditions will be defined as beans elsewhere in the spring config and then referenced inside Filters and Operators to create
more complex statements.

Configuring Filters in Spring

Conditions, Operators and Filters are all defined in ${dspace}/config/spring/api/item-filters.xml

Here’s a complete example of a filter definition that implements the same rules as the XOAI . As an exercise, some statements will be openAireFilter
defined as beans externally, and some will be defined inline as part of the filter.

New Condition: driver-document-type_condition

This condition creates a new bean to test metadata values. In this case, we’re implementing “ends with” for a list of type patterns.

698

<!-- dc.type ends with any of the listed values, as per XOAI "driverDocumentTypeCondition" -->
 <bean id="driver-document-type_condition"
 class="org.dspace.content.logic.condition.MetadataValuesMatchCondition">
 <property name="parameters">
 <map>
 <entry key="field" value="dc.type" />
 <entry key="patterns">
 <list>
 <value>article$</value>
 <value>bachelorThesis$</value>
 <value>masterThesis$</value>
 <value>doctoralThesis$</value>
 <value>book$</value>
 <value>bookPart$</value>
 <value>review$</value>
 <value>conferenceObject$</value>
 <value>lecture$</value>
 <value>workingPaper$</value>
 <value>preprint$</value>
 <value>report$</value>
 <value>annotation$</value>
 <value>contributionToPeriodical$</value>
 <value>patent$</value>
 <value>dataset$</value>
 <value>other$</value>
 </list>
 </entry>
 </map>
 </property>
 </bean>

New Condition: item-is-public_condition

This condition accepts group and action parameters, then inspects item policies for a match - if the supplied group can perform the action, the result is true.

<bean id="item-is-public_condition"
 class="org.dspace.content.logic.condition.ReadableByGroupCondition">
 <property name="parameters">
 <map>
 <entry key="group" value="Anonymous" />
 <entry key="action" value="READ" />
 </map>
 </property>
</bean>

New Filter: openaire_filter

Here is the full definition for the OpenAIRE filter.

The first statement is an And Operator, with many sub-statements – four Conditions, and an Or statement.

The first two statements in this Operator are simple Conditions defined in-line, and just check for a non-empty value in a couple of metadata fields.

The third statement is a reference to the document type Condition we made earlier:
<ref bean="driver-document-type_condition" />

The fourth statement is another Operator, in this case an Or Operator with two Conditions (the is-public Condition we defined earlier, and an in-line
definition of as “is-withdrawn” Condition)

The fifth statement is an in-line definition of a Condition that checks dc.relation metadata for a valid OpenAIRE identifier.

So the full logic implemented is:

(has-title AND has-author AND has-driver-type AND (is-public OR is-withdrawn) AND has-valid-relation)

699

<!-- An example of an OpenAIRE compliance filter based on the same rules in xoai.xml
 some sub-statements are defined within this bean, and some are referenced from earlier definitions
-->
<bean id="openaire_filter" class="org.dspace.content.logic.DefaultFilter">
 <property name="statement">
 <bean class="org.dspace.content.logic.operator.And">
 <property name="statements">
 <list>
 <!-- Has a non-empty title -->
 <bean id="has-title_condition"
 class="org.dspace.content.logic.condition.MetadataValueMatchCondition">
 <property name="parameters">
 <map>
 <entry key="field" value="dc.title" />
 <entry key="pattern" value=".*" />
 </map>
 </property>
 </bean>
 <!-- AND has a non-empty author -->
 <bean id="has-author_condition"
 class="org.dspace.content.logic.condition.MetadataValueMatchCondition">
 <property name="parameters">
 <map>
 <entry key="field" value="dc.contributor.author" />
 <entry key="pattern" value=".*" />
 </map>
 </property>
 </bean>
 <!-- AND has a valid DRIVER document type (defined earlier) -->
 <ref bean="driver-document-type_condition" />
 <!-- AND (the item is publicly accessible OR withdrawn) -->
 <bean class="org.dspace.content.logic.operator.Or">
 <property name="statements">
 <list>
 <!-- item is public, defined earlier -->
 <ref bean="item-is-public_condition" />
 <!-- OR item is withdrawn, for tombstoning -->
 <bean class="org.dspace.content.logic.condition.IsWithdrawnCondition">
 <property name="parameters"><map></map></property>
 </bean>
 </list>
 </property>
 </bean>
 <!-- AND the dc.relation is a valid OpenAIRE identifier
 (starts with "info:eu-repo/grantAgreement/") -->
 <bean id="has-openaire-relation_condition"
 class="org.dspace.content.logic.condition.MetadataValueMatchCondition">
 <property name="parameters">
 <map>
 <entry key="field" value="dc.relation" />
 <entry key="pattern" value="^info:eu-repo/grantAgreement/" />
 </map>
 </property>
 </bean>
 </list>
 </property>
 </bean>
 </property>
</bean>

Running Tests on the Command Line

There is a launcher command that can arbitrarily run tests on an item or all items, eg.

${dspace}/bin/dspace dsrun org.dspace.content.logic.TestLogicRunner -f openaire_filter -i 123456789/100

A simple or is printed for each item tested.true false

Using Filters in other Spring Services

The Filter beans can be referenced (or defined) in other services, for instance, here is adding the bean we configured earlier, as a to a new filterService Fil
:teredDOIIdentifierProvider

700

<bean id="org.dspace.identifier.DOIIdentifierProvider"
 class="org.dspace.identifier.FilteredDOIIdentifierProvider"
 scope="singleton">
 <property name="configurationService"
 ref="org.dspace.services.ConfigurationService" />
 <property name="DOIConnector"
 ref="org.dspace.identifier.doi.DOIConnector" />
 <property name="filterService"
 ref="openaire_filter"/>
</bean>

In the provider, we just define the property with the other services and class variables:

private Filter filterService;

And make sure there is a setter for it:

@Required
public void setFilterService(Filter filterService) {
 this.filterService = filterService;
}

Then you can actually run the tests with the service, like this:

try {
 Boolean result = filterService.getResult(context, (Item) dso);
 // do something with result
} catch(LogicalStatementException e) {
 // ... handle exception ...
}

In the TestLogicRunner, you can see a way to get the filters by name using the DSpaceServiceManager as well.

Section Two: DOI Filtered Provider

New FilteredProvider: DOIIdentifierProvider

DOIIdentifierProvider now extends a base FilteredIdentifierProvider, which looks for any configured filters and only allows minting DOIs for items where the
filter returns true

This filter is always applied to the DOI consumer and other internal DOI service calls, and is applied by default to the `doi-organiser` tool (though it can be
optionally skipped with a command-line argument)

The filter is a spring property configured in identifier-service.xml, in the provider bean declaration.

The filterService property is If it is missing from spring configuration, all items will get DOIs minted as per normal and the provider's filter service .optional
will be null.

It is defined as follows:

<bean id="org.dspace.identifier.DOIIdentifierProvider"
 class="org.dspace.identifier.FilteredDOIIdentifierProvider"
 scope="singleton"> <property name="configurationService"
 ref="org.dspace.services.ConfigurationService" />
 <property name="DOIConnector" ref="org.dspace.identifier.doi.DOIConnector" />
 <property name="filterService" ref="openaire_filter"/>
</bean>

Where the "openaire_filter" reference is the ID of a filter bean defined in item-filters.xml

Skip the filter

In Edite Item administrators have a button to assign DOIs to item that don't have any yet. This skips the filters, as we assume administrators to know what
they are doing. Since DSpace 7 there is a curation task that register DOIs for any item that does not have any. In the configuration of that curation task,
you can specify whether filters should be skipped or respected. The curation task itself is configured in ${dspace}/config/modules/curate.cfg as 'registerdoi'
with the label "Register DOI". There is a configuration file in ${dspace}/config/modules/doi-curation.cfg that can be used to customise the behaviour
regarding filter skipping, and distribution over multiple items.

701

DOI registration curation task configuration module

##
Should any logical filters be skipped when registering DOIs? (ie. *always* register, never filter out the item)
Default: true
#doi-curation.skip-filter = true

##
Should we allow the curation task to be distributed over communities / collections of items or the whole
repository?
This *could* be dangerous if run accidentally over more items than intended.
Default: false
#doi-curation.distributed = false

702

Mediafilters for Transforming DSpace Content

1 MediaFilters: Transforming DSpace Content
1.1 Overview
1.2 Available Media Filters
1.3 Enabling/Disabling MediaFilters
1.4 Executing (via Command Line)
1.5 Creating Custom MediaFilters

1.5.1 Creating a simple Media Filter
1.5.2 Creating a Dynamic or "Self-Named" Format Filter

1.6 Configuration parameters

MediaFilters: Transforming DSpace Content

Overview

DSpace can apply filters or transformations to files/bitstreams, creating new content. Filters are included that extract text for , and full-text searching
create for items that contain images. The media filters are controlled by the script which traverses the asset store, thumbnails dspace filter-media
invoking all configured or classes on files/bitstreams (see for more information on how they are MediaFilter FormatFilter Configuring Media Filters
configured).

Available Media Filters

Below is a listing of all currently available Media Filters, and what they actually do:

Name Java Class Function Default input formats Enabled
by
Default?

Text
Extractor
(7.3 or
above)

org.dspace.app.
mediafilter.
TikaTextExtract
ionFilter

As of 7.3, all text extraction for Full text indexing takes place in a single filter. This
filter uses which supports a wide variety of formats (e.g. Microsoft Apache Tika
products, PDF, HTML, Text, etc). Additional formats may be configured from the
Tika supported formats list at https://tika.apache.org/2.3.0/formats.html

Adobe PDF,
Microsoft formats (Word, PPT,
Excel), CSV, HTML, RTF, Text,
OpenDocument formats (Text,
Spreadsheet, Presentation)

yes

PDF Text
Extractor
(7.2 or
below)

org.dspace.app.
mediafilter.
PDFFilter

extracts the full text of Adobe PDF documents (only if text-based or OCRed) for full
text indexing. (Uses the tool)Apache PDFBox

Adobe PDF yes

HTML
Text
Extractor
(7.2 or
below)

org.dspace.app.
mediafilter.
HTMLFilter

extracts the full text of HTML documents for full text indexing. (Uses Swing's HTML
)Parser

HTML, Text yes

Word
Text
Extractor
(7.2 or
below)

org.dspace.app.
mediafilter.
PoiWordFilter

extracts the full text of Microsoft Word and Microsoft Word XML documents for full
text indexing. (Uses the tools.)"Apache POI"

Microsoft Word, Microsoft Word
XML

yes

Excel Text
Extractor
(7.2 or
below)

org.dspace.app.
Excmediafilter.

elFilter

extracts the full text of Microsoft Excel documents for full text indexing. (Uses the "Ap
ache POI" tools.)

Microsoft Excel, Microsoft
Excel XML

yes

PowerPoi
nt Text
Extractor
(7.2 or
below)

org.dspace.app.
mediafilter.
PowerPointFilter

extracts the full text of slides and notes in Microsoft PowerPoint and PowerPoint
XML documents for full text indexing. (Uses the tools.)Apache POI

Microsoft Powerpoint, Microsoft
Powerpoint XML

yes

PDFBox
JPEG
Thumbnail

org.dspace.app.
mediafilter.
PDFBoxThumbnail

creates thumbnail images of the first page of PDF files Adobe PDF yes

JPEG
Thumbnail

org.dspace.app.
mediafilter.
JPEGFilter

creates thumbnail images of GIF, JPEG and PNG files BMP, GIF, JPEG, image/png yes

Branded
Preview
JPEG

org.dspace.app.
mediafilter.
BrandedPreviewJ
PEGFilter

creates a branded preview image for GIF, JPEG and PNG files BMP, GIF, JPEG, image/png no

703

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-ConfiguringMediaFilters
https://tika.apache.org/
https://tika.apache.org/2.3.0/formats.html
http://pdfbox.apache.org/
http://java.sun.com/products/jfc/tsc/articles/bookmarks/
http://java.sun.com/products/jfc/tsc/articles/bookmarks/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
http://poi.apache.org

ImageMa
gick
Image
Thumbnail
Generator

org.dspace.app.
mediafilter.
ImageMagickImag
eThumbnailFilter

Uses ImageMagick to generate thumbnails for image bitstreams. Requires
installation of on your server. See .ImageMagick ImageMagick Media Filters

BMP, GIF, image/png, JPG,
TIFF, JPEG, JPEG 2000

no

ImageMa
gick PDF
Thumbnail
Generator

org.dspace.app.
mediafilter.
ImageMagickPdfT
humbnailFilter

Uses ImageMagick and Ghostscript to generate thumbnails for PDF bitstreams.
Requires installation of and on your server. ImageMagick Ghostscript See ImageMa
gick Media Filters.

Adobe PDF no

Please note that the script will automatically update the DSpace search index by default.filter-media

Enabling/Disabling MediaFilters

The media filter plugin configuration in contains a list of all enabled media/format filter plugins (see filter.plugins dspace.cfg Configuring Media
 for more information). By modifying the value of you can disable or enable MediaFilter plugins. The setting Filters filter.plugins filter.plugins

can be set multiple times to enable multiple filters. Each filter must be enabled via its name (see "Name" column in the table above).

Enable the default Text Extractor (for 7.3 or above)
filter.plugins = Text Extractor

Enable the JPEG thumbnail creator
filter.plugins = JPEG Thumbnail

Enable the PDF thumbnail creator
filter.plugins = PDFBox JPEG Thumbnail

Executing (via Command Line)

The media filter system is intended to be run from the command line (or regularly as a cron task):

[dspace]/bin/dspace filter-media

With no options, this traverses the asset store, applying media filters to bitstreams, and skipping bitstreams that have already been filtered.

Available Command-Line Options:

Help : [dspace]/bin/dspace filter-media -h
Display help message describing all command-line options.

Force mode : [dspace]/bin/dspace filter-media -f
Apply filters to ALL bitstreams, even if they've already been filtered. If they've already been filtered, the previously filtered content is
overwritten.

Identifier mode : [dspace]/bin/dspace filter-media -i 123456789/2
Restrict processing to the community, collection, or item named by the identifier - by default, all bitstreams of all items in the repository
are processed. The identifier must be a Handle, not a DB key. This option may be combined with any other option.

Maximum mode : [dspace]/bin/dspace filter-media -m 1000
Suspend operation after the specified maximum number of items have been processed - by default, no limit exists. This option may be
combined with any other option.

Plugin mode : [dspace]/bin/dspace filter-media -p "PDF Text Extractor","Word Text Extractor"
Apply ONLY the filter plugin(s) listed (separated by commas). By default all named filters listed in the field of are filter.plugins dspace.cfg
applied. This option may be combined with any other option. multiple plugin names must be separated by a comma (i.e. ',') WARNING:
and NOT a comma followed by a space (i.e. ', ').

Skip mode : [dspace]/bin/dspace filter-media -s 123456789/9,123456789/100
SKIP the listed identifiers (separated by commas) during processing. The identifiers must be Handles (not DB Keys). They may refer to
items, collections or communities which should be skipped. This option may be combined with any other option. multiple WARNING:
identifiers must be separated by a comma (i.e. ',') and NOT a comma followed by a space (i.e. ', ').
NOTE: If you have a large number of identifiers to skip, you may maintain this list, one identifier per line, within a separate file (e.g. filter-

). Use the following format to call the program.skiplist.txt
[dspace]/bin/dspace filter-media -s $(paste -sd, - < filter-skiplist.txt)

Verbose mode : [dspace]/bin/dspace filter-media -v
Print all extracted text and other filter details to STDOUT.

Creating Custom MediaFilters

Adding your own filters is done by creating a class which the interface. See the implements org.dspace.app.mediafilter.FormatFilter Creating
 topic and comments in the source file for more information. In theory filters could be implemented in any a new Media/Format Filter FormatFilter.java

programming language (C, Perl, etc.) However, they need to be invoked by the Java code in the Media Filter class that you create.

Creating a simple Media Filter

704

http://www.imagemagick.org/
http://www.imagemagick.org/
http://www.ghostscript.com/
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-ConfiguringMediaFilters
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-ConfiguringMediaFilters
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-CreatinganewMedia/FormatFilter
https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-CreatinganewMedia/FormatFilter

New Media Filters the interface. More information on the methods you need to implement is must implement org.dspace.app.mediafilter.FormatFilter
provided in the source file. For example:FormatFilter.java

public class MySimpleMediaFilter implements FormatFilter

Alternatively, you could extend the class, which just defaults to performing no pre/post-processing of bitstreams org.dspace.app.mediafilter.MediaFilter
before or after filtering.

public class MySimpleMediaFilter extends MediaFilter

You must give your new filter a "name", by adding it and its name to the field in . In plugin.named.org.dspace.app.mediafilter.FormatFilter dspace.cfg
addition to naming your filter, make sure to specify its input formats in the config item. Note the input formats must match filter.<class path>.inputFormats
the field in the Bitstream Format Registry (i.e. table).short description bitstreamformatregistry

plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MySimpleMediaFilter = My Simple Text Filter, \ ...

filter.org.dspace.app.mediafilter.MySimpleMediaFilter.inputFormats =
 Text

If you neglect to define the for a particular filter, the will never call that filter, since it will never find a bitstream which has inputFormats MediaFilterManager
a format matching that filter's input format(s).

If you have a complex Media Filter class, which actually performs different filtering for different formats (e.g. conversion from Word to PDF conversion and
from Excel to CSV), you should define this as described in Chapter 13.3.2.2 .

Creating a Dynamic or "Self-Named" Format Filter

If you have a more complex Media/Format Filter, which actually performs filtering or conversions for different formats (e.g. conversion from Word multiple
to PDF conversion from Excel to CSV), you should have define a class which implements the interface, while also extending the Chapter and FormatFilter
13.3.2.2 class. For example:SelfNamedPlugin

public class MyComplexMediaFilter extends SelfNamedPlugin implements FormatFilter

Since are self-named (as stated), they must provide the various names the plugin uses by defining a getPluginNames() method. SelfNamedPlugins
Generally speaking, each "name" the plugin uses should correspond to a different type of filter it implements (e.g. "Word2PDF" and "Excel2CSV" are two
good names for a complex media filter which performs both Word to PDF and Excel to CSV conversions).

Self-Named Media/Format Filters are also configured differently in . Below is a general template for a Self Named Filter (defined by an dspace.cfg
imaginary class, which can perform both Word to PDF and Excel to CSV conversions):MyComplexMediaFilter

#Add to a list of all Self Named filters
plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MyComplexMediaFilter
#Define input formats for each "named" plugin this filter implements
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.inputFormats = Microsoft Word
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.inputFormats = Microsoft Excel

As shown above, each Self-Named Filter class must be listed in the item in plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter ds
. In addition, each Self-Named Filter define the input formats for defined by that filter. In the above example the pace.cfg must each named plugin MyCo

 class is assumed to have defined two named plugins, and . So, these two valid plugin names ("Word2PDF" and mplexMediaFilter Word2PDF Excel2CSV
"Excel2CSV") be returned by the method of the class.must getPluginNames() MyComplexMediaFilter

These named plugins take different input formats as defined above (see the corresponding setting).inputFormats

If you neglect to define the for a particular named plugin, the will never call that plugin, since it will never find a inputFormats MediaFilterManager
bitstream which has a format matching that plugin's input format(s).

For a particular Self-Named Filter, you are also welcome to define additional configuration settings in . To continue with our current example, dspace.cfg
each of our imaginary plugins actually results in a different output format (Word2PDF creates "Adobe PDF", while Excel2CSV creates "Comma Separated
Values"). To allow this complex Media Filter to be even more configurable (especially across institutions, with potential different "Bitstream Format
Registries"), you may wish to allow for the output format to be customizable for each named plugin. For example:

#Define output formats for each named plugin
filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.output Format = Adobe PDF
filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.outputFormat = Comma Separated Values

Any custom configuration fields in defined by your filter are ignored by the , so it is up to your custom media filter class to dspace.cfg MediaFilterManager
read those configurations and apply them as necessary. For example, you could use the following sample Java code in your class MyComplexMediaFilter
to read these custom configurations from :outputFormat dspace.cfg

705

#Get "outputFormat" configuration from dspace.cfg
String outputFormat = ConfigurationManager.getProperty(MediaFilterManager.FILTER_PREFIX + "." +
MyComplexMediaFilter.class.getName() + "." + this.getPluginInstanceName() + ".outputFormat");

Configuration parameters

Property textextractor.max-chars (only in 7.3 or above)

Example
Value

textextractor.max-chars = 100000

Information
al Note

By default, the "Text Extractor" only extracts the first 100,000 characters of text for full-text indexing. This setting allows you to increase or
decrease that default. Set to -1 for no maximum. Keep in mind that larger values (or -1) are more likely to encounter
OutOfMemoryException errors when extracting text from very large files. In those scenarios, you may wish to consider instead enabling
"textextractor.use-temp-file" below to better control memory usage.

Property textextractor.use-temp-file (only in 7.3 or above)

Example
Value

textextractor.use-temp-file = false

Information
al Note

By default, the "Text Extractor" will perform all text extraction in memory (i.e. textextractor.use-temp-file=false). This ensures text
extraction runs quickly, but it has the risk of hitting OutOfMemoryException errors if you either increase "textextractor.max-chars" or simply
don't have much available memory on the server. In those scenarios, you can set "textextractor.use-temp-file=true" in order to tell the text
extraction process to extract all text using a temporary file. This the memory usage of the text extraction process, but will run decreases
slightly slower.

Property filter.org.dspace.app.mediafilter.publicPermission

Example
Value

filter.org.dspace.app.mediafilter.publicPermission = JPEGFilter

Information
al Note

By default mediafilter derivatives / thumbnails inherit the permissions of the parent bitstream, but you can override this, in case you want
to make publicly accessible derivative / thumbnail content, typically the thumbnails of objects for the browse list. List the MediaFilter
names that would get public accessible permissions. Any media filters not listed will instead inherit the permissions of the parent bitstream.

706

1.

2.

3.

4.
a.

ImageMagick Media Filters

ImageMagick Media Filters

1 ImageMagick Media Filters
1.1 Overview
1.2 Installation
1.3 DSpace Configuration

1.3.1 Thumbnail Dimensions
1.3.2 Conversion Utility Path
1.3.3 Supported file formats
1.3.4 Overwriting Existing Thumbnails
1.3.5 Flatten
1.3.6 ICC Profiles
1.3.7 Override ImageMagick Default Density

1.4 Additional Customization
1.5 Possible Errors / Issues

1.5.1 "convert.im6: not authorized" errors
1.5.2 "convert-im6.q16: cache resources exhausted" errors

As of DSpace 7.6, the ImageMagick media filter also supports creating thumbnails of video (MP4) files, provided that "ffmpeg" is installed locally. See
instructions below.

Overview

The ImageMagick Media Filters provide consistent, high quality thumbnails for image bitstreams, PDF bitstreams and video (MP4) bitstreams.

These filters require a separate software installation of the conversion utilities: ImageMagick, Ghostscript (to support PDF thumbnails) and/or ffmpeg (to
support MP4 thumbnails).

The media filters use the library to invoke the conversion utilities. This library constructs a conversion command launches a sub-process to im4java
perform the generation of media files.

Installation

Before ImageMagick Media Filters can be used, you must setup ImageMagick (and optionally Ghostscript) as follows:

Install on your server. The installation process differs based on your operating system. For example, on Debian/Ubuntu, it's similar ImageMagick
to this:

apt-get install imagemagick

If you wish to generate PDF thumbnails, install on your server. The installation process differs based on your operating system. For Ghostscript
example, on Debian/Ubuntu, it's similar to this:

apt-get install ghostscript

(New in 7.6) If you wish to generate MP4 (video) thumbnails, install on your server. The installation process differs based on your FFmpeg
operating system. For example, on Debian/Ubuntu, it's similar to this:

apt-get install ffmpeg

The ImageMagick, Ghostscript, and FFmpeg executables should be accessible from the same directory (e.g.)/usr/bin
This directory MUST be defined in the org.dspace.app.mediafilter.ImageMagickThumbnailFilter.ProcessStarter
configuration as describe below.

DSpace Configuration

In the section of your (or local.cfg) file, specify the ImageMagick media filters you wish to use.filter.plugins dspace.cfg

707

http://sourceforge.net/projects/im4java/
http://www.imagemagick.org/
http://www.ghostscript.com/
https://ffmpeg.org/

local.cfg

Make sure to always keep this plugin enabled if you want to support search within text documents
filter.plugin = Text Extractor

NOTE: When "ImageMagick Image Thumbnail" is enabled, the default "JPEG Thumbnail" should NOT be enabled
filter.plugins = ImageMagick Image Thumbnail

NOTE: When "ImageMagick PDF Thumbnail" is enabled, the default "PDFBox JPEG Thumbnail" should NOT be enabled
Requires Ghostscript to also be installed
filter.plugins = ImageMagick PDF Thumbnail

New in 7.6, this will generate thumbnails from video files.
Requires ffmpeg to also be installed
filter.plugins = ImageMagick Video Thumbnail

This will activate the following settings which are already present in (these do NOT need to be added, as they already exist)dspace.cfg

plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.
ImageMagickImageThumbnailFilter = ImageMagick Image Thumbnail
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.ImageMagickPdfThumbnailFilter
= ImageMagick PDF Thumbnail
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.
ImageMagickVideoThumbnailFilter = ImageMagick Video Thumbnail

These media filters contain the several properties which can be configured.

Thumbnail Dimensions

The following properties are used to define the dimensions of the generated thumbnails:

maximum width and height of generated thumbnails
thumbnail.maxwidth = 80
thumbnail.maxheight = 80

Conversion Utility Path

The following property provides a path to the ImageMagick (convert), GhostScript (ghostscript), and ffmpeg utilities.

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.ProcessStarter = /usr/bin

Supported file formats

Each of these ImageMagick filters has its own list of configurable file formats. The defaults are usually best, but may be updated if you have custom
bitstream formats. These settings already exist in your dspace.cfg.

filter.org.dspace.app.mediafilter.ImageMagickImageThumbnailFilter.inputFormats = BMP, GIF, PNG, JPG, TIFF,
JPEG, JPEG 2000
filter.org.dspace.app.mediafilter.ImageMagickPdfThumbnailFilter.inputFormats = Adobe PDF
filter.org.dspace.app.mediafilter.ImageMagickVideoThumbnailFilter.inputFormats = Video MP4

Overwriting Existing Thumbnails

The ImageMagick media filters can differentiate thumbnails created by the DSpace default thumbnail generator and thumbnails that were manually
uploaded by a user. The media filter reads the bitstream description field to make this determination. A regular expression can be provided to define the
set of thumbnails that should be overwritten by the ImageMagick thumbnail generator. Thumbnail descriptions matching this pattern will be overwritten
even if the -f option is not passed to the filter media process.

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.replaceRegex = ^Generated Thumbnail$

708

The ImageMagick media filter will use the bitstream description field to identify bitstreams that it has created using the following setting. Bitstreams
containing this label will be overwritten only if the -f filter is applied.

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.bitstreamDescription = IM Thumbnail

Thumbnail descriptions that do not match either of the patterns listed above are presumed to be manually uploaded thumbnails. These thumbnails will not
be replaced even if the -f option is passed to the filter media process.

Flatten

DSpace uses the JPEG format for thumbnails. While JPEG doesn't support transparency, PDF, PNG and other formats do. As those formats are used as
outgoing material in DSpace, DSpace has to care about transparency during the generation of the thumbnails. In combinations of specific versions of
ImageMagick and Ghostscript it may occur that completely transparent areas will become black. As a solution ImageMagick recommends to flatten images
extracted from PDFs before they are stored as JPEG.

Since DSpace 5.2 the ImageMagick media filter flattens thumbnails extracted from PDFs. If you run into problems caused by flattening of the extracted
images, you can switch the flattening off by setting the following property in to false:dspace.cfg

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.flatten = false

ICC Profiles

PDFs optimized for physical printing often use the CMYK color space. On the web, however, the de facto color system is sRGB. By default, DSpace's
ImageMagick-based thumbnailing system will create thumbnails that use the same color space as the source PDF. Most web browsers are not able to
correctly display images that use the CMYK color space, which leads to images with visibly inaccurate colors.

If you are using Ghostscript version 9 or above, it is possible for DSpace to correctly convert images from CMYK to sRGB by providing it with appropriate
ICC color profiles to use during thumbnail creation. Default ones are provided by most Ghostscript installations (version 9 or above). The following
configuration options tell DSpace where those ICC profiles are located.

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.cmyk_profile = /usr/share/ghostscript/9.18/iccprofiles
/default_cmyk.icc
org.dspace.app.mediafilter.ImageMagickThumbnailFilter.srgb_profile = /usr/share/ghostscript/9.18/iccprofiles
/default_rgb.icc

You may need to adjust those paths for your OS or the version of Ghostscript that you have.

Providing ICC profiles to ImageMagick is optional. If these configuration properties are unset, no profiles will be supplied to ImageMagick, and thumbnails
produced from PDFs using the CMYK color space will also use CMYK. The transformation from CMYK to RGB is optional.

Override ImageMagick Default Density

It is possible to override ImageMagick's default density of 72 DPI when creating PDF thumbnails. This increases the quality of resulting thumbnails at the
expense of slightly longer execution times and higher memory usage. Any integer over 72 will help, but recommend 144 for a "2x" supersample. See the
following configuration option in :dspace.cfg

org.dspace.app.mediafilter.ImageMagickThumbnailFilter.density = 144

The effect is most notable on PDFs with a lot of text, gradients, or curved lines. See the implementing this feature for more information and pull request
comparisons.

Additional Customization

The ImageMagick conversion software provides a large number of conversion options. Subclasses of these media filters could be written to take
advantage of the additional conversion properties available in the software.

Note: The PDF thumbnail generator is hard-coded to generate a thumbnail from the first page of the PDF.

Possible Errors / Issues

"convert.im6: not authorized" errors

On Ubuntu (possibly other OSes), you may see errors like these when attempting to generate PDF thumbnails:

709

https://github.com/DSpace/DSpace/pull/8553

ERROR filtering, skipping bitstream:
 Item Handle: 1234/5678
 Bundle Name: ORIGINAL
 File Size: 30406135
 Checksum: c1df4b3a4755e9bed956383b61fc5042 (MD5)
 Asset Store: 0
org.im4java.core.CommandException: org.im4java.core.CommandException: convert.im6: not authorized `/tmp
/impdfthumb6294641076817830415.pdf' @ error/constitute.c/ReadImage/454.

OR

org.im4java.core.CommandException: convert-im6.q16: attempt to perform an operation not allowed by the security
policy 'PDF' @ error/constitute.c/IsCoderAuthorized/421

These may be caused by a change in your ImageMagick policy configuration on your server.

In Ubuntu, the default "policy.xml" was recently updated to all Ghostscript formats (including PDF, PS, etc). See this ticket: exclude https://bugs.
launchpad.net/ubuntu/+source/imagemagick/+bug/1796563

This exclusion was implemented to workaround a security vulnerability in Ghostscript reported here: https://www.kb.cert.org/vuls/id/332928
According to that vulnerability report, this was patched in Ghostscript v9.24 (or above)

The newly added lines in the are these ones:/etc/ImageMagick/policy.xml

<!-- disable ghostscript format types -->
<policy domain="coder" rights="none" pattern="PS" />
<policy domain="coder" rights="none" pattern="EPS" />
<policy domain="coder" rights="none" pattern="PDF" />
<policy domain="coder" rights="none" pattern="XPS" />

To fix the error above requires you to re-enable ImageMagick to process Ghostscript format types. That can be done by simply commenting out those new
"policy" lines in the configuration file (surround them with <!-- and --> to comment out)

Be aware that you MUST ensure you are running Ghostscript v9.24 or later to ensure that you are not at risk for the above security vulnerability in older
versions of Ghostscript.

"convert-im6.q16: cache resources exhausted" errors

On Debian, and possibly other OSes, you may see errors like these when attempting to generate video thumbnails (especially if video files are big):

File: video.mp4.jpg
ERROR filtering, skipping bitstream:
 Item Handle: 1234/5678
 Bundle Name: ORIGINAL
 File Size: 146761357
 Checksum: 735ceb1b6b249afc84a5bb1b87ae0c02 (MD5)
 Asset Store: 0
org.im4java.core.CommandException: convert-im6.q16: cache resources exhausted `/tmp/magick-64dziU-
1nQJjQHZYu4_R1fFP4l9en5iL.pam' @ error/cache.c/OpenPixelCache/4095.

These may be caused by too conservative resource policies in your file. As an example, default values are located at policy.xml /etc/ImageMagick-
 in Debian 11 (Bullseye), and are:6/policiy.xml

710

https://bugs.launchpad.net/ubuntu/+source/imagemagick/+bug/1796563
https://bugs.launchpad.net/ubuntu/+source/imagemagick/+bug/1796563
https://www.kb.cert.org/vuls/id/332928

/etc/ImageMagick-6/policiy.xml

<policymap>
 <!-- <policy domain="resource" name="temporary-path" value="/tmp"/> -->
 <policy domain="resource" name="memory" value="256MiB"/>
 <policy domain="resource" name="map" value="512MiB"/>
 <policy domain="resource" name="width" value="16KP"/>
 <policy domain="resource" name="height" value="16KP"/>
 <!-- <policy domain="resource" name="list-length" value="128"/> -->
 <policy domain="resource" name="area" value="128MP"/>
 <policy domain="resource" name="disk" value="1GiB"/>

To avoid the error, try increasing the resource limits policies. You may want to start by increasing the and cache resources exhausted memory disk
policies (disk cache is used when the memory limit is reached). The actual values have to be adjusted depending on the size of your video bitstreams and
the actual resources available in your installation. For example:

/etc/ImageMagick-6/policiy.xml

<policymap>
 <!-- <policy domain="resource" name="temporary-path" value="/tmp"/> -->
 <policy domain="resource" name="memory" value="4GiB"/> <!-- memory limit increased from 256MiB to 4GiB -->
 <policy domain="resource" name="map" value="512MiB"/>
 <policy domain="resource" name="width" value="16KP"/>
 <policy domain="resource" name="height" value="16KP"/>
 <!-- <policy domain="resource" name="list-length" value="128"/> -->
 <policy domain="resource" name="area" value="128MP"/>
 <policy domain="resource" name="disk" value="4GiB"/> <!-- disk limit increased from 1GiB to 4GiB -->

For a detailed description of the ImageMagick limits, see .https://imagemagick.org/script/command-line-options.php#limit

Once the limits are properly set, a successful execution of the filter should show a message similar to:

File: video.mp4.jpg
FILTERED: bitstream 12345678-abcd-efgh-ijkl-1234567890ab (item: 1234/5678) and created 'video.mp4.jpg'

711

https://imagemagick.org/script/command-line-options.php#limit

1.

Performance Tuning DSpace

1 Bare Minimum Requirements
2 Performance Tuning the Frontend (UI)

2.1 Use "cluster mode" of PM2 to avoid Node.js using a single CPU
2.2 Give Node.js more memory
2.3 Turn on (or increase) caching of Server-Side Rendered pages

3 Performance Tuning the Backend (REST API)
3.1 Give Tomcat More Memory

3.1.1 Give Tomcat More Java Heap Memory
3.1.2 Give Tomcat More Java PermGen Memory
3.1.3 Choosing the size of memory spaces allocated to DSpace Backend

3.2 Give the Command Line Tools More Memory
3.2.1 Give the Command Line Tools More Java Heap Memory
3.2.2 Give the Command Line Tools More Java PermGen Space Memory

4 Give PostgreSQL Database More Memory
5 Performance Tuning Solr

The software DSpace relies on does not come out of the box optimized for large repositories. Here are some tips to make it all run faster.

Bare Minimum Requirements

As of this writing, DSpace 7 is likely to require 4GB of memory at a . However, with that little memory, you may quickly hit memory issues bare minimum
with any significant user activity or bulk uploading. So, (or more for very large or very active sites).we recommend running DSpace with at least 8-12GB

This minimum would roughly include...

2GB of memory for the Frontend (UI) / Node.js. Highly active sites will need more.
1GB of memory for the Backend (REST API) / JVM / Tomcat. Highly active sites will need more.
512MB of memory for PostgreSQL database. Highly active sites will need more.
512MB of memory for Solr. Highly active sites may need more.
Extra memory may be required for command line scripts (which get kicked off in a separate JVM)

Keep in mind, because the frontend & backend can be run on separate servers, you can split this memory across two (or more) servers. You can even
choose to run PostgreSQL or Solr either alongside the backend or on their own dedicated server.

The DSpace frontend (UI) will often require several CPUs, especially if you wish to use "cluster mode" (see below) to better scale your application. A
smaller application may be able to use 4-6 CPU cores, while highly active sites may require additional CPU power. CPU is most often necessary for the
frontend's (again see "cluster mode" notes below) and for any batch processing / command line scripts on backend.Angular Serve Side Rendering

Performance Tuning the Frontend (UI)

Use "cluster mode" of PM2 to avoid Node.js using a single CPU

If you are using PM2 to run the User Interface, you may want to start it using PM2's "Cluster Mode". This allows Node.js applications to be scaled across
multiple CPUs by using the . See the PM2 Cluster Mode documentation at Node.js cluster module https://pm2.keymetrics.io/docs/usage/cluster-mode/

There are two ways to enable cluster mode. Choose one.

First, is by adding the "exec_mode" and "instances" settings to your JSON configuration as follows. You also may want to set the
"max_memory_restart" option to avoid PM2 using too much memory. These three settings are described in more detail below. NOTE: make sure
to start (or restart) your site to enable these settings (e.g.) pm2 start dspace-ui.json

712

https://angular.io/guide/ssr
https://nodejs.org/api/cluster.html
https://pm2.keymetrics.io/docs/usage/cluster-mode/

1.

a.
b.

c.

2.

dspace-ui.json

{
 "apps": [
 {
 "name": "dspace-ui",
 "cwd": "/full/path/to/dspace-ui-deploy",
 "script": "dist/server/main.js",
 "instances": "max",
 "exec_mode": "cluster",
 "env": {
 "NODE_ENV": "production"
 },
 "max_memory_restart": "500M"
 }
]
}

Setting "exec_mode" to "cluster" will enable ,cluster mode
The "instances" setting allows you to customize how many CPUs are available to PM2 ("max" = all CPUs. But you also can specify a
number like "8" = 8 CPUs.)
The " " setting is but tells PM2 how much memory to allow The example above has a max_memory_restart optional per instance.
maximum of 500MB. If the number of 'instances' is 8, that would mean PM2 could use up to 8 x 500MB = 4GB of memory. Therefore,
you may wish to modify the values of "instances" and/or "max_memory_restart" to better control the memory available to PM2.

Alternatively, you can use command line flags to specify the same settings described above. The "-i" flag enables cluster mode and specifies the
number of instances. The "--max-memory-restart" flag limits the memory per instance.

Start the "dspace-ui" app. Cluster it across all available CPUs with a maximum memory of 500MB per CPU.
This command is equivalent to the example cluster settings in the "dspace-ui.json" file above.
pm2 start dspace-ui.json -i max --max-memory-restart 500M

Give Node.js more memory

On machines with >2GB of memory available, Node will only use a maximum of 2GB of memory by default (see https://github.com/nodejs/node/issues
). This 2GB of memory should be enough to build & run the User Interface, but it's possible that highly active sites may require 4GB or more./28202

If you want to increase the memory available to Node.js, you can set the NODE_OPTIONS environment variable:

Increase memory limit to 4GB (4096MB) by setting "max-old-space-size"
in your NODE_OPTIONS environment variable
export NODE_OPTIONS=--max-old-space-size=4096

Turn on (or increase) caching of Server-Side Rendered pages

As of DSpace 7.5, we now provide basic, in-memory caching of server-side rendered (SSR) pages. Server-side rendering is used to pre-generate full
HTML pages to pass back to users (primarily anonymous users and bots). This is necessary for Search Engine Optimization (SEO) as some web crawlers
cannot use Javascript. It also can be used to immediately show the first HTML page to users while the Javascript app loads in the user's browser.

While server-side-rendering is highly recommended on all sites, it can result in Node.js having to pre-generate many HTML pages at once when a site has
a large number of simultaneous users/bots. This may cause Node.js to spend a lot of time processing server-side-rendered content, slowing down the
entire site.

Therefore, DSpace provides some basic caching of server-side rendered pages, which allows the same pre-generated HTML to be sent to many users
/bots at once & decreases the frequency of server-side rendering.

These settings are documented at User Interface Configuration: Cache Settings - Server Side Rendering (SSR)

Performance Tuning the Backend (REST API)

Give Tomcat More Memory

713

https://pm2.keymetrics.io/docs/usage/cluster-mode/
https://pm2.keymetrics.io/docs/usage/memory-limit/
https://github.com/nodejs/node/issues/28202
https://github.com/nodejs/node/issues/28202
https://wiki.lyrasis.org/display/DSDOC8x/User+Interface+Configuration#UserInterfaceConfiguration-CacheSettings-ServerSideRendering(SSR)

1.
2.

Give Tomcat More Java Heap Memory
Java Heap Memory Recommendations

At the time of writing, DSpace recommends you should give Tomcat >= 512MB of Java Heap Memory to ensure optimal DSpace operation. Most larger
sized or highly active DSpace installations however tend to allocate more like 1024MB (1GB) to 2048MB (2G) or more of Java Heap Memory.

Performance tuning in Java basically boils down to memory. If you are seeing " " errors, this is a java.lang.OutOfMemoryError: Java heap space
sure sign that Tomcat isn't being provided with enough Heap Memory.

Tomcat is especially memory hungry, and will benefit from being given lots of RAM. To set the amount of memory available to Tomcat, use either the JAVA
 or environment variable, e.g:_OPTS CATALINA_OPTS

CATALINA_OPTS=-Xmx512m -Xms512m

OR

JAVA_OPTS=-Xmx512m -Xms512m

The above example sets the maximum Java Heap memory to 512MB.

Difference between JAVA_OPTS and CATALINA_OPTS

You can use either environment variable. is also used by other Java programs (besides just Tomcat). is by JAVA_OPTS CATALINA_OPTS only used
Tomcat. So, if you only want to tweak the memory available to Tomcat, it is recommended that you use . If you set CATALINA_OPTS both CATALINA_OPTS
and , Tomcat will default to using the settings in .JAVA_OPTS CATALINA_OPTS

If the machine is dedicated to DSpace a decent rule of thumb is to give tomcat half of the memory on your machine. At a minimum, you should give
 (Tomcat >= 512MB of memory for optimal DSpace operation. NOTE: As your DSpace instance gets larger in size, you may need to increase this

) The latest guidance is to also set to the same value as for server applications such as Tomcat.number to the several GB range. -Xms -Xmx

Give Tomcat More Java PermGen Memory
Java PermGen Memory Recommendations

At the time of writing, DSpace recommends you should give Tomcat >= 128MB of PermGen Space to ensure optimal DSpace operation.

If you are seeing " " errors, this is a sure sign that Tomcat is running out PermGen Memory. (More java.lang.OutOfMemoryError: PermGen space
info on PermGen Space:)https://frankkieviet.blogspot.com/2006/10/classloader-leaks-dreaded-permgen-space.html

To increase the amount of PermGen memory available to Tomcat (default=64MB), use either the or environment variable, e.JAVA_OPTS CATALINA_OPTS
g:

CATALINA_OPTS=-XX:MaxPermSize=128m

OR

JAVA_OPTS=-XX:MaxPermSize=128m

The above example sets the maximum PermGen memory to 128MB.

Difference between JAVA_OPTS and CATALINA_OPTS

You can use either environment variable. is also used by other Java programs (besides just Tomcat). is by JAVA_OPTS CATALINA_OPTS only used
Tomcat. So, if you only want to tweak the memory available to Tomcat, it is recommended that you use . If you set CATALINA_OPTS both CATALINA_OPTS
and , Tomcat will default to using the settings in .JAVA_OPTS CATALINA_OPTS
Please note that you can obviously set Tomcat's Heap space and PermGen Space together similar to:both
CATALINA_OPTS=-Xmx512m -Xms512m -XX:MaxPermSize=128m
On an Ubuntu machine (10.04) at least, the file appears to be the best place to put these environmental variables./etc/default/tomcat6

Choosing the size of memory spaces allocated to DSpace Backend

psi-probe is a webapp that can be deployed in DSpace and be used to watch memory usage of the other webapps deployed in the same instance of
Tomcat (in our case, the DSpace server webapp).

Download the latest version of psi-probe from https://github.com/psi-probe/psi-probe
Unzip probe.war into [dspace]/webapps/

714

https://frankkieviet.blogspot.com/2006/10/classloader-leaks-dreaded-permgen-space.html
https://github.com/psi-probe/psi-probe
https://code.google.com/p/psi-probe/

2.

3.

4.

5.
6.

cd [dspace]/webapps/
unzip ~/probe-3.1.0.zip
unzip probe.war -d probe

Add a Context element in Tomcat's configuration, and make it privileged (so that it can monitor the other webapps):
EITHER in $CATALINA_HOME/conf/server.xml

<Context docBase="[dspace]/webapps/probe" privileged="true" path="/probe" />

OR in $CATALINA_HOME/conf/Catalina/localhost/probe.xml

<Context docBase="[dspace]/webapps/probe" privileged="true" />

Edit (see more in to add a user for logging into psi-probe$CATALINA_HOME/conf/tomcat-users.xml https://github.com/psi-probe/psi-probe
)/wiki/InstallationApacheTomcat

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <user username="admin" password="t0psecret" roles="manager" />
</tomcat-users>

Restart Tomcat
Open (edit domain and port number as necessary) in your browser and use the username and password http://yourdspace.com:8080/probe/
from tomcat-users.xml to log in.

In the " " tab, go to the " " menu. Note how much memory Tomcat is using upon startup and use a slightly higher value System Information Memory utilization
than that for the parameter (initial Java heap size). Watch how big the various memory spaces get over time (hours or days), as you run various -Xms
common DSpace tasks that put load on memory, including indexing, reindexing, importing items into the oai index etc. These maximum values will
determine the parameter (maximum Java heap size). Watching PS Perm Gen grow over time will let you choose the value for the -Xmx -XX:

 parameter.MaxPermSize

Give the Command Line Tools More Memory

Give the Command Line Tools More Java Heap Memory

Similar to Tomcat, you may also need to give the DSpace Java-based command-line tools more Java Heap memory. If you are seeing "java.lang.
" errors, when running a command-line tool, this is a sure sign that it isn't being provided with enough Heap OutOfMemoryError: Java heap space

Memory.

By default, DSpace only provides 256MB of maximum heap memory to its command-line tools.

If you'd like to provide memory to command-line tools, you can do so via the environment variable (which is used by the more JAVA_OPTS [dspace]/bin
 script). Again, it's the same syntax as above:/dspace

JAVA_OPTS=-Xmx512m -Xms512m

This is especially useful for big batch jobs, which may require additional memory.

You can also edit the script and add the environmental variables to the script directly.[dspace]/bin/dspace

Give the Command Line Tools More Java PermGen Space Memory

Similar to Tomcat, you may also need to give the DSpace Java-based command-line tools more PermGen Space. If you are seeing "java.lang.
" errors, when running a command-line tool, this is a sure sign that it isn't being provided with enough PermGen OutOfMemoryError: PermGen space

Space.

By default, Java only provides 64MB of maximum PermGen space.

If you'd like to provide PermGen Space to command-line tools, you can do so via the environment variable (which is used by the more JAVA_OPTS [dspa
 script). Again, it's the same syntax as above:ce]/bin/dspace

JAVA_OPTS=-XX:MaxPermSize=128m

715

https://github.com/psi-probe/psi-probe/wiki/InstallationApacheTomcat
https://github.com/psi-probe/psi-probe/wiki/InstallationApacheTomcat
http://yourdspace.com:8080/probe/

This is especially useful for big batch jobs, which may require additional memory.

Please note that you can obviously set Java's Heap space and PermGen Space together similar to:both
JAVA_OPTS=-Xmx512m -Xms512m -XX:MaxPermSize=128m

Give PostgreSQL Database More Memory

On many Linux distros PostgreSQL comes out of the box with an incredibly conservative configuration - it uses only 8Mb of memory! To put some more
fire in its belly edit the parameter in . The memory usage is 8KB multiplied by this value. The advice in the shared_buffers postgresql.conf
Postgres docs is not to increase it above 1/3 of the memory on your machine.

For More PostgreSQL Tips

For more hints/tips with PostgreSQL configurations and performance tuning, see also:

PostgresPerformanceTuning
PostgresqlConfiguration

Performance Tuning Solr

Solr has it's own detailed documentation with recommendations for " ". We recommend following the recommendations from Solr, Taking Solr to Production
especially related to "Ulimit settings" (for Unix-based systems) and "Avoiding Swapping" (for Unix-based systems). See the Solr documentation for more
details.

716

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=PostgresPerformanceTuning
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=PostgresqlConfiguration
https://solr.apache.org/guide/8_11/taking-solr-to-production.html

Ping or Healthcheck endpoints for confirming DSpace
services are functional
For some installations of DSpace, it might be helpful to have a URL you can configure as a healthcheck for some sort of monitoring system (,). Monit Eye
Some installations use load balancers, and those load balancers need a URL to check to confirm the system is functioning correctly. Here are some
suggestions for you to use.

Frontend

/home

Be sure to append that path to the main URL of your DSpace instance's frontend URL. For example: https://demo7.dspace.org/home

Backend

/server/api/core/collections

/server/api/core/sites

Be sure to append these paths to the main URL of your DSpace instance's backend URL. For example: https://api7.dspace.org/server/api/core/collections

Both of those endpoints will throw an error if Solr is down or similar, and both are anonymously available (no login required).

717

https://mmonit.com/monit/
https://github.com/kostya/eye
https://demo7.dspace.org/home
https://api7.dspace.org/server/api/core/collections

Scheduled Tasks via Cron
Several DSpace features that a script is run regularly (via cron, or similar). Some of these features include:require

the that alerts users of new items being deposited;e-mail subscription feature
the , that generates thumbnails of images and extracts the full-text of documents for indexing;'media filter' tool
the (optional) ' ' that tests the bitstreams in your repository for corruption;checksum checker
and the (optional) using DataCite as registration agency.registration of DOIs

There are some optional periodic tasks as well:

Updating the geolocation database used to enrich usage statistics. At this writing, the database publisher issues monthly updates.

These regularly scheduled tasks should be setup via either (for Linux/Mac OSX) or (for Windows).cron Windows Task Scheduler

Recommended Cron Settings

If you are on Linux or Mac OSX, you should add these cron settings under the OS account which is running Tomcat (and owns the [dspace]
. For example, login as that user and type the following to edit the user's crontab.installation directory)

crontab -e

While every DSpace installation is unique, in order to get the most out of DSpace, we highly recommend enabling these basic cron settings (the settings
are described in the comments):

SAMPLE CRONTAB FOR A PRODUCTION DSPACE
You obviously may wish to tweak this for your own installation,
but this should give you an idea of what you likely wish to schedule via cron.
##
NOTE: You may also need to add additional sysadmin related tasks to your crontab
(e.g. zipping up old log files, or even removing old logs, etc).

#-----------------
GLOBAL VARIABLES
#-----------------
Full path of your local DSpace Installation (e.g. /home/dspace or /dspace or similar)
MAKE SURE TO CHANGE THIS VALUE!!!
DSPACE = [dspace]

Shell to use
SHELL=/bin/sh

Add all major 'bin' directories to path
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

Set JAVA_OPTS with defaults for DSpace Cron Jobs.
Only provides 512MB of memory by default (which should be enough for most sites).
JAVA_OPTS="-Xmx512M -Xms512M -Dfile.encoding=UTF-8"

#--------------
HOURLY TASKS (Recommended to be run multiple times per day, if possible)
At a minimum these tasks should be run daily.
#--------------

Send information about new and changed DOIs to the DOI registration agency
NOTE: ONLY NECESSARY IF YOU REGISTER DOIS USING DATACITE AS REGISTRATION AGENCY (Disabled by default)
0 4,12,20 * * * $DSPACE/bin/dspace doi-organiser -u -q ; $DSPACE/bin/dspace doi-organiser -s -q ; $DSPACE/bin
/dspace doi-organiser -r -q ; $DSPACE/bin/dspace doi-organiser -d -q

#----------------
DAILY TASKS
(Recommended to be run once per day. Feel free to tweak the scheduled times below.)
#----------------

Update the OAI-PMH index with the newest content at midnight every day
REQUIRED to update content available in OAI-PMH (However, it can be removed if you do not enable OAI-PMH)
0 0 * * * $DSPACE/bin/dspace oai import > /dev/null

718

http://en.wikipedia.org/wiki/Cron
http://windows.microsoft.com/en-us/windows/schedule-task

Clean and Update the Discovery indexes at midnight every day
(This ensures that any deleted documents are cleaned from the Discovery search/browse index)
RECOMMENDED to ensure your search/browse index stays fresh.
0 0 * * * $DSPACE/bin/dspace index-discovery > /dev/null

run the index-authority script once a day at 12:45 to ensure the Solr Authority cache is up to date
45 0 * * * $DSPACE/bin/dspace index-authority > /dev/null

Cleanup Web Spiders from DSpace Statistics Solr Index at 01:00 every day
(This removes any known web spiders from your usage statistics)
RECOMMENDED if you are running Solr Statistics.
0 1 * * * $DSPACE/bin/dspace stats-util -f

Send out "daily" update subscription e-mails at 02:00 every day
(This sends an email to any users who have "subscribed" to a Community/Collection, notifying them of newly
added content.)
REQUIRED for daily "Email Subscriptions" to work properly.
0 2 * * * $DSPACE/bin/dspace subscription-send -f D

Run the media filter at 03:00 every day.
(This task ensures that thumbnails are generated for newly add images,
and ensures full text search is available for newly added PDF/Word/PPT/HTML documents)
REQUIRED for Thumbnails to be generated & full-text indexing to work.
0 3 * * * $DSPACE/bin/dspace filter-media

#----------------
WEEKLY TASKS
(Recommended to be run once per week, but can be run more or less frequently, based on your local needs
/policies)
#----------------
Send out "weekly" update subscription e-mails at 02:00 every Sunday
(This sends an email to any users who have "subscribed" to a Community/Collection, notifying them of newly
added content.)
REQUIRED for weekly "Email Subscriptions" to work properly.
0 2 * * 0 $DSPACE/bin/dspace subscription-send -f W

Run the checksum checker at 04:00 every Sunday
By default it runs through every file (-l) and also prunes old results (-p)
(This re-verifies the checksums of all files stored in DSpace. If any files have been changed/corrupted,
checksums will differ.)
OPTIONAL, but useful if you want to enable regular regular checksum validation of files stored in DSpace.
0 4 * * 0 $DSPACE/bin/dspace checker -l -p
NOTE: LARGER SITES MAY WISH TO USE DIFFERENT OPTIONS. The above "-l" option tells DSpace to check
everything.
If your site is very large, you may need to only check a portion of your content per week. The below
commented-out task
would instead check all the content it can within *one hour*. The next week it would start again where it
left off.
0 4 * * 0 $DSPACE/bin/dspace checker -d 1h -p
Mail the results of the checksum checker (see above) to the configured "mail.admin" at 05:00 every Sunday.
(This ensures the system administrator is notified whether any checksums were found to be different.)
0 5 * * 0 $DSPACE/bin/dspace checker-emailer

#----------------
MONTHLY TASKS
(Recommended to be run once per month, but can be run more or less frequently, based on your local needs
/policies)
#----------------
Send out "monthly" update subscription e-mails at 02:00, on the first of every month
(This sends an email to any users who have "subscribed" to a Community/Collection, notifying them of newly
added content.)
REQUIRED for monthly "Email Subscriptions" to work properly.
0 2 1 * * $DSPACE/bin/dspace subscription-send -f M

Permanently delete any bitstreams flagged as "deleted" in DSpace, on the first of every month at 01:00
(This ensures that any files which were deleted from DSpace are actually removed from your local filesystem.
By default they are just marked as deleted, but are not removed from the filesystem.)
REQUIRED to fully remove deleted content files from the "assetstore" folder
0 1 1 * * $DSPACE/bin/dspace cleanup > /dev/null

719

720

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Search Engine Optimization
Please be aware that individual search engines also have their own guidelines and recommendations for inclusion. While the guidelines below apply to mo

 DSpace sites, you may also wish to review these guidelines for specific search engines:st

" " talk from Anurag Acharya (co-creator of Google Scholar) presented at the Open Repositories Indexing Repositories: Pitfalls and Best Practices
2015 conference
Google Scholar Inclusion Guidelines
Bing Webmaster Guidelines

Ensuring your DSpace is indexed
Anyone who has analyzed traffic to their DSpace site (e.g. using Google Analytics or similar) will notice that a significant (and in many cases a majority) of
visitors arrive via a search engine such as Google or Yahoo. Hence, to help maximize the impact of content and thus encourage further deposits, it is
important to ensure that your DSpace instance is indexed effectively.

DSpace comes with tools that ensure major search engines (Google, Bing, Yahoo, Google Scholar) are able to easily and effectively index all your
content. However, many of these tools provide some basic setup. Here's how to ensure your site is indexed.

For the optimum indexing, you should:

Keep your DSpace up to date. We are constantly adding new indexing improvements in new releases
Ensure your DSpace is visible to search engines.
Ensure your proxy is passing X-Forwarded headers to the User Interface
Ensure the user interface is using server-side rendering (enabled by default)
Ensure the sitemaps feature is enabled. (enabled by default)
Ensure your robots.txt allows access to item "splash" pages and full text.
Ensure item metadata appears in HTML headers correctly.
Avoid redirecting file downloads to Item landing pages
Turn OFF any generation of PDF cover pages
As an aside, it's worth noting that . OAI-PMH has its own uses, but do not expect search OAI-PMH is generally not useful to search engines
engines to use it.

Keep your DSpace up to date

We are constantly adding new indexing improvements to DSpace. In order to ensure your site gets all of these improvements, you should strive to keep it
up-to-date. For example:

As of DSpace 7.0, Sitemaps are enabled by default (see below)
As of DSpace 5.0, the DSpace robots.txt file now includes references to by default (see)Sitemaps https://github.com/DSpace/DSpace/issues/5302
, and also blocks known bad bots (see).https://github.com/DSpace/DSpace/issues/5701
As of DSpace 4.0, DSpace has provided several enhancements, which were requested by the Google Scholar team. These included providing
users (and web indexers) a way to browse content by the date it was added to DSpace (see), https://github.com/DSpace/DSpace/issues/4851
ensuring the "dc.date.issued" field is set more accurately (see), and enhancing the logic behind https://github.com/DSpace/DSpace/issues/4850
the "citation_pdf_url" HTML <meta> tag (see)https://github.com/DSpace/DSpace/issues/4852
As of DSpace 1.7, DSpace has improved how its Item-level metadata is made available to Google Scholar. For the 1.7.0 release, the DSpace
Developers worked directly with the Google Scholar developers, to ensure DSpace is generating the "citation_*" HTML "<meta>" tags (i.e.
Highwire Press tags) that Google Scholar recommends in their .Indexing Guidelines
As of DSpace 1.5, DSpace has support for sitemaps (both simple HTML pages of links, as well as the). It also includes item sitemaps.org protocol
metadata in the HTML HEAD element of item display pages, ensuring that the metadata can be effectively indexed no matter what changes you
might have made to your DSpace's layout or style.
As of DSpace 1.4, DSpace has support for the "if-modified-since" HTTP header. This basically means that if an item (or bitstream therein) has not
changed since the last time a search engine's crawler indexed it, that item/bitstream does not have to be re-retrieved, sparing your server.

Additional minor improvements / bug fixes have been made to more recent releases of DSpace.

Ensure your DSpace is visible to search engines

First ensure your DSpace instance is visible, e.g. with: https://www.google.com/webmasters/tools/sitestatus

If your site is not indexed at all, all search engines have a way to add your URL, e.g.:

Google: http://www.google.com/addurl
Yahoo: http://siteexplorer.search.yahoo.com/submit
Bing: http://www.bing.com/docs/submit.aspx

Ensure your proxy is passing X-Forwarded headers to the User Interface

Some HTML tags important for SEO, such as the "citation_pdf_url" tag, require the full URL of your site. The DSpace user interface will automatically
attempt to "discover" that URL using HTTP Headers.

Because most DSpace sites use some sort of proxy (e.g. Apache web server or Nginx or similar), this that the proxy be configured to pass along requires
proper X-Forwarded-* headers, especially X-Forwarded-Host and X-Forwarded-Proto. For example in Apache HTTPD, you can do something like this:

721

http://www.or2015.net/wp-content/uploads/2015/06/or-2015-anurag-google-scholar.pdf
https://scholar.google.com/intl/en-US/scholar/inclusion.html
http://www.bing.com/webmaster/help/webmaster-guidelines-30fba23a
https://github.com/DSpace/DSpace/issues/5302
https://github.com/DSpace/DSpace/issues/5701
https://github.com/DSpace/DSpace/issues/4851
https://github.com/DSpace/DSpace/issues/4850
https://github.com/DSpace/DSpace/issues/4852
http://scholar.google.com/intl/en/scholar/inclusion.html
http://sitemaps.org/
https://www.google.com/webmasters/tools/sitestatus
http://www.google.com/addurl
http://siteexplorer.search.yahoo.com/submit
http://www.bing.com/docs/submit.aspx

1.
2.
3.

a.

b.
4.

This lets DSpace know it is running behind HTTPS and what hostname is currently used
(requires installing/enabling mod_headers)
RequestHeader set X-Forwarded-Proto https
RequestHeader set X-Forwarded-Host my.dspace.edu

Ensure the user interface is using server-side rendering

In DSpace 7, server-side rendering is . However, it's important to ensure you do disable it in enabled by default (when running in production mode) not
production mode. Per the frontend , you MUST also be running your user interface in production mode (via either Installation instructions yarn run

 or serve:ssr yarn start).

Because the DSpace user interface is based on Angular.io (which is a javascript framework), you MUST have server-side rendering enabled (which is the
default) for search engines to fully index your side. Server-side rendering allows your site to still function even when Javascript is turned in a user's off
browser. Some web crawlers do not support Javascript (e.g. Google Scholar), so they will only interact with this server-side rendered content.

If you are unsure if server-side rendering (SSR) is enabled, you can check to see if your site is accessible when Javascript is turned For example, in off.
Chrome, you should be able to do the following:

Open your site in the Chrome browser
Turn off (disable) Javascript using the Chrome instructions: https://developer.chrome.com/docs/devtools/javascript/disable/
Click reload in your browser window to reload your site.

If SSR is enabled, then you will still see your site's contents. You should be able to browse & search the site. (Keep in mind, pages may
take longer to load because every request requires SSR.) However, all dynamic menus or actions obviously will not work, as all pages
will be static HTML.
If SSR is disabled, then you will see a blank white page. You will not be able to see any content on your site.

Don't forget to re-enable Javascript after you are done testing (see link above, or just close that window & reopen a new one)

DSpace use for server-side rendering, and it's enabled by default in Production mode via our production environment initialization in srcAngular Universal
/environments/environment.production.ts:

// Angular Universal Settings
universal: {
 preboot: true,
 ...
},

For information, see "Universal (Server-side Rendering) settings" in User Interface Configuration

Ensure the sitemaps feature is enabled

As of DSpace 7, sitemaps are This is the recommended setup to prefer proper indexing. So, enabled by default and automatically update on a daily basis.
there's nothing you need to do unless you wish to either change their schedule, or disable them.

In the dspace.cfg, the Sitemap generation schedule is controlled by this setting

By default, sitemaps regenerate daily at 1:15am server time
sitemap.cron = 0 15 1 * * ?

You can modify this schedule by using the Cron syntax defined at . Any https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html
modifications can be placed in your local.cfg.

If you want to disable this automated scheduler, you can either comment it out, or set it to a single "-" (dash) in your local.cfg

This disables the automatic updates
sitemap.cron = -

Again, we keeping them enabled. However, you may choose to disable this scheduler if you wish to define these in your local system highly recommend
cron settings.

Once you've enabled your sitemaps, they will be accessible at the following URLs:

HTML Sitemaps: ${dspace.ui.url}/sitemap_index.html
XML Sitemaps: ${dspace.ui.url}/sitemap_index.xml

So, for example, if your "dspace.ui.url = https://mysite.org" in your "dspace.cfg" configuration file, then the HTML Sitemaps would be at: "http://mysite.org
"/sitemap_index.html

722

https://developer.chrome.com/docs/devtools/javascript/disable/
https://angular.io/guide/universal
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html

By default, the Sitemap URLs also will appear in your UI's (in order to announce them to search engines):robots.txt

The URL to the DSpace sitemaps
XML sitemap is listed first as it is preferred by most search engines
Sitemap: [dspace.ui.url]/sitemap_index.xml
Sitemap: [dspace.ui.url]/sitemap_index.html

The generate-sitemaps command

If you wanted to generate your sitemaps manually, you can use a commandline tool to do so.

WARNING: Keep in mind, you do NOT need to run these manually in most situations, as sitemaps are autoupdated on a regular schedule (see
documentation above)

Commandline option (run from the backend)
[dspace]/bin/dspace generate-sitemaps

This command accepts several options:

Option meaning

-h

--help

Explain the arguments and options.

-s

--no_sitemaps

Do not generate a sitemap in sitemaps.org format.

-b

-no_htmlmap

Do not generate a sitemap in htmlmap format.

You can configure the list of "all search engines" by setting the value of in .sitemap.engineurls dspace.cfg

Create a good robots.txt

As of 7.5, DSpace's robots.txt file can be found in the UI's codebase at "src/robots.txt.ejs". This is an "embedded javascript template" (ejs) file, which
simply allows for us to insert variable values into the "robots.txt" at runtime. It can be edited as a normal text file.

The trick here is to minimize load on your server, but without actually blocking anything vital for indexing. Search engines need to be able to index item,
collection and community pages, and all bitstreams within items – full-text access is critically important for effective indexing, e.g. for citation analysis as
well as the usual keyword searching.

If you have restricted content on your site, search engines will not be able to access it; they access all pages as an anonymous user.

Ensure that your robots.txt file is at the top level of your site: i.e. at , and NOT e.g. . If your http://repo.foo.edu/robots.txt http://repo.foo.edu/dspace/robots.txt
DSpace instance is served from e.g. , you'll need to add /dspace to all the paths in the examples below (e.g. /dspace/browse-http://repo.foo.edu/dspace/
subject).

NEVER BLOCK THESE PATHS

Some URLs can be disallowed without negative impact, but be ABSOLUTELY SURE the following URLs can be reached by crawlers, i.e. DO NOT put
these on Disallow: lines, or your DSpace instance might not be indexed properly.

/bitstreams
/browse/* (UNLESS USING SITEMAPS)
/collections
/communities
/community-list (UNLESS USING SITEMAPS)
/entities/*
/handle
/items

Example good robots.txt

DSpace 7 comes with an example robots.txt file (which is copied below). As of 7.5, this file can be found at "src/robots.txt.ejs" in the DSpace 7 UI. This is
an "embedded javascript template" (ejs) file, which simply allows for us to insert variable values into the "robots.txt" at runtime. It can be edited as a
normal text file.

723

http://repo.foo.edu/robots.txt
http://repo.foo.edu/dspace/robots.txt
http://repo.foo.edu/dspace/

The highly recommended settings are uncommented. Additional, optional settings are displayed in comments – based on your local configuration you may
wish to enable them by uncommenting the corresponding "Disallow:" line.

The URL to the DSpace sitemaps
XML sitemap is listed first as it is preferred by most search engines
NOTE: The <%= origin %> variables below will be replaced by the fully qualified URL of your site at runtime.
Sitemap: <%= origin %>/sitemap_index.xml
Sitemap: <%= origin %>/sitemap_index.html

##########################
Default Access Group
(NOTE: blank lines are not allowable in a group record)
##########################
User-agent: *
Disable access to Discovery search and filters; admin pages; processes; submission; workspace; workflow &
profile page
Disallow: /search
Disallow: /admin/*
Disallow: /processes
Disallow: /submit
Disallow: /workspaceitems
Disallow: /profile
Disallow: /workflowitems

Optionally uncomment the following line ONLY if sitemaps are working
and you have verified that your site is being indexed correctly.
Disallow: /browse/*
#
If you have configured DSpace (Solr-based) Statistics to be publicly
accessible, then you may not want this content to be indexed
Disallow: /statistics
#
You also may wish to disallow access to the following paths, in order
to stop web spiders from accessing user-based content
Disallow: /contact
Disallow: /feedback
Disallow: /forgot
Disallow: /login
Disallow: /register

NOTE: The default robots.txt also includes a large number of recommended settings to avoid misbehaving bots.
For brevity, they have been removed from this example, but can be found in src/robots.txt.ejs

WARNING: for your additional disallow statements to be recognized under the group, they from the User-agent: * cannot be separated by white lines
declared block. A white line indicates the start of a new user agent block. Without a leading user-agent declaration on the first line, user-agent: *
blocks are ignored. Comment lines are allowed and will not break the user-agent block.

This is OK:

User-agent: *
Disable access to Discovery search and filters; admin pages; processes
Disallow: /search
Disallow: /admin/*
Disallow: /processes

This is , as the two lines at the bottom will be completely ignored.not OK

User-agent: *
Disable access to Discovery search and filters; admin pages; processes
Disallow: /search

Disallow: /admin/*
Disallow: /processes

To identify if a specific user agent has access to a particular URL, you can use .this handy robots.txt tester

For more information on the robots.txt format, please see the .Google Robots.txt documentation

724

http://www.frobee.com/robots-txt-check
https://developers.google.com/webmasters/control-crawl-index/docs/robots_txt

Ensure Item Metadata appears in the HTML HEAD

It's possible to greatly customize the look and feel of your DSpace, which makes it harder for search engines, and other tools and services such as , Zotero
 and , to correctly pick out item metadata fields. To address this, DSpace includes item metadata in the <head> element of Connotea SIMILE Piggy Bank

each item's HTML display page.

<meta name="DC.type" content="Article" />
<meta name="DCTERMS.contributor" content="Tansley, Robert" />

If you have heavily customized your metadata fields away from Dublin Core, you can modify the service which generates these elements by modifying https
://github.com/DSpace/dspace-angular/blob/main/src/app/core/metadata/metadata.service.ts

Google Scholar Metadata in HTML HEAD

In addition to Dublin Core <meta> tags in the HTML HEAD, DSpace also includes Google Scholar specific metadata fields in each item's HTML display
page.

<meta property="citation_author" content="Tansley, Robert; Donohue, Timothy"/>
<meta property="citation_title" content="Ensuring your DSpace is indexed" />

These meta tags are the . If you have heavily customized your metadata fields, or wish to "Highwire Press tags" which Google Scholar recommends
change the default "mappings" to these Highwire Press tags, you may do so by modifying https://github.com/DSpace/dspace-angular/blob/main/src/app

 (see for example the "setCitationAuthorTags()" method in that service class)/core/metadata/metadata.service.ts

Much more information is available in the Configuration section on .Google Scholar Metadata Mappings

Avoid redirecting file downloads to Item landing pages

Make sure that you never redirect "direct file downloads" (i.e. users who directly jump to downloading a file, often from a search engine) to the associated
Item's splash/landing page. In the past, some DSpace sites have added these custom URL redirects in order to facilitate capturing statistics via Google
Analytics or similar.

While these URL redirects may seem harmless, they may be flagged as or spam by Google, Google Scholar and other major search engines. cloaking
This may hurt your site's search engine ranking or even cause your entire site to be flagged for removal from the search engine.

If you have these URL redirects in place, it is highly recommended to remove them immediately. If you created these redirects to facilitate capturing
download statistics in Google Analytics, you should consider upgrading to DSpace 5.0 or above, which is able to automatically record bitstream downloads
in Google Analytics (see) without the need for any URL redirects.https://github.com/DSpace/DSpace/issues/5454

Turn OFF any generation of PDF cover pages

While DSpace offers a option, this option may affect your content's visibility in search engines like Google Scholar. Google PDF Citation Cover Page
Scholar (and possibly other search engines) specifically extracts metadata by analyzing the contents of the first page of a PDF. Dynamically inserting a
custom cover page can break the metadata extraction techniques of Google Scholar and may result in all or much of your site being dropped from the
Google Scholar search engine.

For more information, please see the " " talk from Anurag Acharya (co-creator of Google Scholar) Indexing Repositories: Pitfalls and Best Practices
presented at the .Open Repositories 2015 conference

In general, OAI-PMH is not useful to Search Engines

Feel free to support OAI-PMH, but be aware that in general it is not useful for search engines:

No reliable way to determine OAI-PMH base URL for a DSpace site.
No standard or predictable way to get to item display page or full text from an OAI-PMH record, making effective indexing and presenting
meaningful results difficult.
In most cases provides only access to simple Dublin Core, a subset of available metadata.
NOTE: Back in 2008, Google officially announced they were . So, OAI-PMH will no longer help you retiring support for OAI-PMH based Sitemaps
get better indexing through Google. Instead, you should be using the DSpace 'generate-sitemaps' feature described above.

T

725

http://www.zotero.org/
http://www.connotea.org/
http://simile.mit.edu/wiki/Piggy_Bank
https://github.com/DSpace/dspace-angular/blob/main/src/app/core/metadata/metadata.service.ts
https://github.com/DSpace/dspace-angular/blob/main/src/app/core/metadata/metadata.service.ts
http://scholar.google.com/intl/en/scholar/inclusion.html#indexing
https://github.com/DSpace/dspace-angular/blob/main/src/app/core/metadata/metadata.service.ts
https://github.com/DSpace/dspace-angular/blob/main/src/app/core/metadata/metadata.service.ts
https://en.wikipedia.org/wiki/Cloaking
https://github.com/DSpace/DSpace/issues/5454
https://wiki.lyrasis.org/display/DSDOC5x/PDF+Citation+Cover+Page
http://www.or2015.net/wp-content/uploads/2015/06/or-2015-anurag-google-scholar.pdf
http://www.or2015.net
http://googlewebmastercentral.blogspot.com/2008/04/retiring-support-for-oai-pmh-in.html

Google Scholar Metadata Mappings
While DSpace 7.0 supports Google Scholar tags, they are no longer configurable & are currently hardcoded into the User Interface meta
codebase. Configurability may be coming back in a later 7.x release (based on user feedback), see https://github.com/DSpace/dspace-angular/issues
/1198

Google Scholar, in crawling sites, prefers . This schema contains names which are all prefixed by the string "citation_", and provide Highwire Press tags
various metadata about the article/item being indexed.

In DSpace, there is a mapping facility to connect metadata fields with these citation fields in HTML. In order to enable this functionality, the switch needs
to be flipped in dspace.cfg:

 google-metadata.enable = true

Once the feature is enabled, the mapping is configured by a separate configuration file located here:

 [dspace]/config/crosswalks/google-metadata.properties

This file contains name/value pairs linking meta-tags with DSpace metadata fields. E.g…

 google.citation_title = dc.title
 google.citation_publisher = dc.publisher
 google.citation_author = dc.author | dc.contributor.author | dc.creator

There is further documentation in this configuration file explaining proper syntax in specifying which metadata fields to use. If a value is omitted for a meta-
tag field, the meta-tag is simply not included in the HTML output.

The values for each item are interpolated when the item is viewed, and the appropriate meta-tags are included in the HTML head tag, on both the Brief
Item Display and the Full Item Display in the UI.

Note: In DSpace 5, the field google.citation_authors was changed to google.citation_author.

726

https://github.com/DSpace/dspace-angular/issues/1198
https://github.com/DSpace/dspace-angular/issues/1198
http://scholar.google.com/intl/en/scholar/inclusion.html#indexing

Troubleshooting Information
You can quickly get some basic information about the DSpace version and the products supporting it by using the]/bin/dspace version[dspace
command.

$ bin/dspace version
DSpace version: 4.0-SNAPSHOT
 SCM revision: da53991b6b7e9f86c2a7f5292e3c2e9606f9f44c
 SCM branch: UNKNOWN
 OS: Linux(amd64) version 3.7.10-gentoo
Discovery enabled.
Lucene search enabled.
 JRE: Oracle Corporation version 1.7.0_21
 Ant version: Apache Ant(TM) version 1.8.4 compiled on June 25 2012
 Maven version: 3.0.4
 DSpace home: /home/dspace
$

To troubleshoot a specific error, see our guideTroubleshoot an error

727

https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error

Validating CheckSums of Bitstreams

1 Checksum Checker
1.1 Checker Execution Mode
1.2 Checker Results Pruning
1.3 Checker Reporting
1.4 Cron or Automatic Execution of Checksum Checker
1.5 Automated Checksum Checkers' Results
1.6 Database Query

Checksum Checker

Checksum Checker is program that can run to verify the checksum of every item within DSpace. Checksum Checker was designed with the idea that most
System Administrators will run it from the cron. Depending on the size of the repository choose the options wisely.

Command used: [dspace]/bin/dspace checker

Java class: org.dspace.app.checker.ChecksumChecker

Arguments short and (long) forms): Description

-L or --continuous Loop continuously through the bitstreams

-a or --handle Specify a handle to check

-b <bitstream-ids> Space separated list of bitstream IDs

-c or --count Check count

-d or --duration Checking duration

-h or --help Calls online help

-l or --looping Loop once through bitstreams

-p <prune> Prune old results (optionally using specified properties file for configuration

-v or --verbose Report all processing

There are three aspects of the Checksum Checker's operation that can be configured:

the execution mode
the logging output
the policy for removing old checksum results from the database
The user should refer to Chapter 5. Configuration for specific configuration beys in the file.dspace.cfg

Checker Execution Mode

Execution mode can be configured using command line options. Information on the options are found in the previous table above. The different modes are
described below.

Unless a particular bitstream or handle is specified, the Checksum Checker will always check bitstreams in order of the least recently checked bitstream.
(Note that this means that the most recently ingested bitstreams will be the last ones checked by the Checksum Checker.)

Available command line options

Limited-count mode: To check a specific number of bitstreams. The option if followed by an integer, [dspace]/bin/dspace checker -c -c
the number of bitstreams to check. Example: This is particularly useful for checking that the checker [dspace/bin/dspace checker -c 10
is executing properly. The Checksum Checker's default execution mode is to check a single bitstream, as if the option was -c 1
Duration mode: To run the Check for a specific period of time with a time argument. You may use any [dspace]/bin/dspace checker -d
of the time arguments below: Example: (Checker will run for 2 hours)[dspace/bin/dspace checker -d 2h

s Seconds

m Minutes

h Hours

d Days

w Weeks

y Years

728

1.
2.

The checker will keep starting new bitstream checks for the specific durations, so actual execution duration will be slightly longer than the
specified duration. Bear this in mind when scheduling checks.
Specific Bitstream mode: Checker will only look at the internal bitstream IDs. Example: [dspace]/bin/dspace checker -b [dspace]

 Checker will only check bitstream IDs 112, 113 and 4567./bin/dspace checker -b 112 113 4567
Specific Handle mode: Checker will only check bitstreams within the Community, Community or the [dspace]/bin/dspace checker -a
item itself. Example: Checker will only check this handle. If it is a Collection or [dspace]/bin/dspace checker -a 123456/999
Community, it will run through the entire Collection or Community.
Looping mode: or There are two modes. The lowercase 'el' (-[dspace]/bin/dspace checker -l [dspace]/bin/dspace checker -L
l) specifies to check every bitstream in the repository once. This is recommended for smaller repositories who are able to loop through all their
content in just a few hours maximum. An uppercase 'L' (-L) specifies to continuously loops through the repository. This is not recommended for
most repository systems. . For large repositories that cannot be completely checked in a couple of hours, we recommend the -d option Cron Jobs
in cron.
Pruning mode: The Checksum Checker will store the result of every check in the checksum_history [dspace]/bin/dspace checker -p
table. By default, successful checksum matches that are eight weeks old or older will be deleted when the -p option is used. (Unsuccessful ones
will be retained indefinitely). Without this option, the retention settings are ignored and the database table may grow rather large!

Checker Results Pruning

As stated above in "Pruning mode", the checksum_history table can get rather large, and that running the checker with the -p assists in the size of the
checksum_history being kept manageable. The amount of time for which results are retained in the checksum_history table can be modified by one of two
methods:

Editing the retention policies in See Chapter 5 Configuration for the property keys. OR[dspace]/config/dspace.cfg
Pass in a properties file containing retention policies when using the -p option.To do this, create a file with the following two property keys:

checker.retention.default = 10y
checker.retention.CHECKSUM_MATCH = 8w

You can use the table above for your time units. At the command line: [dspace]/bin/dspace checker -p retention_file_name
<ENTER>

Checker Reporting

Checksum Checker uses log4j to report its results. By default it will report to a log called , and it will report only on [dspace]/log/checker.log
bitstreams for which the newly calculated checksum does not match the stored checksum. To report on all bitstreams checked regardless of outcome, use
the (verbose) command line option:-v

[dspace]/bin/dspace checker -l -v (This will loop through the repository once and report in detail about every bitstream checked.

To change the location of the log, or to modify the prefix used on each line of output, edit the file [dspace]/config/templates/log4j.properties
and run .[dspace]/bin/install_configs

Cron or Automatic Execution of Checksum Checker

You should schedule the Checksum Checker to run automatically, based on how frequently you backup your DSpace instance (and how long you keep
those backups). The size of your repository is also a factor. For very large repositories, you may need to schedule it to run for an hour (e.g. option) -d 1h
each evening to ensure it makes it through your entire repository within a week or so. Smaller repositories can likely get by with just running it weekly.

Unix, Linux, or MAC OS. You can schedule it by adding a cron entry similar to the following to the crontab for the user who installed DSpace:

0 4 * * 0 [dspace]/bin/dspace checker -d2h -p

The above cron entry would schedule the checker to run the checker every Sunday at 400 (4:00 a.m.) for 2 hours. It also specifies to 'prune' the database
based on the retention settings in .dspace.cfg

Windows OS. You will be unable to use the checker shell script. Instead, you should use Windows Schedule Tasks to schedule the following command to
run at the appropriate times:

[dspace]/bin/dspace checker -d2h -p

(This command should appear on a single line).

Automated Checksum Checkers' Results

Optionally, you may choose to receive automated emails listing the Checksum Checkers' results to the email address specified in the configumail.admin
ration property. Schedule it to run the Checksum Checker has completed its processing (otherwise the email may not contain all the results). As of after
DSpace 4.1, an email is only generated if the selected report contains at least one bitstream needing attention.

729

Command used: [dspace]/bin/dspace checker-emailer

Java class: org.dspace.checker.DailyReportEmailer

Arguments short and (long) forms): Description

-a or --All Send all the results (everything specified below)

-d or --Deleted Send E-mail report for all bitstreams set as deleted for today.

-m or --Missing Send E-mail report for all bitstreams not found in assetstore for today.

-c or --Changed Send E-mail report for all bitstreams where checksum has been changed for today.

-u or --Unchanged Send the Unchecked bitstream report.

-n or --Not Processed Send E-mail report for all bitstreams set to longer be processed for today.

-h or --help Help

You can also combine options (e.g.) for combined reports.-m -c

Cron. Follow the same steps above as you would running checker in cron. Change the time but match the regularity. Remember to schedule this after
Checksum Checker has run. For an example cron setup, see .Scheduled Tasks via Cron

Database Query

A query like the following can be used to check the results of the checker (Postgres):

SELECT *
FROM checksum_history
WHERE date_trunc('day', process_start_date) = CURRENT_DATE
AND result != 'CHECKSUM_MATCH'
AND result != 'BITSTREAM_MARKED_DELETED';

Example of a more detailed query:

SELECT
 ch.process_start_date,
 ch.process_end_date,
 ch.result,
 ch.checksum_expected,
 ch.checksum_calculated,
 b.bitstream_id,
 bfr.short_description,
 b.store_number,
 substring(b.internal_id for 2) || '/' || substring(b.internal_id from 3 for 2) || '/' || substring(b.
internal_id from 5 for 2) || '/' || b.internal_id AS bitstream_path,
 hi.handle AS item_handle,
 hc.handle AS collection_handle
FROM checksum_history ch
JOIN bitstream b
ON ch.bitstream_id = b.uuid
JOIN bitstreamformatregistry bfr
ON b.bitstream_format_id = bfr.bitstream_format_id
LEFT JOIN bundle2bitstream bb
ON b.uuid = bb.bitstream_id
LEFT JOIN item2bundle ib
ON bb.bundle_id = ib.bundle_id
LEFT JOIN item i
ON ib.item_id = i.uuid
LEFT JOIN handle hi
ON i.uuid = hi.resource_id
AND hi.resource_type_id = 2
LEFT JOIN handle hc
ON i.owning_collection = hc.resource_id
AND hc.resource_type_id = 3
WHERE ch.result != 'CHECKSUM_MATCH'
AND date_trunc('day', process_start_date) = CURRENT_DATE
ORDER BY ch.check_id DESC;

730

731

DSpace Development
This section contains information on how to modify, extend and customize the DSpace source code.

Advanced Customisation
Batch Processing
Curation Tasks
Development Tools Provided by DSpace
REST API
Services to support Alternative Identifiers
User Interface Design Principles & Accessibility
Workflow

732

Advanced Customisation
If you are looking for ways to override specific classes or resources in DSpace (specifically in the backend), this page provides a guide for how to do so.

1 Additions module
2 Server Webapp Overlay
3 Rest (Deprecated) Webapp Overlay

Additions module

Location: [dspace-source]/dspace/modules/additions/

This module may be used to store dspace-api changes, custom plugins, etc. Classes placed in will [dspace-source]/dspace/modules/additions
override those located in the [dspace-source]/dspace-api

This module may be used to override classes across webapps located in directory, as well as in the all [dspace-source]/dspace/modules/
command line interface. Therefore, this modules is for global overrides only. If you have overrides specific to a single webapp, use the "Maven WAR
Overlays" option below.

Server Webapp Overlay

Location: [dspace-source]/dspace/modules/server/

This module overlay directory allows you to override any classes, resources or files available (by default) in the Server Webapp. This includes overriding
files of any of the following source directories:

[dspace-source]/dspace-oai/ (Bundled into the Server Webapp as a JAR)
[dspace-source]/dspace-rdf/ (Bundled into the Server Webapp as a JAR)
[dspace-source]/dspace-server-webapp/ (The Server Webapp itself)
[dspace-source]/dspace-sword/ (Bundled into the Server Webapp as a JAR)
[dspace-source]/dspace-swordv2/ (Bundled into the Server Webapp as a JAR)

Java classes place in will override classes (of the same path/name) in any of the above modules.[dspace-source]/dspace/modules/server/

You can also override resources (i.e. any files under a /src/main/resources/ directory) which are embedded in one of the JARs by putting them under [dsp
. For example, to override the "ace-source]/dspace/modules/server/src/main/resources/ [dspace-source]/dspace-oai/src/main

" file embedded in the , you'd place your own version at /resources/templates/index.twig.html dspace-oai.jar [dspace-source]/dspace
. This results in the resource/file being copied over into the /modules/server/src/main/resources/templates/index.twig.html WEB-INF

 subdirectory of the "server" webapp, and in that location it will override any file of the same name embedded in a JAR (per Servlet Spec 3.0)./classes/

Rest (Deprecated) Webapp Overlay

Location: [dspace-source]/dspace/modules/rest

If you have chosen to install the deprecated REST API v6 webapp, you can similar override any classes/files of that separate webapp by just placing those
files in the directory[dspace-source]/dspace/modules/rest/

733

1.
2.
3.
4.

DSpace Service Manager

1 Introduction
2 Configuration

2.1 Configuring Addons to Support Spring Services
2.2 Configuration Priorities

2.2.1 Configuring a new Addon
2.2.1.1 Addon located as resource in jar
2.2.1.2 Addon located in the [dspace]/config/spring directory

2.2.2 The Core Spring Configuration
2.2.3 Utilizing Autowiring to minimize configuration complexity.

2.3 Accessing the Services Via Service Locator / Java Code
3 Architectural Overview

3.1 Service Manager Startup in Webapplications and CLI
4 Tutorials

Introduction

The DSpace Spring Service Manager supports overriding configuration at many levels.

Configuration

Configuring Addons to Support Spring Services

Configuring Addons to support Spring happens at two levels. Default Spring configuration is available in the DSpace JAR or WAR resources directory and
allows the addon developer to inject configuration into the service manager at load time. The second level is in the deployed [dspace]/config/spring
directory where configurations can be provided on a addon module by addon module basis.

This latter method requires the addon to implement a SpringLoader to identify the location to look for Spring configuration and a place configuration files
into that location. This can be seen inside the current [dspace-source]/config/modules/spring.cfg

Configuration Priorities

The ordering of the loading of Spring configuration is the following:

configPath = "spring/spring-dspace-applicationContext.xml" relative to the current classpath
addonResourcePath = "classpath*:spring/spring-dspace-addon-*-services.xml" relative to the current classpath
coreResourcePath = "classpath*:spring/spring-dspace-core-services.xml" relative to the current classpath
Finally, an array of SpringLoader API implementations that are checked to verify "config/spring/module" can actually be loaded by its existence on
the classpath. The configuration of these SpringLoader API classes can be found in dspace.dir/config/modules/spring.cfg.

Configuring a new Addon

There are 2 ways to create a new Spring addon: a new Spring file can be located in the resources directory or in the configuration [dspace]/config/spring
directory. A Spring file can also be located in both of these locations but the configuration directory gets preference and will override any configurations
located in the resources directory.

Addon located as resource in jar

In the resources directory of a certain module, a Spring file can be added if it matches the following pattern: "spring/spring-dspace-addon-*-services.xml".
An example of this can be found in the dspace-discovery-solr block in the DSpace trunk. ()spring-dspace-addon-discovery-services.xml
Wherever this jar is loaded in a Maven module, the Spring files will be processed into services.

Addon located in the [dspace]/config/spring directory

This directory has the following subdirectories in which Spring files can be placed:

api: when placed in this module the Spring files will always be processed into services (since all of the DSpace modules are dependent on the
API).
discovery: when placed in this module the Spring files will only be processed when the discovery library is present

The reason why there is a separate directory is that if a service cannot be loaded, the kernel will crash and DSpace will not start.

Configuring an additional subdirectory for a custom module

So you need to indeed create a new directory in [dspace]/config/spring. Next you need to create a class that inherits from the "org.dspace.kernel.config.
SpringLoader". This class only contains one method named getResourcePaths(). What we do now at the moment is implement this in the following manner:

734

@Override
public String[] getResourcePaths(ConfigurationService configurationService) {
 StringBuffer filePath = new StringBuffer();
 filePath.append(configurationService.getProperty("dspace.dir"));
 filePath.append(File.separator);
 filePath.append("config");
 filePath.append(File.separator);
 filePath.append("spring");
 filePath.append(File.separator);
 filePath.append("{module.name}"); //Fill in the module name in this string
 filePath.append(File.separator);
 try {

 //By adding the XML_SUFFIX here it doesn't matter if there should be some kind of spring.xml.old file
in there it will only load in the active ones.
 return new String[]{new File(filePath.toString()).toURI().toURL().toString() + XML_SUFFIX};
 } catch (MalformedURLException e) {
 return new String[0];
 }
}

After the class has been created you will also need to add it to the "spring.springloader.modules" property located in the [dspace]/config/modules/spring.
cfg.
The Spring service manager will check this property to ensure that only the interface implementations which it can find the class for are loaded in.

By doing this way we give some flexibility to the developers so that they can always create their own Spring modules and then Spring will not crash when it
can't find a certain class.

The Core Spring Configuration

Utilizing Autowiring to minimize configuration complexity.

Please see the following tutorials:

DSpace Spring Services Tutorial
The TAO of DSpace Services

Accessing the Services Via Service Locator / Java Code

Please see the following tutorials:

DSpace Spring Services Tutorial
The TAO of DSpace Services

Architectural Overview

Please see Architectural Overview here: DSpace Services Framework

Service Manager Startup in Webapplications and CLI

Please see the DSpace Services Framework

Tutorials

Several good Spring / DSpace Services Tutorials are already available:

DSpace Spring Services Tutorial
The TAO of DSpace Services

735

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpace+Spring+Services+Tutorial
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=The+TAO+of+DSpace+Services
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpace+Spring+Services+Tutorial
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=The+TAO+of+DSpace+Services
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpace+Spring+Services+Tutorial
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=The+TAO+of+DSpace+Services

1.

2.

3.

Batch Processing
In the current DSpace design, the database transactions are in most of the cases relatively long: from Context creation to the moment the Context is
completed. Especially when doing batch processing, that transaction can become very long. The new data access layer introduced in DSpace 6 which is
based on Hibernate has built-in cache and auto-update mechanisms. But these mechanisms do not work well with long transactions and even have an
exponentially adverse-effect on performance.

Therefore we added a new method to the DSpace Context class which tells our database connection that we are going to do some enableBatchMode()
batch processing. The database connection (Hibernate in our case) can then itself to deal with a large number of inserts, updates and deletes. optimize
Hibernate will then not postpone update statements anymore which is better in the case of batch processing. The method lets isBatchModeEnabled()
you check if the current Context is in "batch mode".

When dealing with a lot of records, it is also important to deal with the size of the (Hibernate) cache. A large cache can also lead to decreased
performance and eventually to "out of memory" exceptions. To help developers to better manage the cache, a method was added to getCacheSize()
the DSpace Context class that will give you the number of database records currently cached by the database connection. Another new method uncacheE

 will allow you to clear the cache (of a single object) and free up (heap) memory. The method (ReloadableEntity entity)ntity uncacheEntity()
may be used to immediately remove an object from heap memory once the batch processing is finished with it. Besides the method, uncacheEntity()
the method in the DSpace Context class will also clear the cache, flush all pending changes to the database and commit the current database commit()
transaction. The database changes will then be visible to other threads.

BUT and come at a price. After calling this method all previously fetched entities (hibernate terminology for database uncacheEntity() commit()
record) are "detached" (pending changes are not tracked anymore) and cannot be combined with "attached" entities. If you change a value in a detached
entity, Hibernate will not automatically push that change to the database. If you still want to change a value of a detached entity or if you want to use that
entity in combination with attached entities (e.g. adding a bitstream to an item) after you have cleared the cache, you first have to reload that entity. Reloadi
ng means asking the database connection to re-add the entity from the database to the cache and get a new object reference to the required entity. From
then on, it is important that you use that new object reference. To simplify the process of reloading detached entities, we've added a reloadEntity

 method to the DSpace Context class with a new interface . This method will give the user a new (ReloadableEntity entity) ReloadableEntity
"attached" reference to the requested entity. All DSpace Objects and some extra classes implement the interface so that they can be ReloadableEntity
easily reloaded.

Examples on how to use these new methods can be found in the IndexClient class. But to summarize, when batch processing it is important that:

You put the Context into batch processing mode using the method:

boolean originalMode = context.isBatchModeEnabled();
context.enableBatchMode(true);

Perform necessary batch operations, being careful to call whenever you complete operations on each object. Alternatively, uncacheEntity()
you can the context once the object cache reaches a particular size (see). Remember, once an object is commit() getCacheSize()
"uncached", you will have to reload it (see) before you can work with it again: reloadEntity()

final Iterator<Item> itemIterator = itemService.findByCollection(context, collection);

// Loop through all items
while (itemIterator.hasNext()) {
 // Get access to next Item
 Item item = itemIterator.next();

 ... do something with Item ...

 // To prevent memory issues, discard Item from the cache after processing
 context.uncacheEntity(item);
}

// Remember: calling commit() will decache all objects
context.commit();

// So, if you need to reuse your Collection *post* commit(), you'd have to reload it
Collection collection = context.reloadEntity(collection);

When you're finished with processing the records, you put the context back into its original mode:

context.enableBatchMode(originalMode);

736

Curation Tasks

1 Writing your own tasks
2 Task Output and Reporting

2.1 Status Code
2.2 Result String
2.3 Reporting Stream
2.4 Accessing task output in calling code

3 Task Properties
4 Task Annotations
5 Scripted Tasks

5.1 Interface
5.1.1 performDso() vs. performId()

This documentation provides a guide for how to programmatically create Curation Tasks. For more information configuring Curation Tasks, see the Curatio
 section of the documentation n System

Writing your own tasks

A task is just a java class that can contain arbitrary code, but it must have 2 properties:

First, it must provide a no argument constructor, so it can be loaded by the PluginManager. Thus, all tasks are 'named' plugins, with the taskname being
the plugin name.

Second, it must implement the interface org.dspace.curate.CurationTask

The interface is almost a "tagging" interface, and only requires a few very high-level methods be implemented. The most significant is:CurationTask

int perform(DSpaceObject dso);

The return value should be a code describing one of 4 conditions:

0 : SUCCESS the task completed successfully
1 : FAIL the task failed (it is up to the task to decide what 'counts' as failure - an example might be that the virus scan finds an infected file)
2 : SKIPPED the task could not be performed on the object, perhaps because it was not applicable
-1 : ERROR the task could not be completed due to an error

If a task extends the class, that is the only method it needs to define.AbstractCurationTask

Task Output and Reporting

Few assumptions are made by CS about what the 'outcome' of a task may be (if any) - it. could e.g. produce a report to a temporary file, it could modify
DSpace content silently, etc. But the CS runtime does provide a few pieces of information whenever a task is performed:

Status Code

This is returned to CS by any of a task's methods. The complete list of values, defined in , is:perform Curator

value symbol meaning

-3 CURATE_NOTASK CS could not find the requested task

-2 CURATE_UNSET task did not return a status code because it has not yet run

-1 CURATE_ERROR task could not be performed

0 CURATE_SUCCESS task performed successfully

1 CURATE_FAIL task performed, but failed

2 CURATE_SKIP task not performed due to object not being eligible

In the administrative UI, this code is translated into the word or phrase configured by the property (discussed in) for ui.statusmessages Curation System
display.

Result String

737

The task may set a string indicating details of the outcome:

curator.setResult("Item " + item.getID() + " was painted " + color);

CS does not interpret or assign result strings; the task does it. A task may choose not to assign a result, but the "best practice" for tasks is to assign one
whenever possible. Code which invokes may use the result string for display or any other purpose.Curator.getResult()

Reporting Stream

For very fine-grained information, a task may write to a stream. Unlike the result string, there is no limit to the amount of data that may be pushed reporting
to this stream.

curator.report("Lorem ipsum dolor sit amet,\n");
curator.report("consectetur adipiscing elit,\n");
curator.report("sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.\n");

Accessing task output in calling code

The status code, reporting stream, and the result string are accessed (or set) by methods on the Curator object:

Curator curator = new Curator();
curator.setReporter(new OutputStreamWriter(System.out));
curator.addTask("vscan").curate(coll);
int status = curator.getStatus("vscan");
String result = curator.getResult("vscan");

Task Properties

Task code may configure itself using ConfigurationService in the normal manner, or by the use of "task properties". See Curation System - Task Properties
for discussion of the issues for which task properties were invented. Any code which extends AbstractCurationTask has access to its configured task
properties.

The entire "API" for task properties is:

public String taskProperty(String name);
public int taskIntProperty(String name, int defaultValue);
public long taskLongProperty(String name, long defaultValue);
public boolean taskBooleanProperty(String name, boolean default);

Task Annotations

CS looks for, and will use, certain java annotations in the task Class definition that can help it invoke tasks more intelligently. An example may explain
best. Since tasks operate on DSOs that can either be simple (Items) or containers (Collections, and Communities), there is a fundamental problem or
ambiguity in how a task is invoked: if the DSO is a collection, should the CS invoke the task on each member of the collection, or does the task "know"
how to do that itself? The decision is made by looking for the @Distributive annotation: if present, CS assumes that the task will manage the details,
otherwise CS will walk the collection, and invoke the task on each member. The java class would be defined:

@Distributive
public class MyTask implements CurationTask

A related issue concerns how non-distributive tasks report their status and results: the status will normally reflect only the last invocation of the task in the
container, so important outcomes could be lost. If a task declares itself @Suspendable, however, the CS will cease processing when it encounters a FAIL
status. When used in the UI, for example, this would mean that if our virus scan is running over a collection, it would stop and return status (and result) to
the scene on the first infected item it encounters. You can even tune @Supendable tasks more precisely by annotating what invocations you want to
suspend on. For example:

@Suspendable(invoked=Curator.Invoked.INTERACTIVE)
public class MyTask implements CurationTask

would mean that the task would suspend if invoked in the UI, but would run to completion if run on the command-line.

738

Only a few annotation types have been defined so far, but as the number of tasks grow, we can look for common behavior that can be signaled by
annotation. For example, there is a @Mutative type: that tells CS that the task may alter (mutate) the object it is working on.

Scripted Tasks

DSpace 1.8 introduced limited (and somewhat experimental) support for deploying and running tasks written in languages other than Java. Since version
6, Java has provided a standard way (API) to invoke so-called scripting or dynamic language code that runs on the java virtual machine (JVM). Scripted
tasks are those written in a language accessible from this API. See for information on configuring and running scripted Curation System - Scripted Tasks
tasks.

Interface

Scripted tasks must implement a slightly different interface than the interface used for Java tasks. The appropriate interface for scripting CurationTask
tasks is and has the following methods:ScriptedTask

public void init(Curator curator, String taskId) throws IOException;
public int performDso(DSpaceObject dso) throws IOException;
public int performId(Context ctx, String id) throws IOException;

The difference is that has separate methods for DSO and identifier. The reason for that is that some scripting languages (e.g. ScriptedTask perform
Ruby) don't support method overloading.

performDso() vs. performId()

You may have noticed that the interface has both and methods, but only performDso is ever called when ScriptedTask performDso() performId()
curator is launched from command line.

There are a class of use-cases in which we want to construct or create new DSOs (DSpaceObject) given an identifier in a task. In these cases, there may
be no live DSO to pass to the task.
You actually get curation system to call if you queue a task then process the queue - when reading the queue all CLI has is the handle can performId()
to pass to the task.

739

https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/CurationTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java

1.
2.

a.

b.

3.
a.

b.

c.

4.
a.

b.

c.
5.

6.

Curation tasks in Jython
As mentioned in the "Scripted Tasks" chapter of , you can write your curation tasks in several languages, including Jython (a flavour of Curation Tasks
Python running on JVM).
Instructions are outdated and unproven in DSpace 7.x

Setting up scripted tasks in Jython

Download the latest Jython installer jar (e.g.) from jython-installer-2.7.1.jar http://www.jython.org/downloads.html
Get and the directory.jython.jar Lib

either unzip the installer jar:
unzip -d [dspace]/lib/ jython-installer-2.7.1.jar jython.jar Lib/
unzip -d jython-installer-2.7.1.jar jython.jar Lib/[dspace]/webapps/server/WEB-INF/lib/
or use it to install Jython:
java -jar jython-installer-2.7.1.jar --console

Note: Installation location doesn't matter, this is not necessary for DSpace. You can safely delete it after you retrieve and jython.jar L
.ib

Install Jython to DSpace classpaths (step 2a already did this for you):
The goal is to put and the jython directory into DSpace classpath you intend to use, so it must be installed in jython.jar Lib/ every b

 and the webapp that deploys to Tomcat (if you want to run from the UI) - oth [dspace]/lib [dspace]/webapps/server/WEB-INF
. There are no special maven/pom extensions - just copy in the jar and ./lib/ Lib/

You use symlinks if you wish as long as allowLinking (,) is set to true in that context's configuration. However, can Tomcat <=7 Tomcat 8
be warned that .Tomcat documentation lists allowLinking="true" as a possible security concern
Note: Older versions of Jython mention the need for jython-engine.jar to implement JSR-223. Don't worry about that, new Jython
versions, e.g. 2.7.1 don't require this.

Configure the curation framework to be aware of your new task(s):
set up the location of scripted tasks in the curation system. This means simply adding a property to [dspace]/config/modules

:/curate.cfg
script.dir=${dspace.dir}/ctscripts
in this directory, create a text file named " ". This is a Java properties file where lines beginning with '#' are task.catalog
comments. Add a line for each task you write. The syntax is following:

logical task name = script engine name|file name|constructor invocation
mytask=python|mytask.py|MyTask()

Notes:

don't put spaces around the pipe character or you'll get an error similar to this one:
ERROR org.dspace.curate.TaskResolver @ Script engine: 'python ' is not installed
The "script engine name" is whatever name (or alias) jython registers in the JVM. You can use both "python" and "jython" as
engine name (tested on jython 2.7.1).
The logical task name can't conflict with existing (java) task names, but otherwise any single-word token can be used.
The file name is just the script file name in the directoryscript.dir
"constructor invocation" is the language specific way to create an object that implements the task interface - it's ClassName()
for Python

If you want pretty names in the UI, configure other curate.cfg properties - see " " (or groups etc)ui.tasknames
Write your task.
In the directory configured above, create your task (with the name configured in " ").task.catalog
The basic requirement of any scripted task is that it implements the Java interface.ScriptedTask
So for our example, the file might look like this:mytask.py

from org.dspace.curate import ScriptedTask

class MyTask(ScriptedTask):
 def init(self, curator, taskName):
 print "initializing with Jython"

 def performDso(self, dso):
 print "perform on dso"
 return 0

 def performId(self, context, id):
 print "perform on id %s" % (id)
 return 0

740

http://search.maven.org/remotecontent?filepath=org/python/jython-installer/2.7.1/jython-installer-2.7.1.jar
http://www.jython.org/downloads.html
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Standard_Implementation
http://tomcat.apache.org/tomcat-8.0-doc/config/resources.html
https://tomcat.apache.org/tomcat-8.0-doc/security-howto.html#Context
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java

6. Invoke the task.
You can do this the same way you would invoke any task (from command line, in the admin UI, etc). The advantage of scripting is that you do not
need to restart your servlet container to test changes; each task's source code is reloaded when you launch the task, so you can just put the
updated script in place.
Example of invocation from command line:

[dspace]/bin/dspace curate -t mytask -i 123456789/123 -r -

Note: " " means that the script's standard output will be directed to the console. You can read more details in the "On the command line" -r -
chapter of the page.Curation Tasks

See also

Curation Tasks page in the official documentation
Nailgun - for speeding up repeated runs of a dspace command from the command line
Note: since DSpace 4.0, there's a solution for running dspace CLI commands in batch: Executing streams of commands
Jython webapp for DSpace - general purpose (not curation task) webapp written in Jython, optionally with access to DSpace API

741

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Nailgun
https://wiki.duraspace.org/display/DSDOC4x/Executing+streams+of+commands
https://wiki.duraspace.org/display/DSPACE/Jython+webapp+for+DSpace

Development Tools Provided by DSpace

Date parser tester

Some parts of DSpace use a custom date/time parser () which is driven by a table of regular org.dspace.util.MultiFormatDateParser
expressions, so it can match any of a variety of formats. The table is found in . To test new and altered config/spring/api/discovery-solr.xml
rules, you can use the DSpace command line tool's command. You can simply pass it a date/time string on the command line (validate-date dspace

 01-01-2015). You can pipe a stream of strings to be validated, one per line (). Or you can validate-date dspace validate-date < test.data
have it prompt you for each string to be tested ().dspace validate-date

742

1.

2.
a.
b.
c.

3.

4.
5.

a.
6.

REST API

Overview
REST Contract / Documentation
Finding which REST API Endpoint to use
REST Configuration

REST Spring Boot Configuration
Technical Design
DSpace Demo REST-API HAL Browser
DSpace Python REST Client Library

Overview

The REST API for DSpace is provided as part of the "server" webapp (). It is available on the `/api/` [dspace-source]/dspace-server-webapp/
subpath of that webapp (i.e.), though a human browseable/searchable interface (using the) is also ${dspace.server.url}/api/ HAL Browser
available at the root path (i.e.).${dspace.server.url}

The REST API only responds in JSON at this time.

REST Contract / Documentation

The REST Contract is maintained in GitHub at https://github.com/DSpace/RestContract/blob/main/README.md

This contract provides detailed information on how to interact with the API, what endpoints are available, etc. All features/capabilities of the DSpace UI are
available in this API.

Finding which REST API Endpoint to use

When first trying the use the DSpace REST API, it can be difficult to determine where to begin. This brief guide provides a few hints on where to start.

First, it's important to be aware that So, if you can achieve something in the every single action in the User Interface can be done in the REST API.
User Interface, then it's also possible to do via the REST API.

A few key endpoints to be aware of:

Authentication: https://github.com/DSpace/RestContract/blob/main/authentication.md
CSRF Tokens (required for all non-GET requests): https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
Submission via REST API: https://github.com/DSpace/RestContract/blob/main/submission.md
Search via REST API (across all object types): https://github.com/DSpace/RestContract/blob/main/search-endpoint.md

Some endpoints also provide a "/search" subpath: https://github.com/DSpace/RestContract/blob/main/search-rels.md

How to find which endpoint(s) to use for any feature or action:

Open the DSpace User Interface in your browser window. You can even use our Demo Site () if you don't have the User https://demo.dspace.org/
Interface installed or running locally.
In your Browser, open the "Developer Tools"

In Chrome, go to "More Tools Developer Tools"
In Firefox, go to "Web Developer Web Developer Tools".
In Microsoft Edge, go to "More Tools Developer Tools".

Once in "Developer Tools", open the "Network" tab. This tab will provide information about every single call that the User Interface makes to the
REST API.
Now, perform an action or use a feature in the User Interface in your browser window.
Analyze what calls were just sent to the REST API in your "Network" tab. Those are the exact REST API endpoints that were used to perform
that action.

NOTE: Some actions may use multiple endpoints.
Finally, lookup the documentation for those endpoint(s) in the REST Contract / Documentation (see link above)

REST Configuration

The following REST API configurations are provided in and may be overridden in your local.cfg[dspace]/config/rest.cfg

Pr
op
ert
y:

rest.cors.allowed-origins

Ex
am
ple
Val
ue:

rest.cors.allowed-origins = ${dspace.ui.url}

743

https://github.com/mikekelly/hal-browser
https://github.com/DSpace/RestContract/blob/main/README.md
https://github.com/DSpace/RestContract/blob/main/authentication.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/submission.md
https://github.com/DSpace/RestContract/blob/main/search-endpoint.md
https://github.com/DSpace/RestContract/blob/main/search-rels.md
https://demo.dspace.org/

Inf
or
ma
tio
nal
No
te:

Allowed origins (in "Access-Control-Allow-Origin" header). Only these origins (client URLs) can Cross-Origin-Resource-Sharing (CORS)
successfully authenticate with your REST API . Defaults to if unspecified (as the UI must have access to via a web browser ${dspace.ui.url}
the REST API). If you customize that setting, MAKE SURE TO include ${dspace.ui.url} in that setting if you wish to continue trusting the UI.

Multiple allowed origin URLs may be comma separated (or this configuration can be defined multiple times). Wildcard value (*) is NOT
SUPPORTED.

Keep in mind any URLs added to this setting must be : mode (http vs https), domain, port, and subpath(s) all must an exact match with the origin
match.. So, for example, these URLs are all considered different origins: " ", " " (different port), "http://mydspace.edu http://mydspace.edu:4000 https:/

" (http vs https), " " (different domain), and " " (different subpath)./mydspace.edu https://myapp.mydspace.edu https://mydspace.edu/myapp

Development or command-line tools may not use CORS and may therefore bypass this configuration. CORS does not provide NOTE #1:
protection to the REST API / server webapp. Instead, its role is to protect browser-based clients from cookie stealing or other Javascript-based
attacks. All modern web browsers use CORS to protect their users from such attacks. Therefore DSpace's CORS support is used to protect users
who access the REST API via a web browser application, such as the DSpace UI or custom built Javascript tools/scripts.

NOTE #2: If you modify this value to allow additional UIs (or Javascript tools) to access your REST API, then you may also need to modify proxie
 to trust the IP address of each UI. Modifying trusted proxies is only necessary if the header must be s.trusted.ipranges X-FORWARDED-FOR

trusted from each additional UIs. (The DSpace UI currently requires the header to be trusted). By default, X-FORWARDED-FOR proxies.
 will only trust the IP address of the configuration.trusted.ipranges ${dspace.ui.url}

(Requires reboot of servlet container, e.g. Tomcat, to reload)

Pr
op
ert
y:

rest.cors.allow-credentials

Ex
am
ple
Val
ue:

rest.cors.allow-credentials = true

Inf
or
ma
tio
nal
No
te:

Whether or not to allow credentials (e.g. cookies) sent by the client/browser in CORS requests (in "Access-Control-Allow-Credentials" header).

For DSpace, this MUST be set to "true" to support CSRF checks (which use Cookies) and external authentication via Shibboleth (and similar).
Defaults to "true" if unspecified. (Requires reboot of servlet container, e.g. Tomcat, to reload)

Pr
op
ert
y:

rest.projections.full.max

Ex
am
ple
Val
ue:

rest.projections.full.max = 2

Inf
or
ma
tio
nal
No
te:

This property determines the max embeddepth for a FullProjection. This is also used by the SpecificLevelProjection
as a fallback in case the property is defined on the bean. Usually, this should be kept as-is for best performance.

Pr
op
ert
y:

rest.projection.specificLevel.maxEmbed

Ex
am
ple
Val
ue:

rest.projection.specificLevel.maxEmbed = 5

Inf
or
ma
tio
nal
No
te:

This property determines the max embed depth for a SpecificLevelProjection. Usually, this should be kept as-is for best performance.

744

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Pr
op
ert
y:

rest.properties.exposed

Ex
am
ple
Val
ue:

rest.properties.exposed = plugin.named.org.dspace.curate.CurationTask
rest.properties.exposed = google.analytics.key

Inf
or
ma
tio
nal
No
te:

Define which configuration properties are exposed through the REST API http://<dspace.server.url>/api/config/properties/
endpoint.

If a rest request is made for a property which exists, but isn't listed here, the server will respond that the property wasn't found. This property can
be defined multiple times to allow access to multiple configuration properties.

Generally, speaking, it is ONLY recommended to expose configuration settings where they are necessary for the UI or client, as exposing too
many configurations could be a security issue. This is why we only expose the two above settings by default.

REST Spring Boot Configuration

Because the REST API is a Spring Boot web application, you can also configure or override Spring Boot settings in your local.cfg. DSpace's default any
Spring Boot configuration can be found in . A few common [src]/dspace-server-webapp/src/main/resources/application.properties
settings from Spring Boot which you may wish to override in your local.cfg include:

Propert
y:

spring.servlet.multipart.max-file-size

Exampl
e
Value:

spring.servlet.multipart.max-file-size = 512MB

Informa
tional
Note:

Per , this setting specifies the maximum size of file that can be uploaded via Spring Boot (and therefore via the DSpace Spring Boot docs
REST API). A value of "-1" removes any limit. DSpace sets this to 512MB by default.

Propert
y:

spring.servlet.multipart.max-request-size

Exampl
e
Value:

spring.servlet.multipart.max-request-size = 512MB

Informa
tional
Note:

Per , this setting specifies the maximum size of a single request via Spring Boot (and therefore via the DSpace REST Spring Boot docs
API). That means if multiple files are uploaded at once, this is the maximum total size of all files. A value of "-1" removes any limit. DSpace
sets this to 512MB by default.

Technical Design

The REST API & Server Webapp are built on and , using . It also aligns with (though at Spring Boot Spring HATEOAS Spring Security Spring Data REST
this time it doesn't use it directly because of incompatibility with the DSpace data model).

The REST API is stateless, aligns with principles, returning . This allows HATEOAS (Hypertext as the Engine of Application State) HAL formatted JSON
the REST API to be easily browsable/interactable via third-party tools that understand HAL & HATEOAS, such as the . HAL Browser JSON Web Tokens

 are used to store state/session information between requests.(JWT)

For better security, the REST API requires usage of for all modifying requests.CSRF tokens

More information can be found in the REST Contract at https://github.com/DSpace/RestContract/blob/main/README.md#rest-design-principles

DSpace Demo REST-API HAL Browser

https://demo.dspace.org/server/

DSpace Python REST Client Library

The Library Code is a DSpace Platinum certified Service Provider. They created a python library to use the REST-API of DSpace 7 and upwards out of
python: .https://github.com/the-library-code/dspace-rest-python

745

https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits
https://spring.io/guides/gs/uploading-files/#_tuning_file_upload_limits
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-hateoas
https://spring.io/projects/spring-security
https://spring.io/projects/spring-data-rest
https://en.wikipedia.org/wiki/HATEOAS
http://stateless.co/hal_specification.html
https://github.com/mikekelly/hal-browser
https://jwt.io/
https://jwt.io/
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/README.md#rest-design-principles
https://demo.dspace.org/server/
https://github.com/the-library-code/dspace-rest-python

Services to support Alternative Identifiers
Together with the an Identifier Service was introduced that make it possible to integrate new Identifiers. Currently the Identifier Item Level Versioning
Service is used for Items only, but this may be changed in future versions of DSpace. Identifiers used for different versions are an very important point as
part of an versioning strategy. The following documentation describes the Identifier Service in the context of Item Level Versioning, nevertheless the
Identifier Service is also used for Items when the Item Level Versioning is switched off.

Versioning and Identifier Service

DSpace Item Versioning is encapsulated as an Extensible Service that may be reimplemented by the local repository maintainers to produce alternate
versioning behaviors and Identifier Schemes. Versioning Services layer on top of IdentifierServices dedicated to Encoding, Resolution, Minting and
Registration of Identifiers for specific DSpace Items. It is through this highly extensible layering of functionality where local developers can alter the
versioning behavior and introduce their own local enhancements. The DSpace Service Manager, based on the Spring Framework, provides the key
leverage for this flexibility.

Versioning Service

The Service will be responsible for the replication of one or more Items when a new version is requested. The new version will not yet be Versioning
preserved in the Repository, it will be preserved when the databases transactional window is completed, thus when errors arise in the process, versioning
the database will be properly kept in its original state and the application will alert that an exception has occurred that is in need of correction.

The Service will rely on a generic that is described below for minting and registering any identifiers that are required to track Versioning IdentifierService
the revision history of the Items.

746

1.

2.
3.

public interface VersioningService {

 Version createNewVersion(Context c, int itemId);

 Version createNewVersion(Context c, int itemId, String summary);

 void removeVersion(Context c, int versionID);

 void removeVersion(Context c, Item item);

 Version getVersion(Context c, int versionID);

 Version restoreVersion(Context c, int versionID);

 Version restoreVersion(Context c, int versionID, String summary);

 VersionHistory findVersionHistory(Context c, int itemId);

 Version updateVersion(Context c, int itemId, String summary);

 Version getVersion(Context c, Item item);
}

Identifier Service

The Identifier Service maintains an extensible set of services that are responsible for two important activities in Identifier management:IdentifierProvider

Resolution: act in a manner similar to the existing HandleManager in DSpace, allowing for resolution of DSpace Items from IdentifierService
provided identifiers.
Minting: Minting is the act of reserving and returning an identifier that may be used with a specific DSpaceObject.
Registering: Registering is the act of recording the existence of a minted identifier with an external persistent resolver service. These services
may reside on the local machine (HandleManager) or exist as external services (PURL or EZID DOI registration services)

public interface IdentifierService {

 /**
 *
 * @param context
 * @param dso
 * @param identifier
 * @return
 */
 String lookup(Context context, DSpaceObject dso, Class<? extends Identifier> identifier);

 /**
 *
 * This will resolve a DSpaceObject based on a provided Identifier. The Service will interrogate
the providers in
 * no particular order and return the first successful result discovered. If no resolution is
successful,
 * the method will return null if no object is found.
 *
 * TODO: Verify null is returned.
 *
 * @param context
 * @param identifier
 * @return
 * @throws IdentifierNotFoundException
 * @throws IdentifierNotResolvableException
 */
 DSpaceObject resolve(Context context, String identifier) throws IdentifierNotFoundException,
IdentifierNotResolvableException;

 /**
 *
 * Reserves any identifiers necessary based on the capabilities of all providers in the service.
 *
 * @param context
 * @param dso

747

3.

 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void reserve(Context context, DSpaceObject dso) throws AuthorizeException, SQLException,
IdentifierException;

 /**
 *
 * Used to Reserve a Specific Identifier (for example a Handle, hdl:1234.5/6) The provider is
responsible for
 * Detecting and Processing the appropriate identifier, all Providers are interrogated, multiple
providers
 * can process the same identifier.
 *
 * @param context
 * @param dso
 * @param identifier
 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void reserve(Context context, DSpaceObject dso, String identifier) throws AuthorizeException,
SQLException, IdentifierException;

 /**
 *
 * @param context
 * @param dso
 * @return
 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void register(Context context, DSpaceObject dso) throws AuthorizeException, SQLException,
IdentifierException;

 /**
 *
 * Used to Register a Specific Identifier (for example a Handle, hdl:1234.5/6) The provider is
responsible for
 * Detecting and Processing the appropriate identifier, all Providers are interrogated, multiple
providers
 * can process the same identifier.
 *
 * @param context
 * @param dso
 * @param identifier
 * @return
 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void register(Context context, DSpaceObject dso, String identifier) throws AuthorizeException,
SQLException, IdentifierException;

 /**
 * Delete (Unbind) all identifiers registered for a specific DSpace item. Identifiers are "unbound"
across
 * all providers in no particular order.
 *
 * @param context
 * @param dso
 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void delete(Context context, DSpaceObject dso) throws AuthorizeException, SQLException,
IdentifierException;

 /**

748

3.

 * Used to Delete a Specific Identifier (for example a Handle, hdl:1234.5/6) The provider is
responsible for
 * Detecting and Processing the appropriate identifier, all Providers are interrogated, multiple
providers
 * can process the same identifier.
 *
 * @param context
 * @param dso
 * @param identifier
 * @throws org.dspace.authorize.AuthorizeException
 * @throws java.sql.SQLException
 * @throws IdentifierException
 */
 void delete(Context context, DSpaceObject dso, String identifier) throws AuthorizeException,
SQLException, IdentifierException;

}

749

User Interface Design Principles & Accessibility
These guidelines help ensure that all DSpace components have a consistent layout and follow the essential Web Content Accessibility Guidelines (WCAG).
These guidelines MUST be followed by anyone who wants to contribute to the project. See also our Code Contribution Guidelines

Overview
Terminology used in this page

Guiding Principles
User Interface Design Guidelines
User Interface Accessibility Guidelines

Overview

These guidelines apply primarily to the "Base Theme" for the DSpace User Interface.

Base Theme (directories): The primary look & feel of DSpace (e.g. HTML layout, header/footer, etc) is defined by the HTML5 /src/app/
templates under this directory. Each HTML5 template is stored in a subdirectory named for the Angular component where that template is used.
The base theme includes very limited styling (CSS, etc), based heavily on and only allowing for minor tweaks to ,default Bootstrap (4.x) styling
improve accessibility (e.g.) default Bootstrap's color scheme does not have sufficient color contrast
Two additional themes are provided with DSpace out-of-the-box

Custom Theme (/src/themes/custom directories): This directory acts as the scaffolding or template for creating a new custom
theme. It provides (empty) Angular components/templates which allow you to change the theme of individual components. Since all files
are empty by default, if you enable this theme (without modifying it), it will look identical to the Base Theme.

(directories): This is the default theme for DSpace 7. It is a very simple DSpace Theme /src/themes/dspace example theme
providing a custom color scheme & homepage on top of the Base Theme.

More information on themes (in general) can be found in the documentationUser Interface Customization

Terminology used in this page

The following terms are used frequently in this page, and this is a quick reference to what we mean by these terms:

template = Angular template
component = Angular component
style = CSS/SCSS styles
theme = a set of templates that work together (along with the styling/CSS) to comprise the look & feel of the site.

Guiding Principles

All templates in the Base Theme (directories) should only use default Bootstrap styling. Documentation at:/src/app https://getbootstrap.com/docs
/4.6/getting-started/introduction/

Exceptions may be made for accessibility purposes. For example, Bootstrap notes their default color scheme does not always have
sufficient color contrast

When Bootstrap Components (accordion, dropdown, etc …) are required you MUST use the included ng-bootstrap library. Documentation at: https
://ng-bootstrap.github.io/#/components/accordion/examples

The use of the Bootstrap framework can help in achieving some WCAG goals such as ‘Visual Presentation’ (AAA), 'Parsing' (A), ‘Orientation’ (AA), ‘Reflow’
(AA) and ‘Text Spacing’ (AA). See the Bootstrap chapter for an explanation of WCAG and where to find additional information.‘ ’Accessibility

User Interface Design Guidelines

This section provides basic guidelines on User Interface layout/design and the elements (or components) used by the DSpace User Interface. DSpace
developers strive to meet these guidelines in order to ensure consistent behavior/layout on all pages. If you find a guideline is not met on a particular
page, please report a .bug ticket for that user interface page

All the buttons should have a text description and an icon:

If that it’s not possible (e.g. a small button with an icon) always use the ‘name’ and ‘title’ properties.
Use the tooltip component when you need a better explanation of a button functionality. For example:

750

https://www.w3.org/WAI/standards-guidelines/wcag/
https://wiki.lyrasis.org/display/DSPACE/Code+Contribution+Guidelines
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/accessibility/#color-contrast
https://angular.io/guide/architecture-components#templates-and-views
https://angular.io/guide/architecture-components
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/accessibility/#color-contrast
https://getbootstrap.com/docs/4.0/getting-started/accessibility/#color-contrast
https://ng-bootstrap.github.io/#/components/accordion/examples
https://ng-bootstrap.github.io/#/components/accordion/examples
https://getbootstrap.com/docs/4.0/getting-started/accessibility/
https://github.com/DSpace/dspace-angular/issues

For UI elements on public pages that are only visible to users with elevated privileges use an inverted color scheme .btn-dark
For the ‘anchor’ (the ‘<a>’ element) that uses the ‘btn’ Bootstrap CSS class always use .btn-outline-primary
For the main action button use the Bootstrap CSS class .btn-primary
For buttons like ‘Cancel’ or ‘Back’ use che Bootstrap CSS class .btn-outline-secondary
For buttons that open a dropdown list use the Bootstrap CSS class .btn-secondary
In a button series, or group, only one ‘<button>’ has the Bootstrap CSS class .btn-primary
The buttons order, inside a group or a series, should follow the kind of action it performs. At the left side the most ‘light’ action, like ‘Back’ or
‘Cancel’, at the right side the most ‘changing’ action like ‘Delete’ or ‘Remove’. So, the order is:

Back -> Cancel -> Submit/Edit/Save/Save for later/Deposit -> Discard/Delete/Remove

Here an example:

Where possible, align the buttons to the right.
Every macro-function inside a page shall be a primary button.
If, after an action, there is a waiting time, e.g. for the server response, the control (e.g. the button) that launched the action must become disabled
and show an animated waiting icon. All other associated controls must be disabled (property ‘ ’).disabled=”true”
Action confirmation should occur on cancellations or non-reversible operations; a modal should appear with a message giving the possibility to
confirm or cancel the requested action:

To inform the user that a certain section of the page is about to be modified as a result of an action (e.g. a page change to move forward in a list)
it's necessary to make an animated waiting icon appear:

All searches that do not return a result must report their absence via a message within a block (e.g. ‘ ’) with the Bootstrap CSS class 'alert-<div>
info'.
The items in the horizontal top navigation menu are links to pages always available to the user (logged or not).
The items in the left vertical menu are links concerning management, administration and creation or modification of DSpace items. The list can be
different according to the permissions of the logged user.
If a page topic has more logical subdivisions, it's opportune to separate them in more tabs (e.g. the 'Edit collection' page where you can edit
metadata, roles and policies).
Inside the Extended Footer you can insert information about the institution, partnerships, social links, external links or legal information.
Notifications

751

All the notifications with the whole page scope should be placed on the top right side of the page, hovering on the elements beneath it:

Notifications types and color schemes: the corresponding Bootstrap CSS class must be applied:

Notification type Boostrap Class Description
--
success alert-success to indicate the successful execution of an action
warning alert-warning to warn of a possible change to the standard behavior
 of some controls (button or action)
info alert-info to provide any additional information to the user
 (e.g.: no search results)
danger alert-danger to inform that an error has occurred

Besides warnings about changes in behaviors, all the notifications must have a closing button to remove them.
The timed notifications are allowed when the notification is purely informational and there is no possibility of interaction (e.g. presence of
buttons or forms within the notification).

For the most common actions and alerts, the following free icons are recommended:FontAwesome

Information: fas fa-info-circle
Search : fas fa-search
Import : fas fa-file-import
Export : fas fa-file-export
Add/New : fas fa-plus
Edit : fas fa-edit
Save : fas fa-save
Delete : fas fa-trash
Cancel : fas fa-times
Undo : fas fa-undo
Back : fas fa-arrow-left

Login : fas fa-sign-in-alt
Logout : fas fa-sign-out-alt

User Interface Accessibility Guidelines

The DSpace User Interface strives to align with all AA criteria.WCAG Some AAA criteria may also be supported. For more information see Accessibili
 documentation.ty

Here are specific guidelines we strive to follow in the "Base Theme":

Web pages have titles that describe their topic or purpose.
Use the Breadcrumb component on all pages.
Use headers and labels to describe topics or purposes in order to provide support for the user to navigate, find content, and determine his
location. Always provide labels or instructions when content requires user input actions, e.g. forms.
Elements have full opening and closing tags, are nested according to their own specifications, contain no duplicate attributes, and all IDs are
unique.
Always use ALT properties within the IMAGE tag to describe the content of the images.
The default language setting of each Web page can be determined programmatically with:

<html lang="en">
...
</html>

The text is never justified.
Text, with the exception of subtitles and images containing text, can be resized up to 200 percent without the aid of assistive technologies and
without loss of content or functionality.
Use ‘' elements to emphasize something rather than '’. For example, required fields in a form.
The website operation does not depend on the screen orientation.
To create Web pages that look and feel predictable, components that have the same functionality within a set of Web pages should be uniquely
identified. This means, for example, avoiding buttons with similar functions but different descriptions or using similar icons for different functions.
Wherever possible, on different pages or different tabs / page sections, place controls in the same position.
ARIA Role, ARIA label and ARIA labelledby: use the ‘aria-label' and 'role’ properties to identify the regions of a page. Ex. to identify two kinds of
menu:

<div id="leftnav" role="navigaton" aria-label="Primary">
 ...
</div>
<div id="rightnav" role="navigation" aria-label="Secondary">
 ...
</div>

752

https://fontawesome.com/
https://www.w3.org/WAI/standards-guidelines/wcag/

Other regions of a page can be the header, footer, the page content, etc. Remember that ‘aria-label’ should be used only when there is no other
element in the HTML page that can describe better the element itself. In that case use the ‘aria-labelledby’:

<div id="leftnav" role="navigaton" aria-labelledby="menuTitle">
 <h4 id="menuTitle">This is the primary menu</h4>
 ...
</div>

It can be also used on a simple text field to provide a label in a situation where there is no text available for a dedicated label but there is other
text on the page that can be used to accurately label the control. Ex.:

<input name="searchText" type="text" aria-labelledby="searchButton">
<input name="searchButton" id="searchButton" type="submit" value="Search">

It’s possible to use them to provide labels to user interface controls (ex.: buttons or inputs in a form).
For all User Interface components, ‘name’ and ‘role’ must be determined programmatically. To do this use:

label elements to associate text labels with form controls
‘aria-labelledby’ and ‘aria-label

Always prefer the following hierarchy of choices when trying to describe topics or purposes:

Plain text with a full description where possible. This will help people with cognitive disabilities who may not immediately know the
purpose of the field because the label used by the author is not familiar to them;
Label element;
ARIA label and ARIA labelledby.

Identify programmatically the purpose of the inputs using the guidelines described above and the attribute ‘autocomplete’:

<input id="fname" type="text" autocomplete="given-name" ... >

This property is useful to browsers / user agents to identify the content and provide auto-fill capabilities. The values you can use with
'autocomplete' are described here:

https://www.w3.org/TR/WCAG21/#input-purposes
Including the text of the visible label as part of the accessible name. When speech recognition software processes speech input and looks for
matches, it uses the ‘accessible name' of controls, so it’s important that what the user reads in label or description is, at least partially, what is
defined in the ‘accessible name' like ‘aria-label’ or ‘aria-labelledby’. E.g. if a button has a visible value of ‘search’ and its ‘aria-label’ has ‘go’ a
problem can occur when the user says 'click Search’ :

<button aria-label="Go">Search</button>

So, if you have an ‘accessible name' available, you can expand it using the label text inside it. All of the following examples are valid:

<button>Search</button>
<button aria-label="Search for matches"><i class="fa fa-search"></i></button>

<h4 id="buttonTitle">Search for matches</h4>
<button aria-labelledby="buttonTitle">Search</button>

Order of focus: For example, in a form, use ‘tabindex’ logically (e.g. street number after street name).
Change the color of an element when it receives FOCUS: e.g. CSS can be used to apply a different color when link elements receive focus.
Ensure that the information conveyed by color differences is also available in the text; e.g. links also underlined or mandatory form fields
highlighted with an asterisk (*);
Error identification: The element in error is identified and described by text even with client-side controls. Use the property ' ' aria-invalid=”true”
inside that element. For example, within a form, apply client-side validations to the input fields and make sure that any error message is
comprehensive; where possible, suggestions on how to correct the error, should be provided to the user.

Provide users with sufficient time to read and use the content. For example, inside the timed notifications (error or success messages) provide a
button to stop the timer.

753

https://www.w3.org/TR/WCAG21/#input-purposes

Workflow

Configuration

Main workflow configuration

As of DSpace 7, the configuration file has been migrated to use Spring Bean syntax (instead of a custom XML format). The structure of workflow.xml
this XML has changed. If you need help migrating your old file (which started with a < > tag) to the new format (using < > workflow.xml wf-config bean
tags), an XSLT script is available: workflow-migration.xsl

The workflow main configuration can be found in the workflow.xml file, located in . An example of [dspace]/config/spring/api/workflow.xml
this workflow configuration file can be found below.

<beans>
 <bean class="org.dspace.xmlworkflow.XmlWorkflowFactoryImpl">

 <property name="workflowMapping">
 <util:map>

 <entry key="defaultWorkflow" value-ref="defaultWorkflow"/>
<!-- <entry key="123456789/4" value-ref="selectSingleReviewer"/>-->
<!-- <entry key="123456789/5" value-ref="scoreReview"/>-->
 </util:map>
 </property>
 </bean>

 <!--Standard DSpace workflow-->

 <bean name="defaultWorkflow" class="org.dspace.xmlworkflow.state.Workflow">
 <property name="firstStep" ref="reviewstep"/>
 <property name="steps">

 <util:list>
 <ref bean="reviewstep"/>
 <ref bean="editstep"/>
 <ref bean="finaleditstep"/>

 </util:list>
 </property>
 </bean>

 <bean id="{ }"workflow.id
 class="org.dspace.xmlworkflow.state.Workflow">
 <!-- Another workflow configuration-->
 </bean>

 <!-- Role beans. See below. -->

 <!-- Step beans. See below. -->

</beans>

workflowFactory bean (org.dspace.xmlworkflow.XmlWorkflowFactoryImpl)

The workflow map contains a mapping between collections in DSpace and a workflow configuration, and is defined by the property of workflowMapping
the workflow factory. Similar to the configuration of the submission process, the mapping can be done based on the handle of the collection. The mapping
with "defaultWorkflow" as the value for the collection mapping, will be used for the collections not occurring in other mapping tags. Each mapping is
defined by a " " element with two attributes:entry

key: can either be a collection handle or "defaultWorkflow"
value-ref: the value of this attribute points to one of the workflow configurations defined by the "Workflow" beans

workflow beans (org.dspace.xmlworkflow.state.Workflow)

The workflow bean is a repeatable XML element and represents one workflow process. It requires the following:

" " attribute: a unique name used for the identification of the workflow and used in the workflow to collection mappingname
" " property: the identifier of the first step of the workflow. This step will be the entry point of this workflow-process. When a new item firstStep
has been committed to a collection that uses this workflow, the step configured in the " " property will he the first step the item will go firstStep
through.
" " property: a list of all steps within this workflow (in the order they will be processed).steps

role beans (org.dspace.xmlworkflow.Role)

Each workflow step has defined "role" property. A role represents one or more existing DSpace EPersons or Groups and can be used to assign them to
one or more steps in the workflow process. One role is represented by one "role" bean and has the following:

" " attribute: a unique identifier (in one workflow process) for the roleid

754

https://wiki.lyrasis.org/download/attachments/104566678/workflow-migration.xsl?version=1&modificationDate=1622152622820&api=v2
http://workflow.id

" " property: optional attribute to describe the roledescription
" " property: optional attribute that is used to find our group and must have one of the following values, which are defined as constant fields scope
of :org.dspace.xmlworkflow.Role.Scope

COLLECTION: The collection value specifies that the group will be configured at the level of the collection. This type of groups is the
same as the type that existed in the original workflow system. In case no value is specified for the scope attribute, the workflow
framework assumes the role is a collection role.
REPOSITORY: The repository scope uses groups that are defined at repository level in DSpace. The name attribute should exactly
match the name of a group in DSpace.
ITEM: The item scope assumes that a different action in the workflow will assign a number of EPersons or Groups to a specific workflow-
item in order to perform a step. These assignees can be different for each workflow item.

" " property: The name specified in the name attribute of a role will be used to lookup an eperson group in DSpace. The lookup will depend name
on the scope specified in the " " attribute:scope

COLLECTION: The workflow framework will look for a group containing the name specified in the name attribute and the ID of the
collection for which this role is used.
REPOSITORY: The workflow framework will look for a group with the same name as the name specified in the attribute.name
ITEM: in case the item scope is selected, the name of the role attribute is not required.

<bean id="reviewer" class="org.dspace.xmlworkflow.Role">
 <property name="scope" value="#{ T(org.dspace.xmlworkflow.Role.Scope).COLLECTION}"/>
 <property name="name" value="Reviewer"/>
 <property name="description" value="The people responsible for this step are able to edit the metadata of

incoming submissions, and then accept or reject them."/>
</bean>

step beans (org.dspace.xmlworkflow.state.Step)

The step element represents one step in the workflow process. A step represents a number of actions that must be executed by one specified role. In case
no attribute is specified, the workflow framework assumes that the DSpace system is responsible for the execution of the step and that no user role
interface will be available for each of the actions in this step. The step element has the following in order to further configure it:

" " attribute: The name attribute specifies a unique identifier for the step. This identifier will be used when configuring other steps in order to name
point to this step. This identifier can also be used when configuring the start step of the workflow item.
" " property: This attribute defines the that will be used to determine how to attach users to this userSelectionMethod UserSelectionAction
step for a workflow-item. The value of this attribute must refer to the identifier of an action bean in the workflow-actions.xml. Examples of the user
attachment to a step are the currently used system of a task pool or as an alternative directly assigning a user to a task.
" " property: optional attribute that must point to the attribute of a role element specified for the workflow. This role will be used to define role id
the epersons and groups used by the .userSelectionMethod
RequiredUsers

<bean name="reviewstep" class="org.dspace.xmlworkflow.state.Step">
 <property name="userSelectionMethod" ref="claimaction"/>
 <property name="role" ref="reviewer"/>
 <property name="outcomes">

 <util:map>
 <entry key="#{ T(org.dspace.xmlworkflow.state.actions.ActionResult).OUTCOME_COMPLETE}"

 value-ref="editstep"/>
 </util:map>
 </property>

 <property name="actions">
 <util:list>

 <ref bean="reviewaction"/>
 </util:list>
 </property>
</bean>

Each step contains a number of actions that the workflow item will go through. In case the action has a user interface, the users responsible for the
exectution of this step will have to execute these actions before the workflow item can proceed to the next action or the end of the step.

There is also an optional subsection that can be defined for a step part called " ". This can be used to define outcomes for the step that differ outcomes
from the one specified in the nextStep attribute. Each action returns an integer depending on the result of the action. The default value is "0" and will make
the workflow item proceed to the next action or to the end of the step.
In case an action returns a different outcome than the default "0", the alternative outcomes will be used to lookup the next step. The " " element outcomes
contains a number of steps, each having a status attribute. This status attribute defines the return value of an action. The value of the element will be used
to lookup the next step the workflow item will go through in case an action returns that specified status.

Workflow actions configuration

API configuration

The workflow actions configuration is located in the directory and is named " ". This [dspace]/config/spring/api/ workflow-actions.xml
configuration file describes the different Action Java classes that are used by the workflow framework. Because the workflow framework uses Spring
framework for loading these action classes, this configuration file contains Spring configuration.

This file contains the beans for the actions and user selection methods referred to in the . In order for the workflow framework to work workflow.xml
properly, each of the required actions must be part of this configuration.

755

<beans
 xmlns=" "http://www.springframework.org/schema/beans
 xmlns:xsi=" "http://www.w3.org/2001/XMLSchema-instance
 xmlns:util=" "http://www.springframework.org/schema/util
 xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans
/spring-beans-2.0.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util

">/spring-util-2.0.xsd

 <!-- At the top are our bean class identifiers --->

 <bean id="{ }"action.api.id class="{class.path}" scope="prototype"/>
 <bean id="{ .2}"action.api.id class="{class.path}" scope="prototype"/>

 <!-- Below the class identifiers come the declarations for out actions/userSelectionMethods -->

 <!-- Use class workflowActionConfig for an action -->

 <bean id="{ }"action.id class="oorg.dspace.xmlworkflow.state.actions.WorkflowActionConfig" scope="prototype">
 <constructor-arg type="java.lang.String" value="{ }"action.id />

 <property name="processingAction" ref="{ }"action.api.id />
 <property name="requiresUI" value="{true/false}"/>

 </bean>

 <!-- Use class UserSelectionActionConfig for a user selection method -->
 <!--User selection actions-->

 <bean id="{ .2}"action.api.id class="org.dspace.xmlworkflow.state.actions.UserSelectionActionConfig" scope="pr
ototype">

 <constructor-arg type="java.lang.String" value="{ .2}"action.api.id />

 <property name="processingAction" ref="{ }"user.selection.bean.id />
 <property name="requiresUI" value="{true/false}"/>

 </bean>
</beans>

Two types of actions are configured in this Spring configuration file:

User selection action: This type of action is always the first action of a step and is responsible for the user selection process of that step. In case a
step has no role attached, no user will be selected and the is used.NoUserSelectionAction
Processing action: This type of action is used for the actual processing of a step. Processing actions contain the logic required to execute the
required operations in each step. Multiple processing actions can be defined in one step. These user and the workflow item will go through these
actions in the order they are specified in the workflow configuration unless an alternative outcome is returned by one of them.

User Selection Action

Each user selection action that is used in the workflow configuration refers to a bean definition in the file. In order to define a workflow-actions.xml
new user selection action, the following XML code is used:

<bean id="{ .2}"action.api.id class="org.dspace.xmlworkflow.state.actions.UserSelectionActionConfig" scope="prototy
pe">

 <constructor-arg type="java.lang.String" value="{ .2}"action.api.id />

 <property name="processingAction" ref="{ }"user.selection.bean.id />
 <property name="requiresUI" value="{true/false}"/>

</bean>

This bean defines a new UserSelectionActionConfig and the following child tags:

constructor-arg: This is a constructor argument containing the ID of the task. This is the same as the attribute of the bean and is used by the id
workflow configuration to refer to this action.
property : This tag refers the the ID of the API bean, responsible for the implementation of the API side of this action. This processingAction
bean should also be configured in this XML.
property : In case this property is true, the workflow framework will expect a user interface for the action. Otherwise the framework requiresUI
will automatically execute the action and proceed to the next one.

Processing Action

Processing actions are configured similarly to the user selection actions. The only difference is that these processing action beans are implementations of
the WorkflowActionConfig class instead of the UserSelectionActionConfig class.

Authorizations

Currently, the authorizations are always granted and revoked based on the tasks that are available for certain users and groups. The types of authorization
policies that is granted for each of these is always the same:

756

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/util
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.0.xsd
http://www.springframework.org/schema/util/spring-util-2.0.xsd
http://action.api.id
http://action.api.id
http://action.id
http://action.id
http://action.api.id
http://action.api.id
http://action.api.id
http://user.selection.bean.id
http://action.api.id
http://action.api.id
http://user.selection.bean.id

READ
WRITE
ADD
DELETE

Database

The workflow uses a separate metadata schema named . The fields this schema contains can be found in the workflow [dspace]/config
 directory and in the file . This schema is only used when using the score reviewing system at the moment, but one /registries workflow-types.xml

could always use this schema if metadata is required for custom workflow steps.

The following tables have been added to the DSpace database. All tables are prefixed with 'cwf_' to avoid any confusion with the existing workflow related
database tables:

cwf_workflowitem

The cwf_workflowitem table contains the different workflowitems in the workflow. This table has the following columns:

workflowitem_id: The identifier of the workflowitem and primary key of this table
item_id: The identifier of the DSpace item to which this workflowitem refers.
collection_id: The collection to which this workflowitem is submitted.
multiple_titles: Specifies whether the submission has multiple titles (important for submission steps)
published_before: Specifies whether the submission has been published before (important for submission steps)
multiple_files: Specifies whether the submission has multiple files attached (important for submission steps)

cwf_collectionrole

The cwf_collectionrole table represents a workflow role for one collection. This type of role is the same as the roles that existed in the original workflow
meaning that for each collection a separate group is defined to described the role. The cwf_collectionrole table has the following columns:

collectionrol_id: The identifier of the collectionrole and the primaty key of this table
role_id: The identifier/name used by the workflow configuration to refer to the collectionrole
collection_id: The collection identifier for which this collectionrole has been defined
group_id: The group identifier of the group that defines the collection role

cwf_workflowitemrole

The cwf_workflowitemrole table represents roles that are defined at the level of an item. These roles are temporary roles and only exist during the
execution of the workflow for that specific item. Once the item is archived, the workflowitemrole is deleted. Multiple rows can exist for one workflowitem
with e.g. one row containing a group and a few containing epersons. All these rows together make up the workflowitemrole The cwf_workflowitemrole table
has the following columns:

workflowitemrole_id: The identifier of the workflowitemrole and the primaty key of this table
role_id: The identifier/name used by the workflow configuration to refer to the workflowitemrole
workflowitem_id: The cwf_workflowitem identifier for which this workflowitemrole has been defined
group_id: The group identifier of the group that defines the workflowitemrole role
eperson_id: The eperson identifier of the eperson that defines the workflowitemrole role

cwf_pooltask

The cwf_pooltask table represents the different task pools that exist for a workflowitem. These task pools can be available at the beginning of a step and
contain all the users that are allowed to claim a task in this step. Multiple rows can exist for one task pool containing multiple groups and epersons. The
cwf_pooltask table has the following columns:

pooltask_id: The identifier of the pooltask and the primaty key of this table
workflowitem_id: The identifier of the workflowitem for which this task pool exists
workflow_id: The identifier of the workflow configuration used for this workflowitem
step_id: The identifier of the step for which this task pool was created
action_id: The identifier of the action that needs to be displayed/executed when the user selects the task from the task pool
eperson_id: The identifier of an eperson that is part of the task pool
group_id: The identifier of a group that is part of the task pool

cwf_claimtask

The cwf_claimtask table represents a task that has been claimed by a user. Claimed tasks can be assigned to users or can be the result of a claim from
the task pool. Because a step can contain multiple actions, the claimed task defines the action at which the user has arrived in a particular step. This
makes it possible to stop working halfway the step and continue later. The cwf_claimtask table contains the following columns:

claimtask_id: The identifier of the claimtask and the primary key of this table
workflowitem_id: The identifier of the workflowitem for which this task exists
workflow_id: The id of the workflow configuration that was used for this workflowitem
step_id: The step that is currenlty processing the workflowitem
action_id: The action that should be executed by the owner of this claimtask
owner_id: References the eperson that is responsible for the execution of this task

757

cwf_in_progress_user

The cwf_in_progess_user table keeps track of the different users that are performing a certain step. This table is used because some steps might require
multiple users to perform the step before the workflowitem can proceed. The cwf_in_progress_user table contains the following columns:

in_progress_user_id: The identifier of the in progress user and the primary key of this table
workflowitem_id: The identifier of the workflowitem for which the user is performing or has performed the step.
user_id: The identifier of the eperson that is performing or has performe the task
finished: Keeps track of the fact that the user has finished the step or is still in progress of the execution

758

DSpace Reference
Architecture

Application Layer
Business Logic Layer
DSpace Services Framework
Storage Layer

Configuration Reference
Directories and Files
DSpace Item State Definitions
Metadata and Bitstream Format Registries
History

Changes in 8.x
Changes in Older Releases

759

Architecture

1 Overview

Overview

The DSpace system is organized into three layers, each of which consists of a number of components.

Application Layer - All external/public facing interfaces/tools. These include the Web User Interface, , , , and SWORD (REST API OAI-PMH RDF v1
and) interfaces. Also includes the interface, and various tools that can be used to import/export data to/from DSpace.v2 Command Line
Business Logic Layer - Primarily the Java API layer ([dspace-source]/dspace-api and dspace-services), which provides the core business logic
for all the various application interfaces.
Storage Layer - A subset of the dspace-api (whose role is to manage all content storage (metadata, relationships, org.dspace.storage.* classes)
bitstreams) for all business layer objects. This layer is provides access to a relational database (Postgres or Oracle usually) via & Hibernate ORM
using for migrations/updates. It also defines a custom BitStoreService for storing files (bitstreams) via storage plugins (currently FlywayDB
supporting filesystem storage or Amazon S3 storage).

DSpace System Architecture

The storage layer is responsible for physical storage of metadata and content. The business logic layer deals with managing the content of the archive,
users of the archive (e-people), authorization, and workflow. The application layer contains components that communicate with the world outside of the
individual DSpace installation, for example the Web user interface and the protocol for metadata harvesting service.Open Archives Initiative

Each layer only invokes the layer below it; the application layer may not use the storage layer directly, for example. Each component in the storage and
business logic layers has a defined public API. The union of the APIs of those components are referred to as the Storage API (in the case of the storage
layer) and the DSpace Java API (in the case of the business logic layer), and the DSpace REST API (in the case of the application layer). In the
Application Layer, it's worth noting that the Web User Interface only accesses DSpace via the REST API.

It is important to note that each layer is . Although the logic for is in the business logic layer, the system relies on individual trusted authorising actions
applications in the application layer to correctly and securely e-people. If a 'hostile' or insecure application were allowed to invoke the Java authenticate
API directly, it could very easily perform actions as any e-person in the system.

The reason for this design choice is that authentication methods will vary widely between different applications, so it makes sense to leave the logic and
responsibility for that in these applications.

The source code is organized to cohere very strictly to this three-layer architecture.

The storage and business logic layer APIs are extensively documented with Javadoc-style comments. Generate the HTML version of these by entering the
[dspace-source]/dspace directory and running:

mvn javadoc:javadoc

The resulting documentation will be at . The package-level documentation of each package [dspace-source]dspace-api/target/site/apidocs/index.html
usually contains an overview of the package and some example usage. This information is not repeated in this architecture document; this and the
Javadoc APIs are intended to be used in parallel.

The REST API provides not only JavaDocs, but also a public contract. See .REST API

Each layer is described in a separate section:

Storage Layer
RDBMS
Bitstream Store

Business Logic Layer
Core Classes
Content Management API
Workflow System
Administration Toolkit
E-person/Group Manager
Authorisation
Handle Manager/Handle Plugin
Search
Browse API
History Recorder
Checksum Checker

Application Layer
Web User Interface
OAI-PMH Data Provider
Item Importer and Exporter
Transferring Items Between DSpace Instances
Registration
METS Tools
Media Filters

760

https://hibernate.org/orm/
https://flywaydb.org/
http://www.openarchives.org/

Sub-Community Management

761

Application Layer
The following explains the components of the Application Layer.

1 Web User Interface
1.1 Web UI Files

2 REST API
3 OAI-PMH Data Provider
4 RDF / Linked Data Provider
5 SWORD v1 Service / Server
6 SWORD v2 Service / Server
7 DSpace Command Line Launcher

7.1 Command Launcher Structure

Web User Interface

The DSpace Web UI is the largest and most-used component in the application layer. As of DSpace 7, it has been rebuilt on communicating via Angular.io
the to the rest of DSpace.REST API

Web UI Files

The web User Interface code is managed in a separate GitHub Project:

https://github.com/DSpace/dspace-angular/

Quick setup and configuration instructions can be found in the README of that project.

REST API

This component defines the main public API of the Application Layer. See section of the documentation.REST API

OAI-PMH Data Provider

See section of the documentationOAI

RDF / Linked Data Provider

See section of the documentationLinked (Open) Data

SWORD v1 Service / Server

See section of the documentationSWORDv1 Server

SWORD v2 Service / Server

See section of the documentationSWORDv2 Server

DSpace Command Line Launcher

The DSpace Command Launcher brings together the various command and scripts into a standard-practice for running CLI runtime programs. See Comma
nd Line Operations

Command Launcher Structure

There are two components to the command launcher: the dspace script and the launcher.xml. The DSpace command calls a java class which in turn refers
to that is stored in the directorylauncher.xml [dspace]/config

launcher.xml is made of several components:

<command> begins the stanza for a command
<name>_ _ the name of the command that you would use.name of command </name>
<description>_ _the description of the command </description>
<step> </step> User arguments are parsed and tested.
<class>_<the java class that is being used to run the CLI program>_</class>

See for additional details.Command Line Operations

762

https://angular.io/
https://github.com/DSpace/dspace-angular/

763

Business Logic Layer

1 Core Classes
1.1 The Configuration Service
1.2 Constants
1.3 Context
1.4 Email
1.5 LogManager
1.6 Utils

2 Content Management API
2.1 Other Classes
2.2 Modifications
2.3 What's In Memory?
2.4 Dublin Core Metadata
2.5 Support for Other Metadata Schemas
2.6 Packager Plugins

3 Plugin Service
3.1 Concepts
3.2 Using the Plugin Service

3.2.1 Types of Plugin
3.2.2 Self-Named Plugins
3.2.3 Obtaining a Plugin Instance
3.2.4 Lifecycle Management
3.2.5 Getting Meta-Information

3.3 Implementation
3.3.1 LegacyPluginServiceImpl Class
3.3.2 SelfNamedPlugin Class
3.3.3 Errors and Exceptions

3.4 Configuring Plugins
3.4.1 Configuring Singleton (Single) Plugins
3.4.2 Configuring Sequence of Plugins
3.4.3 Configuring Named Plugins

3.5 Use Cases
3.5.1 Managing the MediaFilter plugins transparently
3.5.2 A Singleton Plugin
3.5.3 Plugin that Names Itself
3.5.4 Stackable Authentication

4 Workflow System
5 Administration Toolkit
6 E-person/Group Manager
7 Authorization

7.1 Special Groups
7.2 Miscellaneous Authorization Notes

8 Handle Manager/Handle Plugin
9 Search

9.1 Harvesting API
10 Browse API

10.1 Using the API
11 Checksum checker
12 OpenSearch Support
13 Embargo Support

13.1 What is an Embargo?
13.2 Embargo Model and Life-Cycle

Core Classes

The package provides some basic classes that are used throughout the DSpace code.org.dspace.core

The Configuration Service

The configuration service is responsible for reading the main properties file, managing the 'template' configuration files for other applications dspace.cfg
such as Apache, and for obtaining the text for e-mail messages.

The system is configured by editing the relevant files in , as described in the configuration section.[dspace]/config

When editing configuration files for applications that DSpace uses, such as Apache Tomcat, you may want to edit the copy in [dspace-
 This will ensure you have a backup source] and then run ant update or ant overwrite_configs rather than editing the 'live' version directly!

copy of your modified configuration files, so that they are not accidentally overwritten in the future.

The class can also be invoked as a command line tool:ConfigurationService

[dspace]/bin/dspace dsprop property.name This writes the value of from to the standard output, so that property.name dspace.cfg
shell scripts can access the DSpace configuration. If the property has no value, nothing is written.

For many more details on configuration in DSpace, see Configuration Reference

764

Constants

This class contains constants that are used to represent types of object and actions in the database. For example, authorization policies can relate to
objects of different types, so the table has columns , which is the internal ID of the object, and , which resourcepolicy resource_id resource_type_id
indicates whether the object is an item, collection, bitstream etc. The value of is taken from the class, for example resource_type_id Constants Constants.

.ITEM

Here are a some of the most commonly used constants you might come across:

DSpace types

Bitstream: 0
Bundle: 1
Item: 2
Collection: 3
Community: 4
Site: 5
Group: 6
Eperson: 7

DSpace actions

Read: 0
Write: 1
Delete: 2
Add: 3
Remove: 4

Refer to the for all of the Constants.org.dspace.core.Constants

Context

The class is central to the DSpace operation. Any code that wishes to use the any API in the business logic layer must first create itself a Context Context
object. This is akin to opening a connection to a database (which is in fact one of the things that happens.)

A context object is involved in most method calls and object constructors, so that the method or object has access to information about the current
operation. When the context object is constructed, the following information is automatically initialized:

A connection to the database. This is a transaction-safe connection. i.e. the 'auto-commit' flag is set to false.
A cache of content management API objects. Each time a content object is created (for example or) it is stored in the Item Bitstream Context
object. If the object is then requested again, the cached copy is used. Apart from reducing database use, this addresses the problem of having
two copies of the same object in memory in different states.
The following information is also held in a context object, though it is the responsibility of the application creating the context object to fill it out
correctly:

The current authenticated user, if any
Any 'special groups' the user is a member of. For example, a user might automatically be part of a particular group based on the IP address they
are accessing DSpace from, even though they don't have an e-person record. Such a group is called a 'special group'.
Any extra information from the application layer that should be added to log messages that are written within this context. For example, the Web
UI adds a session ID, so that when the logs are analyzed the actions of a particular user in a particular session can be tracked.
A flag indicating whether authorization should be circumvented. This should only be used in rare, specific circumstances. For example, when first
installing the system, there are no authorized administrators who would be able to create an administrator account!As noted above, the public API
is , so it is up to applications in the application layer to use this flag responsibly.trusted
Typical use of the context object will involve constructing one, and setting the current user if one is authenticated. Several operations may be
performed using the context object. If all goes well, is called to commit the changes and free up any resources used by the context. If complete
anything has gone wrong, is called to roll back any changes and free up the resources.abort

You should always a context if error happens during its lifespan; otherwise the data in the system may be left in an inconsistent state. You can abort any
also a context, which means that any changes are written to the database, and the context is kept active for further use.commit

Email

Sending e-mails is pretty easy. Just use the configuration manager's method, set the arguments and recipients, and send.getEmail

The e-mail texts are stored in . They are processed by the standard . At the top of each e-mail are [dspace]/config/emails java.text.MessageFormat
listed the appropriate arguments that should be filled out by the sender. Example usage is shown in the Javadoc API org.dspace.core.Email
documentation.

LogManager

The log manager consists of a method that creates a standard log header, and returns it as a string suitable for logging. Note that this class does not
actually write anything to the logs; the log header returned should be logged directly by the sender using an appropriate Log4J call, so that information
about where the logging is taking place is also stored.

The level of logging can be configured on a per-package or per-class basis by editing . You will need to stop [dspace]/config/log4j.properties
and restart Tomcat for the changes to take effect.

765

https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/core/Constants.java

A typical log entry looks like this:

2002-11-11 08:11:32,903 INFO org.dspace.app.webui.servlet.DSpaceServlet @ anonymous:session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB:
view_item:handle=1721.1/1686

This is breaks down like this:

Date and time, milliseconds 2002-11-11 08:11:32,903

Level (, , or)FATAL WARN INFO DEBUG INFO

Java class org.dspace.app.webui.servlet.DSpaceServlet

@

User email or anonymous anonymous

:

Extra log info from context session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB

:

Action view_item

:

Extra info handle=1721.1/1686

The above format allows the logs to be easily parsed and analyzed. The script is a simple tool for analyzing logs. Try:[dspace]/bin/log-reporter

[dspace]/bin/log-reporter --help

It's a good idea to 'nice' this log reporter to avoid an impact on server performance.

Utils

Utils contains miscellaneous utility method that are required in a variety of places throughout the code, and thus have no particular 'home' in a subsystem.

Content Management API

The content management API package contains Java classes for reading and manipulating content stored in the DSpace system. This org.dspace.content
is the API that components in the application layer will probably use most.

Classes corresponding to the main elements in the DSpace data model (, , , and) are sub-classes of the Community Collection Item Bundle Bitstream
abstract class . The object handles the Dublin Core metadata record.DSpaceObject Item

Each class generally has one or more static methods, which are used to instantiate content objects. Constructors do not have public access and are find
just used internally. The reasons for this are:

"Constructing" an object may be misconstrued as the action of creating an object in the DSpace system, for example one might expect something
like:

Context dsContent = new Context();
Item myItem = new Item(context, id)

to construct a brand new item in the system, rather than simply instantiating an in-memory instance of an object in the system.
find methods may often be called with invalid IDs, and return in such a case. A constructor would have to throw an exception in this case. A null nu
 return value from a static method can in general be dealt with more simply in code.ll

If an instantiation representing the same underlying archival entity already exists, the method can simply return that same instantiation to find
avoid multiple copies and any inconsistencies which might result.

Collection, and do not have methods; rather, one has to create an object using the relevant method on the container. For Bundle Bitstream create
example, to create a collection, one must invoke on the community that the collection is to appear in:createCollection

Context context = new Context();
Community existingCommunity = Community.find(context, 123);
Collection myNewCollection = existingCommunity.createCollection();

766

The primary reason for this is for determining authorization. In order to know whether an e-person may create an object, the system must know which
container the object is to be added to. It makes no sense to create a collection outside of a community, and the authorization system does not have a
policy for that.

Items are first created in the form of an implementation of InProgressSubmission. An represents an item under construction; once it InProgressSubmission
is complete, it is installed into the main archive and added to the relevant collection by the class. The package provides an InstallItem org.dspace.content
implementation of called ; this is a simple implementation that contains some fields used by the Web submission UI. InProgressSubmission WorkspaceItem
The also contains an implementation called which represents a submission undergoing a workflow process.org.dspace.workflow WorkflowItem

In the previous chapter there is an overview of the item ingest process which should clarify the previous paragraph. Also see the section on the workflow
system.

Community and do have static methods; one must be a site administrator to have authorization to invoke these.BitstreamFormat create

Other Classes

Classes whose name begins are for manipulating Dublin Core metadata, as explained below.DC

The class attempts to guess the bitstream format of a particular bitstream. Presently, it does this simply by looking at any file extension in FormatIdentifier
the bitstream name and matching it up with the file extensions associated with bitstream formats. Hopefully this can be greatly improved in the future!

The class allows items to be retrieved from storage one at a time, and is returned by methods that may return a large number of items, more ItemIterator
than would be desirable to have in memory at once.

The class is an implementation of the standard that can be used to compare and order items based on a particular ItemComparator java.util.Comparator
Dublin Core metadata field.

Modifications

When creating, modifying or for whatever reason removing data with the content management API, it is important to know when changes happen in-
memory, and when they occur in the physical DSpace storage.

Primarily, one should note that no change made using a particular object will actually be made in the underlying storage unless org.dspace.core.Context co
 or is invoked on that . If anything should go wrong during an operation, the context should always be aborted by invoking , to mplete commit Context abort

ensure that no inconsistent state is written to the storage.

Additionally, some changes made to objects only happen in-memory. In these cases, invoking the method lines up the in-memory changes to occur update
in storage when the is committed or completed. In general, methods that change any metadata field only make the change in-memory; methods Context
that involve relationships with other objects in the system line up the changes to be committed with the context. See individual methods in the API Javadoc.

Some examples to illustrate this are shown below:

Context context = new Context();
Bitstream b = Bitstream.find(context, 1234);
b.setName("newfile.txt");
b.update();
context.complete();

Will change storage

Context context = new Context();
Bitstream b = Bitstream.find(context, 1234);
b.setName("newfile.txt");
b.update();
context.abort();

Will not change storage (context aborted)

Context context = new Context();
Bitstream b = Bitstream.find(context, 1234);
b.setName("newfile.txt");
context.complete();

The new name be stored since was not invokedwill not update

767

Context context = new Context();
Bitstream bs = Bitstream.find(context, 1234);
Bundle bnd = Bundle.find(context, 5678);
bnd.add(bs);
context.complete();

The bitstream be included in the bundle, since doesn't need to be calledwill update

What's In Memory?

Instantiating some content objects also causes other content objects to be loaded into memory.

Instantiating a object causes the appropriate object to be instantiated. Of course the object does not load the Bitstream BitstreamFormat Bitstream
underlying bits from the bitstream store into memory!

Instantiating a object causes the appropriate objects (and hence s) to be instantiated.Bundle Bitstream BitstreamFormat

Instantiating an object causes the appropriate objects (etc.) and hence s to be instantiated. All the Dublin Core metadata Item Bundle BitstreamFormat
associated with that item are also loaded into memory.

The reasoning behind this is that for the vast majority of cases, anyone instantiating an item object is going to need information about the bundles and
bitstreams within it, and this methodology allows that to be done in the most efficient way and is simple for the caller. For example, in the Web UI, the
servlet (controller) needs to pass information about an item to the viewer (JSP), which needs to have all the information in-memory to display the item
without further accesses to the database which may cause errors mid-display.

You do not need to worry about multiple in-memory instantiations of the same object, or any inconsistencies that may result; the object keeps a Context
cache of the instantiated objects. The methods of classes in will use a cached object if one exists.find org.dspace.content

It may be that in enough cases this automatic instantiation of contained objects reduces performance in situations where it is important; if this proves to be
true the API may be changed in the future to include a method or somesuch, or perhaps a Boolean parameter indicating what to do will be loadContents
added to the methods.find

When a object is completed, aborted or garbage-collected, any objects instantiated using that context are invalidated and should not be used (in Context
much the same way an AWT button is invalid if the window containing it is destroyed).

Dublin Core Metadata

The Metadatum class is a simple container that represents a single Dublin Core-like element, optional qualifier, value and language. Note that since
DSpace 1.4 the and associated classes are preferred (see Support for Other Metadata Schemas). The other classes starting with are MetadataValue DC
utility classes for handling types of data in Dublin Core, such as people's names and dates. As supplied, the DSpace registry of elements and qualifiers
corresponds to the for Dublin Core. It should be noted that these utility classes assume that the values will be in a certain syntax, Library Application Profile
which will be true for all data generated within the DSpace system, but since Dublin Core does not always define strict syntax, this may not be true for
Dublin Core originating outside DSpace.

Below is the specific syntax that DSpace expects various fields to adhere to:

Ele
ment

Qualifier Syntax Helper
Class

date Any or
unqualifi
ed

ISO 8601 in the UTC time zone, with either year, month, day, or second precision. Examples:_2000 2002-10 2002-08-14 1999-01-01T14:
35:23Z _

DCDate

contr
ibutor

Any or
unqualifi
ed

In general last name, then a comma, then first names, then any additional information like "Jr.". If the contributor is an organization, then
simply the name. Examples:_Doe, John Smith, John Jr. van Dyke, Dick Massachusetts Institute of Technology _

DCPers
onName

lang
uage

iso A two letter code taken ISO 639, followed optionally by a two letter country code taken from ISO 3166. Examples:_en fr en_US _ DCLang
uage

relati
on

ispartofs
eries

The series name, following by a semicolon followed by the number in that series. Alternatively, just free text._MIT-TR; 1234 My Report
Series; ABC-1234 NS1234 _

DCSerie
sNumber

Support for Other Metadata Schemas

To support additional metadata schemas a new set of metadata classes have been added. These are backwards compatible with the DC classes and
should be used rather than the DC specific classes wherever possible. Note that hierarchical metadata schemas are not currently supported, only flat
schemas (such as DC) are able to be defined.

The class describes a metadata field by schema, element and optional qualifier. The value of a is described by a MetadataField MetadataField MetadataVa
 which is roughly equivalent to the older Metadatum class. Finally the class is used to describe supported schemas. The DC schema lue MetadataSchema

is supported by default. Refer to the javadoc for method details.

Packager Plugins

768

http://www.dublincore.org/documents/2002/09/24/library-application-profile/

1.
2.
3.

1.

2.

3.

The Packager plugins let you a package to create a new DSpace Object, and a content Object as a package. A package is simply a ingest disseminate
data stream; its contents are defined by the packager plugin's implementation.

To ingest an object, which is currently only implemented for Items, the sequence of operations is:

Get an instance of the chosen plugin.PackageIngester
Locate a Collection in which to create the new Item.
Call its method, and get back a .ingest WorkspaceItem
The packager also takes a object, which is a property list of parameters specific to that packager which might be passed in PackageParameters
from the user interface.

Here is an example package ingestion code fragment:

Collection collection = find target collection
 InputStream source = ...;
 PackageParameters params = ...;
 String license = null;

 PackageIngester sip = (PackageIngester) PluginManager
 .getNamedPlugin(PackageIngester.class, packageType);

 WorkspaceItem wi = sip.ingest(context, collection, source, params, license);

Here is an example of a package dissemination:

OutputStream destination = ...;
 PackageParameters params = ...;
 DSpaceObject dso = ...;

 PackageIngester dip = (PackageDisseminator) PluginManager
 .getNamedPlugin(PackageDisseminator.class, packageType);

 dip.disseminate(context, dso, params, destination);

Plugin Service
In DSpace 6, the old "PluginManager" was replaced by which performs the same activities/actions.org.dspace.core.service.PluginService

The PluginService is a very simple component container. It creates and organizes components (plugins), and helps select a plugin in the cases where
there are many possible choices. It also gives some limited control over the life cycle of a plugin.

Concepts

The following terms are important in understanding the rest of this section:

Plugin Interface A Java interface, the defining characteristic of a plugin. The consumer of a plugin asks for its plugin by interface.
Plugin a.k.a. Component, this is an instance of a class that implements a certain interface. It is interchangeable with other implementations, so
that any of them may be "plugged in", hence the name. A Plugin is an instance of any class that implements the plugin interface.
Implementation class The actual class of a plugin. It may implement several plugin interfaces, but must implement at least one.
Name Plugin implementations can be distinguished from each other by name, a short String meant to symbolically represent the implementation
class. They are called "named plugins". Plugins only need to be named when the caller has to make an active choice between them.
SelfNamedPlugin class Plugins that extend the class can take advantage of additional features of the Plugin Manager. Any SelfNamedPlugin
class can be managed as a plugin, so it is not necessary, just possible.
Reusable Reusable plugins are only instantiated once, and the Plugin Manager returns the same (cached) instance whenever that same plugin is
requested again. This behavior can be turned off if desired.

Using the Plugin Service

Types of Plugin

The Plugin Service supports three different patterns of usage:

Singleton Plugins There is only one implementation class for the plugin. It is indicated in the configuration. This type of plugin chooses an
implementation of a service, for the entire system, at configuration time. Your application just fetches the plugin for that interface and gets the
configured-in choice. See the method.getSinglePlugin()
Sequence Plugins You need a sequence or series of plugins, to implement a mechanism like Stackable Authentication or a pipeline, where each
plugin is called in order to contribute its implementation of a process to the whole. The Plugin Manager supports this by letting you configure a
sequence of plugins for a given interface. See the method.getPluginSequence()
Named Plugins Use a named plugin when the application has to choose one plugin implementation out of many available ones. Each
implementation is bound to one or more names (symbolic identifiers) in the configuration. The name is just a string to be associated with the

769

3.

combination of implementation class and interface. It may contain any characters except for comma (,) and equals (=). It may contain embedded
spaces. Comma is a special character used to separate names in the configuration entry. Names must be unique within an interface: No plugin
classes implementing the same interface may have the same name. Think of plugin names as a controlled vocabulary – for a given plugin
interface, there is a set of names for which plugins can be found. The designer of a Named Plugin interface is responsible for deciding what the
name means and how to derive it; for example, names of metadata crosswalk plugins may describe the target metadata format. See the getName

 method and the methods.dPlugin() getAllPluginNames()

Self-Named Plugins

Named plugins can get their names either from the configuration or, for a variant called self-named plugins, from within the plugin itself.

Self-named plugins are necessary because one plugin implementation can be configured itself to take on many "personalities", each of which deserves its
own plugin name. It is already managing its own configuration for each of these personalities, so it makes sense to allow it to export them to the Plugin
Manager rather than expecting the plugin configuration to be kept in sync with it own configuration.

An example helps clarify the point: There is a named plugin that does crosswalks, call it . It has several implementations that crosswalk CrosswalkPlugin
some kind of metadata. Now we add a new plugin which uses XSL stylesheet transformation (XSLT) to crosswalk many types of metadata – so the single
plugin can act like many different plugins, depending on which stylesheet it employs.

This XSLT-crosswalk plugin has its own configuration that maps a Plugin Name to a stylesheet – it has to, since of course the Plugin Manager doesn't
know anything about stylesheets. It becomes a self-named plugin, so that it reads its configuration data, gets the list of names to which it can respond, and
passes those on to the Plugin Manager.

When the Plugin Service creates an instance of the XSLT-crosswalk, it records the Plugin Name that was responsible for that instance. The plugin can
look at that Name later in order to configure itself correctly for the Name that created it. This mechanism is all part of the SelfNamedPlugin class which is
part of any self-named plugin.

Obtaining a Plugin Instance

The most common thing you will do with the Plugin Service is obtain an instance of a plugin. To request a plugin, you must always specify the plugin
interface you want. You will also supply a name when asking for a named plugin.

A sequence plugin is returned as an array of _Object_s since it is actually an ordered list of plugins.

See the getSinglePlugin(), getPluginSequence(), getNamedPlugin() methods.

Lifecycle Management

When fulfills a request for a plugin, a new instance is always created.PluginService

Getting Meta-Information

The can list all the names of the Named Plugins which implement an interface. You may need this, for example, to implement a menu in a PluginService
user interface that presents a choice among all possible plugins. See the getAllPluginNames() method.

Note that it only returns the plugin name, so if you need a more sophisticated or meaningful "label" (i.e. a key into the I18N message catalog) then you
should add a method to the plugin itself to return that.

Implementation

Note: The refers to interfaces and classes internally only by their names whenever possible, to avoid loading classes until absolutely PluginService
necessary (i.e. to create an instance). As you'll see below, self-named classes still have to be loaded to query them for names, but for the most part it can
avoid loading classes. This saves a lot of time at start-up and keeps the JVM memory footprint down, too. As the Plugin Manager gets used for more
classes, this will become a greater concern.

The only downside of "on-demand" loading is that errors in the configuration don't get discovered right away. The solution is to call the checkConfiguration()
method after making any changes to the configuration.

LegacyPluginServiceImpl Class

The class is the default PluginService implementation. While it is possible to implement your own version of PluginService, no LegacyPluginServiceImpl
other implementations are provided with DSpace

Here are the public methods, followed by explanations:

Object getSinglePlugin(Class interfaceClass) - Returns an instance of the singleton (single) plugin implementing the given
interface. There must be exactly one single plugin configured for this interface, otherwise the is thrown. Note that this is PluginConfigurationError
the only "get plugin" method which throws an exception. It is typically used at initialization time to set up a permanent part of the system so any
failure is fatal. See the configuration key for configuration details.plugin.single
Object[] getPluginSequence(Class interfaceClass) - Returns instances of all plugins that implement the interface , in interfaceClass
an . Returns an empty array if no there are no matching plugins. The order of the plugins in the array is the same as their class names in the Array
configuration's value field. See the configuration key for configuration details.plugin.sequence
Object getNamedPlugin(Class interfaceClass, String name) - Returns an instance of a plugin that implements the interface interfa

 and is bound to a name matching name. If there is no matching plugin, it returns null. The names are matched by . See ceClass String.equals()
the and configuration keys for configuration details.plugin.named plugin.selfnamed

770

1.
2.
3.

4.

String[] getAllPluginNames(Class)interfaceClass - Returns all of the names under which a named plugin implementing the
interface can be requested (with). The array is empty if there are no matches. Use this to populate a menu of interfaceClass getNamedPlugin()
plugins for interactive selection, or to document what the possible choices are. The names are NOT returned in any predictable order, so you may
wish to sort them first. Note: Since a plugin may be bound to more than one name, the list of names this returns does not represent the list of
plugins. To get the list of unique implementation classes corresponding to the names, you might have to eliminate duplicates (i.e. create a Set of
classes).

SelfNamedPlugin Class

A named plugin implementation must extend this class if it wants to supply its own Plugin Name(s). See Self-Named Plugins for why this is sometimes
necessary.

abstract class SelfNamedPlugin
{
 // Your class must override this:
 // Return all names by which this plugin should be known.
 public static String[] getPluginNames();

 // Returns the name under which this instance was created.
 // This is implemented by SelfNamedPlugin and should NOT be
 overridden.
 public String getPluginInstanceName();
}

Errors and Exceptions

public class PluginConfigurationError extends Error
{
 public PluginConfigurationError(String message);
}

An error of this type means the caller asked for a single plugin, but either there was no single plugin configured matching that interface, or there was more
than one. Either case causes a fatal configuration error.

public class PluginInstantiationException extends RuntimeException
{
 public PluginInstantiationException(String msg, Throwable cause)
}

This exception indicates a fatal error when instantiating a plugin class. It should only be thrown when something unexpected happens in the course of
instantiating a plugin, e.g. an access error, class not found, etc. Simply not finding a class in the configuration is not an exception.

This is a so it doesn't have to be declared, and can be passed all the way up to a generalized fatal exception handler.RuntimeException

Configuring Plugins

All of the Plugin Service's configuration comes from the DSpace Configuration Service (see). You can configure these Configuration Reference
characteristics of each plugin:

Interface: Classname of the Java interface which defines the plugin, including package name. e.g. org.dspace.app.mediafilter.FormatFilter
Implementation Class: Classname of the implementation class, including package. e.g. org.dspace.app.mediafilter.PDFFilter
Names: (Named plugins only) There are two ways to bind names to plugins: listing them in the value of a plugin.named.interface key, or
configuring a class in which extends the class.plugin.selfnamed.interface SelfNamedPlugin
Reusable option: (Optional) This is declared in a configuration line. Plugins are reusable by default, so you only need to plugin.reusable
configure the non-reusable ones.

Configuring Singleton (Single) Plugins

This entry configures a Single Plugin for use with getSinglePlugin():

plugin.single.interface = classname

For example, this configures the class as the plugin for interface :org.dspace.checker.SimpleDispatcher org.dspace.checker.BitstreamDispatcher

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

771

1.

2.

Configuring Sequence of Plugins

This kind of configuration entry defines a Sequence Plugin, which is bound to a sequence of implementation classes. The key identifies the interface, and
the value is a comma-separated list of classnames:
plugin.sequence.interface = classname, ...
The plugins are returned by in the same order as their classes are listed in the configuration value.getPluginSequence()

For example, this entry configures Stackable Authentication with three implementation classes:

plugin.sequence.org.dspace.eperson.AuthenticationMethod = \
 org.dspace.eperson.X509Authentication, \
 org.dspace.eperson.PasswordAuthentication, \
 edu.mit.dspace.MITSpecialGroup

Configuring Named Plugins

There are two ways of configuring named plugins:

Plugins Named in the Configuration A named plugin which gets its name(s) from the configuration is listed in this kind of entry:_plugin.named.
interface = classname = name [, name..] [classname = name..]_The syntax of the configuration value is: classname, followed by an equal-sign
and then at least one plugin name. Bind more names to the same implementation class by adding them here, separated by commas. Names may
include any character other than comma (,) and equal-sign (=).For example, this entry creates one plugin with the names GIF, JPEG, and image
/png, and another with the name TeX:

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.JPEGFilter = GIF, JPEG, image/png \
 org.dspace.app.mediafilter.TeXFilter = TeX

This example shows a plugin name with an embedded whitespace character. Since comma (,) is the separator character between plugin names,
spaces are legal (between words of a name; leading and trailing spaces are ignored).This plugin is bound to the names "Adobe PDF", "PDF", and
"Portable Document Format".

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.TeXFilter = TeX \
 org.dspace.app.mediafilter.PDFFilter = Adobe PDF, PDF, Portable Document Format

NOTE: Since there can only be one key with plugin.named. followed by the interface name in the configuration, all of the plugin implementations
must be configured in that entry.
Self-Named Plugins Since a self-named plugin supplies its own names through a static method call, the configuration only has to include its
interface and classname:plugin.selfnamed.interface = classname [, classname..] The following example first demonstrates how the plugin class,

 is configured to implement its own names "MODS" and "DublinCore". These come from the keys starting with XsltDisseminationCrosswalk crossw
. The value is a stylesheet file. The class is then configured as a self-named plugin:alk.dissemination.stylesheet.

crosswalk.dissemination.stylesheet.DublinCore = xwalk/TESTDIM-2-DC_copy.xsl
crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.crosswalk.org.dspace.content.metadata.DisseminationCrosswalk = \
 org.dspace.content.metadata.MODSDisseminationCrosswalk, \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

NOTE: Since there can only be one key with followed by the interface name in the configuration, all of the plugin plugin.selfnamed.
implementations must be configured in that entry. The class is only shown to illustrate this point.MODSDisseminationCrosswalk

Use Cases

Here are some usage examples to illustrate how the Plugin Service works.

Managing the MediaFilter plugins transparently

The MediaFilterService implementation relies heavily on the Plugin Service. The MediaFilter classes become plugins named in the configuration. Refer to
the for further details.Configuration Reference

A Singleton Plugin

This shows how to configure and access a single anonymous plugin, such as the BitstreamDispatcher plugin:

Configuration:

772

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

The following code fragment shows how dispatcher, the service object, is initialized and used:

BitstreamDispatcher dispatcher = (BitstreamDispatcher)PluginManager.getSinglePlugin(BitstreamDispatcher.class);

int id = dispatcher.next();

while (id != BitstreamDispatcher.SENTINEL)
{
 /*
 do some processing here
 */

 id = dispatcher.next();
}

Plugin that Names Itself

This crosswalk plugin acts like many different plugins since it is configured with different XSL translation stylesheets. Since it already gets each of its
stylesheets out of the DSpace configuration, it makes sense to have the plugin give PluginService the names to which it answers instead of forcing
someone to configure those names in two places (and try to keep them synchronized).

Here is the configuration file listing both the plugin's own configuration and the config line:PluginService

crosswalk.dissemination.stylesheet.DublinCore = xwalk/TESTDIM-2-DC_copy.xsl
crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.org.dspace.content.metadata.DisseminationCrosswalk = \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

This look into the implementation shows how it finds configuration entries to populate the array of plugin names returned by the method. getPluginNames()
Also note, in the method, how it uses the plugin name that created the current instance (returned by) to find the getStylesheet() getPluginInstanceName()
correct stylesheet.

public class XsltDisseminationCrosswalk extends SelfNamedPlugin
{

 private final String prefix =
 "crosswalk.dissemination.stylesheet.";

 public static String[] getPluginNames()
 {
 List aliasList = new ArrayList();
 Enumeration pe = ConfigurationManager.propertyNames();

 while (pe.hasMoreElements())
 {
 String key = (String)pe.nextElement();
 if (key.startsWith(prefix))
 aliasList.add(key.substring(prefix.length()));
 }
 return (String[])aliasList.toArray(new
 String[aliasList.size()]);
 }

 // get the crosswalk stylesheet for an instance of the plugin:
 private String getStylesheet()
 {
 return ConfigurationManager.getProperty(prefix +
 getPluginInstanceName());
 }
}

Stackable Authentication

773

The Stackable Authentication mechanism needs to know all of the plugins configured for the interface, in the order of configuration, since order is
significant. It gets a Sequence Plugin from the Plugin Manager. Refer to the Configuration Section on Stackable Authentication for further details.

Workflow System

The primary classes are:

org.dspace.content.
WorkspaceItem

contains an Item before it enters a workflow

org.dspace.workflow.
WorkflowItem

contains an Item while in a workflow

org.dspace.workflow.
WorkflowService

responds to events, manages the WorkflowItem states. There are two implementations, the traditional, default workflow
(described below) and .Configurable Workflow

org.dspace.content.
Collection

contains List of defined workflow steps

org.dspace.eperson.Group people who can perform workflow tasks are defined in EPerson Groups

org.dspace.core.Email used to email messages to Group members and submitters

The default workflow system models the states of an Item in a state machine with 5 states (SUBMIT, STEP_1, STEP_2, STEP_3, ARCHIVE.) These are
the three optional steps where the item can be viewed and corrected by different groups of people. Actually, it's more like 8 states, with STEP_1_POOL,
STEP_2_POOL, and STEP_3_POOL. These pooled states are when items are waiting to enter the primary states. Optionally, you can also choose to
enable the enhanced, , if you wish to have more control over your workflow steps/states. (Configurable Workflow Note: the remainder of this description

)relates to the traditional, default workflow. For more information on the Configurable Workflow option, visit Configurable Workflow.

The WorkflowService is invoked by events. While an Item is being submitted, it is held by a WorkspaceItem. Calling the start() method in the
WorkflowService converts a WorkspaceItem to a WorkflowItem, and begins processing the WorkflowItem's state. Since all three steps of the workflow are
optional, if no steps are defined, then the Item is simply archived.

Workflows are set per Collection, and steps are defined by creating corresponding entries in the List named workflowGroup. If you wish the workflow to
have a step 1, use the administration tools for Collections to create a workflow Group with members who you want to be able to view and approve the
Item, and the workflowGroup[0] becomes set with the ID of that Group.

If a step is defined in a Collection's workflow, then the WorkflowItem's state is set to that step_POOL. This pooled state is the WorkflowItem waiting for an
EPerson in that group to claim the step's task for that WorkflowItem. The WorkflowManager emails the members of that Group notifying them that there is
a task to be performed (the text is defined in config/emails,) and when an EPerson goes to their 'My DSpace' page to claim the task, the WorkflowManager
is invoked with a claim event, and the WorkflowItem's state advances from STEP_x_POOL to STEP_x (where x is the corresponding step.) The EPerson
can also generate an 'unclaim' event, returning the WorkflowItem to the STEP_x_POOL.

Other events the WorkflowService handles are advance(), which advances the WorkflowItem to the next state. If there are no further states, then the
WorkflowItem is removed, and the Item is then archived. An EPerson performing one of the tasks can reject the Item, which stops the workflow, rebuilds
the WorkspaceItem for it and sends a rejection note to the submitter. More drastically, an abort() event is generated by the admin tools to cancel a
workflow outright.

Administration Toolkit

The package contains some classes for administering a DSpace system that are not generally needed by most applications.org.dspace.administer

The class is a simple command-line tool, executed via , that creates an CreateAdministrator [dspace]/bin/dspace create-administrator
administrator e-person with information entered from standard input. This is generally used only once when a DSpace system is initially installed, to create
an initial administrator who can then use the Web administration UI to further set up the system. This script does not check for authorization, since it is
typically run before there are any e-people to authorize! Since it must be run as a command-line tool on the server machine, generally this shouldn't cause
a problem. A possibility is to have the script only operate when there are no e-people in the system already, though in general, someone with access to
command-line scripts on your server is probably in a position to do what they want anyway!

The class is similar to the class. It represents an entry in the Dublin Core type registry, that is, a particular DCType org.dspace.content.BitstreamFormat
element and qualifier, or unqualified element. It is in the package because it is only generally required when manipulating the registry itself. administer
Elements and qualifiers are specified as literals in methods and the class. Only administrators org.dspace.content.Item org.dspace.content.Metadatum
may modify the Dublin Core type registry.

The class contains methods for initializing the Dublin Core type registry and bitstream format registry with entries in org.dspace.administer.RegistryLoader
an XML file. Typically this is executed via the command line during the build process (see in the source.) To see examples of the XML formats, build.xml
see the files in in the source directory. There is no XML schema, they aren't validated strictly when loaded in.config/registries

E-person/Group Manager

DSpace keeps track of registered users with the class. The class has methods to create and manipulate an such as org.dspace.eperson.EPerson EPerson
get and set methods for first and last names, email, and password. (Actually, there is no method‚ an MD5 hash of the password is stored, getPassword()
and can only be verified with the method.) There are find methods to find an EPerson by email (which is assumed to be unique,) or to checkPassword()
find all EPeople in the system.

774

The object should probably be reworked to allow for easy expansion; the current EPerson object tracks pretty much only what MIT was interested EPerson
in tracking - first and last names, email, phone. The access methods are hardcoded and should probably be replaced with methods to access arbitrary
name/value pairs for institutions that wish to customize what EPerson information is stored.

Groups are simply lists of objects. Other than membership, objects have only one other attribute: a name. Group names must be unique, EPerson Group
so (for groups associated with workflows) we have adopted naming conventions where the role of the group is its name, such as . COLLECTION_100_ADD
Groups add and remove EPerson objects with and methods. One important thing to know about groups is that they store addMember() removeMember()
their membership in memory until the method is called - so when modifying a group's membership don't forget to invoke or your changes update() update()
will be lost! Since group membership is used heavily by the authorization system a fast method is also provided.isMember()

Two specific groups are created when DSpace is installed: Administrator (which can bypass authorization) and Anonymous (which is assigned to all
sessions that are not logged in). The code expects these groups to exist. They cannot be renamed or deleted.

Another kind of Group is also implemented in DSpace‚ special Groups. The object for each session carries around a List of Group IDs that the Context
user is also a member of‚ currently the MITUser Group ID is added to the list of a user's special groups if certain IP address or certificate criteria are met.

Authorization

The primary classes are:

org.dspace.authorize.AuthorizeService does all authorization, checking policies against Groups

org.dspace.authorize.ResourcePolicy defines all allowable actions for an object

org.dspace.eperson.Group all policies are defined in terms of EPerson Groups

The authorization system is based on the classic 'police state' model of security; no action is allowed unless it is expressed in a policy. The policies are
attached to resources (hence the name ,) and detail who can perform that action. The resource can be any of the DSpace object types, ResourcePolicy
listed in (, , , etc.) The 'who' is made up of EPerson groups. The actions are also in org.dspace.core.Constants BITSTREAM ITEM COLLECTION Constants.

 (, , , etc.) The only non-obvious actions are and , which are authorizations for container objects. To be able to create java READ WRITE ADD ADD REMOVE
an Item, you must have permission in a Collection, which contains Items. (Communities, Collections, Items, and Bundles are all container objects.)ADD

Currently most of the read policy checking is done with items‚ communities and collections are assumed to be openly readable, but items and their
bitstreams are checked. Separate policy checks for items and their bitstreams enables policies that allow publicly readable items, but parts of their content
may be restricted to certain groups.

Three new attributes have been introduced in the class as part of the DSpace Contribution:ResourcePolicy Embargo

rpname: resource policy name
rptype: resource policy type
rpdescription: resource policy description

While and is a fields managed by the system. It represents a type that a resource rpname rpdescription _are fields manageable by the users the _rptype
policy can assume beteween the following:

TYPE_SUBMISSION: all the policies added automatically during the submission process
TYPE_WORKFLOW: all the policies added automatically during the workflow stage
TYPE_CUSTOM: all the custom policies added by users
TYPE_INHERITED: all the policies inherited by the father.DSO

An custom policy, created for the purpose of creating an embargo could look like:

policy_id: 4847
resource_type_id: 2
resource_id: 89
action_id: 0
eperson_id:
epersongroup_id: 0
start_date: 2013-01-01
end_date:
rpname: Embargo Policy
rpdescription: Embargoed through 2012
rptype: TYPE_CUSTOM

The class'AuthorizeService
 is the primary source of all authorization in the system. It gets a list of all of the ResourcePolicies in the system authorizeAction(Context, object, action)

that match the object and action. It then iterates through the policies, extracting the EPerson Group from each policy, and checks to see if the EPersonID
from the Context is a member of any of those groups. If all of the policies are queried and no permission is found, then an is thrown. AuthorizeException
An method is also supplied that returns a boolean for applications that require higher performance.authorizeAction()

ResourcePolicies are very simple, and there are quite a lot of them. Each can only list a single group, a single action, and a single object. So each object
will likely have several policies, and if multiple groups share permissions for actions on an object, each group will get its own policy. (It's a good thing
they're small.)

775

https://wiki.lyrasis.org/display/DSDOC4x/Embargo

Special Groups

All users are assumed to be part of the public group (ID=0.) DSpace admins (ID=1) are automatically part of all groups, much like super-users in the Unix
OS. The Context object also carries around a List of special groups, which are also first checked for membership. These special groups are used at MIT to
indicate membership in the MIT community, something that is very difficult to enumerate in the database! When a user logs in with an MIT certificate or
with an MIT IP address, the login code adds this MIT user group to the user's Context.

Miscellaneous Authorization Notes

Where do items get their read policies? From the their collection's read policy. There once was a separate item read default policy in each collection, and
perhaps there will be again since it appears that administrators are notoriously bad at defining collection's read policies. There is also code in place to
enable policies that are timed‚ have a start and end date. However, the admin tools to enable these sorts of policies have not been written.

Handle Manager/Handle Plugin

The package contains two classes; is used to create and look up Handles, and is used to expose and org.dspace.handle HandleService HandlePlugin
resolve DSpace Handles for the outside world via the CNRI Handle Server code.

Handles are stored internally in the database table in the form:handle

1721.123/4567

Typically when they are used outside of the system they are displayed in either URI or "URL proxy" forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

It is the responsibility of the caller to extract the basic form from whichever displayed form is used.

The table maps these Handles to resource type/resource ID pairs, where resource type is a value from and resource ID handle org.dspace.core.Constants
is the internal identifier (database primary key) of the object. This allows Handles to be assigned to any type of object in the system, though as explained in
the functional overview, only communities, collections and items are presently assigned Handles.

HandleService contains static methods for:

Creating a Handle
Finding the Handle for a , though this is usually only invoked by the object itself, since has a methodDSpaceObject DSpaceObject getHandle
Retrieving the identified by a particular HandleDSpaceObject
Obtaining displayable forms of the Handle (URI or "proxy URL").

 is a simple implementation of the Handle Server's interface. It only implements the basic Handle HandlePlugin net.handle.hdllib.HandleStorage
retrieval methods, which get information from the database table. The CNRI Handle Server is configured to use this plug-in via its handle config.

 file.dct

Note that since the Handle server runs as a separate JVM to the DSpace Web applications, it uses a separate 'Log4J' configuration, since Log4J does not
support multiple JVMs using the same daily rolling logs. This alternative configuration is located at [dspace]/config/log4j-handle-plugin.

. The script passes in the appropriate command line parameters so that the Handle server uses properties [dspace]/bin/start-handle-server
this configuration.

In additional to Handles, DSpace also provides basic support for DOIs (Digital Object Identifiers). For more information visit .DOI Digital Object Identifier

Search

DSpace's search code is a simple, configurable API which currently wraps Apache Solr. See for more information on how to customize the Discovery
default search settings, etc.

Harvesting API

The package also provides a 'harvesting' API. This allows callers to extract information about items modified within a particular org.dspace.search
timeframe, and within a particular scope (all of DSpace, or a community or collection.) Currently this is used by the Open Archives Initiative metadata
harvesting protocol application, and the e-mail subscription code.

The is invoked with the required scope and start and end dates. Either date can be omitted. The dates should be in the ISO8601, UTC Harvest.harvest
time zone format used elsewhere in the DSpace system.

HarvestedItemInfo objects are returned. These objects are simple containers with basic information about the items falling within the given scope and date
range. Depending on parameters passed to the method, the and fields may have been filled out with the IDs of communities and harvest containers item
collections containing an item, and the corresponding object respectively. Electing not to have these fields filled out means the harvest operation Item
executes considerable faster.

In case it is required, also offers a method for creating a single object, which might make things easier for the caller.Harvest HarvestedItemInfo

Browse API

776

The browse API uses the same underlying technology as the Search API (Apache Solr, see also). It maintains indexes of dates, authors, titles Discovery
and subjects, and allows callers to extract parts of these:

Title: Values of the Dublin Core element (unqualified) are indexed. These are sorted in a case-insensitive fashion, with any leading article title
removed. For example: "The DSpace System" would appear under 'D' rather than 'T'.
Author: Values of the (any qualifier or unqualified) element are indexed. Since values typically are in the form 'last name, contributor contributor
first name', a simple case-insensitive alphanumeric sort is used which orders authors in last name order. Note that this is an index of , and authors
not . If four items have the same author, that author will appear in the index only once. Hence, the index of authors may be greater items by author
or smaller than the index of titles; items often have more than one author, though the same author may have authored several items. The author
indexing in the browse API does have limitations:

Ideally, a name that appears as an author for more than one item would appear in the author index only once. For example, 'Doe, John'
may be the author of tens of items. However, in practice, author's names often appear in slightly differently forms, for example:

Doe, John
Doe, John Stewart
Doe, John S.

Currently, the above three names would all appear as separate entries in the author index even though they may refer to the same
author. In order for an author of several papers to be correctly appear once in the index, each item must specify the same form of exactly
their name, which doesn't always happen in practice.
Another issue is that two authors may have the same name, even within a single institution. If this is the case they may appear as one
author in the index. These issues are typically resolved in libraries with , in which are kept a 'preferred' form of authority control records
the author's name, with extra information (such as date of birth/death) in order to distinguish between authors of the same name.
Maintaining such records is a huge task with many issues, particularly when metadata is received from faculty directly rather than trained
library catalogers.

Date of Issue: Items are indexed by date of issue. This may be different from the date that an item appeared in DSpace; many items may have
been originally published elsewhere beforehand. The Dublin Core field used is . The ordering of this index may be reversed so date.issued
'earliest first' and 'most recent first' orderings are possible. Note that the index is of , as opposed to an index of . If 30 items items by date dates
have the same issue date (say 2002), then those 30 items all appear in the index adjacent to each other, as opposed to a single 2002 entry.
Since dates in DSpace Dublin Core are in ISO8601, all in the UTC time zone, a simple alphanumeric sort is sufficient to sort by date, including
dealing with varying granularities of date reasonably. For example:

2001-12-10
2002
2002-04
2002-04-05
2002-04-09T15:34:12Z
2002-04-09T19:21:12Z
2002-04-10

Date Accessioned: In order to determine which items most recently appeared, rather than using the date of issue, an item's accession date is
used. This is the Dublin Core field . In other aspects this index is identical to the date of issue index.date.accessioned
Items by a Particular Author: The browse API can perform is to extract items by a particular author. They do not have to be primary author of an
item for that item to be extracted. You can specify a scope, too; that is, you can ask for items by author X in collection Y, for example.This
particular flavor of browse is slightly simpler than the others. You cannot presently specify a particular subset of results to be returned. The API
call will simply return all of the items by a particular author within a certain scope. Note that the author of the item must match the author exactly
passed in to the API; see the explanation about the caveats of the author index browsing to see why this is the case.
Subject: Values of the Dublin Core element (both unqualified and with any qualifier) are indexed. These are sorted in a case-insensitive subject
fashion.

Using the API

The API is generally invoked by creating a object, and setting the parameters for which particular part of an index you want to extract. This is BrowseScope
then passed to the relevant method call, which returns a object which contains the results of the operation. The parameters set in the Browse BrowseInfo B

 object are:rowseScope

How many entries from the index you want
Whether you only want entries from a particular community or collection, or from the whole of DSpace
Which part of the index to start from (called the of the browse). If you don't specify this, the start of the index is usedfocus
How many entries to include before the entryfocus

To illustrate, here is an example:

We want entries in total7
We want entries from collection x
We want the focus to be 'Really'
We want entries included before the focus.2

The results of invoking with the above parameters might look like this:Browse.getItemsByTitle

777

Rabble-Rousing Rabbis From Sardinia
 Reality TV: Love It or Hate It?
FOCUS> The Really Exciting Research Video
 Recreational Housework Addicts: Please Visit My House
 Regional Television Variation Studies
 Revenue Streams
 Ridiculous Example Titles: I'm Out of Ideas

Note that in the case of title and date browses, objects are returned as opposed to actual titles. In these cases, you can specify the 'focus' to be a Item
specific item, or a partial or full literal value. In the case of a literal value, if no entry in the index matches exactly, the closest match is used as the focus.
It's quite reasonable to specify a focus of a single letter, for example.

Being able to specify a specific item to start at is particularly important with dates, since many items may have the save issue date. Say 30 items in a
collection have the issue date 2002. To be able to page through the index 20 items at a time, you need to be able to specify exactly which item's 2002 is
the focus of the browse, otherwise each time you invoked the browse code, the results would start at the first item with the issue date 2002.

Author browses return objects with the actual author names. You can only specify the focus as a full or partial literal .String String

Another important point to note is that presently, the browse indexes contain metadata for all items in the main archive, regardless of authorization policies.
This means that all items in the archive will appear to all users when browsing. Of course, should the user attempt to access a non-public item, the usual
authorization mechanism will apply. Whether this approach is ideal is under review; implementing the browse API such that the results retrieved reflect a
user's level of authorization may be possible, but rather tricky.

Checksum checker

Checksum checker is used to verify every item within DSpace. While DSpace calculates and records the checksum of every file submitted to it, the
checker can determine whether the file has been changed. The idea being that the earlier you can identify a file has changed, the more likely you would be
able to record it (assuming it was not a wanted change).

org.dspace.checker.CheckerCommand class, is the class for the checksum checker tool, which calculates checksums for each bitstream whose ID is
in the table, and compares it against the last calculated checksum for that bitstream.most_recent_checksum

OpenSearch Support

DSpace is able to support . For those not acquainted with the standard, a very brief introduction, with emphasis on what possibilities it holds OpenSearch
for current use and future development.

OpenSearch is a small set of conventions and documents for describing and using 'search engines', meaning any service that returns a set of results for a
query. It is nearly ubiquitous‚ but also nearly invisible‚ in modern web sites with search capability. If you look at the page source of Wikipedia, Facebook,
CNN, etc you will find buried a link element declaring OpenSearch support. It is very much a lowest-common-denominator abstraction (think Google box),
but does provide a means to extend its expressive power. This first implementation for DSpace supports of these extensions‚ many of which are of none
potential value‚ so it should be regarded as a foundation, not a finished solution. So the short answer is that DSpace appears as a 'search-engine' to
OpenSearch-aware software.

Another way to look at OpenSearch is as a RESTful web service for search, very much like SRW/U, but considerably simpler. This comparative loss of
power is offset by the fact that it is widely supported by web tools and players: browsers understand it, as do large metasearch tools.

How Can It Be Used

Browser Integration: Many recent browsers (IE7+, FF2+) can detect, or 'autodiscover', links to the document describing the search engine. Thus
you can easily add your or other DSpace instances to the drop-down list of search engines in your browser. This list typically appears in the upper
right corner of the browser, with a search box. In Firefox, for example, when you visit a site supporting OpenSearch, the color of the drop-down
list widget changes color, and if you open it to show the list of search engines, you are offered an opportunity to add the site to the list. IE works
nearly the same way but instead labels the web sites 'search providers'. When you select a DSpace instance as the search engine and enter a
search, you are simply sent to the regular search results page of the instance.
Flexible, interesting RSS Feeds. Because one of the formats that OpenSearch specifies for its results is RSS (or Atom), you can turn any search
query into an RSS feed. So if there are keywords highly discriminative of content in a collection or repository, these can be turned into a URL that
a feed reader can subscribe to. Taken to the extreme, one could take any search a user makes, and dynamically compose an RSS feed URL for
it in the page of returned results. To see an example, if you have a DSpace with OpenSearch enabled, try:

The Opensearch feature is available from the dspace.server.url
[dspace.server.url]/opensearch/search?query=<your query>
e.g. https://demo.dspace.org/server/opensearch/search?query=<your query>

The default format returned is Atom 1.0, so you should see an Atom document containing your search results.
You can extend the syntax with a few other parameters, as follows:

Parameter Values

format atom, rss, html

778

https://opensearch.org/

1.

2.

3.

scope handle of a collection or community to restrict the search to

rpp number indicating the number of results per page (i.e. per request)

start number of page to start with (if paginating results)

sort_by number indicating sorting criteria (same as DSpace advanced search values

Multiple parameters may be specified on the query string, using the "&" character as the delimiter, e.g.:

https://demo.dspace.org/server/opensearch/search?query=<your query>&format=rss&scope=123456789/1

Cheap metasearchSearch aggregators like A9 (Amazon) recognize OpenSearch-compliant providers, and so can be added to metasearch sets
using their UIs. Then you site can be used to aggregate search results with others.
When OpenSearch is enabled in DSpace, informational "link" tags will be embedded into the HTML of every page. These link tags will allow tools
to easily discover the OpenSearch Service Document (`/service`) and RSS / Atom feeds. The links appear in the HTML head tag and look like
this:

<link href="https://demo.dspace.org/server/opensearch/search?format=atom&query=*" type="application
/atom+xml" rel="alternate" title="Sitewide Atom feed">
<link href="https://demo.dspace.org/server/opensearch/search?format=rss&query=*" type="application
/rss+xml" rel="alternate" title="Sitewide RSS feed">
<link href="https://demo.dspace.org/server/opensearch/search/service" type="application/atom+xml" rel="
search" title="DSpace">

Configuration is through the file. See for more details.dspace.cfg OpenSearch Support

Embargo Support

What is an Embargo?

An embargo is a temporary access restriction placed on content, commencing at time of accession. It's scope or duration may vary, but the fact that it
eventually expires is what distinguishes it from other content restrictions. For example, it is not unusual for content destined for DSpace to come with
permanent restrictions on use or access based on license-driven or other IP-based requirements that limit access to institutionally affiliated users.
Restrictions such as these are imposed and managed using standard administrative tools in DSpace, typically by attaching specific policies to Items or
Collections, Bitstreams, etc. The embargo functionally introduced in 1.6, however, includes tools to automate the imposition and removal of restrictions in
managed timeframes.

Embargo Model and Life-Cycle

Functionally, the embargo system allows you to attach 'terms' to an item before it is placed into the repository, which express how the embargo should be
applied. What do 'we mean by terms' here? They are really any expression that the system is capable of turning into (1) the time the embargo expires, and
(2) a concrete set of access restrictions. Some examples:
"2020-09-12" - an absolute date (i.e. the date embargo will be lifted)"6 months" - a time relative to when the item is accessioned"forever" - an indefinite, or
open-ended embargo"local only until 2015" - both a time and an exception (public has no access until 2015, local users OK immediately)"Nature
Publishing Group standard" - look-up to a policy somewhere (typically 6 months)
These terms are 'interpreted' by the embargo system to yield a specific date on which the embargo can be removed or 'lifted', and a specific set of access
policies. Obviously, some terms are easier to interpret than others (the absolute date really requires none at all), and the 'default' embargo logic
understands only the most basic terms (the first and third examples above). But as we will see below, the embargo system provides you with the ability to
add in your own 'interpreters' to cope with any terms expressions you wish to have. This date that is the result of the interpretation is stored with the item
and the embargo system detects when that date has passed, and removes the embargo ("lifts it"), so the item bitstreams become available. Here is a more
detailed life-cycle for an embargoed item:

Terms Assignment. The first step in placing an embargo on an item is to attach (assign) 'terms' to it. If these terms are missing, no embargo will
be imposed. As we will see below, terms are carried in a configurable DSpace metadata field, so assigning terms just means assigning a value to
a metadata field. This can be done in a web submission user interface form, in a SWORD deposit package, a batch import, etc. - anywhere
metadata is passed to DSpace. The terms are not immediately acted upon, and may be revised, corrected, removed, etc, up until the next stage
of the life-cycle. Thus a submitter could enter one value, and a collection editor replace it, and only the last value will be used. Since metadata
fields are multivalued, theoretically there can be multiple terms values, but in the default implementation only one is recognized.
Terms interpretation/imposition. In DSpace terminology, when an item has exited the last of any workflow steps (or if none have been defined
for it), it is said to be 'installed' into the repository. At this precise time, the 'interpretation' of the terms occurs, and a computed 'lift date' is
assigned, which like the terms is recorded in a configurable metadata field. It is important to understand that this interpretation happens only
once, (just like the installation), and cannot be revisited later. Thus, although an administrator can assign a new value to the metadata field
holding the terms after the item has been installed, this will have no effect on the embargo, whose 'force' now resides entirely in the 'lift date'
value. For this reason, you cannot embargo content already in your repository (at least using standard tools). The other action taken at installation
time is the actual imposition of the embargo. The default behavior here is simply to remove the read policies on all the bundles and bitstreams
except for the "LICENSE" or "METADATA" bundles. See the section on for how to alter this behavior. Also note Extending Embargo Functionality
that since these policy changes occur before installation, there is no time during which embargoed content is 'exposed' (accessible by non-
administrators). The terms interpretation and imposition together are called 'setting' the embargo, and the component that performs them both is
called the embargo 'setter'.
Embargo Period. After an embargoed item has been installed, the policy restrictions remain in effect until removed. This is not an automatic
process, however: a 'lifter' must be run periodically to look for items whose 'lift date' is past. Note that this means the effective removal of an

779

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-OpenSearchSupport

3.

4.

5.

embargo is the lift date, but the earliest date after the lift date that the lifter is run. Typically, a nightly cron-scheduled invocation of the lifter is not
more than adequate, given the granularity of embargo terms. Also note that during the embargo period, all metadata of the item remains visible.
This default behavior can be changed. One final point to note is that the 'lift date', although it was computed and assigned during the previous
stage, is in the end a regular metadata field. That means, if there are extraordinary circumstances that require an administrator (or collection editor
‚ anyone with edit permissions on metadata) to change the lift date, they can do so. Thus, they can 'revise' the lift date without reference to the
original terms. This date will be checked the next time the 'lifter' is run. One could immediately lift the embargo by setting the lift date to the current
day, or change it to 'forever' to indefinitely postpone lifting.
Embargo Lift. When the lifter discovers an item whose lift date is in the past, it removes (lifts) the embargo. The default behavior of the lifter is to
add the resource policies had the embargo not been imposed. That is, it replicates the standard DSpace behavior, in that would have been added
which an item inherits it's policies from its owning collection. As with all other parts of the embargo system, you may replace or extend the default
behavior of the lifter (see section V. below). You may wish, e.g. to send an email to an administrator or other interested parties, when an
embargoed item becomes available.
Post Embargo. After the embargo has been lifted, the item ceases to respond to any of the embargo life-cycle events. The values of the
metadata fields reflect essentially historical or provenance values. With the exception of the additional metadata fields, they are indistinguishable
from items that were never subject to embargo.

More Embargo Details

More details on Embargo configuration, including specific examples can be found in the section of the documentation.Embargo

780

https://wiki.lyrasis.org/display/DSDOC4x/Embargo

DSpace Services Framework

1 Architectural Overview
1.1 DSpace Kernel

1.1.1 Kernel registration
1.2 Service Manager

2 Basic Usage
2.1 Standalone Applications
2.2 Application Frameworks (Spring, Guice, etc.)
2.3 Web Applications

3 Providers and Plugins
3.1 Activators
3.2 Provider Stacks

4 Core Services
4.1 Caching Service
4.2 Configuration Service
4.3 EventService
4.4 RequestService
4.5 SessionService

5 Examples
5.1 Configuring Event Listeners

6 Tutorials

The DSpace Services Framework is a backporting of the DSpace 2.0 Development Group's work in creating a reasonable and abstractable "Core
Services" layer for DSpace components to operate within. The Services Framework represents a "best practice" for new DSpace architecture and
implementation of extensions to the DSpace application. DSpace Services are best described as a "Simple Registry" where plugins can be "looked up" or
located. The DS2 () core services are the main services that make up a DS2 system. These includes services for things like user and DSpace 2.0
permissions management and storage and caching. These services can be used by any developer writing DS2 plugins (e.g. statistics), providers (e.g.
authentication), or user interfaces.

Architectural Overview

DSpace Kernel

The DSpace Kernel manages the start up and access services in the DSpace Services framework. It is meant to allow for a simple way to control the core
parts of DSpace and allow for flexible ways to startup the kernel. For example, the kernel can be run inside a single webapp along with a frontend UI or it
can be started as part of the servlet container so that multiple webapps can use a single kernel (this increases speed and efficiency). The kernel is also
designed to happily allow multiple kernels to run in a single servlet container using identifier keys.

Kernel registration

The kernel will automatically register itself as an MBean when it starts up so that it can be managed via . It allows startup and shutdown and provides JMX
direct access to the ServiceManager and the ConfigurationService. All the other core services can be retrieved from the ServiceManager by their APIs.

Service Manager

781

http://wiki.dspace.org/index.php/DSpace_2.0
http://www.oracle.com/technetwork/java/javase/tech/docs-jsp-135989.html

The ServiceManager abstracts the concepts of service lookups and lifecycle control. It also manages the configuration of services by allowing properties to
be pushed into the services as they start up (mostly from the ConfigurationService). The ServiceManagerSystem abstraction allows the DSpace
ServiceManager to use different systems to manage its services. The current implementations include Spring and Guice. This allows DSpace 2 to have
very little service management code but still be flexible and not tied to specific technology. Developers who are comfortable with those technologies can
consume the services from a parent Spring ApplicationContext or a parent Guice Module. The abstraction also means that we can replace Spring/Guice or
add other dependency injection systems later without requiring developers to change their code. The interface provides simple methods for looking up
services by interface type for developers who do not want to have to use or learn a dependency injection system or are using one which is not currently
supported.

The DS2 kernel is compact so it can be completely started up in a unit test (technically integration test) environment. (This is how we test the kernel and
core services currently). This allows developers to execute code against a fully functional kernel while developing and then deploy their code with high
confidence.

Basic Usage

To use the Framework you must begin by instantiating and starting a DSpaceKernel. The kernel will give you references to the ServiceManager and the
ConfigurationService. The ServiceManager can be used to get references to other services and to register services which are not part of the core set.

Access to the kernel is provided via the Kernel Manager through the DSpace object, which will locate the kernel object and allow it to be used.

Standalone Applications

For standalone applications, access to the kernel is provided via the Kernel Manager and the DSpace object which will locate the kernel object and allow it
to be used.

/* Instantiate the Utility Class */
DSpace dspace = new DSpace();

/* Access get the Service Manager by convenience method */
ServiceManager manager = dspace.getServiceManager();

/* Or access by convenience method for core services */
EventService service = dspace.getEventService();

The DSpace launcher (

bin/dspace

) initializes a kernel before dispatching to the selected command.

782

Application Frameworks (Spring, Guice, etc.)

Similar to , but you can use your framework to instantiate an object.Standalone Applications org.dspace.utils.DSpace

 <bean id="dspace" class="org.dspace.utils.DSpace"/>

Web Applications

In web applications, the kernel can be started and accessed through the use of Servlet Filter/ContextListeners which are provided as part of the DSpace 2
utilities. Developers don't need to understand what is going on behind the scenes and can simply write their applications and package them as webapps
and take advantage of the services which are offered by DSpace 2.

Providers and Plugins

For developers (how we are trying to make your lives easier): The DS2 ServiceManager supports a plugin/provider system which is runtime hot-
swappable. The implementor can register any service/provider bean or class with the DS2 kernel ServiceManager. The ServiceManager will manage the
lifecycle of beans (if desired) and will instantiate and manage the lifecycle of any classes it is given. This can be done at any time and does not have to be
done during Kernel startup. This allows providers to be swapped out at runtime without disrupting the service if desired. The goal of this system is to allow
DS2 to be extended without requiring any changes to the core codebase or a rebuild of the code code.

Activators

Developers can provide an activator to allow the system to startup their service or provider. It is a simple interface with 2 methods which are called by the
ServiceManager to startup the provider(s) and later to shut them down. These simply allow a developer to run some arbitrary code in order to create and
register services if desired. It is the method provided to add plugins directly to the system via configuration as the activators are just listed in the
configuration file and the system starts them up in the order it finds them.

Provider Stacks

Utilities are provided to assist with stacking and ordering providers. Ordering is handled via a priority number such that 1 is the highest priority and
something like 10 would be lower. 0 indicates that priority is not important for this service and can be used to ensure the provider is placed at or near the
end without having to set some arbitrarily high number.

Core Services

The core services are all behind APIs so that they can be reimplemented without affecting developers who are using the services. Most of the services
have plugin/provider points so that customizations can be added into the system without touching the core services code. For example, let's say a deployer
has a specialized authentication system and wants to manage the authentication calls which come into the system. The implementor can simply implement
an AuthenticationProvider and then register it with the DS2 kernel's ServiceManager. This can be done at any time and does not have to be done during
Kernel startup. This allows providers to be swapped out at runtime without disrupting the DS2 service if desired. It can also speed up development by
allowing quick hot redeploys of code during development.

Caching Service

Provides for a centralized way to handle caching in the system and thus a single point for configuration and control over all caches in the system. Provider
and plugin developers are strongly encouraged to use this rather than implementing their own caching. The caching service has the concept of scopes so
even storing data in maps or lists is discouraged unless there are good reasons to do so.

Configuration Service

The ConfigurationService controls the external and internal configuration of DSpace 2. It reads Properties files when the kernel starts up and merges them
with any dynamic configuration data which is available from the services. This service allows settings to be updated as the system is running, and also
defines listeners which allow services to know when their configuration settings have changed and take action if desired. It is the central point to access
and manage all the configuration settings in DSpace 2.

Manages the configuration of the DSpace 2 system. Can be used to manage configuration for providers and plugins also.

EventService

Handles events and provides access to listeners for consumption of events.

RequestService

783

In DS2 a request is an atomic transaction in the system. It is likely to be an HTTP request in many cases but it does not have to be. This service provides
the core services with a way to manage atomic transactions so that when a request comes in which requires multiple things to happen they can either all
succeed or all fail without each service attempting to manage this independently. In a nutshell this simply allows identification of the current request and
the ability to discover if it succeeded or failed when it ends. Nothing in the system will enforce usage of the service, but we encourage developers who are
interacting with the system to make use of this service so they know if the request they are participating in with has succeeded or failed and can take
appropriate actions.

SessionService

In DS2 a session is like an HttpSession (and generally is actually one) so this service is here to allow developers to find information about the current
session and to access information in it. The session identifies the current user (if authenticated) so it also serves as a way to track user sessions. Since we
use HttpSession directly it is easy to mirror sessions across multiple servers in order to allow for no-interruption failover for users when servers go offline.

Examples

Configuring Event Listeners

Event Listeners can be created by overriding the the EventListener interface:

In Spring:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

 <bean id="dspace" class="org.dspace.utils.DSpace"/>

 <bean id="dspace.eventService"
 factory-bean="dspace"
 factory-method="getEventService"/>

 <bean class="org.my.EventListener">
 <property name="eventService" >
 <ref bean="dspace.eventService"/>
 </property>
 </bean>
</beans>

(org.my.EventListener will need to register itself with the EventService, for which it is passed a reference to that service via the eventService property.)

or in Java:

DSpace dspace = new DSpace();

EventService eventService = dspace.getEventService();

EventListener listener = new org.my.EventListener();
eventService.registerEventListener(listener);

(This registers the listener externally – the listener code assumes it is registered.)

Tutorials

Several tutorials on Spring / DSpace Services are available:

DSpace Spring Services Tutorial
The TAO of DSpace Services

784

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=DSpace+Spring+Services+Tutorial
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=The+TAO+of+DSpace+Services

Storage Layer
In this section, we explain the storage layer: the database structure, maintenance, and the bitstream store and configurations. The bitstream store, also
known as assetstore or bitstore, holds the uploaded, ingested, or generated files (documents, images, audio, video, datasets, ...), where as the database
holds all of the metadata, organization, and permissions of content.

1 RDBMS / Database Structure
1.1 Maintenance and Backup
1.2 Configuring the RDBMS Component
1.3 Custom RDBMS tables, columns or views

2 Bitstream Store
2.1 Cleanup
2.2 Backup
2.3 Configuring the Bitstream Store

2.3.1 Configuring Traditional Storage
2.3.2 Configuring Amazon S3 Storage

2.4 Migrate BitStores

RDBMS / Database Structure

DSpace uses a relational database to store all information about the organization of content, metadata about the content, information about e-people and
authorization, and the state of currently-running workflows.

DSpace 6 database schema (Postgres). Right-click the image and choose "Save as" to save in full resolution. Instructions on updating this schema
diagram are in .How to update database schema diagram

DSpace uses to perform automated database initialization and upgrades. Flyway's role is to initialize the database tables (and default FlywayDB
content) prior to Hibernate initialization.

The class manages all Flyway API calls, and executes the SQL migrations under the org.dspace.storage.rdbms.DatabaseUtils
 package and the Java migrations under the org.dspace.storage.rdbms.sqlmigration org.dspace.storage.rdbms.

 package. migration
Once all database migrations have run, a series of are triggered to initialize the (empty) database with required default Flyway Callbacks
content. For example, callbacks exist for adding default DSpace Groups (), default Metadata & Format GroupServiceInitializer
Registries (), and the default Site object (). All Callbacks are under the DatabaseRegistryUpdater SiteServiceInitializer org.

 package.dspace.storage.rdbms
While Flyway is automatically initialized and executed during startup, various are also available on the command Database Utilities
line. These utilities allow you to manually trigger database upgrades or check the status of your database.

DSpace uses as the object relational mapping layer between the DSpace database and the DSpace code.Hibernate ORM
The main Hibernate configuration can be found at [dspace]/config/hibernate.cfg.xml
Hibernate initialization is triggered via Spring (beans) defined . This Spring [dspace]/config/spring/api/core-hibernate.xml
configuration pulls in some settings from DSpace , namely all Database (db.*) settings defined there.Configuration

785

https://wiki.lyrasis.org/display/DSDOC/How+to+update+database+schema+diagram
https://flywaydb.org/
https://flywaydb.org/documentation/callbacks.html
https://wiki.lyrasis.org/display/DSDOC6x/Database+Utilities
http://hibernate.org/orm/
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference

All DSpace Object Classes provide a DAO (Data Access Object) implementation class that extends a GenericDAO interface defined in o
 class. The default (abstract) implementation is in clarg.dspace.core.GenericDAO org.dspace.core.AbstractHibernateDAO

ss.
The DSpace Context object () provides access to the configured (Dorg.dspace.core.Context org.dspace.core.DBConnection
atabase Connection), which is HibernateDBConnection by default. The class org.dspace.core.HibernateDBConnection
provides access the the Hibernate Session interface (org.hibernate.Session) and its Transactions.

Each Hibernate Session opens a single database connection when it is created, and holds onto it until the Session is closed. A
Session may consist of one or more Transactions. Sessions are NOT thread-safe (so individual objects cannot be shared
between threads).
Hibernate will intelligently cache objects in the current Hibernate Session (on object access), allowing for optimized
performance.
DSpace provides methods on the Context object to specifically remove () or reload (Context.uncacheEntity() Context.

) objects within Hibernate's Session cache.reloadEntity()
DSpace also provides special Context object "modes" to optimize Hibernate performance for read-only access (Mode.

) or batch processing (). These modes can be specified when constructing a new Context READ_ONLY Mode.BATCH_EDIT
object.

Most of the functionality that DSpace uses can be offered by any standard SQL database that supports transactions. However, at this time, DSpace only
provides Flyway migration scripts for and (and has only been tested with those database backends). Additional database backends PostgreSQL Oracle
should be possible, but would minimally require creating custom Flyway migration scripts for that database backend.

Maintenance and Backup

When using PostgreSQL, it's a good idea to perform regular 'vacuuming' of the database to optimize performance. By default, PostgreSQL performs autom
 on your behalf. However, if you have this feature disabled, then we recommend scheduling the command to run on a regular atic vacuuming vacuumdb

basis.

clean up the database nightly
40 2 * * * /usr/local/pgsql/bin/vacuumdb --analyze dspace > /dev/null 2>&1

Backups: The DSpace database can be backed up and restored using usual methods, for example with and PostgreSQL Backup and Restore pg_dump p
. However when restoring a database, you will need to perform these additional steps:sql

After restoring a backup, you will need to reset the primary key generation sequences so that they do not produce already-used primary keys. Do
this by executing the SQL in , for example with:[dspace]/etc/postgres/update-sequences.sql

psql -U dspace -f [dspace]/etc/update-sequences.sql

Configuring the RDBMS Component

The database manager is configured with the following properties in :dspace.cfg

db.url The JDBC URL to use for accessing the database. This should not point to a connection pool, since DSpace already implements a
connection pool.

db.driver JDBC driver class name. Since presently, DSpace uses PostgreSQL-specific features, this should be .org.postgresql.Driver

db.
username

Username to use when accessing the database.

db.
password

Corresponding password ot use when accessing the database.

Custom RDBMS tables, columns or views

When at all possible, we recommend creating custom database tables or views within a from the DSpace database tables. Since the separate schema
DSpace database is initialized and upgraded automatically using , the upgrade process may stumble or throw errors if you've directly modified Flyway DB
the DSpace database schema, views or tables. Flyway itself assumes it has full control over the DSpace database schema, and it is not "smart" enough to
know what to do when it encounters a locally customized database.

That being said, if you absolutely need to customize your database tables, columns or views, it is possible to create , custom Flyway migration scripts
which should make your customizations easier to manage in future upgrades. (Keep in mind though, that you may still need to maintain/update your
custom Flyway migration scripts if they ever conflict directly with future DSpace database changes. The only way to "future proof" your local database
changes is to try and make them as independent as possible, and avoid directly modifying the DSpace database schema as much as possible.)

If you wish to add custom Flyway migrations, they may be added to the following locations:

786

http://www.postgresql.org/
http://www.oracle.com/database/
http://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/current/static/app-vacuumdb.html
http://www.postgresql.org/docs/current/static/backup.html
http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-psql.html
http://www.postgresql.org/docs/current/static/app-psql.html
http://flywaydb.org/

1.
2.

Custom Flyway SQL migrations may be added anywhere under the (e.g. org.dspace.storage.rdbms.sqlmigration package [src]
 or subdirectories)/dspace-api/src/main/resources/org/dspace/storage/rdbms/sqlmigration

Custom Flyway Java migrations may be added anywhere under the (e.g. packageorg.dspace.storage.rdbms.migration [src]
 or subdirectories)/dspace-api/src/main/java/org/dspace/storage/rdbms/migration/

Additionally, for backwards support, custom SQL migrations may also be placed in the folder (e.g. [dspace]/etc/[db-type]/ [dspace]/etc
 for a PostgreSQL specific migration script)/postgres/

Adding Flyway migrations to any of the above location will cause Flyway to auto-discover the migration. It will be run in the order in which it is named. Our
DSpace Flyway script naming convention follows Flyway best practices and is as follows:

 SQL script names: V[version]_[date]__[description].sql
E.g. is a SQL migration script created for DSpace 5.x () V5.0_2014.09.26__DS-1582_Metadata_For_All_Objects.sql V5.0
on Sept 26, 2014 (). Its purpose was to fulfill the needs of ticket DS-1582, which was to migrate the database in order to 2014_09_24
support adding metadata on all objects.
More examples can be found under the packageorg.dspace.storage.rdbms.sqlmigration

Java migration script naming convention: V[version]_[date]__[description].java
E.g. is a Java migration created for V5_0_2014_09_25__DS_1582_Metadata_For_All_Objects_drop_constraint.java
DSpace 5.x () on Sept 25, 2014 (). Its purpose was to fulfill the needs of ticket DS-1582, specifically to drop a few V5_0 2014_09_25
constraints.
More examples can be found under the packageorg.dspace.storage.rdbms.migration

Flyway will execute migrations in order, based on their Version and Date. So, V1.x (or V1_x) scripts are executed first, followed by V3.0 (or
V3_0), etc. If two migrations have the same version number, the date is used to determine ordering (earlier dates are run first).

Bitstream Store

DSpace offers two means for storing content.

Storage in a mounted file system on the server (DSBitStore)
Storage using AWS S3 (Simple Storage Service), (S3BitStore).

Both are achieved using a simple, lightweight BitStore API, providing actions of Get, Put, About, Remove. Higher level operations include Store, Register,
Checksum, Retrieve, Cleanup, Clone, Migrate. Digital assets are stored on the bitstores by being transferred to the bitstore when it is uploaded or
ingested. The exception to this is for "registered" objects, that the assets are put onto the filesystem ahead of time out-of-band, and during ingest, it just
maps the database to know where the object already resides. The storage interface is such that additional storage implementations (i.e. other cloud
storage providers) can be added with minimal difficulty.

DSBitStore stores content on a path on the filesystem. This could be locally attached normal filesystem, a mounted drive, or a mounted networked
filesystem, it will all be treated as a local filesystem. All DSpace needs to be configured with for a filesystem, is the filesystem path, i.e. /dspace/assetstore,
/opt/data/assetstore. The DSBitStore uses a "Directory Scatter" method of storing an asset within 3 levels of subfolders, to minimize any single folder
having too many objects for normal filesystem performance.

S3BitStore uses Amazon Web Services S3 (Simple Storage Service) to offer limitless cloud storage into a bucket, and each distinct asset will have a
unique key. S3 is a commercial service (costs money), but is available at low price point, and is fully managed, content is automatically
replicated, 99.999999999% object durability, integrity checked. Since S3 operates within the AWS network, using other AWS services, such virtual server
on EC2 will provide lower network latency than local "on premises" servers. Additionally there could be some in-bound / out-bound bandwidth costs
associated with DSpace application server outside of the AWS network communicating with S3, compared to AWS-internal EC2 servers. S3 has a
checksum computing operation, in which the S3 service can return the checksum from the storage service, without having to shuttle the bits from S3, to
your application server, and then computing the checksum. S3BitStore requires an S3 bucketName, accessKey, secretKey, and optionally specifying the
AWS region, or a subfolder within the bucket.

There can be multiple bitstream stores. Each of these bitstream stores can be traditional storage or S3 storage. This means that the potential storage of a
DSpace system is not bound by the maximum size of a single disk or file system and also that filesystem and S3storage can be combined in one DSpace
installation. Both filesystem and S3 storage are specified by configuration. Also see Configuring the Bitstream Store below.

Stores are numbered, starting with zero, then counting upwards. Each bitstream entry in the database has a store number, used to retrieve the bitstream
when required. An example of having multiple asset stores configured is that assetstore0 is /dspace/assetstore, when the filesystem gets nearly full, you
could then configure a second filesystem path assetstore1 at /data/assetstore1, later, if you wanted to use S3 for storage, assetstore2 could be s3://dspace

. In this example various bitstreams (database objects) refer to different assetstore for where the files reside. It is typically simplest to just -assetstore-xyz
have a single assetstore configured, and all assets reside in that one. If policy dictated, infrequently used masters could be moved to slower/cheaper disk,
where as access copies are on the fastest storage. This could be accomplished through migrating assets to different stores.

Bitstreams also have an 38-digit internal ID, different from the primary key ID of the bitstream table row. This is not visible or used outside of the bitstream
storage manager. It is used to determine the exact location (relative to the relevant store directory) that the bitstream is stored in traditional storage. The
first three pairs of digits are the directory path that the bitstream is stored under. The bitstream is stored in a file with the internal ID as the filename.

For example, a bitstream with the internal ID is stored in the directory:12345678901234567890123456789012345678

[dspace]/assetstore/12/34/56/12345678901234567890123456789012345678

The reasons for storing files this way are:

Using a randomly-generated 38-digit number means that the 'number space' is less cluttered than simply using the primary keys, which are
allocated sequentially and are thus close together. This means that the bitstreams in the store are distributed around the directory structure,
improving access efficiency.
The internal ID is used as the filename partly to avoid requiring an extra lookup of the filename of the bitstream, and partly because bitstreams
may be received from a variety of operating systems. The original name of a bitstream may be an illegal UNIX filename.

787

1.
2.
3.
4.
5.
6.

When storing a bitstream, the DOES set the following fields in the corresponding database table row:BitstreamStorageService
bitstream_id
size
checksum
checksum_algorithm
internal_id
deleted
store_number

The remaining fields are the responsibility of the content management API class.Bitstream

The bitstream storage manager is fully transaction-safe. In order to implement transaction-safety, the following algorithm is used to store bitstreams:

A database connection is created, separately from the currently active connection in the current DSpace context.
An unique internal identifier (separate from the database primary key) is generated.
The bitstream DB table row is created using this new connection, with the column set to .deleted true
The new connection is _commit_ted, so the 'deleted' bitstream row is written to the database
The bitstream itself is stored in a file in the configured 'asset store directory', with a directory path and filename derived from the internal ID
The flag in the bitstream row is set to . This will occur (or not) as part of the current DSpace .deleted false Context

This means that should anything go wrong before, during or after the bitstream storage, only one of the following can be true:

No bitstream table row was created, and no file was stored
A bitstream table row with was created, no file was storeddeleted=true
A bitstream table row with was created, and a file was storeddeleted=true
None of these affect the integrity of the data in the database or bitstream store.

Similarly, when a bitstream is deleted for some reason, its flag is set to true as part of the overall transaction, and the corresponding file in storage deleted
is deleted.not

Cleanup

The above techniques mean that the bitstream storage manager is transaction-safe. Over time, the bitstream database table and file store may contain a
number of 'deleted' bitstreams. The method of goes through these deleted rows, and actually deletes them along with cleanup BitstreamStorageService
any corresponding files left in the storage. It only removes 'deleted' bitstreams that are more than one hour old, just in case cleanup is happening in the
middle of a storage operation.

This cleanup can be invoked from the command line via the command, which can in turn be easily executed from a shell on the server machine cleanup
using . You might like to have this run regularly by , though since DSpace is read-lots, write-not-so-much it [dspace]/bin/dspace cleanup cron
doesn't need to be run very often.

Clean up any deleted files from local storage on first of the month at 2:40am
40 2 1 * * [dspace]/bin/dspace cleanup > /dev/null 2>&1

Backup

The bitstreams (files) in traditional storage may be backed up very easily by simply 'tarring' or 'zipping' the directory (or [dspace]/assetstore/
whichever directory is configured in). Restoring is as simple as extracting the backed-up compressed file in the appropriate location.dspace.cfg

It is important to note that since the bitstream storage manager holds the bitstreams in storage, and information about them in the database, that a
database backup and a backup of the files in the bitstream store must be made at the same time; the bitstream data in the database must correspond to
the stored files.

Of course, it isn't really ideal to 'freeze' the system while backing up to ensure that the database and files match up. Since DSpace uses the bitstream data
in the database as the authoritative record, it's best to back up the database before the files. This is because it's better to have a bitstream in storage but
not the database (effectively non-existent to DSpace) than a bitstream record in the database but not storage, since people would be able to find the
bitstream but not actually get the contents.

With DSpace 1.7 and above, there is also the option to backup both files and metadata via the feature.AIP Backup and Restore

Configuring the Bitstream Store
Changed in DSpace 7.4

While the old file (defined at) still exists in DSpace 7.4, a new configuration file has bitstore.xml [dspace]/config/spring/api/bitstore.xml
been added for configuring the Bitstream Store: [dspace]/config/modules/assetstore.cfg

If you have previously configured , and only have a single assetstore, we recommend resetting to the default configuration, and bitstore.xml bitstore.xml
use the new file for configuring your Bitstream Store. This is of course very general advice, and your specific situation may require more assetstore.cfg
care, particularly if you have more than one Bitstream Store (see below, and this likely doesn't apply to you, but it could).

BitStores (aka assetstores) are configured with [dspace]/config/modules/assetstore.cfg

Configuring Traditional Storage

788

By default, DSpace uses a traditional filesystem bitstore of [dspace]/assetstore/

To configure traditional filesystem bitstore, as a specific directory, configure the bitstore like this:

#---#
#-----------------STORAGE CONFIGURATIONS------------------------#
#---#
Configuration properties used by the bitstore.xml config file
#
#---#

assetstore.dir, look at DSPACE/config/spring/api/bitstore.xml for more options
assetstore.dir = ${dspace.dir}/assetstore

Configures the primary store to be local or S3.
This value will be used as `incoming` default store inside the `bitstore.xml`
Possible values are:
- 0: to use the `localStore`;
- 1: to use the `s3Store`.
If you want to add additional assetstores, they must be added to that bitstore.xml
and new values should be provided as key-value pairs in the `stores` map of the
`bitstore.xml` configuration.
assetstore.index.primary = 0

This would configure store number 0 named localStore, which is a (filesystem), at the filesystem path of (i.DSBitStore ${dspace.dir}/assetstore
e.)[dspace]/assetstore/

It is also possible to use multiple local filesystems. The following example is specific to the older configuration, and it should still work, but is bitstore.xml
un-tested with DSpace 7.4. In the example below, key #0 is localStore at , and key #1 is localStore2 at ${dspace.dir}/assetstore /data

. Note that incoming is set to store "1", which in this case refers to localStore2. That means that any new files (bitstreams) uploaded to /assetstore2
DSpace will be stored in localStore2, but some existing bitstreams may still exist in localStore.

<bean name="org.dspace.storage.bitstore.BitstreamStorageService" class="org.dspace.storage.bitstore.
BitstreamStorageServiceImpl">
 <property name="incoming" value="1"/>
 <property name="stores">
 <map>
 <entry key="0" value-ref="localStore"/>
 <entry key="1" value-ref="localStore2"/>
 </map>
 </property>
</bean>
<bean name="localStore" class="org.dspace.storage.bitstore.DSBitStoreService" scope="singleton">
 <property name="baseDir" value="${dspace.dir}/assetstore"/>
</bean>
<bean name="localStore2" class="org.dspace.storage.bitstore.DSBitStoreService" scope="singleton">
 <property name="baseDir" value="/data/assetstore2"/>
</bean>

Configuring Amazon S3 Storage

To use as a bitstore, in point to 1, set to true, and configure it with Amazon S3 assetstore.cfg assetstore.index.primary assetstore.s3.enabled awsAcce
, , and . NOTE: Before you can specify these settings, you obviously will have to create an account in the ssKey awsSecretKey bucketName Amazon

 console, and create an user with credentials and privileges to an existing . You can also use an , which would allow your AWS IAM S3 bucket IAM Role
Amazon EC2 instance to talk directly to your S3 bucket without using any credentials. If you do configure an IAM Role with AWS, you'll still need to provide
values for and , but they are un-used by DSpace, and can be anything at all. In the example below, we assume you are awsAccessKey awsSecretKey
using an IAM Role, and are providing the text "use-the-role-please" as the value for these two keys. This is of course not a valid AWS key, for either
example.

Configures the primary store to be local or S3.
This value will be used as `incoming` default store inside the `bitstore.xml`
Possible values are:
- 0: to use the `localStore`;
- 1: to use the `s3Store`.
If you want to add additional assetstores, they must be added to that bitstore.xml
and new values should be provided as key-value pairs in the `stores` map of the
`bitstore.xml` configuration.

789

https://aws.amazon.com/s3/
http://aws.amazon.com/
http://aws.amazon.com/
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

assetstore.index.primary = 1

#---#
#-------------- Amazon S3 Specific Configurations --------------#
#---#
The below configurations are only used if the primary storename
is set to 's3Store' or the 's3Store' is configured as a secondary store
in your bitstore.xml

Enables or disables the store initialization during startup, without initialization the store won't work.
if changed to true, a lazy initialization will be tried on next store usage, be careful an excecption could
be thrown
assetstore.s3.enabled = true

For using a relative path (xx/xx/xx/xxx...) set to true, default it false
When true: it splits the path into subfolders, each of these
are 2-chars (2-bytes) length, the last is the filename and could have
at max 3-chars (3-bytes).
When false: is used the absolute path using full filename.
assetstore.s3.useRelativePath = false

S3 bucket name to store assets in. If unspecified, by default DSpace will
create a bucket based on the hostname of `dspace.ui.url` setting.
assetstore.s3.bucketName = your-bucket-name-goes-here

Subfolder to organize assets within the bucket, in case this bucket
is shared. Optional, default is root level of bucket
assetstore.s3.subfolder = your-optional-subfolder-goes-here

please don't use root credentials in production but rely on the aws credentials default
discovery mechanism to configure them (ENV VAR, EC2 Iam role, etc.)
The preferred approach for security reason is to use the IAM user credentials, but isn't always possible.
More information about credentials here: https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide
/credentials.html
More information about IAM usage here: https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-
roles.html
assetstore.s3.awsAccessKey = use-the-role-please
assetstore.s3.awsSecretKey = use-the-role-please

If the credentials are left empty,
then this setting is ignored and the default AWS region will be used.
NOTE: AWS is funny about regions, it's probably best to explicitly provide the one you intend to use,
if you want to keep track of where your bitstreams are
assetstore.s3.awsRegionName = us-west-2

The incoming property specifies which assetstore receives incoming assets (i.e. when new files are uploaded, they will be stored in the "incoming"
assetstore). This defaults to store 0. NOTE: in the file, this setting is called .assetstore.cfg assetstore.index.primary

S3BitStore has parameters for awsAccessKey, awsSecretKey, bucketName, awsRegionName (optional), and subfolder (optional).

awsAccessKey and are created from the console. You'll want to create an user, and generate a Security awsSecretKey Amazon AWS IAM
Credential, which provides you the accessKey and secret. Since you need permission to use S3, you could give this IAM user a quick & dirty
policy of AmazonS3FullAccess (for all S3 buckets that you own), or for finer grain controls, you can assign an IAM user to have certain
permissions to certain resources, such as read/write to a specific subfolder within a specific s3 bucket.
bucketName is a globally unique name that distinguishes your S3 bucket. It has to be unique among all other S3 users in the world.
awsRegionName is a region in AWS where S3 will be stored. Default is US Eastern. Consider distance to primary users, and pricing when
choosing the region.
subfolder is a folder within the S3 bucket, where you could organize the assets to be in. If you wanted to re-use a bucket for multiple purposes
(bucketname/assets vs bucketname/backups) or DSpace instances (bucketname/XYZDSpace or bucketname/ABCDSpace or bucketname
/ABCDSpaceProduction).

Migrate BitStores

There is a command line migration tool to move all the assets within a bitstore, to another bitstore. bin/dspace bitstore-migrate

[dspace]/bin/dspace bitstore-migrate
usage: BitstoreMigrate
 -a,--source <arg> Source assetstore store_number (to lose content). This is a number such as 0 or 1
 -b,--destination <arg> Destination assetstore store_number (to gain content). This is a number such as 0 or

790

http://aws.amazon.com/
https://aws.amazon.com/iam/

1.
 -d,--delete Delete file from losing assetstore. (Default: Keep bitstream in old assetstore)
 -h,--help Help
 -p,--print Print out current assetstore information
 -s,--size <arg> Batch commit size. (Default: 1, commit after each file transfer)

[dspace]/bin/dspace bitstore-migrate -p
store[0] == DSBitStore, which has 2 bitstreams.
store[1] == S3BitStore, which has 2 bitstreams.
Incoming assetstore is store[1]

[dspace]/bin/dspace bitstore-migrate -a 0 -b 1

[dspace]/bin/dspace bitstore-migrate -p
store[0] == DSBitStore, which has 0 bitstreams.
store[1] == S3BitStore, which has 4 bitstreams.
Incoming assetstore is store[1]

791

Configuration Reference
There are a numbers of ways in which DSpace may be configured and/or customized. This chapter of the documentation will discuss the configuration of
the software and will also reference customizations that may be performed in the chapter following.

For ease of use, the Configuration documentation is broken into several parts:

General Configuration - addresses general conventions used with configuring the file, and other configuration files local.cfg dspace.cfg
which use similar conventions.
The local.cfg Configuration Properties File - describes how to use the file to store all your locally customized configurationslocal.cfg
The dspace.cfg Configuration Properties File - specifies the basic file settings (these settings specify the default configuration for dspace.cfg
DSpace)
Optional or Advanced Configuration Settings - contain other more advanced settings that are optional in the configuration file.dspace.cfg

The full table of contents follows:

1 General Configuration
1.1 Configuration File Syntax

1.1.1 Special Characters
1.1.2 Specifying Multiple Values for Properties
1.1.3 Including other Property Files

1.2 Configuration Scheme for Reloading and Overriding
1.3 Why are there multiple copies of some config files?

2 The local.cfg Configuration Properties File
3 The dspace.cfg Configuration Properties File

3.1 Main DSpace Configurations
3.2 General Solr Configuration
3.3 DSpace Database Configuration

3.3.1 To provide the database connection pool externally
3.4 DSpace Email Settings

3.4.1 Wording of E-mail Messages
3.4.1.1 Templates can set message headers

3.5 File Storage
3.6 Logging Configuration
3.7 General Plugin Configuration
3.8 Configuring the Search Engine
3.9 Handle Server Configuration
3.10 Delegation Administration: Authorization System Configuration
3.11 Inheritance of collection default policy (since 7.1)
3.12 Login as feature
3.13 Restricted Item Visibility Settings
3.14 Proxy Settings
3.15 Configuring Media Filters
3.16 Crosswalk and Packager Plugin Settings

3.16.1 Configurable MODS Dissemination Crosswalk
3.16.2 XSLT-based Crosswalks

3.16.2.1 Testing XSLT Crosswalks
3.16.3 Configurable Qualified Dublin Core (QDC) dissemination crosswalk
3.16.4 Configuring Crosswalk Plugins
3.16.5 Configuring Packager Plugins

3.17 Event System Configuration
3.18 Embargo
3.19 Checksum Checker Settings
3.20 Item Export and Download Settings
3.21 Subscription Emails
3.22 Hiding Metadata
3.23 Hiding Submitter in Provenance Metadata
3.24 Settings for the Submission Process
3.25 Configuring the Sherpa/RoMEO Integration
3.26 Configuring Creative Commons License
3.27 WEB User Interface Configurations
3.28 Item Counts in user interface
3.29 Browse Index Configuration

3.29.1 Defining the storage of the Browse Data
3.29.2 Defining the Indexes
3.29.3 Defining Sort Options
3.29.4 Hierarchical Browse Indexes
3.29.5 Other Browse Options
3.29.6 Browse Index Authority Control Configuration
3.29.7 Tag cloud

3.30 Links to Other Browse Contexts
3.31 Submission License Substitution Variables
3.32 Syndication Feed (RSS) Settings
3.33 OpenSearch Support
3.34 Content Inline Disposition Threshold / Format
3.35 Multi-file HTML Document/Site Settings
3.36 Sitemap Settings

792

3.37 Authority Control Settings
3.38 Configuring Multilingual Support

3.38.1 Setting the Default Language for the Application
3.38.2 Supporting More Than One Language

3.38.2.1 Changes in dspace.cfg
3.38.2.2 Related Files

3.39 Upload File Settings
3.40 SFX Server (OpenURL)
3.41 Controlled Vocabulary Settings

4 Optional or Advanced Configuration Settings
4.1 The Metadata Format and Bitstream Format Registries

4.1.1 Metadata Format Registries
4.1.2 Bitstream Format Registry

4.2 Configuring Usage Instrumentation Plugins
4.2.1 The Passive Plugin
4.2.2 The Tab File Logger Plugin

4.3 Behavior of the workflow system
4.4 Recognizing Web Spiders (Bots, Crawlers, etc.)

5 Command-line Access to Configuration Properties

General Configuration

In the following sections you will learn about the different configuration files that you will need to edit so that you may make your DSpace installation work.

DSpace provides a number of textual configuration files which may be used to configure your site based on local needs. These include:

[dspace]/config/dspace.cfg : The primary configuration file, which contains the main configurations for DSpace.
[dspace]/config/modules/*.cfg : Module configuration files, which are specific to various modules/features within DSpace.
[dspace]/config/local.cfg : A (optional, but highly recommended) localized copy of configurations/settings specific to your DSpace (see T

 below)he local.cfg Configuration Properties File
Additional feature-specific configuration files also exist under , some of these include:[dspace]/config/

default.license : the default deposit license used by DSpace during the submission process (see Submission User Interface
documentation)
hibernate.cfg.xml : The Hibernate class configuration for the DSpace database (almost never requires changing)
item-submission.xml : the default item submission process for DSpace (see documentation)Submission User Interface
launcher.xml : The configuration of the DSpace command-line "launcher" (, see the [dspace]/bin/dspace DSpace Command

 documentation)Launcher
log4j2.xml : The default logging settings for DSpace log files (usually placed in)[dspace]/log
submission-forms.xml: The default deposit forms for DSpace, used by (see item-submission.xml Submission User Interface
documentation)

As most of these configurations are detailed in other areas of the DSpace documentation (see links above), this section concentrates primarily on the "*.
cfg" configuration files (namely and).dspace.cfg local.cfg

Configuration File Syntax

We will use the as our example for input conventions used throughout the system. These same input conventions apply to all DSpace *.cfg dspace.cfg
files.

All DSpace *.cfg files use the . This syntax is very similar to a standard Java properties file, with a Apache Commons Configuration properties file syntax
few notable enhancements described below.

Comments all start with a "#" symbol. These lines are ignored by DSpace.
Other settings appear as property/value pairs of the form: property.name = property value
Certain special characters (namely commas) MUST BE escaped. See the "Special Characters" section below
Values assigned in the same *.cfg file are "additive", and result in an array of values. See "Specifying Multiple Values for Properties" below.

Some property defaults are "commented out". That is, they have a "#" preceding them, and the DSpace software ignores the config property. This may
cause the feature not to be enabled, or, cause a default property to be used.

The property value may contain references to other configuration properties, in the form . A property may not refer to itself. Examples:${property.name}

dspace.dir = /path/to/dspace
dspace.name = My DSpace

property.name will be equal to "My DSpace is great!"
property.name = ${dspace.name} is great!

property2.name will be equal to "/path/to/dspace/rest/of/path"
property2.name = ${dspace.dir}/rest/of/path

However, this will result in an ERROR, as the property cannot reference itself
property3.name = ${property3.name}

793

https://wiki.lyrasis.org/display/DSDOC8x/Application+Layer#ApplicationLayer-DSpaceCommandLauncher
https://wiki.lyrasis.org/display/DSDOC8x/Application+Layer#ApplicationLayer-DSpaceCommandLauncher
https://commons.apache.org/proper/commons-configuration/userguide/howto_properties.html

Special Characters

Certain characters in files are considered special characters, and be escaped in any values. The most notable of these special characters *.cfg must
include:

Commas (,) : as they represent lists or arrays of values (see "Specifying Multiple Values for Properties" below)
Backslashes (\) : as this is the escape character

This means that if a particular setting needs to use one of these special characters in its value, it must be escaped. Here's a few examples:

WRONG SETTING
This setting is INVALID. DSpace is expecting your site name to be a single value,
But, this setting would create an array of two values: "DSpace" and "My Institution"
dspace.name = DSpace, My Institution

CORRECT SETTING (commas is escaped)
Instead, if the name of your DSpace includes a comma, you need to escape it with "\,"
dspace.name = DSpace\, My Institution

WRONG SETTING
As the backslash is the escape character, this won't work
property.name = \some\path

CORRECT SETTING
If you want a literal backslash, you need to escape it with "\\"
So, the below value will be returned as "\some\path"
property.name = \\some\\path

Additional examples of escaping special characters are provided in the documentation of the .Apache Commons Configuration properties file syntax

Specifying Multiple Values for Properties

Because DSpace supports the , it is much easier to specify multiple values for a single setting. All Apache Commons Configuration properties file syntax
you have to do is repeat the same property name multiple times in the same file.*.cfg

For example:

The below settings define *two* AuthenticationMethods that will be enabled, LDAP and Password authentication
Notice how the same property name is simply repeated, and passed different values.
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.LDAPAuthentication
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.PasswordAuthentication

Alternatively, you can also define them as a comma-separated list
(In this scenario, you would NOT escape the comma, as you want them to be considered multiple values)
So, this single line is exactly equavalent to the settings above:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.LDAPAuthentication, org.
dspace.authenticate.PasswordAuthentication

Please be aware that this ONLY works if you are reusing the exact same configuration in the same configuration file. This causes the values to be
"additive" (i.e they are appended to the same list).

However, as you'll see below, the file always settings elsewhere. So, if the above "AuthenticationMethod" plugin was specified in local.cfg overrides
both your and your , the value(s) in your would the defaults in your authentication.cfg local.cfg local.cfg override authentication.cfg
(more on that below).

Additional examples of creating lists or arrays of values are provided in the documentation of the .Apache Commons Configuration properties file syntax

Including other Property Files

Because DSpace supports the , it also can include/embed property files within other property files by Apache Commons Configuration properties file syntax
using the " " setting.include=

For example, the includes/embeds all of the default files via a series of " " settings near the bottom of dspace.cfg config/modules/*.cfg include=
the As an example, here's a small subset of those include calls:dspace.cfg.

794

https://commons.apache.org/proper/commons-configuration/userguide/howto_properties.html
https://commons.apache.org/proper/commons-configuration/userguide/howto_properties.html
https://commons.apache.org/proper/commons-configuration/userguide/howto_properties.html
https://commons.apache.org/proper/commons-configuration/userguide/howto_properties.html

defines our modules subdirectory
module_dir = modules

The following lines include specific "authentication*.cfg" files inside your dspace.cfg
This essentially "embeds" their configurations into your dspace.cfg,
treating them as if they were a single configuration file.
include = ${module_dir}/authentication.cfg
include = ${module_dir}/authentication-ip.cfg
include = ${module_dir}/authentication-ldap.cfg
include = ${module_dir}/authentication-password.cfg
include = ${module_dir}/authentication-shibboleth.cfg

This ability to include properties files within others is very powerful, as it allows you to inherit settings from other files, or subdivide large configuration files.
Be aware that this essentially causes DSpace to treat all included configurations . This means that, in the above as if they were part of the parent file
example, as far as DSpace is concerned, all the settings contained within the files "appear" as though they are specified in the authentication*.cfg
main .dspace.cfg

This ability to include other files is also possible with the file, should you want to subdivide your localized settings into several locally specific local.cfg
configuration files.

Configuration Scheme for Reloading and Overriding
Known limitations to reloadable configurations

While the DSpace API supports dynamically reloading configurations, the user or machine interfaces still cache some configuration settings. This may
means that while the API layer may reload a new value, that new value may not always affect/change the behavior of your user interface (until you restart
Tomcat).

Also, please be aware that all DSpace configuration values loaded into Spring beans (for example configurations that appear in Spring XML configuration
files or in @Value annotations) . This means that they will not be reloadable within Spring beans until Tomcat is restarted.are cached by Spring

Because DSpace supports the , its configurations can now be reloaded without restarting your servlet container (e.g. Apache Commons Configuration
Tomcat). By default, DSpace checks for changes to any of its runtime configuration files every 5 seconds. If a change has been made, the configuration file
is reloaded. The 5 second interval is configurable in the (which defines the configuration scheme DSpace uses).config-definition.xml

Additionally, DSpace provides the ability to easily override default configuration settings (in dspace.cfg or modules/*.cfg) using a local.cfg file (see The
) or using System Properties / Environment Varilables.local.cfg Configuration Properties File

Both of these features are defined in DSpace's default "configuration scheme" or "configuration definition" in the [dspace]/config/config-
 file. This file defines the Apache Commons Configuration settings that DSpace utilizes by default. It is a valid "configuration definition" definition.xml

file as defined by Apache Commons Configuration. See their for more details.Configuration Definition File Documentation

You are welcome to customize the to customize your local configuration scheme as you see fit. Any customizations to this config-definition.xml
file will require restarting your servlet container (e.g. Tomcat).

By default, the DSpace file defines the following configuration scheme:config-definition.xml

Configuration File Syntax/Sources: All DSpace configurations are loaded via Properties files (using the detailed above)Configuration File Syntax
Note: Apache Commons Configuration does support other configuration sources such as XML configurations or database configurations
(see its). At this time, DSpace does not utilize these other sorts of configurations by default. However, it would Overview documentation
be possible to customize your local config-definition.xml to load settings from other locations.

Configuration Files/Sources: By default, only two configuration files are loaded into Apache Commons Configuration for DSpace:
local.cfg (see documentation below)The local.cfg Configuration Properties File
dspace.cfg (NOTE: all are loaded by via " " statements at the end of that configuration file. modules/*.cfg dspace.cfg include=
They are essentially treated as sub-configs which are embedded/included into the)dspace.cfg

Configuration Override Scheme: The configuration override scheme is defined as follows. Configurations specified in earlier locations will
automatically override any later values:

System Properties () override all other options-D[setting]=[value]
Environment Variables.

DSpace provides a custom environment variable syntax as follows:
All periods (.) in configuration names must be translated to "__P__" (two underscores, capital P, two underscores), e.
g. "dspace__P__dir" environment variable will override the "dspace.dir" configuration in local.cfg (or other *.cfg files)
All dashes (-) in configuration names must be translated to "__D__" (two underscores, capital D, two underscores), e.
g. "authentication__D__ip__P__groupname" environment variable will override the "authentication-ip.groupname"
configuration in local.cfg (or other *.cfg files)

local.cfg
dspace.cfg (and all files) contain the default values for all settings.modules/*.cfg

Configuration Auto-Reload: By default, all configuration files are automatically checked every 5 seconds for changes. If they have changed, they
are automatically reloaded.

For more information on customizing our default config-definition.xml file, see the Apache Commons Configuration documentation on the configuration
. Internally, DSpace simply uses the definition file class provided by Apache Commons Configuration to initialize our DefaultConfigurationBuilder

configuration scheme (and load all configuration files).

795

http://commons.apache.org/proper/commons-configuration/
https://commons.apache.org/proper/commons-configuration/userguide/howto_combinedbuilder.html#Configuration_definition_file_reference
https://commons.apache.org/proper/commons-configuration/userguide/overview.html
https://commons.apache.org/proper/commons-configuration/userguide/howto_combinedbuilder.html#Configuration_definition_file_reference
https://commons.apache.org/proper/commons-configuration/userguide/howto_combinedbuilder.html#Configuration_definition_file_reference

1.

2.

Customizing the default configuration scheme

Because the file is just a Configuration Definition file for Apache Commons Configuration, you can also choose to customize config-definition.xml
the above configuration scheme based on your institution's local needs. This includes, but is not limited to, changing the name of "local.cfg", adding
additional configuration files/sources, or modifying the override or auto-reload schemes. For more information, see the Configuration Definition File

 from Apache Commons Configuration.Documentation

Why are there multiple copies of some config files?

It is important to remember that there are . The primary ones to be aware of are:multiple copies of each configuration files in an installation of DSpace

The "source" configuration file(s) are found under in or subdirectories. This also includes the [dspace-source]/dspace/config/ [dspace-
source]/local.cfg
The "runtime" configuration file(s) that are found in [dspace]/config/

The DSpace server (webapp) and command line programs only look at the configuration file(s).runtime

When you are revising/changing your configuration values, it may be tempting to . do this. Whenever you rebuild DSpace, only edit the runtime file DO NOT
it will "reset" your runtime configuration to whatever is in your source directories (the previous runtime configuration is copied to a date suffixed file, should
you ever need to restore it).

Instead, we recommend to of the configuration file in addition to the runtime file. In other words, always make the same changes to the source version
the source and runtime files should always be identical / kept in sync.

One way to keep the two files in synchronization is to edit your files in and then run the following commands to [dspace-source]/dspace/config/
rebuild DSpace and install the updated configs:

cd [dspace-source]/dspace/
mvn package
cd [dspace-source]/dspace/target/dspace-installer
ant update_configs

This will copy the source configuration files into the runtime ([dspace]/config) directory. Another option to manually sync the files by copying them to each
directory.

Please note that there are additional "ant" commands to help with configuration management:

"ant update_configs" ==> Moves existing configs in to *.old files and replaces them with what is in [dspace]/config/ [dspace-source]
/dspace/config/

"ant -Doverwrite=false update_configs" ==> Leaves existing configs in intact. Just copies new configs from[dspace]/config/
 over to *.new files.[dspace-source]/dspace/config/

The Configuration Properties Filelocal.cfg
build.properties has been replaced by local.cfg

As of DSpace 6 and above, the old " " configuration file has been replaced by this new " " configuration file. For build.properties local.cfg
individuals who are familiar with the old file, this new differs in a few key ways:build.properties local.cfg

Unlike , the file can be used to override ANY setting in any other configuration file (or build.properties local.cfg dspace.cfg modules
). To override a default setting, simply copy the configuration into your and change its value(s)./*.cfg local.cfg

Unlike , the file is not utilized during the compilation process (e.g. mvn package). But, it is automatically copied build.properties local.cfg
alongside the final into your installation location (), where it overrides default DSpace settings with your locally dspace.cfg [dspace]/config/
specific settings .at runtime
Like , the file is expected to be specified in the source directory by default). There is an build.properties local.cfg ([dspace-source]
example () provided which you can use to create a [dspace-source]/dspace/config/local.cfg.EXAMPLE [dspace-source]/dspace

./config/local.cfg

Many configurations have changed names between DSpace 5 (and below) and DSpace 6 (and above)

If you are upgrading from an earlier version of DSpace, you will need to be aware that configuration names/keys have changed. Because Apache many
Commons Configuration allows for auto-overriding of configurations, all configuration names/keys in different files MUST be uniquely named *.cfg
(otherwise accidental, unintended overriding may occur).

In order to create this powerful ability to override configurations in your , all files had their configurations to be local.cfg modules/*.cfg renamed
prepended with the module name. As a basic example, all the configuration settings within the configuration now start with ".modules/oai.cfg "oai.

Additionally, while the may look to the old , many of its configurations have slightly different names. local.cfg similar build.properties So, simply
.copying your build.properties into a local.cfg will NOT work

This means that DSpace 5.x (or below) configurations are NOT guaranteed compatible with DSpace 6. While you obviously can use your old
configurations as a reference, you will need to start with fresh copy of all configuration files, and reapply any necessary configuration changes (this has
always been the recommended procedure). However, as you'll see below, you'll likely want to do that anyways in order to take full advantage of the new lo

 file.cal.cfg

796

https://commons.apache.org/proper/commons-configuration/userguide/howto_combinedbuilder.html#Configuration_definition_file_reference
https://commons.apache.org/proper/commons-configuration/userguide/howto_combinedbuilder.html#Configuration_definition_file_reference

It is possible to easily override default DSpace configurations (from or g files) in your own configuration file.dspace.cfg modules/*.cf local.cfg

A example is provided with DSpace. The example only provides a few key configurations [dspace-source]/ local.cfg.EXAMPLEdspace/config/
which most DSpace sites are likely to need to customize. However, you may add (or remove) any other configuration to your to customize it local.cfg
as you see fit.

To get started, simply create your own based on the example, e.g.[dspace-source]/dspace/config/local.cfg

cd [dspace-source]/dspace/config/
cp local.cfg.EXAMPLE local.cfg

You can then begin to edit your with your local settings for DSpace. There are a few key things to note about the file:local.cfg local.cfg

Override any default configurations: Any setting in your will automatically OVERRIDE a setting of the same name in the local.cfg dspace.
 or any file. This also means that you can copy ANY configuration (from or any file) into cfg modules/*.cfg dspace.cfg modules/*.cfg

your l to specify a new value.ocal.cfg
For example, specifying in will override the default value of in . dspace.url local.cfg dspace.url dspace.cfg
Also, specifying in will override the default value of in oai.solr.url local.cfg oai.solr.url config/modules/oai.cfg

Configuration Syntax: The file uses the Apache Commons Configuration Property file syntax (like all *.cfg files) . For more local.cfg
information see the section on above.Configuration File Syntax

This means the also supports enhanced features like the ability to include other config files (via " " statements).local.cfg include=
Override local.cfg via System Properties: As needed, you also are able to OVERRIDE settings in your by specifying them as local.cfg
System Properties or Environment Variables.

For example, if you wanted to change your in development/staging environment, you could specify it as a System Property dspace.dir
(e.g.). This new value will override any value in and .-Ddspace.dir=[new-location] both local.cfg dspace.cfg

When you build DSpace (e.g. mvn package), this file will be automatically copied to . Similar to the local.cfg [dspace]/config/local.cfg dspace
, the "runtime" configuration (used by DSpace) is the one in . See the .cfg [dspace]/config/local.cfg Why are there multiple copies of some config
 question above for more details on the runtime vs source configuration.files?

Here's a very basic example of settings you could place into your file (with inline comments):local.cfg

797

This is a simple example local.cfg file which shows off options
for creating your own local.cfg

This overrides the default value of "dspace.dir" in dspace.cfg
dspace.dir = C:/dspace/

This overrides the default value of "dspace.server.url" in dspace.cfg
dspace.server.url = https://dspace.myuniversity.edu/server

The overrides the default "dspace.ui.url" setting it to the same value as my "baseUrl" above
dspace.ui.url = https://dspace.myuniversity.edu

If our database settings are the same as the default ones in dspace.cfg,
then, we may be able to simply customize the db.username and db.password
db.username = myuser
db.password = mypassword

For DSpace, we want the LDAP and Password authentication plugins enabled
This overrides the default AuthenticationMethod in /config/modules/authentication.cfg
Since we specified the same key twice, these two values are appended (see Configuration File Syntax above)
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.LDAPAuthentication
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = org.dspace.authenticate.PasswordAuthentication

We also can reference other configurations in values.
For instance, we can set the "mail.admin" and the "feedback.recipient" to be the same email
mail.admin = myemail@myuniversity.edu
feedback.recipient = ${mail.admin}

For the example, we'll override the default oai.path in /config/modules/oai.cfg
This puts our OAI-PMH interface at ${dspace.server.url}/oaipmh
oai.path = oaipmh

We'll also override the default oai.solr.url in /config/modules/oai.cfg
Notice here we're referencing a configuration (solr.server) that only exists in dspace.cfg
This is allowed. Your local.cfg can reference configs from other *.cfg files.
oai.solr.url = ${solr.server}/oaipmh

Finally, this local.cfg also supports adding "include=" statements, to include
additional local configuration files.
In this example, a local-rest.cfg and local-curate.cfg (in the same directory)
will automatically be included as part of this local.cfg.
This allows you to subdivide you local configs in as many (or few) config files
as you desire.
include = local-rest.cfg
include = local-curate.cfg

The Configuration Properties Filedspace.cfg
Any dspace.cfg setting can be overridden in your local.cfg

Remember, of the below settings can be copied into your . So, rather than editing the any dspace.cfg local.cfg configuration file and overridden dspace.
 (or any of the), it's recommended to simply override the default values in your . That way, your can serve cfg modules/*.cfg local.cfg local.cfg

as the record of which configurations you have actually tweaked in your DSpace, which may help to simplify future upgrades.

The contains basic information about a DSpace installation, including system path information, network host information, and other like dspace.cfg
items. It is the default configuration file for DSpace, used by DSpace when it is actively running. However, as noted above, any of these default
configurations may be overridden in your own configuration file.local.cfg

Main DSpace Configurations

Pro
pert
y:

dspace.dir

Exa
mpl
e
Val
ue:

/dspace

798

Info
rma
tion
al
Not
e:

Root directory of DSpace installation. Omit the trailing slash ' '. Note that this setting is used by default in other settings, e.g. ./ assetstore.dir

(For example: "C:/dspace" is a valid path for Window.)On Windows be sure to use forward slashes for the directory path!

Pro
pert
y:

dspace.server.url

Exa
mpl
e
Val
ue:

http://dspacetest.myu.edu:8080

Info
rma
tion
al
Not
e:

Main URL at which DSpace backend ("server" webapp) is publicly available. If using port 80 (HTTP) or 443 (HTTPS), you may omit the port
number. Otherwise the port number must be included. In Production, you must use HTTPS if you wish to Do not include a trailing slash (' ')./
access the REST API from a different server/domain.

Pro
pert
y:

dspace.ui.url

Exa
mpl
e
Val
ue:

dspace.ui.url = http://dspacetest.myu.edu:4000

Info
rma
tion
al
note

Main URL at which the DSpace frontend (Angular User Interface) is publicly available. If using port 80 (HTTP) or 443 (HTTPS), you may omit the
port number. Otherwise the port number must be included. In Production, you should be using HTTPS for Do not include a trailing slash (' ')./
security purposes.

This URL should match the URL you type in the browser to access your User Interface. In the backend, this URL is primarily used to build UI-
based URLs in sitemaps, email messages, etc. Therefore, it need not be set on initial installation, but it should be configured as soon as your
user interface is installed. If you are not using the DSpace UI (and running the backend "headless"), this may be set to the URL of whatever you
consider your primary "user interface".

Pro
pert
y:

dspace.name

Exa
mpl
e
Val
ue:

dspace.name = DSpace at My University

Info
rma
tion
al
Not
e:

Short and sweet site name, used in e-mails, exports and machine interfaces (e.g. OAI-PMH). It is not currently used by the Angular UI.

General Solr Configuration

DSpace uses for various indexing purposes, and uses a pool of open connections to manage communication with Solr. These properties configure Solr
the connections between DSpace and Solr.

See also the additional Solr configuration properties for specific indexes such as search, statistics, authority and OAI PMH.

Property: solr.server

Example
Value:

solr.server = http://localhost:8983/solr

Informational
Note:

Base URL to the Solr server. Specific indexes append to this value.

Property: solr.client.maxTotalConnections

799

http://dspacetest.myu.edu:8080
http://dspacetest.myu.edu:4000
https://solr.apache.org/
http://localhost:8983/solr

Example
Value:

solr.client.maxTotalConnections = 20

Informational
Note:

The maximum number of connections that will be opened between DSpace and Solr.

Property: solr.client.maxPerRoute

Example
Value:

solr.client.maxPerRoute = 15

Informational
Note:

The maximum number of connections that will be opened between DSpace and a specific Solr instance (if you have more than one).

Property: solr.client.keepAlive

Example
Value:

solr.client.keepAlive = 5000

Informational
Note:

The default amount of time that a connection in use will be held open, in milliseconds. Solr may specify a different keep-alive interval
and it will be obeyed.

Property: solr.client.timeToLive

Example
Value:

solr.client.timeToLive = 600

Informational
Note:

The maximum amount of time before an open connection will be closed when idle, in seconds. New connections will be opened as
needed, subject to the above limits.

DSpace Database Configuration

Many of the database configurations are software-dependent. That is, it will be based on the choice of database software being used. Currently, DSpace
properly supports PostgreSQL and Oracle.

Oracle Support Deprecated - Will no longer be supported in 2023

Oracle support has been deprecated in DSpace. It will no longer be supported as of June/July 2023. See https://github.com/DSpace/DSpace/issues/8214

We recommend all users install DSpace on PostrgreSQL (see above)

Proper
ty:

db.url

Examp
le
Value:

db.url = jdbc:postgresql://localhost:5432/dspace

Inform
ational
Note:

The above value is the default value when configuring with PostgreSQL. When using Oracle, use this value: jbdc.oracle.thin:@//host:
port/dspace

Proper
ty:

db.username

Examp
le
Value:

db.username = dspace

Inform
ational
Note:

In the installation directions, the administrator is instructed to create the user "dspace" who will own the database "dspace".

Proper
ty:

db.password

Examp
le
Value:

db.password = dspacepassword

Inform
ational
Note:

This is the password that was prompted during the installation process (cf. 3.2.3. Installation)

Proper
ty:

db.schema

800

https://github.com/DSpace/DSpace/issues/8214

Examp
le
Value:

db.schema = public

Inform
ational
Note:

If your database contains multiple schemas, you can avoid problems with retrieving the definitions of duplicate objects by specifying the
schema name here that is used for DSpace by uncommenting the entry. This property is optional.

For PostgreSQL databases, this is often best set to "public" (default schema). For Oracle databases, the schema is usually equivalent to the
username of your database account. So, for Oracle, this may be set to in most scenarios.${db.username}

Proper
ty:

db.maxconnections

Examp
le
Value:

db.maxconnections = 30

Inform
ational
Note:

Maximum number of Database connections in the connection pool

Proper
ty:

db.maxwait

Examp
le
Value:

db.maxwait = 5000

Inform
ational
Note:

Maximum time to wait before giving up if all connections in pool are busy (in milliseconds).

Proper
ty:

db.maxidle

Examp
le
Value:

db.maxidle = -1

Inform
ational
Note:

Maximum number of idle connections in pool. (= unlimited)-1

Proper
ty:

db.cleanDisabled

Examp
le
Value:

db.cleanDisabled = true

Inform
ational
Note:

This is a developer-based setting which determines whether you are allowed to run "./dspace database clean" to completely delete all content
and tables in your database. This should always be set to "true" in Production to protect against accidentally deleting all your content by
running that command. (Default is set to true)

To provide the database connection pool externally

Alternately, you may supply a configured connection pool out of JNDI. The object must be named (the full path isjdbc/dspace java:comp/env/jdbc
). DSpace will always look up this name and, if found, will use the returned object as its database connection pool. If not found, the above /dspace db.*

properties will be used to create the pool.

If you are using Tomcat, then the object might be defined using a element, or connected to a child of <Resource> <Resource> <GlobalNamingResour
 using a element. See your Servlet container's documentation for details of configuring the JNDI initial context. For example, ces> <ResourceLink>

Tomcat provides a useful JNDI Datasource How-to

Earlier releases of DSpace provided a configuration property to specify the name to be looked up, but that has been removed. The name is db.jndi
specified in if you really need to change it.config/spring/api/core-hibernate.xml

DSpace Email Settings

The configuration of email is simple and provides a mechanism to alert the person(s) responsible for different features of the DSpace software.

DSpace will look up a javax.mail.Session object in JNDI and, if found, will use that to send email. Otherwise it will create a Session using some of the
properties detailed below.

Prope
rty:

mail.server

801

https://tomcat.apache.org/tomcat-9.0-doc/jndi-datasource-examples-howto.html

Exam
ple
Value:

mail.server = smtp.my.edu

Infor
matio
nal
Note:

The address on which your outgoing SMTP email server can be reached.

Prope
rty:

mail.server.username

Exam
ple
Value:

mail.server.username = myusername

Infor
matio
nal
Note:

SMTP mail server authentication username, if required. This property is optional.

Prope
rty:

mail.server.password

Exam
ple
Value:

mail.server.password = mypassword

Infor
matio
nal
Note:

SMTP mail server authentication password, if required. This property is optional.

Prope
rty:

mail.server.port

Exam
ple
Value:

mail.server.port = 25

Infor
matio
nal
Note:

The port on which your SMTP mail server can be reached. By default, port 25 is used. Change this setting if your SMTP mailserver is running
on another port. This property is optional.

Prope
rty:

mail.from.address

Exam
ple
Value:

mail.from.address = dspace-noreply@myu.edu

Infor
matio
nal
Note:

The "From" address for email. Change the 'myu.edu' to the site's host name.

Prope
rty:

feedback.recipient

Exam
ple
Value:

feedback.recipient = dspace-help@myu.edu

Infor
matio
nal
Note:

When a user clicks on the feedback link/feature, the information will be sent to the email address of choice. This configuration is currently
limited to only one recipient. This is also the email address displayed on the contacts page.

Prope
rty:

mail.admin

Exam
ple
Value:

mail.admin = dspace-help@myu.edu

Exam
ple
Value:

Email address of the general site administrator (Webmaster). System notifications/reports and other sysadmin emails are sent to this email
address.

802

Prope
rty:

mail.admin.name

Exam
ple
Value:

mail.admin.name = DSpace Administrator

Exam
ple
Value:

Name associated with the email address.mail.admin

Prope
rty:

alert.recipient

Exam
ple
Value:

alert.recipient = john.doe@myu.edu

Infor
matio
nal
Note:

Enter the recipient for server errors and alerts. This property is optional and defaults to the setting${mail.admin}

Prope
rty:

registration.notify

Exam
ple
Value:

registration.notify = mike.smith@myu.edu

Infor
matio
nal
Note:

Enter the recipient that will be notified when a new user registers on DSpace. This property is optional & defaults to no value.

Prope
rty:

mail.charset

Exam
ple
Value:

mail.charset = UTF-8

Infor
matio
nal
Note:

Set the default mail character set. This may be over-ridden by providing a line inside the email template '#set($charset =
"encoding")'. Otherwise this default is used.

Prope
rty:

mail.allowed.referrers

Exam
ple
Value:

mail.allowed.referrers = localhost

Infor
matio
nal
Note:

A comma separated list of hostnames that are allowed to refer browsers to email forms. This property is optional. UNSUPPORTED in DSpace
7.0

Prope
rty:

mail.extraproperties

Exam
ple
Value:

Example which can fix "Could not convert socket to TLS" errors (i.e. SMTP over TLS)
mail.extraproperties = mail.smtp.socketFactory.port=587, \
 mail.smtp.starttls.enable=true, \
 mail.smtp.starttls.required=true, \
 mail.smtp.ssl.protocols=TLSv1.2

Different example of using SSL for your Mail libary
mail.extraproperties = mail.smtp.socketFactory.port=465, \
 mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory, \
 mail.smtp.socketFactory.fallback=false

803

Infor
matio
nal
Note:

If you need to pass extra settings to the Java mail library. Comma separated, equals sign between the key and the value. This property is
optional.

Prope
rty:

mail.server.disabled

Exam
ple
Value:

mail.server.disabled = false

Infor
matio
nal
Note:

An option is added to disable the mailserver. By default, this property is set to ' '. By setting value to ' ', DSpace will not send out false true
emails. It will instead log the subject of the email which should have been sent. This is especially useful for development and test environments
where production data is used when testing functionality. This property is optional.

Prope
rty:

mail.session.name

Exam
ple
Value:

mail.session.name = myDSpace

Infor
matio
nal
Note:

Specifies the name of a javax.mail.Session object stored in JNDI under . The default value is "Session".java:comp/env/mail

Prope
rty:

default.language

Exam
ple
Value:

default.language = en_US

Infor
matio
nal
Note:

If no other language is explicitly stated in the , the default language will be attributed to the metadata values. See also submission-forms.xml Mul
tilingual Support

Prope
rty:

mail.message.headers

Exam
ple
Value:

mail.message.headers = subject

mail.message.headers = charset

Infor
matio
nal
Note:

When processing a message template, setting a Velocity variable whose name is one of the values of this configuration property will add or
replace a message header of the same name, using the value of the variable as the header's value. See "Templates can set message
headers".

Prope
rty:

mail.welcome.enabled

Exam
ple
Value:

mail.welcome.enabled = true

Infor
matio
nal
Note:

Enable a "welcome letter" to the newly-registered user. By default this is . See the email template.false welcome

Wording of E-mail Messages

Sometimes DSpace automatically sends e-mail messages to users, for example, to inform them of a new work flow task, or as a subscription e-mail alert.
The wording of e-mails can be changed by editing the relevant file in . Each file is commented. Be careful to keep the right [dspace]/config/emails
number 'placeholders' (e.g.) for the template's positional parameters.${params[2]}

Each file is a template. You can use the full to help you customize messages. There are two Velocity variables pre-Velocity Velocity Template Language
defined by DSpace when processing an e-mail template:

params is the array of message parameters provided by the DSpace code which is sending the message. These are indexed by number,
starting at zero.
config is the table of DSpace configuration properties (such as). These are looked up using .dspace.name config.get(property name)

804

https://velocity.apache.org/
https://velocity.apache.org/engine/1.7/vtl-reference.html

1.
2.

Sample message template

This is a comment. It will not be part of the message.
This is the body of the message. The code which sends it supplied two parameters: ${params[0]} and ${params
[1]}.
The name of this DSpace instance is ${config.get('dspace.name')} and you can browse it at ${config.get('dspace.
url')}.

Also see the template for an example of each.config/emails/register

Note: You should replace the contact-information " " with your own contact details in: or call us at xxx-555-xxxxdspace-help@myu.edu
 config/emails/change_password

config/emails/register

Templates can set message headers

A template can set specific message headers by defining Velocity variables which have been enabled for this use by naming them as values of the
DSpace configuration property . In most cases the name of the Velocity variable will become the header's name, and the value mail.message.headers
of the variable, the header's value. For example: in a template will result in the message having a header #set(My-Header, "Hello World!") My-

 if DSpace's mail.message.headers includes "My-Header".Header: Hello World!

A few Velocity variable names are special in DSpace email templates:

name meaning

subject supplies the Subject: header's value.

charset sets the parameter of the header of the bodypart, when there is a single bodypart. It also causes the subject charset Content-Type:
value to be treated as being encoded in this charset. If not set, the charset defaults to US-ASCII as specified in RFC 2046. If there are
multiple bodyparts, all are assumed to be encoded in US-ASCII and has no effect on them.charset

Sample message template

This is a comment. It will not be part of the sent message.
#set($subject = "This will be the Subject: of the message")
This is the body of the message.

File Storage
Beginning with DSpace 6, your file storage location (aka bitstore) is now defined in the Spring [dspace]/config/spring/api/bitstore.xml
configuration file. By default it is defined as the . More information on modifying your file storage location can be found at [dspace]/assetstore/ Conf

in the documentation. iguring the Bitstream Store Storage Layer

DSpace supports multiple options for storing your repository bitstreams (uploaded files). The files are not stored in the database, instead they are provided
via a configured "assetstore" or "bitstore".

By default, the assetstore is simply a directory on your server () under which bitstreams (files) are stored by DSpace.[dspace]/assetstore/

At this time, DSpace supports two primary locations for storing your files:

Your local filesystem (used by default), specifically under the directory[dspace]/assetstore/
OR, (requires your own Amazon S3 account)Amazon S3

More information on configuring or customizing the storage location of your files can be found in the documentation.Storage Layer

Logging Configuration
Logging configuration has now moved to ${dspace.dir}/config/log4j2.xml

Proper
ty:

log.init.config

Exam
ple
Value:

log.init.config = ${dspace.dir}/config/log4j2.xml

805

mailto:dspace-help@myu.edu
https://wiki.lyrasis.org/display/DSDOC8x/Storage+Layer#StorageLayer-ConfiguringtheBitstreamStore
https://wiki.lyrasis.org/display/DSDOC8x/Storage+Layer#StorageLayer-ConfiguringtheBitstreamStore
https://aws.amazon.com/s3/

Inform
ational
Note:

This is where your logging configuration file is located. You may override the default log4j configuration by providing your own. Existing
alternatives are:

log.init.config = ${dspace.dir}/config/log4j2.xml
log.init.config = ${dspace.dir}/config/log4j2-console.xml

Proper
ty:

log.dir ()defined in log4j2.xml

Exam
ple
value:

log.dir = ${log4j:configParentLocation}/../log

Inform
ational
Note:

This is where to put the DSpace logs. The default setting (shown above) writes all DSpace logs to the ${dspace.dir}/log/ directory.

Proper
ty:

loglevel.dspace ()defined in log4j2.xml

Exam
ple
value:

loglevel.dspace = INFO

Inform
ational
Note:

Log level for all DSpace-specific code (org.dspace.* packages). By default, DSpace only provides general INFO logs (in order to keep log
sizes reasonable). As necessary, you can temporarily change this setting to any of the following (ordered for most information to least): DEBUG
, INFO, WARN, ERROR, FATAL

Please be aware we do not recommend running at the DEBUG level in Production for significant periods of time, as it will cause the logs to be
extremely large in size.

Proper
ty:

loglevel.other ()defined in log4j2.xml

Exam
ple
value:

loglevel.other = INFO

Inform
ational
Note:

Log level for other third-party tools/APIs used by DSpace (non-DSpace specific code). By default, DSpace only provides general INFO logs (in
order to keep log sizes reasonable). As necessary, you can temporarily change this setting to any of the following (ordered for most information
to least): DEBUG, INFO, WARN, ERROR, FATAL

Please be aware we do not recommend running at the DEBUG level in Production for significant periods of time, as it will cause the logs to be
extremely large in size.

General Plugin Configuration

Property: plugin.classpath

Example
Value:

/opt/dspace/plugins/aPlugin.jar:/opt/dspace/moreplugins

Information
al Note:

Search path for third-party plugin classes. This is a colon-separated list of directories and JAR files, each of which will be searched for
plugin classes after looking in all the places where DSpace classes are found. In this way you can designate one or more locations for
plugin files which will not be affected by DSpace upgrades.

Configuring the Search Engine
DSpace's search module is also known as "Discovery" and utilizes Apache Solr for indexing. It provides up-to-date features, such as filtering/faceting, hit
highlighting, search snippets, etc.

Detailed documentation is available for customization, see .Discovery

Handle Server Configuration

The CNRI Handle system is a 3rd party service for maintaining persistent URL's. For a nominal fee, you can register a handle prefix for your repository. As
a result, your repository items will be also available under the links <<handle prefix>>/<<item id>>. As the base url of your repository http://handle.net/
might change or evolve, the persistent handle.net URL's secure the consistency of links to your repository items. For complete information regarding the
Handle server, the user should consult .Handle.Net Registry Support

806

http://handle.net/

Pr
op
ert
y:

handle.canonical.prefix

Ex
a
m
ple
Va
lue

handle.canonical.prefix = http://hdl.handle.net/
handle.canonical.prefix = ${dspace.ui.url}/handle/

Inf
or
m
ati
on
al
No
te:

Canonical Handle URL prefix. By default, DSpace is configured to use as the canonical URL prefix when generating http://hdl.handle.net/ dc.
 during submission, and in the 'identifier' displayed in item record pages. If you do not subscribe to CNRI's handle service, you identifier.uri

can change this to match the persistent URL service you use, or you can force DSpace to use your site's URL, e.g. handle.canonical.
. Note that this will not alter metadata for existing items (only for subsequent prefix = ${dspace.ui.url}/handle/ dc.identifer.uri

submissions).

Pr
op
ert
y:

handle.prefix

Ex
a
m
ple
Va
lue

handle.prefix = 1234.56789

Inf
or
m
ati
on
al
No
te:

The default installed by DSpace is but you will replace this upon receiving a handle from CNRI.123456789

Pr
op
ert
y:

handle.dir

Ex
a
m
ple
Va
lue:

handle.dir = ${dspace.dir}/handle-server

Inf
or
m
ati
on
al
No
te:

The default files, as shown in the Example Value is where DSpace will install the files used for the Handle Server.

Pr
op
erty

handle.additional.prefixes

Ex
a
m
ple
Va
lue

handle.additional.prefixes = 1234.56789.0, 1234.56789.1, 987

807

http://hdl.handle.net/
http://hdl.handle.net/

Inf
or
m
ati
on
al
No
te:

List any additional prefixes that need to be managed by this handle server. For example, any handle prefixes that came from an external repository
whose items have now been added to this DSpace. Multiple additional prefixes may be added in a comma separated list.

Delegation Administration: Authorization System Configuration

It is possible to delegate the administration of Communities and Collections. This functionality eliminates the need for an Administrator Superuser account
for these purposes. An EPerson that will be attributed Delegate Admin rights for a certain community or collection will also "inherit" the rights for underlying
collections and items. As a result, a community admin will also be collection admin for all underlying collections. Likewise, a collection admin will also gain
admin rights for all the items owned by the collection.

Authorization to execute the functions that are allowed to user with WRITE permission on an object will be attributed to be the ADMIN of the object (e.g.
community/collection/admin will be always allowed to edit metadata of the object). The default will be " " for all the configurations.true

Community Administration: Subcommunities and Collections

Property: core.authorization.community-admin.create-subelement

Example Value: core.authorization.community-admin.create-subelement = true

Informational Note: Authorization for a delegated community administrator to create subcommunities or
collections.

Property: core.authorization.community-admin.delete-subelement

Example Value: core.authorization.community-admin.delete-subelement = true

Informational Note: Authorization for a delegated community administrator to delete subcommunities or
collections.

Community Administration: Policies and The group of administrators

Property: core.authorization.community-admin.policies

Example Value: core.authorization.community-admin.policies = true

Informational Note: Authorization for a delegated community administrator to administrate the community
policies.

Property: core.authorization.community-admin.admin-group

Example Value: core.authorization.community-admin.admin-group = true

Informational Note: Authorization for a delegated community administrator to edit the group of community
admins.

Community Administration: Collections in the above Community

Property: core.authorization.community-admin.collection.policies

Example Value: core.authorization.community-admin.collection.policies = true

Informational Note: Authorization for a delegated community administrator to administrate the policies for
underlying collections.

Property: core.authorization.community-admin.collection.template-item

Example Value: core.authorization.community-admin.collection.template-item = true

Informational Note: Authorization for a delegated community administrator to administrate the item template for
underlying collections.

Property: core.authorization.community-admin.collection.submitters

Example Value: core.authorization.community-admin.collection.submitters = true

Informational Note: Authorization for a delegated community administrator to administrate the group of
submitters for underlying collections.

Property: core.authorization.community-admin.collection.workflows

808

Example Value: core.authorization.community-admin.collection.workflows = true

Informational Note: Authorization for a delegated community administrator to administrate the workflows for
underlying collections.

Property: core.authorization.community-admin.collection.admin-group

Example Value: core.authorization.community-admin.collection.admin-group = true

Informational Note: Authorization for a delegated community administrator to administrate the group of
administrators for underlying collections.

Community Administration: Items Owned by Collections in the Above Community

Property: core.authorization.community-admin.item.delete

Example Value: core.authorization.community-admin.item.delete = true

Informational Note: Authorization for a delegated community administrator to delete items in underlying
collections.

Property: core.authorization.community-admin.item.withdraw

Example Value: core.authorization.community-admin.item.withdraw = true

Informational Note: Authorization for a delegated community administrator to withdraw items in underlying
collections.

Property: core.authorization.community-admin.item.reinstate

Example Value: core.authorization.community-admin.item.reinstate = true

Informational Note: Authorization for a delegated community administrator to reinstate items in underlying
collections.

Property: core.authorization.community-admin.item.policies

Example Value: core.authorization.community-admin.item.policies = true

Informational Note: Authorization for a delegated community administrator to administrate item policies in
underlying collections.

Community Administration: Bundles of Bitstreams, related to items owned by collections in the above Community

Property: core.authorization.community-admin.item.create-bitstream

Example Value: core.authorization.community-admin.item.create-bitstream = true

Informational Note: Authorization for a delegated community administrator to create additional bitstreams in
items in underlying collections.

Property: core.authorization.community-admin.item.delete-bitstream

Example Value: core.authorization.community-admin.item.delete-bitstream = true

Informational Note: Authorization for a delegated community administrator to delete bitstreams from items in
underlying collections.

Property: core.authorization.community-admin.item.cc-license

Example Value: core.authorization.community-admin.item.cc-license = true

Informational Note: Authorization for a delegated community administrator to administer licenses from items in
underlying collections.

Collection Administration:
The properties for collection administrators work similar
to those
of community administrators,
with respect to collection administration.

core.authorization.collection-admin.policies
core.authorization.collection-admin.template-item
core.authorization.collection-admin.submitters
core.authorization.collection-admin.workflows
core.authorization.collection-admin.admin-group

809

Collection Administration:
Item owned by the above Collection. The properties for
collection
administrators work similar to those of
community administrators,
with respect to administration of
items in underlying collections.

core.authorization.collection-admin.item.delete
core.authorization.collection-admin.item.withdraw
core.authorization.collection-admin.item.reinstatiate
core.authorization.collection-admin.item.policies

Collection Administration:
Bundles of bitstreams, related to items owned by
collections in the
above Community. The properties for collection
administrators
work similar to those of community administrators, with
respect to
administration of bitstreams related to items in
underlying collections.

core.authorization.collection-admin.item.create-bitstream
core.authorization.collection-admin.item.delete-bitstream
core.authorization.collection-admin.item-admin.cc-license

Item Administration.
The properties for item administrators work similar to
those
of community and collection administrators, with respect
to administration of
items in underlying collections.

core.authorization.item-admin.policies

Item Administration:
Bundles of bitstreams, related to items owned by
collections in the
above Community. The properties for item
administrators work
similar to those of community and collection
administrators,
with respect to administration of bitstreams
related to items in underlying collections.

core.authorization.item-admin.create-bitstream
core.authorization.item-admin.delete-bitstream
core.authorization.item-admin.cc-license

Inheritance of collection default policy (since 7.1)

Prop
erty:

core.authorization.installitem.inheritance-read.append-mode

Exa
mple
Valu
e:

core.authorization.installitem.inheritance-read.append-mode = false

Infor
mati
onal
Note:

Determine if the DEFAULT READ policies of the collection should be always appended to the policies of the new item (property set to) or true
used only when no other READ policy has been defined in the submission process (property set to). Please note that also in append mode false
an open access default policy will be NOT inherited if other policies have been defined in the submission (i.e. if the item was restricted)

Login as feature

Proper
ty:

webui.user.assumelogin

Examp
le
Value:

webui.user.assumelogin = true

Inform
ational
Note:

Determine if super administrators (those whom are in the Administrators group) can login as another user from the "edit eperson" page. This is
useful for debugging problems in a running DSpace instance, especially in the workflow process. The default value is false, i.e., no one may
assume the login of another user.

Restricted Item Visibility Settings

By default RSS feeds and subscription emails will include ALL items regardless of permissions set on them. If you wish to only expose items through these
channels where the ANONYMOUS user is granted READ permission, then set the following options to false.

Property: harvest.includerestricted.rss

Example Value: harvest.includerestricted.rss = true

Informational
Note:

When set to 'true' (default), items that haven't got the READ permission for the ANONYMOUS user, will be included in RSS feeds
anyway.

810

Property: harvest.includerestricted.subscription

Example Value: harvest.includerestricted.subscription = true

Informational
Note:

When set to true (default), items that haven't got the READ permission for the ANONYMOUS user, will be included in Subscription
emails anyway.

Proxy Settings

These settings for proxy are commented out by default. Uncomment and specify both properties if proxy server is required for external http requests. Use
regular host name without port number.

Prop
erty:

http.proxy.host

Exa
mple
Value

http.proxy.host = proxy.myu.edu

Infor
matio
nal
Note

Enter the host name without the port number. Only currently used for Creative Commons licensing feature (to contact their API), and Sitemap
generation (to ping search server regarding updates)

Prop
erty:

http.proxy.port

Exa
mple
Value

http.proxy.port = 2048

Infor
matio
nal
Note

Enter the port number for the proxy server. Only currently used for Creative Commons licensing feature , and Sitemap (to contact their API)
generation (to ping search server regarding updates)

Prop
erty

useProxies

Exa
mple
Valu
e:

useProxies = true

Infor
matio
nal
Note:

As of DSpace 7 (and above), this setting defaults to . If "useProxies" is enabled, the authentication and statistics logging code will read the true
X-Forwarded-For header in order to determine the correct client IP address.

As the User Interface uses (for SEO support), the proxy server that comes with Angular Universal is always enabled. By Angular Universal
default, only your local server (127.0.0.1) and the public IP address of `dspace.ui.url` are "trusted" as a proxy. If your DSpace instance is
protected by external proxy server, you may need to update the "proxies.trusted.ipranges" property below.

This also affects IPAuthentication, and should be enabled for that to work properly if your installation uses a proxy server.

Prop
erty

proxies.trusted.ipranges

Exa
mple
Valu
e:

proxies.trusted.ipranges = 127.0.0.1

Infor
matio
nal
Note:

By default, only proxies running on localhost (127.0.0.1) and the (public IP address) are "trusted". This allows our Angular dspace.ui.url
User Interface to communicate with the REST API via a trusted proxy, which is required for (for SEO support). Angular Universal

You can specify a range by only listing the first three ip-address blocks, e.g. 128.177.243 You can list multiple IP addresses or ranges by
comma-separating them.

Prop
erty

proxies.trusted.include_ui_ip

Exa
mple
Valu
e:

proxies.trusted.include_ui_ip = true

811

https://angular.io/guide/universal
https://angular.io/guide/universal

Infor
matio
nal
Note:

This setting specifies whether to automatically trust IP address of the as a proxy. By default, this is always set to true to dspace.ui.url
ensure the UI is fully trusted by the backend. However, if you are not using the Angular UI, you may choose to set this to "false" in order to only
trust proxies running on localhost (127.0.0.1) by default.

Prop
erty

server.forward-headers-strategy

Exa
mple
Valu
e:

server.forward-headers-strategy = FRAMEWORK

Infor
matio
nal
Note:

This is a Spring Boot setting which may be overridden/specified in your local.cfg. By default, Spring Boot does not automatically use X-
Forwarded-* Headers when generating links (and similar) in the REST API. When using a proxy in front of the REST API, you may need to
modify this setting:

NATIVE = allows your web server to natively support standard Forwarded headers
FRAMEWORK = enables Spring Framework's built in filter to manage these headers in Spring Boot. (This value may be useful to set for
DSpace if you find that X-Forwarded headers are not working)
NONE = default value. Forwarded headers are ignored

For more information see the Spring Boot docs at https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-use-behind-a-
 proxy-server

Configuring Media Filters

Media or Format Filters are classes used to generate derivative or alternative versions of content or bitstreams within DSpace. For example, the PDF
Media Filter will extract textual content from PDF bitstreams, the JPEG Media Filter can create thumbnails from image bitstreams.

Media Filters are configured as Named Plugins, with each filter also having a separate configuration setting (in) indicating which formats it can dspace.cfg
process. The default configuration is shown below.

Prope
rty:

filter.plugins

Exam
ple
Value:

filter.plugins = PDF Text Extractor
filter.plugins = Html Text Extractor
filter.plugins = Word Text Extractor
filter.plugins = JPEG Thumbnail

Inform
ationa
l
Note:

This setting lists the names of all enabled MediaFilter or FormatFilter plugins. To enable multiple plugins, list them on separate lines (as shown
above) or provide a comma separated list.

Prope
rty:

plugin.named.org.dspace.app.mediafilter.FormatFilter

Exam
ple
Value:

plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.PDFFilter = PDF Text
Extractor
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.HTMLFilter = HTML
Text Extractor
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.WordFilter = Word
Text Extractor
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.JPEGFilter = JPEG
Thumbnail
plugin.named.org.dspace.app.mediafilter.FormatFilter = org.dspace.app.mediafilter.
BrandedPreviewJPEGFilter = Branded Preview JPEG

Inform
ationa
l
Note:

Assign "human-understandable" names to each filter. These names are used to enable/disable plugins using "filter.plugins" setting above. As
with the previous setting, multiple plugins can be listed here on separate lines (or comma separated)

812

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-use-behind-a-proxy-server
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-use-behind-a-proxy-server

Prope
rty: filter.org.dspace.app.mediafilter.PDFFilter.inputFormats

filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats
filter.org.dspace.app.mediafilter.WordFilter.inputFormats
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats

Exam
ple
Value:

filter.org.dspace.app.mediafilter.PDFFilter.inputFormats = Adobe PDF
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats = HTML, Text
filter.org.dspace.app.mediafilter.WordFilter.inputFormats = Microsoft Word
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats = BMP, GIF, JPEG, \
 image/png
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats = BMP, \
 GIF, JPEG, image/png

Inform
ationa
l
Note:

Configure each filter's input format(s). These must match format names in the DSpace file format registry.

Prope
rty:

filter.org.dspace.app.mediafilter.publicPermission

Exam
ple
Value:

filter.org.dspace.app.mediafilter.publicPermission = JPEGFilter

Optionally, configure filter(s) which should create publicly accessible bitstreams (e.g. useful if you want thumbnails to always be publicly always
accessible). By default, any bitstreams created by a filter will inherit the same permissions as the original file (e.g. if original image is access
restricted, then thumbnail will also be access restricted by default).

Prope
rty:

pdffilter.largepdfs

Exam
ple
Value:

pdffilter.largepdfs = true

Inform
ationa
l
Note:

It this value is set for "true", all PDF extractions are written to temp files as they are indexed. This is slower, but helps to ensure that PDFBox
software DSpace uses does not eat up all your memory.

Prope
rty:

pdffilter.skiponmemoryexception

Exam
ple
Value:

pdffilter.skiponmemoryexception = true

Inform
ationa
l
Note:

If this value is set for "true", PDFs which still result in an "Out of Memory" error from PDFBox are skipped over. These problematic PDFs will
never be indexed until memory usage can be decreased in the PDFBox software.

Names are assigned to each filter using the field (e.g. by default the PDFilter is plugin.named.org.dspace.app.mediafilter.FormatFilter
named "PDF Text Extractor".

Finally, the appropriate defines the valid input formats which each filter can be applied. These format names filter.<class path>.inputFormats m
 the field of the Bitstream Format Registry.ust match short description

You can also implement more dynamic or configurable Media/Format Filters which extend .SelfNamedPlugin

More Information on MediaFilters

For more information on Media/Format Filters, see the section on .Mediafilters for Transforming DSpace Content

Crosswalk and Packager Plugin Settings

The subsections below give configuration details based on the types of crosswalks and packager plugins you need to implement.

813

More Information on Packagers & Crosswalks

For more information on using Packagers and Crosswalks, see the section on .Importing and Exporting Content via Packages

Configurable MODS Dissemination Crosswalk

The MODS crosswalk is a self-named plugin. To configure an instance of the MODS crosswalk, add a property to the DSpace configuration starting with "c
"; the final word of the property name becomes the plugin's name. For example, a property name rosswalk.mods.properties. crosswalk.mods.

 defines a crosswalk plugin named " ".properties.MODS MODS

The value of this property is a path to a separate properties file containing the configuration for this crosswalk. The pathname is relative to the DSpace
configuration directory, i.e. the subdirectory of the DSpace install directory. Example from the file:config dspace.cfg

Properties: crosswalk.mods.properties.MODS
crosswalk.mods.properties.mods

Example
Values:

crosswalk.mods.properties.MODS = crosswalks/mods.properties
crosswalk.mods.properties.mods = crosswalks/mods.properties

Information
al Note:

This defines a crosswalk named MODS whose configuration comes from the file [dspace]/config/crosswalks/mods.properties
. (In the above example, the lower-case name was added for OAI-PMH)

The MODS crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned into elements of the MODS XML
output document. The property name is a concatenation of the metadata schema, element name, and optionally the qualifier. For example, the contributor.

 element in the native Dublin Core schema would be: . The value of the property is a line containing two segments separated by author dc.contributor.author
the vertical bar (" "_): The first part is an XML fragment which is copied into the output document. The second is an XPath expression describing where in |
that fragment to put the value of the metadata element. For example, in this property:

dc.contributor.author = <mods:name>
 <mods:role>
 <mods:roleTerm type="text">author</mods:roleTerm>
 </mods:role>
 <mods:namePart>%s</mods:namePart>
 </mods:name>

Some of the examples include the string " " in the prototype XML where the text value is to be inserted, but don't pay any attention to it, it is an artifact %s
that the crosswalk ignores. For example, given an author named , the crosswalk will insertJack Florey

<mods:name>
 <mods:role>
 <mods:roleTerm type="text">author</mods:roleTerm>
 </mods:role>
 <mods:namePart>Jack Florey</mods:namePart>
</mods:name>

into the output document. Read the example configuration file for more details.

XSLT-based Crosswalks

The XSLT crosswalks use XSL stylesheet transformation (XSLT) to transform an XML-based external metadata format to or from DSpace's internal
metadata. XSLT crosswalks are much more powerful and flexible than the configurable MODS and QDC crosswalks, but they demand some esoteric
knowledge (XSL stylesheets). Given that, you can create all the crosswalks you need just by adding stylesheets and configuration lines, without touching
any of the Java code.

The default settings in the file for submission crosswalk:dspace.cfg

Properties: crosswalk.submission.MODS.stylesheet

Example Value: crosswalk.submission.MODS.stylesheet = crosswalks/mods-submission.xsl

Informational Note: Configuration XSLT-driven submission crosswalk for MODS

As shown above, there are three (3) parts that make up the properties "key":

crosswalk.submission.PluginName.stylesheet =
 1 2 3 4

814

crosswalk first part of the property key.
 second part of the property key.submission
 is the name of the plugin. The value is the path to the file containing the crosswalk stylesheet (relative to).PluginName path /[dspace]/config

Here is an example that configures a crosswalk named "LOM" using a stylesheet in :[dspace]/config/crosswalks/d-lom.xsl
 crosswalk.submission.LOM.stylesheet = crosswalks/d-lom.xsl

A dissemination crosswalk can be configured by starting with the property key . Example:crosswalk.dissemination
 crosswalk.dissemination.PluginName.stylesheet = path

The is the name of the plugin (!) . The value is the path to the file containing the crosswalk stylesheet (relative to).PluginName path /[dspace]/config

You can make two different plugin names point to the same crosswalk, by adding two configuration entries with the same path:

crosswalk.submission.MyFormat.stylesheet = crosswalks/myformat.xslt
 crosswalk.submission.almost_DC.stylesheet = crosswalks/myformat.xslt

The dissemination crosswalk must also be configured with an XML Namespace (including prefix and URI) and an XML schema for its output format. This is
configured on additional properties in the DSpace configuration:

crosswalk.dissemination.PluginName.namespace.Prefix = namespace-URI
 crosswalk.dissemination.PluginName.schemaLocation = schemaLocation value

For example:

crosswalk.dissemination.qdc.namespace.dc = http://purl.org/dc/elements/1.1/
 crosswalk.dissemination.qdc.namespace.dcterms = http://purl.org/dc/terms/
 crosswalk.dissemination.qdc.schemalocation = http://purl.org/dc/elements/1.1/ \
 http://dublincore.org/schemas/xmls/qdc/2003/04/02/qualifieddc.xsd

If you remove all XSLTDisseminationCrosswalks please disable the XSLTDisseminationCrosswalk in the list of selfnamed plugins. If no
XSLTDisseminationCrosswalks are configured but the plugin is loaded the PluginManager will log an error message ("Self-named plugin class "org.dspace.
content.crosswalk.XSLTDisseminationCrosswalk" returned null or empty name list!").

Testing XSLT Crosswalks

The XSLT crosswalks will automatically reload an XSL stylesheet that has been modified, so you can edit and test stylesheets without restarting DSpace.
You can test a crosswalk by using a command-line utitlity. To test a dissemination crosswalk you have to run:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk <plugin name> <handle>
[output-file]

For example, you can test the marc plugin on the handle 123456789/3 with:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk marc 123456789/3

Informations from the script will be printed to stderr while the XML output of the dissemination crosswalk will be printed to stdout. You can give a third
parameter containing a filename to write the output into a file, but be careful: the file will be overwritten if it exists.

When you are working on XSLTCrosswalks it is very helpful to get the original XML on which the XSLT processor works. Use the crosswalk dim to get the
original XML:

[dspace]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk dim 123456789/3

Testing a submission crosswalk works quite the same way. Use the following command-line utility, it calls the crosswalk plugin to translate an XML
document you submit, and displays the resulting intermediate XML (DIM). Invoke it with:

[dspace]/bin/dspace dsrun
 org.dspace.content.crosswalk.XSLTIngestionCrosswalk [-l] <plugin name> <input-file>

where > is the name of the crosswalk plugin to test (e.g. "LOM"), and < is a file containing an XML document of metadata in the <plugin name input-file>
appropriate format.

Add the option to pass the ingestion crosswalk a list of elements instead of a whole document, as if the List form of the ingest() method had been -l
called. This is needed to test ingesters for formats like DC that get called with lists of elements instead of a root element.

815

Configurable Qualified Dublin Core (QDC) dissemination crosswalk

The QDC crosswalk is a self-named plugin. To configure an instance of the QDC crosswalk, add a property to the DSpace configuration starting with "cros
"; the final word of the property name becomes the plugin's name. For example, a property name swalk.qdc.properties. crosswalk.qdc.

 defines a crosswalk plugin named " ".properties.QDC QDC

The following is from file:dspace.cfg

Properties: crosswalk.qdc.namspace.qdc.dc

Example Value: crosswalk.qdc.namspace.qdc.dc = http://purl.org/dc/elements/1.1_

Properties: crosswalk.qdc.namspace.qdc.dcterms

Example Value: crosswalk.qdc.namspace.qdc.dc = http://purl.org/dc/terms/_

Properties: crosswalk.qdc.schemaLocation.QDC

Example Value:
crosswalk.qdc.schemaLocation.QDC = http://www.purl.org/dc/terms \
 http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd \
 http://purl.org/dc/elements/1.1 \
 http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd

Properties: crosswalk.qdc.properties.QDC

Example Value: crosswalk.qdc.properties.QDC = crosswalks/QDC.properties

Informational
Note:

Configuration of the QDC Crosswalk dissemination plugin for Qualified DC. (Add lower-case name for OAI-PMH. That is, change
}}QDC to qdc.)

In the property key " " the value of this property is a path to a separate properties file containing the configuration for crosswalk.qdc.properties.QDC
this crosswalk. The pathname is relative to the DSpace configuration directory . Referring back to the "Example Value" for this /[dspace]/config
property key, one has which defines a crosswalk named whose configuration comes from the file crosswalks/qdc.properties QDC [dspace]

 ./config/crosswalks/qdc.properties

You will also need to configure the namespaces and schema location strings for the XML output generated by this crosswalk. The namespaces properties
names are formatted:

crosswalk.qdc.namespace.prefix = uri

where is the namespace prefix and is the namespace URI. See the above Property and Example Value keys as the default dspace.cfg has been prefix uri
configured.

The QDC crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned into elements of the Qualified DC
XML output document. The property name is a concatenation of the metadata schema, element name, and optionally the qualifier. For example, the contr

 element in the native Dublin Core schema would be: . The value of the property is an XML fragment, the ibutor.author dc.contributor.author
element whose value will be set to the value of the metadata field in the property key.

For example, in this property:

dc.coverage.temporal = <dcterms:temporal />

the generated XML in the output document would look like, e.g.:
<dcterms:temporal>Fall, 2005</dcterms:temporal>

Configuring Crosswalk Plugins

Ingestion crosswalk plugins are configured as named or self-named plugins for the interface org.dspace.content.crosswalk.
. Dissemination crosswalk plugins are configured as named or self-named plugins for the interface IngestionCrosswalk org.dspace.content.

.crosswalk.DisseminationCrosswalk

You can add names for existing crosswalks, add new plugin classes, and add new configurations for the configurable crosswalks as noted below.

Configuring Packager Plugins

Package ingester plugins are configured as named or self-named plugins for the interface . org.dspace.content.packager.PackageIngester
Package disseminator plugins are configured as named or self-named plugins for the interface org.dspace.content.packager.

 .PackageDisseminator

You can add names for the existing plugins, and add new plugins, by altering these configuration properties. See the for more Plugin Manager architecture
information about plugins.

Event System Configuration

816

http://purl.org/dc/elements/1.1
http://purl.org/dc/terms/
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSDOC7x&title=Business+Logic

If you are unfamiliar with the Event System in DSpace, and require additional information with terms like "Consumer" and "Dispatcher" please refer to Event
.SystemPrototype

Property: event.dispatcher.default.class

Example Value: event.dispatcher.default.class = org.dspace.event.BasicDispatcher

Informational
Note:

This is the default synchronous dispatcher (Same behavior as traditional DSpace).

Property: event.dispatcher.default.consumers

Example Value: event.dispatcher.default.consumers = search, browse, eperson

Informational
Note:

This is the default synchronous dispatcher (Same behavior as traditional DSpace).

Property: event.dispatcher.noindex.class

Example Value: event.dispatcher.noindex.class = org.dspace.event.BasicDispatcher

Informational
Note:

The noindex dispatcher will not create search or browse indexes (useful for batch item imports).

Property: event.dispatcher.noindex.consumers

Example Value: event.dispatcher.noindex.consumers = eperson

Informational
Note:

The noindex dispatcher will not create search or browse indexes (useful for batch item imports).

Property: event.consumer.discovery.class

Example Value: event.consumer.discovery.class = org.dspace.discovery.IndexEventConsumer

Informational
Note:

Consumer to maintain the search/browse (Discovery) index.

Property: event.consumer.discovery.filters

Example Value: event.consumer.discovery.filters =
Community | Collection | Item | Bundle | Site+Add | Create | Modify | Modify_Metadata | Delete |
Remove

Informational
Note:

Consumer to maintain the search/browse (Discovery) index.

Property: event.consumer.eperson.class

Example Value: event.consumer.eperson.class = org.dspace.eperson.EPersonConsumer

Informational
Note:

Consumer related to EPerson changes

Property: event.consumer.eperson.filters

Example Value: event.consumer.eperson.filters = EPerson+Create

Informational
Note:

Consumer related to EPerson changes

Property: event.consumer.test.class

Example Value: event.consumer.test.class = org.dspace.event.TestConsumer

Informational
Note:

Test consumer for debugging and monitoring. Commented out by default.

Property: event.consumer.test.filters

Example Value: event.consumer.test.filters = All+All

Informational
Note:

Test consumer for debugging and monitoring. Commented out by default.

Property: testConsumer.verbose

Example Value: testConsumer.verbose = true

817

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=EventSystemPrototype
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=EventSystemPrototype

Informational
Note:

Set this to true to enable testConsumer messages to standard output. Commented out by default.

Embargo

DSpace embargoes utilize standard metadata fields to hold both the "terms" and the "lift date". Which fields you use are configurable, and no specific
metadata element is dedicated or predefined for use in embargo. Rather, you specify exactly what field you want the embargo system to examine when it
needs to find the terms or assign the lift date.

Propert
y:

embargo.field.terms

Exampl
e
Value:

embargo.field.terms = SCHEMA.ELEMENT.QUALIFIER

Informa
tional
Note:

Embargo terms will be stored in the item metadata. This property determines in which metadata field these terms will be stored. An example
could be dc.embargo.terms

Propert
y:

embargo.field.lift

Exampl
e
Value:

embargo.field.lift = SCHEMA.ELEMENT.QUALIFIER

Informa
tional
Note:

The Embargo lift date will be stored in the item metadata. This property determines in which metadata field the computed embargo lift date
will be stored. You may need to create a DC metadata field in your Metadata Format Registry if it does not already exist. An example could be
dc.embargo.liftdate

Propert
y:

embargo.terms.open

Exampl
e
Value:

embargo.terms.open = forever

Informa
tional
Note:

You can determine your own values for the embargo.field.terms property (see above). This property determines what the string value will be
for indefinite embargos. The string in terms field to indicate indefinite embargo.

Propert
y:

plugin.single.org.dspace.embargo.EmbargoSetter

Exampl
e
Value:

plugin.single.org.dspace.embargo.EmbargoSetter = org.dspace.embargo.DefaultEmbargoSetter

Informa
tional
Note:

To implement the business logic to set your embargos, you need to override the EmbargoSetter class. If you use the value
DefaultEmbargoSetter, the default implementation will be used.

Propert
y:

plugin.single.org.dspace.embargo.EmbargoLifter

Exampl
e
Value:

plugin.single.org.dspace.embargo.EmbargoLifter = org.dspace.embargo.DefaultEmbargoLifter

Informa
tional
Note:

To implement the business logic to lift your embargos, you need to override the EmbargoLifter class. If you use the value
DefaultEmbargoLifter, the default implementation will be used.

More Embargo Details

More details on Embargo configuration, including specific examples can be found in the section of the documentation.Embargo

Checksum Checker Settings

DSpace comes with a Checksum Checker script () which can be scheduled to verify the checksum of every item within [dspace]/bin/dspace checker
DSpace. Since DSpace calculates and records the checksum of every file submitted to it, this script is able to determine whether or not a file has been
changed (either manually or by some sort of corruption or virus). The idea being that the earlier you can identify a file has changed, the more likely you'd
be able to recover it (assuming it was not a wanted change).

Propert
y:

plugin.single.org.dspace.checker.BitstreamDispatcher

818

Exampl
e
Value:

plugin.single.org.dspace.checker.BitstreamDispatcher = org.dspace.checker.SimpleDispatcher

Informa
tional
Note:

The Default dispatcher is case non is specified.

Propert
y:

checker.retention.default

Exampl
e
Value:

checker.retention.default = 10y

Informa
tional
Note:

This option specifies the default time frame after which all checksum checks are removed from the database (defaults to 10 years). This
means that after 10 years, all successful or unsuccessful matches are removed from the database.

Propert
y:

checker.retention.CHECKSUM_MATCH

Exampl
e
Value:

checker.retention.CHECKSUM_MATCH = 8w

Informa
tional
Note:

This option specifies the time frame after which a successful match will be removed from your DSpace database (defaults to 8 weeks). This
means that after 8 weeks, all successful matches are automatically deleted from your database (in order to keep that database table from
growing too large).

More Checksum Checking Details

For more information on using DSpace's built-in Checksum verification system, see the section on .Validating CheckSums of Bitstreams

Item Export and Download Settings

It is possible for an authorized user to request a complete export and download of a DSpace item in a compressed zip file. This zip file may contain the
following:
dublin_core.xml
license.txt
contents (listing of the contents)
handle file itself and the extract file if available

The configuration settings control several aspects of this feature:

Property: org.dspace.app.itemexport.work.dir

Example
Value:

org.dspace.app.itemexport.work.dir = ${dspace.dir}/exports

Informati
onal
Note:

The directory where the exports will be done and compressed.

Property: org.dspace.app.itemexport.download.dir

Example
Value:

org.dspace.app.itemexport.download.dir = ${dspace.dir}/exports/download

Informati
onal Note

The directory where the compressed files will reside and be read by the downloader.

Property: org.dspace.app.itemexport.life.span.hours

Example
Value:

org.dspace.app.itemexport.life.span.hours = 48

Informati
onal Note

The length of time in hours each archive should live for. When new archives are created this entry is used to delete old ones.

Property: org.dspace.app.itemexport.max.size

Example
Value:

org.dspace.app.itemexport.max.size = 200

Informati
onal Note

The maximum size in Megabytes (Mb) that the export should be. This is enforced before the compression. Each bitstream's size in each
item being exported is added up, if their cumulative sizes are more than this entry the export is not kicked off.

819

1.
2.
3.

Subscription Emails

DSpace, through some advanced installation and setup, is able to send out an email to collections that a user has subscribed. The user who is subscribed
to a collection is emailed each time an item id added or modified. The following property key controls whether or not a user should be notified of a
modification.

Property: eperson.subscription.onlynew

Example Value: eperson.subscription.onlynew = true

Informational
Note:

For backwards compatibility, the subscription emails by default include any modified items. The property key is COMMENTED OUT
by default.

Hiding Metadata

It is possible to hide metadata from public consumption, so that it's only available to users with WRITE permissions on the Item. (NOTE: Prior to 7.6.1,
Administrator privileges were required for hidden metadata. This was modified to allow users to submit hidden metadata fields, as well as allow Community
/Collection Admins to see hidden metadata.)

Proper
ty:

metadata.hide.dc.description.provenance

Examp
le
Value:

metadata.hide.dc.description.provenance = true

Inform
ational
Note:

Hides the metadata in the property key above except to the administrator. Fields named here are hidden in the following places UNLESS the
logged-in user has WRITE permissions on the Item:

REST API (and therefore the User Interface)
RDF (everywhere as there is currently no possibility to authenticate)
OAI-PMH server (everywhere as there is currently no possibility to authenticate)

To designate a field as hidden, add a property here in the form: . This default metadata.hide.SCHEMA.ELEMENT.QUALIFIER = true
configuration hides the field, since that usually contains email addresses which ought to be kept private and dc.description.provenance
is mainly of interest to administrators.

Hiding Submitter in Provenance Metadata

As of DSpace 8, it's possible to configure DSpace to no longer include Submitter details (name and email) in the "dc.description.provenance" field.

Property: metadata.privacy.dc.description.provenance

Example Value: metadata.privacy.dc.description.provenance = true

Informational
Note:

If set to "true", all Submitter details (name and email) are excluded from the "dc.description.provenance" metadata field during
Submission and Workflow.

Default value is "false", which means the Submitter name and email will be included in "dc.description.provenance" metadata fields.

Settings for the Submission Process

Property: webui.submit.upload.required

Example
Value:

webui.submit.upload.required = true

Information
al Note:

Whether or not a file is to be uploaded during the "Upload" step in the submission process. The default is true. If set to "false", required
then the submitter (human being) has the option to skip the uploading of a file.

Configuring the Sherpa/RoMEO Integration

DSpace has integration with the in order to allow importing data from Sherpa/RoMEO during the submission YSherpa/RoMEO API ou must register for a
free API key (see below for details).

Property: sherpa.romeo.url

Example Value: sherpa.romeo.url = https://v2.sherpa.ac.uk/cgi/retrieve

Informational Note: The Sherpa/RoMEO endpoint.

820

https://v2.sherpa.ac.uk/romeo/

Property: sherpa.romeo.apikey

Example Value: sherpa.romeo.apikey = YOUR-API-KEY

Informational Note: Allow to use a specific API key to raise the usage limit (500 calls/day for unregistred user).

You MUST register for a free api access key at https://v2.sherpa.ac.uk/api/

The functionality rely on understanding to which Journal (ISSN) is related the submitting item. This is done out of box looking to some item metadata but a
different strategy can be used as for example look to a metadata authority in the case that the Sherpa/RoMEO autocomplete for Journal is used (see Autho

)rityControlSettings

The strategy used to discover the Journal related to the submission item is defined in the spring file /config/spring/api/sherpa.xml

<bean class="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService"
 id="org.dspace.app.sherpa.submit.SHERPASubmitConfigurationService">
 <property name="issnItemExtractors">
 <list>
 <bean class="org.dspace.app.sherpa.submit.MetadataValueISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.identifier.issn</value>
 </list>
 </property>
 </bean>
 <!-- Use the follow if you have the SHERPARoMEOJournalTitle enabled
 <bean class="org.dspace.app.sherpa.submit.MetadataAuthorityISSNExtractor">
 <property name="metadataList">
 <list>
 <value>dc.title.alternative</value>
 </list>
 </property>
 </bean> -->
 </list>
 </property>
 </bean>

Configuring Creative Commons License

The following configurations are for the Creative Commons license step in the submission process. Submitters are given an opportunity to select a
Creative Common license to accompany the item. Creative Commons licenses govern the use of the content. For further details, refer to the Creative
Commons website at .http://creativecommons.org

Creative Commons licensing is optionally available and may be configured for any given collection that has a defined submission sequence, or be part of
the "default" submission process. This process is described in the section of this manual. There is a Creative Commons step Submission User Interface
already defined, but it is commented out, so enabling Creative Commons licensing is typically just a matter of uncommenting that step.

When enabled, the Creative Commons public API is utilized. This allows DSpace to store metadata references to the selected CC license, while also
storing the CC License as a bitstream. The following CC License information are captured:

The URL of the CC License is stored in the "dc.rights.uri" metadata field (or whatever field is configured in the "cc.license.uri" setting below)
The name of the CC License is stored in the "dc.rights" metadata field (or whatever field is configured in the "cc.license.name" setting below).
This only occurs if "cc.submit.setname=true" (default value)
The RDF version of the CC License is stored in a bitstream named "license_rdf" in the CC-LICENSE bundle (as long as "cc.submit.
addbitstream=true", which is the default value)

The following configurations (in dspace.cfg) relate to the Creative Commons license process:

Propert
y:

cc.api.rooturl

Exampl
e
Value:

cc.api.rooturl = http://api.creativecommons.org/rest/1.5

Informa
tional
Note:

Generally will never have to assign a different value - this is the base URL of the Creative Commons service API.

Propert
y:

cc.license.uri

821

https://v2.sherpa.ac.uk/api/
http://creativecommons.org/
http://api.creativecommons.org/rest/1.5

Exampl
e
Value:

cc.license.uri = dc.rights.uri

Informa
tional
Note:

The field that holds the Creative Commons license URI.

Propert
y:

cc.license.name

Exampl
e
Value:

cc.license.name = dc.rights

Informa
tional
Note:

The field that holds the Creative Commons license Name.

Propert
y:

cc.submit.setname

Exampl
e
Value:

cc.submit.setname = true

Informa
tional
Note:

If true, the license assignment will add the field configured with the "cc.license.name" with the name of the CC license; if false, only "cc.license.
uri" field is added.

Propert
y:

cc.submit.addbitstream

Exampl
e
Value:

cc.submit.addbitstream = true

Informa
tional
Note:

If true, the license assignment will add a bitstream with the CC license RDF; if false, only metadata field(s) are added.

Propert
y:

cc.license.classfilter

Exampl
e
Value:

cc.license.classfilter = recombo,mark

Informa
tional
Note:

This list defines the values that will be excluded from the license (class) selection list, as defined by the web service at the URL: http://api.
creativecommons.org/rest/1.5/classes

Propert
y:

cc.license.jurisdiction

Exampl
e
Value:

cc.license.jurisdiction = nz

Informa
tional
Note:

Should a jurisdiction be used? If so, which one? See for a list of possible codes (e.g. nz = New http://creativecommons.org/international/
Zealand, uk = England and Wales, jp = Japan)

Commenting out this field will cause DSpace to select the latest, unported CC license (currently version 4.0). However, as Creative Commons
4.0 does not provide jurisdiction specific licenses, if you specify this setting, your DSpace will continue to use older, Creative Commons 3.0
jurisdiction licenses.

Property cc.license.locale

Exampl
e
Value:

cc.license.locale = en

Informa
tional
Note:

Locale to be used (in the form: language or language_country), e.g. "en" or "en_US"
If no default locale is defined the Creative Commons default locale will be used.

WEB User Interface Configurations

General Web User Interface Configurations

822

http://api.creativecommons.org/rest/1.5/classes
http://api.creativecommons.org/rest/1.5/classes
http://creativecommons.org/international/

Property: webui.licence_bundle.show

Example Value: webui.licence_bundle.show = false

Informational
Note:

Sets whether to display the contents of the license bundle (often just the deposit license in the standard DSpace installation). UNSUP
PORTED in DSpace 7.0

Property: thumbnail.maxwidth

Example Value: thumbnail.maxwidth = 80

Informational
Note:

This property sets the maximum width of generated thumbnails that are being displayed on item pages.

Property: thumbnail.maxheight

Example Value: thumbnail.maxheight = 80

Informational
Note:

This property sets the maximum height of generated thumbnails that are being displayed on item pages.

Property: webui.preview.maxwidth

Example Value: webui.preview.maxwidth = 600

Informational
Note:

This property sets the maximum width for the preview image. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.maxheight

Example Value: webui.preview.maxheight = 600

Informational
Note:

This property sets the maximum height for the preview image. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.brand

Example Value: webui.preview.brand = My Institution Name

Informational
Note:

This is the brand text that will appear with the image. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.brand.abbrev

Example Value: webui.preview.brand.abbrev = MyOrg

Informational
Note:

An abbreviated form of the full Branded Name. This will be used when the preview image cannot fit the normal text. Only used for
BrandedPreviewJPEGFilter

Property: webui.preview.brand.height

Example Value: webui.preview.brand.height = 20

Informational
Note:

The height (in px) of the brand. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.brand.font

Example Value: webui.preview.brand.font = SansSerif

Informational
Note:

This property sets the font for your Brand text that appears with the image. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.brand.fontpoint

Example Value: webui.preview.brand.fontpoint = 12

Informational
Note:

This property sets the font point (size) for your Brand text that appears with the image. Only used for BrandedPreviewJPEGFilter

Property: webui.preview.dc

Example Value: webui.preview.dc = rights

Informational
Note:

The Dublin Core field that will display along with the preview. This field is optional. Only used for BrandedPreviewJPEGFilter

Item Counts in user interface
Available in 7.6 or later

823

Optionally, you can enable item counts to be displayed in the user interface for every Community and Collection. This uses the same configuration that
was in place for DSpace 6 and earlier.

Prope
rty:

webui.strengths.show

Exam
ple
Value:

webui.strengths.show = false

Inform
ationa
l Note:

When "true" this will display the count of archived items (in the User Interface's browse screens). By default this is "false" (disabled). When
enabled, the counts may be counted in real time, or fetched from the cache (see next option).

Prope
rty:

webui.strengths.cache

Exam
ple
Value:

webui.strengths.cache = false

Inform
ationa
l Note:

When showing the strengths (i.e. item counts), should they be counted in real time, or fetched from the cache. Counts fetched in real time will
perform an actual count of the index contents every time a page with this feature is requested, which may not scale. If you set the property key
is set to cache ("true"), the counts will be cached on first load.

Browse Index Configuration

The browse indexes for DSpace can be extensively configured. These configurations are used by . This section of the configuration allows you to Discovery
take control of the indexes you wish to browse, and how you wish to present the results. The configuration is broken into several parts: defining the
indexes, defining the fields upon which users can sort results, defining truncation for potentially long fields (e.g. authors), setting cross-links between
different browse contexts (e.g. from an author's name to a complete list of their items), how many recent submissions to display, and configuration for item
mapping browse.

Property: webui.browse.index.<n>

Example Value: webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*\,dc.creator:text

Informational Note: This is an example of how one "Defines the Indexes". See " " in the next sub-section.Defining the Indexes

Property: webui.itemlist.sort-option.<n>

Example Value: webui.itemlist.sort-option.1 = title:dc.title:title

Informational Note: This is an example of how one "Defines the Sort Options". See " " in the following sub-section.Defining Sort Options

Defining the storage of the Browse Data
Optionally, you may configure a custom implementation use for the Browse DAOs both for read operations (create/update operations are handled by Event
Consumers). However, as of DSpace 6, DSpace only includes one out-of-the-box option:

SOLR Browse Engine (SOLR DAOs), default since DSpace 4.0 - This enables Apache Solr to be utilized as a backend for all browsing of
DSpace. This option requires that you have (Solr search/browse engine) enabled in your DSpace.Discovery

Property: browseDAO.class

Example
Value:

browseDAO.class = org.dspace.browse.SolrBrowseDAO

Information
al Note:

This property configures the Java class that is used for READ operations by the Browse System. You need to have enabled Discovery
(this is the default since DSpace 4.0) to use the Solr Browse DAOs

Defining the Indexes
If you make changes in this section be sure to update your SOLR indexes running the Discovery Maintenance Script, see Discovery

DSpace comes with four default indexes pre-defined: author, title, date issued, and subjects. Users may also define additional indexes or re-configure the
current indexes for different levels of specificity. For example, the default entries that appear in the dspace.cfg as default installation:

webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*\,dc.creator:text
webui.browse.index.3 = title:item:title
webui.browse.index.4 = subject:metadata:dc.subject.*:text
#webui.browse.index.5 = dateaccessioned:item:dateaccessioned

824

https://wiki.lyrasis.org/display/DSDOC5x/Discovery

There are two types of indexes which are provided in this default integration:

" " indexes which have a format of item webui.browse.index.<n> = <index-name> : item : <sort-type> : (asc | desc)
" " indexes which have a format of metadata webui.browse.index.<n> = <index-name> : metadata : <comma-separated-list-
of-metadata-fields> : (date | text) : (asc | dec) : <sort-type>

 Please notice that the punctuation is paramount in typing this property key in the file. The following table explains each element:dspace.cfg

Element Definition and Options (if available)

webui.
browse.
index.
<n>

n is the index number. The index numbers must start from 1 and increment continuously by 1 thereafter. Deviation from this will cause an
error during install or a configuration update. So anytime you add a new browse index, remember to increase the number. (Commented
out index numbers may be used over again).

<index-
name>

The name by which the index will be identified. In order for the DSpace UI to display human-friendly description for this index, you'll need
to update the UI's language packs (e.g.) to include a key using this index name, for example:src/assets/i18n/en.json5

browse.metadata.<index-name> = "MyField",
browse.metadata.<index-name>.breadcrumbs = "Browse by MyField",

(metadat
a|item)

Only two options are available: " " or " "metadata item

" " indexes allow you to index all items based on one or more metadata fields. The list of fields should be provided as part metadata
of the "metadata" configuration. Only items which have values for these fields will appear in this index (e.g. if you have a "metadata"
index for " ", an item will not appear in that browse/search if it doesn't have a " " value). The browse dc.subject.* dc.subject.*
index will have to parts: first it lists all values of the specified metadata fields. If the user select one of these values the index lists all
items in which the specified metadata field is assigned with the selected value.

Note: If you set a <sort-type> to be used, this sort type is not used on the values of the metadata fields but on the order of the
items when listing all items that have a specific value of the metadata field.

" " indexes provide you with a browseable list of ALL items in the site, sorted by a particular metadata field. The field this index is item
sorted by is referenced by (which should refer to a corresponding " " <sort-option-name> webui.itemlist.sort-option.<n>
setting... see below for more information)Defining Sort Options

<schema-
prefix>

(Only for "metadata" indexes) The schema used for the field to be index. First part of a metadata field name. The default is dc (for Dublin
Core).

<element> (Only for "metadata" indexes) The schema element. Second part of a metadata field name. In Dublin Core, for example, the author
element is referred to as "Contributor". The user should consult the default Dublin Core Metadata Registry table in Appendix A.

<qualifi
er>

(Only for "metadata" indexes) This is the qualifier to the <element> component. Third part of a metadata field name. The user has two
choices: an asterisk "*" or a proper qualifier of the element. The asterisk is a wildcard and causes DSpace to index all types of the schema
element. For example, if you have the element "contributor" and the qualifier "*" then you would index all contributor data regardless of the
qualifier. Another example, you have the element "subject" and the qualifier "lcsh" would cause the indexing of only those fields that have
the qualifier "lcsh". (This means you would only index Library of Congress Subject Headings and not all data elements that are subjects.)

<sort-
type>

(Optional, should be set for "item" indexes) This refers to the sort type / data type of the field:

date the index type will be treated as a date object and sorted as such
text the index type will be treated as plain text and sorted as such
(any other value refers to a custom <sort-type> which should be defined in a corresponding webui.itemlist.sort-option.<n>
setting. See below for more information.)Defining Sort Options

<sort-
order>

(Optional) The default sort order. Choose (ascending) or (descending). Ascending is the default value, but descending may be asc desc
useful for date-based indexes (e.g. to display most recent submissions first)

Defining Sort Options
If you make changes in this section be sure to update your SOLR indexes running the Discovery Maintenance Script, see Discovery

Sort options/types will be available when browsing a list of items (either on " " index type above or after selecting a specific value for "metadata" item
indexes). You can define an arbitrary number of fields to sort on. For example, the default entries that appear in the as default installation:dspace.cfg

webui.itemlist.sort-option.1 = title:dc.title:title
webui.itemlist.sort-option.2 = dateissued:dc.date.issued:date
webui.itemlist.sort-option.3 = dateaccessioned:dc.date.accessioned:date

The format of each entry is web.browse.sort-option.<n> = <sort-type-name>:<schema-prefix>.<element>.<qualifier>:<datatype>
. Please notice the punctuation used between the different elements. The following table explains the each element:

Element Definition and Options (if available)

825

webui.itemlist.
sort-option.<n>

n is an arbitrary number you choose.

<sort-type-name> The name by which the sort option will be identified. This is the name by which it is referred in the "webui.browse.index"
settings (see).Defining the Indexes

<schema-prefix> The schema used for the field to be sorted on in the index. The default is dc (for Dublin Core).

<element> The schema element. In Dublin Core, for example, the author element is referred to as "Contributor". The user should
consult the default Dublin Core Metadata Registry table in Appendix A.

<qualifier> This is the qualifier to the <element> component. The user has two choices: an asterisk "*" or a proper qualifier of the
element.

<datatype> This refers to the datatype of the field:
 the sort field will be treated as a date object date
 the sort field will be treated as plain text.text

 the sort field will be treated like a title, which will include a link to the item pagetitle

Hierarchical Browse Indexes

No configuration is necessary for hierarchical browse indexes (). These are automatically generated based on the used Browse by Subject Category
controlled vocabularies in your submission forms. Default DSpace has one hierarchical browse index (Browse by Subject Category), since "srsc" is the
only vocabulary used in the default submission-forms.xml.

Please note that when using another vocabulary, the UI's language packs (e.g. src/assets/i18n/en.json5) will need to be updated as well, e.g.:

"menu.section.browse_global_by_srsc": "By Subject Category"
"browse.metadata.srsc.breadcrumbs": "Browse by Subject Category"
"browse.comcol.by.srsc": "By Subject Category"

Starting with DSpace 7.6.1, these Hierarchical "Browse By" options can be via the below configuration:disabled

Prop
erty:

webui.browse.vocabularies.disabled

Exa
mple
Valu
e:

webui.browse.vocabularies.disabled = srsc

Infor
mati
onal
Note:

By default, all controlled vocabularies used within your submission forms (submission-forms.xml) will be enabled in the Browse By menu of the
User Interface. If you wish to disable any from display in the UI, you can list them in this configuration. Multiple values can be comma separated
(or this config can be repeated). Changes to this configuration will not take effect until your servlet engine (e.g. Tomcat) is restarted.

Other Browse Options

We set other browse values in the following section.

Pro
pert
y:

webui.browse.metadata.show-freq. < n >

Exa
mpl
e
Val
ue:

webui.browse.metadata.show-freq.1 = false

Info
rma
tion
al
Not
e:

This enable/disable the show of frequencies (count) in metadata browse refers to the browse configuration. As default frequencies are <n>
shown for all metadata browse

Pro
pert
y:

plugin.named.org.dspace.sort.OrderFormatDelegate

Exa
mpl
e
Val
ue:

plugin.named.org.dspace.sort.OrderFormatDelegate = \
org.dspace.sort.OrderFormatTitleMarc21=title

826

https://wiki.lyrasis.org/display/DSDOC7x/Browse#Browse-BrowseBySubjectCategory

Info
rma
tion
al
Not
e:

This sets the option for how the indexes are sorted. All sort normalizations are carried out by the OrderFormatDelegate. The plugin manager can
be used to specify your own delegates for each datatype. The default datatypes (and delegates) are:

author = org.dspace.sort.OrderFormatAuthor
title = org.dspace.sort.OrderFormatTitle
text = org.dspace.sort.OrderFormatText

If you redefine a default datatype here, the configuration will be used in preferences to the default. However, if you do not explicitly redefine a
datatype, then the default will still be used in addition to the datatypes you do specify. As of DSpace release 1.5.2, the multi-lingual MARC21 title
ordering is configured as default, as shown in the example above. To use the previous title ordering (before release 1.5.2), comment out the
configuration in your file.dspace.cfg

Browse Index Authority Control Configuration

Property: webui.browse.index.< >n

Example Value: webui.browse.index.5 = lcAuthor:metadataAuthority:dc.contributor.author:authority

Informational Note:

Tag cloud

Apart from the single (type=metadata) and full (type=item) browse pages, tag cloud is a new way to display the unique values of a metadata field.

To enable “tag cloud” browsing for a specific index you need to declare it in the dspace.cfg configuration file using the following option:

Property: webui.browse.index.tagcloud. <n>

Example Value: webui.browse.index.tagcloud.1 = true

Informational
Note:

 Enable/Disable tag cloud in browsing for a specific index. ‘n’ is the index number of the specific index which needs to be of type
‘metadata’.

Possible values: true, false

Default value is false.

If no option exists for a specific index, it is assumed to be false.

You do not have to re-index discovery when you change this configuration

UNSUPPORTED in DSpace 7.0

Tag cloud configuration

The appearance configuration for the tag cloud is located in the Discovery xml configuration file (). Without dspace/config/spring/api/discovery.xml
configuring the appearance, the default one will be applied to the tag cloud

In this file, there must be a bean named “ ” of class “ ”. This bean browseTagCloudConfiguration org.dspace.discovery.configuration.TagCloudConfiguration
can have any of the following properties. If some is missing, the default value will be applied.

displayScore Should display the score of each tag next to it? Default: false

shouldCenter Should display the tag as center aligned in the page or left aligned? Possible values: true | false. Default: true

totalTags How many tags will be shown. Value -1 means all of them. Default: -1

cloudCase The letter case of the tags.

Possible values: Case.LOWER | Case.UPPER | Case.CAPITALIZATION | Case.PRESERVE_CASE | Case.CASE_SENSITIVE

Default: Case.PRESERVE_CASE

randomColo
rs

If the 3 css classes of the tag cloud should be independent of score (random=yes) or based on the score. Possible values: true | false .
Default: true

fontFrom The font size (in em) for the tag with the lowest score. Possible values: any decimal. Default: 1.1

fontTo The font size (in em) for the tag with the lowest score. Possible values: any decimal. Default: 3.2

cuttingLevel The score that tags with lower than that will not appear in the rag cloud. Possible values: any integer from 1 to infinity. Default: 0

827

ordering The ordering of the tags (based either on the name or the score of the tag)

Possible values: Tag.NameComparatorAsc | Tag.NameComparatorDesc | Tag.ScoreComparatorAsc | Tag.ScoreComparatorDesc

Default: Tag.GreekNameComparatorAsc

When tagCloud is rendered there are some CSS classes that you can change in order to change the tagcloud appearance.

Class Note

tagcloud General class for the whole tagcloud

tagcloud_1 Specific tag class for tag of type 1 (based on score)

tagcloud_2 Specific tag class for tag of type 2 (based on score)

tagcloud_3 Specific tag class for tag of type 3 (based on score)

Links to Other Browse Contexts

We can define which fields link to other browse listings. This is useful, for example, to link an author's name to a list of just that author's items. The effect
this has is to create links to browse views for the item clicked on. If it is a "single" type, it will link to a view of all the items which share that metadata
element in common (i.e. all the papers by a single author). If it is a "full" type, it will link to a view of the standard full browse page, starting with the value of
the link clicked on.

Prop
erty:

webui.browse.link.< >n

Exa
mple
Valu
e:

webui.browse.link.1 = author:dc.contributor.*

Infor
mati
onal
Note:

This is used to configure which fields should link to other browse listings. This should be associated with the name of one of the browse indexes (
) with a metadata field listed in above. If this condition is not fulfilled, cross-linking will webui.browse.index.n webui.itemlist.columns

not work. Note also that crosslinking only works for metadata fields not tagged as in .title webui.itemlist.columns

The format of the property key is Please notice the punctuation used between the webui.browse.link.<n> = <index name>:<display column metadata>
elements.

Element Definition and Options (if available)

webui.browse.link. n {{ is an arbitrary number you choosen

<index name> This need to match your entry for the index name from property key.webui.browse.index

<display column metadata> Use the DC element (and qualifier)

Examples of some browse links used in a real DSpace installation instance:

webui.browse.link.1 = author:dc.contributor.*
Creates a link for all types of contributors (authors, editors,
illustrators, others, etc.)
webui.browse.link.2 = subject:dc.subject.lcsh
Creates a link to subjects that are Library of Congress only.
In this case, you have a browse index that contains only LC
Subject Headings
webui.browse.link.3 = series:dc.relation.ispartofseries
Creates a link for the browse index "Series". Please note this
is again, a customized browse index and not part of the
DSpace distributed release.

Submission License Substitution Variables

Property:
plugin.named.org.dspace.content.license.
 LicenseArgumentFormatter

(property key broken up for display purposes only)

828

Example Value:
plugin.named.org.dspace.content.license.LicenseArgumentFormatter = \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = collection, \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = item, \
 org.dspace.content.license.SimpleDSpaceObjectLicenseFormatter = eperson

Informational
Note:

It is possible include contextual information in the submission license using substitution variables. The text substitution is driven by a
plugin implementation.

Syndication Feed (RSS) Settings
Supported as of 7.3 and above.

Please note that Syndication (RSS/Atom) feeds that is enabled to function. When enabled, a syndication feed will be available on the require OpenSearch
DSpace homepage (for entire site), and on each community/collection homepage (specific to that community/collection). Because Syndication Feeds use
OpenSearch, all OpenSearch settings also apply to Syndication Feeds.

Pro
pert
y:

websvc.opensearch.enable

Exa
mpl
e
Val
ue:

webui.opensearch.enable = true

Info
rma
tion
al
Not
e:

By default, OpenSearch & Syndication feeds are set to true (on) . Change key to "false" to disable. NOTE this setting affects OpenSearch
Support as well

Pro
pert
y:

webui.feed.localresolve

Exa
mpl
e
Val
ue:

webui.feed.localresolve = false

Info
rma
tion
al
Not
e:

By default, (set to false), URLs returned by the feed will point at the global handle resolver (e.g.). If set to thhttp://hdl.handle.net/123456789/1 true
e local server URLs are used (e.g.).http://myserver.myorg/handle/123456789/1

Pro
pert
y:

webui.feed.item.title

Exa
mpl
e
Val
ue:

webui.feed.item.title = dc.title

Info
rma
tion
al
Not
e:

This property customizes each single-value field displayed in the feed information for each item. Each of the fields takes a metadata field. single
The form of the key is <scheme prefix>.<element>.<qualifier> In place of the qualifier, one may leave it blank to exclude any qualifiers or use the
wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.date

829

http://hdl.handle.net/123456789/1
http://myserver.myorg/handle/123456789/1

Exa
mpl
e
Val
ue:

webui.feed.item.date = dc.date.issued

Info
rma
tion
al
Not
e:

This property customizes each single-value field displayed in the feed information for each item. Each of the fields takes a metadata field. single
The form of the key is <scheme prefix>.<element>.<qualifier> In place of the qualifier, one may leave it blank to exclude any qualifiers or use the
wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.description

Exa
mpl
e
Val
ue:

webui.feed.item.description = dc.title, dc.contributor.author, \
 dc.contributor.editor, dc.description.abstract, \
 dc.description

Info
rma
tion
al
Not
e:

One can customize the metadata fields to show in the feed for each item's description. Elements are displayed in the order they are specified in ds
.Like other property keys, the format of this property key is: . In pace.cfg webui.feed.item.description = <scheme prefix>.<element>.<qualifier>

place of the qualifier, one may leave it blank to exclude any qualifiers or use the wildcard "*" to include all qualifiers for a particular element.

Pro
pert
y:

webui.feed.item.author

Exa
mpl
e
Val
ue:

webui.feed.item.author = dc.contributor.author

Info
rma
tion
al
Not
e:

The name of field to use for authors (Atom only); repeatable.

Pro
pert
y:

webui.feed.logo.url

Exa
mpl
e
Val
ue:

webui.feed.logo.url = ${dspace.url}/themes/mysite/images/mysite-logo.png

Info
rma
tion
al
Not
e:

Customize the image icon included with the site-wide feeds. This must be an absolute URL.

Pro
pert
y:

webui.feed.item.dc.creator

Exa
mpl
e
Val
ue:

webui.feed.item.dc.creator = dc.contributor.author

830

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.item.dc.date

Exa
mpl
e
Val
ue:

webui.feed.item.dc.date = dc.date.issued

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.item.dc.description

Exa
mpl
e
Val
ue:

webui.feed.item.dc.description = dc.description.abstract

Info
rma
tion
al
Not
e:

This optional property adds DC elements as XML elements to the feed description. They are not the same thing as, for example, structured webui.
. Useful when a program or stylesheet will be transforming a feed and wants separate author, description, date, etc.feed.item.description

Pro
pert
y:

webui.feed.podcast.collections

Exa
mpl
e
Val
ue:

webui.feed.podcast.collections = 1811/45183,1811/47223

Info
rma
tion
al
Not
e:

This optional property enables Podcast Support on the RSS feed for the specified collection handles. The podcast is iTunes compatible and will
expose the bitstreams in the items for viewing and download by the podcast reader. Multiple values are separated by commas. For more on using
/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.communities

Exa
mpl
e
Val
ue:

webui.feed.podcast.communities = 1811/47223

Info
rma
tion
al
Not
e:

This optional property enables Podcast Support on the RSS feed for the specified community handles. The podcast is iTunes compatible and will
expose the bitstreams in the items for viewing and download by the podcast reader. Multiple values are separated by commas. For more on using
/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.mimetypes

831

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Enable+Media+RSS+Feeds
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Enable+Media+RSS+Feeds

Exa
mpl
e
Val
ue:

webui.feed.podcast.mimetypes = audio/x-mpeg,application/pdf

Info
rma
tion
al
Not
e:

This optional property for Podcast Support, allows you to choose which MIME types of bitstreams are to be enclosed in the podcast feed. Multiple
values are separated by commas. For more on using/enabling Media RSS Feeds to share content via iTunesU, see: Enable Media RSS Feeds

Pro
pert
y:

webui.feed.podcast.sourceuri

Exa
mpl
e
Val
ue:

webui.feed.podcast.sourceuri = dc.source.uri

Info
rma
tion
al
Not
e:

This optional property for the Podcast Support will allow you to use a value for a metadata field as a replacement for actual bitstreams to be
enclosed in the RSS feed. A use case for specifying the external sourceuri would be if you have a non-DSpace media streaming server that has a
copy of your media file that you would prefer to have the media streamed from. For more on using/enabling Media RSS Feeds to share content
via iTunesU, see: Enable Media RSS Feeds

OpenSearch Support

OpenSearch is a small set of conventions and documents for describing and using "search engines", meaning any service that returns a set of results for a
query. See extensive description in the of the documentation.Business Layer section

Please note that that OpenSearch is enabled to function.RSS/Atom feeds require

OpenSearch uses all the configuration properties for DSpace RSS to determine the mapping of metadata fields to feed fields. Note that a new field for
authors has been added (used in Atom format only).

Property: websvc.opensearch.enable

Example
Value:

websvc.opensearch.enable = true/false

Information
al Note:

Whether or not OpenSearch is enabled. By default, the feature is enabled to support RSS/Atom feeds. Change to "false" to disable.

Property: websvc.opensearch.svccontext

Example
Value:

websvc.opensearch.svccontext = opensearch

Information
al Note:

The URL path where OpenSearch is made available on the backend. For example, "opensearch" means it is available at ${dspace.
server.url}/opensearch

Property: websvc.opensearch.uicontext

Example
Value:

websvc.opensearch.uicontext = simple-search

Information
al Note:

Context for HTML request URLs. Change only for non-standard servlet mapping.

Property: websvc.opensearch.autolink

Example
Value:

websvc.opensearch.autolink = true

Information
al Note:

Present autodiscovery link in every page head.

Property: websvc.opensearch.validity

Example
Value:

websvc.opensearch.validity = 48

832

https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Enable+Media+RSS+Feeds
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Enable+Media+RSS+Feeds
https://opensearch.org/

Information
al Note:

Number of hours to retain results before recalculating. This applies to the Manakin interface only.

Property: websvc.opensearch.shortname

Example
Value:

websvc.opensearch.shortname = DSpace

Information
al Note:

A short name used in browsers for search service. It should be sixteen (16) or fewer characters.

Property: websvc.opensearch.longname

Example
Value:

websvc.opensearch.longname = ${dspace.name}

Information
al Note:

A longer name up to 48 characters.

Property: websvc.opensearch.description

Example
Value:

websvc.opensearch.description = ${dspace.name} DSpace repository

Information
al Note:

Brief service description

Property: websvc.opensearch.faviconurl

Example
Value:

websvc.opensearch.faviconurl = http://www.dspace.org/images/favicon.ico

Information
al Note:

Location of favicon for service, if any. They must by 16 x 16 pixels. You can provide your own local favicon instead of the default.

Property: websvc.opensearch.samplequery

Example
Value:

websvc.opensearch.samplequery = photosynthesis

Information
al Note:

Sample query. This should return results. You can replace the sample query with search terms that should actually yield results in your
repository.

Property: websvc.opensearch.tags

Example
Value:

websc.opensearch.tags = IR DSpace

Information
al Note:

Tags used to describe search service.

Property: websvc.opensearch.formats

Example
Value:

websvc.opensearch.formats = html,atom,rss

Information
al Note:

Result formats offered. Use one or more comma-separated from the list: html, atom, rss. Please note that html is required for auto
discovery in browsers to function, and must be the first in the list if present.

Content Inline Disposition Threshold / Format

The following configurations may be used to change the disposition behavior of the browser. This allows you to specify when a file (bitstream) in DSpace
should be downloaded, or attempt to be opened in a user's browser.

Prope
rty:

webui.content_disposition_threshold

Exam
ple
value:

webui.content_disposition_threshold = 8388608

Infor
matio
nal
Note:

The default filesize is set to 8MB. When a file/bitstream being viewed is larger than 8MB, the user's browser will download the file to their local
machine and the user will have to open it manually. All files smaller than this threshold will be sent "inline" to the user's browser, allowing the
browser to decide whether to open it within the browser or download it.

The value provided is always in bytes. For example: 4 MB = 4194304, 8 MB = 8388608, 16 MB = 16777216

NOTE: This threshold is only applied if the file/bitstream does NOT match the below "webui.content_disposition_format" list.

833

Prope
rty:

webui.content_disposition_format

Exam
ple
value:

webui.content_disposition_format = text/html, text/richtext

Infor
matio
nal
Note:

Set which file mimetypes or file extensions will be forced to download, regardless of the "threshold" set above. Multiple values may be provided
by setting this property several times, or by passing it a comma-separated list.

For example, setting this to "text/html, text/richtext" will ensure that all files/bitstreams matching those MIME Types will always be downloaded
(and never open inline in the user's browser).

File extensions may also be used to reference formats. For example, setting "pdf, xls" will ensure all files ending in ".pdf" or ".xls" will always be
downloaded.

Multi-file HTML Document/Site Settings

The setting is used to configure the "depth" of request for html documents bearing the same name.

Pr
op
ert
y:

webui.html.max-depth-guess

Ex
a
m
pl
e
V
al
ue:

webui.html.max-depth-guess = 3

Inf
or
m
ati
on
al
N
ot
e:

When serving up composite HTML items in the UI, how deep can the request be for us to serve up a file with the same name? For example, if one
receives a request for " " and one has a bitstream called just " ", DSpace will serve up the former bitstream (foo/bar/index.html index.html foo/bar

) for the request if is 2 or greater. If is 1 or less, then DSpace would not serve /index.html webui.html.max-depth-guess webui.html.max-depth-guess
that bitstream, as the depth of the file is greater. If webui.html.max-depth-guess is zero, the request filename and path must always exactly match
the bitstream name. The default is set to 3.

UNSUPPORTED IN DSpace 7.0

Sitemap Settings

To aid web crawlers index the content within your repository, you can make use of sitemaps. For best SEO, Sitemaps are enabled by default and update
automatically (see cron setting).

Pro
per
ty:

sitemap.dir

Ex
am
ple
Val
ue:

sitemap.dir = ${dspace.dir}/sitemaps

Inf
or
ma
tio
nal
Not
e:

The directory where the generate sitemaps are stored.

Pro
per
ty:

sitemap.engineurls

Ex
am
ple
Val
ue:

sitemap.engineurls = http://www.google.com/webmasters/sitemaps/ping?sitemap=

834

http://www.google.com/webmasters/sitemaps/ping?sitemap=_

Inf
or
ma
tio
nal
Not
e:

Comma-separated list of search engine URLs to "ping" when a new Sitemap has been created. Include everything except the Sitemap UL itself
(which will be URL-encoded and appended to form the actual URL "pinged").Add the following to the above parameter if you have an application
ID with Yahoo: http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_ . (Replace the component

 with your application ID). There is no known "ping" URL for MSN/Live search._REPLACE_ME

Pro
per
ty:

sitemap.cron

Ex
am
ple
Val
ue:

sitemap.cron = 0 15 1 * * ?

Inf
or
ma
tio
nal
Not
e:

The DSpace sitemaps are regenerated on a regular basis based on the Cron syntax provided in this configuration. By default, sitemaps are
updated daily at 1:15am local time. Cron syntax is defined at https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html Remove
(comment out) this config to disable the sitemap scheduler. Sitemap scheduler can also be disabled by setting to "-" (single dash) in local.cfg.

Authority Control Settings

Two features fall under the header of Authority Control: Choice Management and Authority Control of Item ("DC") metadata values. Authority control is a
fully optional feature in DSpace 1.6. Implemented out of the box are the Library of Congress Names service, and the Sherpa Romeo authority plugin.

For an in-depth description of this feature, please consult: Authority Control of Metadata Values

Prop
erty:

plugin.named.org.dspace.content.authority.ChoiceAuthority

Exam
ple
Value:

plugin.named.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.SampleAuthority = Sample, \
 org.dspace.content.authority.SHERPARoMEOPublisher = SRPublisher, \
 org.dspace.content.authority.SHERPARoMEOJournalTitle = SRJournalTitle, \
 org.dspace.content.authority.SolrAuthority = SolrAuthorAuthority

Infor
matio
nal
Note:

List of all enabled authority control plugins

Prop
erty:

plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority

Exam
ple
Value:

plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority = \
 org.dspace.content.authority.DCInputAuthority

Prop
erty:

lcname.url

Exam
ple
Value:

lcname.url = http://alcme.oclc.org/srw/search/lcnaf_

Infor
matio
nal
Note:

Location (URL) of the Library of Congress Name Service

Prop
erty:

sherpa.romeo.url / sherpa.romeo.apikey

835

http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/CronTrigger.html
https://wiki.lyrasis.org/pages/createpage.action?spaceKey=DSPACE&title=Authority+Control+of+Metadata+Values
http://alcme.oclc.org/srw/search/lcnaf_

Infor
matio
nal
Note:

Please refers to the Sherpa/RoMEO Publishers Policy Database Integration section for details about such properties. See Configuring the
Sherpa/RoMEO Publishers Policy Database Integration

Prop
erty:

orcid.api.url

Exam
ple
Value:

orcid.api.url = https://pub.orcid.org/v3.0

Infor
matio
nal
Note:

Location (URL) of the ORCID v3 Public API

Prop
erty:

authority.minconfidence

Exam
ple
Value:

authority.minconfidence = ambiguous

Infor
matio
nal
Note:

This sets the default lowest confidence level at which a metadata value is included in an authority-controlled browse (and search) index. It is a
symbolic keyword, one of the following values (listed in descending order): accepted, uncertain, ambiguous, notfound, failed, rejected, novalue,
unset. See source for descriptions.org.dspace.content.authority.Choices

Configuring Multilingual Support

See for more details/examples.Multilingual Support

Setting the Default Language for the Application

Prope
rty:

default.locale

Exam
ple
Value:

default.locale = en

Infor
matio
nal
Note:

The default language for the application is set with this property key. This is a locale according to i18n and might consist of country,
country_language or country_language_variant. If no default locale is defined, then the server default locale will be used. The format of a local
specifier is described here: http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html

Supporting More Than One Language

Changes in dspace.cfg

Property: webui.supported.locales

Example Value: webui.supported.locales = en, de

or perhaps webui.supported.locales = en, en_ca, de

Informational Note: All the locales that are supported by this instance of DSpace. Comma separated list.
UNSUPPORTED IN DSpace 7.0.

However, the DSpace 7 UI has a similar "languages" setting in environment.*.ts

The table above, if needed and is used will result in:

a language switch in the default header
the user will be enabled to choose his/her preferred language, this will be part of his/her profile
wording of emails

mails to registered users, e.g. alerting service will use the preferred language of the user
mails to unregistered users, e.g. suggest an item will use the language of the session

according to the language selected for the session, using dspace-admin Edit News will edit the news file of the language according to session

Related Files

If you set webui.supported.locales make sure that all the related additional files for each language are available. should correspond to the locale LOCALE
set in , e. g.: for webui.supported.locales = en, de, fr, there should be:webui.supported.locales

836

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html

[dspace-source]/dspace/modules/server/src/main/resources/Messages.properties
[dspace-source]/dspace/modules/server/src/main/resources/Messages_en.properties
[dspace-source]/dspace/modules/server/src/main/resources/Messages_de.properties
[dspace-source]/dspace/modules/server/src/main/resources/Messages_fr.properties
Files to be localized:

[dspace-source]/dspace/modules/server/src/main/resources/Messages_LOCALE.properties
[dspace-source]/dspace/config/submission-forms_LOCALE.xml
[dspace-source]/dspace/config/default_LOCALE.license - should be pure ASCII
[dspace-source]/dspace/config/emails/change_password_LOCALE
[dspace-source]/dspace/config/emails/feedback_LOCALE
[dspace-source]/dspace/config/emails/internal_error_LOCALE
[dspace-source]/dspace/config/emails/register_LOCALE
[dspace-source]/dspace/config/emails/submit_archive_LOCALE
[dspace-source]/dspace/config/emails/submit_reject_LOCALE
[dspace-source]/dspace/config/emails/submit_task_LOCALE
[dspace-source]/dspace/config/emails/subscription_LOCALE
[dspace-source]/dspace/config/emails/suggest_LOCALE

Upload File Settings

Property: upload.temp.dir

Example Value: upload.temp.dir = ${dspace.dir}/upload

Informational Note: This property sets where DSpace temporarily stores uploaded files.

SFX Server (OpenURL)

SFX Server is an OpenURL Resolver.

Property: sfx.server.url

Example Value: sfx.server.url = http://sfx.myu.edu:8888/sfx?

sfx.server.url = http://worldcatlibraries.org/registry/gateway?

Informational Note: SFX query is appended to this URL. If this property is commented out or omitted, SFX support is switched off.

All the parameters mapping are defined in file. The program will check the parameters in and retrieve the correct [dspace]/config/sfx.xml sfx.xml
metadata of the item. It will then parse the string to your resolver.

For the following example, the program will search the first query-pair which is DOI of the item. If there is a DOI for that item, your retrieval results will be,
for example:
http://researchspace.auckland.ac.nz/handle/2292/5763

Example. For setting DOI in sfx.xml

<query-pairs>
 <field>
 <querystring>rft_id=info:doi/</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>identifier</dc-element>
 <dc-qualifier>doi</dc-qualifier>
 </field>
</query-pairs>

If there is no DOI for that item, it will search next query-pair based on the and then so on.[dspace]/config/sfx.xml

Example of using ISSN, volume, issue for item without DOI
[http://researchspace.auckland.ac.nz/handle/2292/4947]

For parameter passing to the <querystring>

<querystring>rft_id=info:doi/</querystring>

Please refer to these:
 [http://ocoins.info/cobgbook.html]

[http://ocoins.info/cobg.html]

Program assume won't get empty string for the item, as there will at least author, title for the item to pass to the resolver.

837

http://sfx.myu.edu:8888/sfx
http://worldcatlibraries.org/registry/gateway
http://researchspace.auckland.ac.nz/handle/2292/5763

For contributor author, program maintains original DSpace SFX function of extracting author's first and last name.

<field>
 <querystring>rft.aulast=</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>contributor</dc-element>
 <dc-qualifier>author</dc-qualifier>
</field>
<field>
 <querystring>rft.aufirst=</querystring>
 <dc-schema>dc</dc-schema>
 <dc-element>contributor</dc-element>
 <dc-qualifier>author</dc-qualifier>
</field>

Controlled Vocabulary Settings

DSpace now supports controlled vocabularies to confine the set of keywords that users can use while describing items.

The need for a limited set of keywords is important since it eliminates the ambiguity of a free description system, consequently simplifying the task of
finding specific items of information.

The controlled vocabulary add-on allows the user to choose from a defined set of keywords organized in an tree (taxonomy) and then use these keywords
to describe items while they are being submitted.

We have also developed a small search engine that displays the classification tree (or taxonomy) allowing the user to select the branches that best
describe the information that he/she seeks.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 </isComposedBy>
 </node>
 </isComposedBy>
</node>

You are free to use any application you want to create your controlled vocabularies. A simple text editor should be enough for small projects. Bigger
projects will require more complex tools. You may use Protegé to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to
transform your documents to the appropriate format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL
or RDF.

New vocabularies should be placed in and must be according to the structure described. A [dspace]/config/controlled-vocabularies/
validation XML Schema (named) is also available in that directory.controlledvocabulary.xsd

Vocabularies need to be associated with the correspondent DC metadata fields. Edit the file and place a [dspace]/config/input-forms.xml "vocabu
 tag under the element that you want to control. Set value of the element to the name of the file that contains the vocabulary, lary" "field" "vocabulary"

leaving out the extension (the add-on will only load files with extension "*.xml"). For example:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <!-- An input-type of twobox MUST be marked as repeatable -->
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>twobox</input-type>
 <hint> Enter appropriate subject keywords or phrases below. </hint>
 <required></required>
 <vocabulary [closed="false"]>nsi</vocabulary>
</field>

838

The vocabulary element has an optional boolean attribute that can be used to force input only with the JavaScript of controlled-vocabulary add-on. closed
The default behavior (i.e. without this attribute) is as set . This allow the user also to enter the value in free way.closed="false"

The following vocabularies are currently available by default:

nsi - - The Norwegian Science Indexnsi.xml
srsc - - Swedish Research Subject Categoriessrsc.xml

Optional or Advanced Configuration Settings

The following section explains how to configure either optional features or advanced features that are not necessary to make DSpace "out-of-the-box"

The Metadata Format and Bitstream Format Registries

The directory contains three XML files. These are used to load the contents of the Dublin Core Metadata registry and [dspace]/config/registries initial
Bitstream Format registry and SWORD metadata registry. After the initial loading (performed by above), the registries reside in the ant fresh_install
database; the XML files are not updated.

In order to change the registries, you may adjust the XML files before the first installation of DSpace. On an already running instance it is recommended to
change bitstream registries via DSpace admin UI, but the metadata registries can be loaded again at any time from the XML files without difficulty. The
changes made via admin UI are not reflected in the XML files.

Metadata Format Registries

The default metadata schema is Dublin Core, so DSpace is distributed with a default Dublin Core Metadata Registry. Currently, the system requires that
every item have a Dublin Core record.

There is a set of Dublin Core Elements, which is used by the system and should not be removed or moved to another schema. See Appendix: Default
Dublin Core Metadata registry.

Note: altering a Metadata Registry has no effect on corresponding parts, e.g. item submission interface, item display, item import and vice versa. Every
metadata element used in submission interface or item import must be registered before using it.

Note also that deleting a metadata element will delete all its corresponding values.

If you wish to add more metadata elements, you can do this in one of two ways. Via the DSpace admin UI you may define new metadata elements in the
different available schemas. But you may also modify the XML file (or provide an additional one), and re-import the data as follows:

[dspace]/bin/dspace registry-loader -metadata [xml file]

The XML file should be structured as follows:

<dspace-dc-types>
 <dc-type>
 <schema>dc</schema>
 <element>contributor</element>
 <qualifier>advisor</qualifier>
 <scope_note>Use primarily for thesis advisor.</scope_note>
 </dc-type>
</dspace-dc-types>

The set of metadata registry files which is read by the MetadataImporter tool is configured by the property in metadata.registry.load dspace.cfg
or . If you wish to use the importer to load a new metadata namespace from a new file, you will need to add the path to your new registry file local.cfg
as an additional value of this property before running the tool.

Bitstream Format Registry

The bitstream formats recognized by the system and levels of support are similarly stored in the bitstream format registry. This can also be edited at install-
time via or by the administration Web UI. The contents of the bitstream format registry are entirely up to [dspace]/config/registries/bitstream-formats.xml
you, though the system requires that the following two formats are present:

Unknown
License
Deleting a format will cause any existing bitstreams of this format to be reverted to the unknown bitstream format.

Configuring Usage Instrumentation Plugins

A usage instrumentation plugin is configured as a Spring bean in the applicationContext.xml for each of the various user interface web applications. It will
require the injection of an instance of EventService, which it will use to register itself on the UsageEvent bus. See the configuration file for examples.

839

More than one such plugin may be configured – each will receive all usage events.

If you wish to write your own, it must extend the abstract class org.dspace.usage.AbstractUsageEventListener.

The Passive Plugin

The Passive plugin is provided as the class org.dspace.usage.PassiveUsageEventListener. It absorbs events without effect, and serves as a simple
example of how to write a UsageEvent listener.

The Tab File Logger Plugin

The Tab File Logger plugin is provided as the class org.dspace.usage.TabFileUsageEventListener. It writes event records to a file in tab-separated column
format. If left unconfigured, it will write to . To specify the file path, provide an absolute path, or a path relative to log.[DSpace]/log/usage-events.tsv
dir, as the value for usageEvent.tabFileLogger.file in dspace.cfg.

Behavior of the workflow system

DSpace contains a workflow system to review submissions as described in detail as part of the and in architecture of the business logic layer Configurable
. The file contains additional properties to configure details of the workflow system.Workflow [dspace]/config/modules/workflow.cfg

The property controls whether files may be added/edited/removed during review (set to true) or whether files can be workflow.reviewer.file-edit
downloaded during review only.

[dspace]/config/modules/workflow.cfg

#Allow the reviewers to add/edit/remove files from the submission
#When changing this property you might want to alert submitters in the license that reviewers can alter their
files
workflow.reviewer.file-edit=false

The workflow system will send notifications on new Items waiting to be reviewed to all EPersons that may resolve those. Tasks can be taken to avoid that
two EPersons work on the same task at the same time without knowing from each other. When a EPerson returns a task to the pool without resolving it (by
accepting or rejecting the submission), another E-Mail is sent. In case you only want to be notified of completely new tasks entering a step of the workflow
system, you may switch off notifications on tasks returned to the pool by setting workflow.notify.returend.tasks to false in config/modules/workflow.cfg as
shown below:

[dspace]/config/modules/workflow.cfg

Notify reviewers about tasks returned to the pool
workflow.notify.returned.tasks = false

By default notifications are sent for tasks returned to the pool.

Recognizing Web Spiders (Bots, Crawlers, etc.)

DSpace can often recognize that a given access request comes from a web spider that is indexing your repository. These accesses can be flagged for
separate treatment (perhaps exclusion) in usage statistics. This requires patterns to match against incoming requests. These patterns exist in files that
you will find in .config/spiders

In the directory itself, you will find a number of files provided by iplists.com. These files contain network address patterns which have been spiders
discovered to identify a number of known indexing services and other spiders. You can add your own files here if you wish to exclude more addresses that
you know of. You will need to include your files' names in the list configured in . The config/modules/solr-statistics.cfg iplists.com-*.txt
files can be updated using a tool provided by DSpace. See for details.SOLR Statistics

In the directory you will also find two subdirectories. contains files filled with regular expressions, one per line. An incoming request's spiders agents Us
 header is tested with each expression found in any of these files until an expression matches. If there is a match, the request is marked as er-Agent

being from a spider, otherwise not. similarly contains files filled with regular expressions which are used to test the domain name from which the domains
request comes. You may add your own files of regular expressions to either directory if you wish to test requests with patterns of your own devising.

Command-line Access to Configuration Properties

You can resolve a configuration property name to its value using the command . The output is dspace dsprop -p some.property.name
undecorated and may be suitable for use in scripts.

The dsprop command has these options:

840

name argument meaning

--
property

-p

name the name of the desired configuration property. This option is required.

--
module

-m

name the name of the module in which the property is found. If omitted, the value of --property is the entire name. If used, the name
will be composed as module.property. For example, " " will look up the value of .-m dspace -p url dspace.url

--raw

-r

if used, this prevents the substitution of other property values into the value of the requested property.

It is also useful to see all of the propery values when a specific property has an (i.e. the configuration supports array of values
specifying multiple values). Otherwise, by default , dsprop may only return the first value in the array.

--help

-h

-?

Display help similar to this table.

841

Directories and Files

1 Overview
2 Source Directory Layout
3 Installed Directory Layout
4 Contents of Server Web Application
5 Log Files

5.1 log4j2.xml File.

Overview

A complete DSpace installation consists of three separate directory trees:

The source directory:: This is where (surprise!) the source code lives. Note that the config files here are used only during the initial install
process. After the install, config files should be changed in the install directory. It is referred to in this document as .[dspace-source]
The install directory:: This directory is populated during the install process and also by DSpace as it runs. It contains config files, command-line
tools (and the libraries necessary to run them), and usually -- although not necessarily -- the contents of the DSpace archive (depending on how
DSpace is configured). After the initial build and install, changes to config files should be made in this directory. It is referred to in this document
as .[dspace]
The web deployment directory:: This directory is generated by the web server the first time it finds a dspace.war file in its webapps directory. It
contains the unpacked contents of dspace.war, i.e. the JSPs and java classes and libraries necessary to run DSpace. Files in this directory
should never be edited directly; if you wish to modify your DSpace installation, you should edit files in the source directory and then rebuild. The
contents of this directory aren't listed here since its creation is completely automatic. It is usually referred to in this document as [tomcat]/webapps

./dspace

Source Directory Layout

[dspace-source]
LICENSE - DSpace source code license.
README - Obligatory basic information file.
dspace/ - Directory which contains all build and configuration information for DSpace

bin/ - Some shell and Perl scripts for running DSpace command-line tasks. Primary among them is the 'dspace' commandline
utility
config/ - Configuration files:

local.cfg.EXAMPLE - an example " " file, which can be used to store all your local configuration overrides. See local.cfg
. Configuration Reference

controlled-vocabularies/ - Fixed, limited vocabularies used in metadata entry
crosswalks/ - Metadata crosswalks - property files or XSL stylesheets
emails/ - Text and layout templates for emails sent out by the system.
entities/ - Configuration files for Configurable Entities
modules/ - Configurations for modules / individual features within DSpace
registries/ - contents of the bitstream format registry and Dublin Core element/qualifier registry. These are only Initial
used on initial system setup, after which they are maintained in the database.
spring/ - Spring XML configurations used by DSpace for various features.
dspace.cfg - The Main fileDSpace configuration
dc2mods.cfg - Mappings from Dublin Core metadata to for the METS export.MODS
default.license - The default license that users must grant when submitting items.
dstat.cfg , - Configuration for statistical reports.dstat.map
submission-forms.xml , - item-submission.xml Submission UI configuration files

modules/ - The Web UI modules "overlay" directory. DSpace uses Maven to automatically look here for any customizations you
wish to make to DSpace Web interfaces. See also Advanced Customisation
solr/ - Solr configuration files for all Solr indexes used by DSpace.
src/ - Maven configurations for DSpace System. This directory contains the Maven and Ant build files for DSpace.
target/ - (Only exists after building DSpace) This is the location Maven uses to build your DSpace installation package.

dspace-installer- The location of the DSpace Installation Package (which can then be installed by running)ant update

The Source Release contains the following additional directories :-
dspace-api - Java API source module (to build the dspace-api.jar)
dspace-oai - source module (to build to dspace-oai.jar)OAI-PMH
dspace-rdf - source module (to build to dspace-rdf.jar)RDF
dspace-server-webapp - Primary backend webapp which hosts the , along with any other enabled modules (OAI, RDF, REST API
SWORD, etc).
dspace-services - Common Services module
dspace-sword - (Simple Web-service Offering Repository Deposit) deposit service source moduleSWORD
dspace-swordv2 - source moduleSWORDv2
pom.xml - DSpace Parent Project definition

Installed Directory Layout

Below is the basic layout of a DSpace installation using the default configuration. These paths can be configured if necessary.

[dspace]
assetstore/ - assetstore files. This is where all the files uploaded into DSpace are stored by default. See .Storage Layer

842

https://wiki.lyrasis.org/display/DSDOC8x/Configuration+Reference#ConfigurationReference-Thelocal.cfgConfigurationPropertiesFile
http://www.loc.gov/standards/mods/

bin/ - shell scripts for DSpace command-line tasks. Primary among them is the 'dspace' commandline utility
config/ - configuration, with sub-directories as above
etc/ - Administrative and database management files
exports/ - temporary storage for any export packages
handle-server/ - Handles server files and configuration
imports/ - temporary storage for any import packages
lib/ - JARs, including dspace-api.jar, containing the DSpace classes
log/ - Log files
reports/ - Reports generated by statistical report generator
solr/ - Solr search/browse indexes
triplestore/ - RDF triple store index files (when enabled)
upload/ - temporary directory used during file uploads etc.
webapps/ - location where DSpace installs all Web Applications

Contents of Server Web Application

DSpace's Ant build file creates a webapps/ directory with the following structure:server/

server/
index.html - Root page of the third party HAL Browser (used to browse/search)REST API
login.html - (Custom) Login page for HAL Browser (supporting DSpace authentication plugins)
js/ - Javascript overrides for HAL Browser (main HAL Browser code is brought in via Spring REST dependencies)

Log Files

The first source of potential confusion is the log files. Since DSpace uses a number of third-party tools, problems can occur in a variety of places. Below is
a table listing the main log files used in a typical DSpace setup. The locations given are defaults, and might be different for your system depending on
where you installed DSpace and the third-party tools. The ordering of the list is roughly the recommended order for searching them for the details about a
particular problem or error.

Log File What's In It

[dspace]
/log
/dspace.
log.yyyy-
mm-dd

Main DSpace log file. This is where the DSpace code writes a simple log of events and errors that occur within the DSpace code. You can
control the verbosity of this by editing the file and then running " ".[dspace-source]/config/templates/log4j.properties ant init_configs

[dspace]
/log
/handle-
plugin.log

The Handle server runs as a separate process from the DSpace Web UI (which runs under Tomcat's JVM). Due to a limitation of log4j's
'rolling file appenders', the DSpace code running in the Handle server's JVM must use a separate log file. The DSpace code that is run as
part of a Handle resolution request writes log information to this file. You can control the verbosity of this by editing [dspace-source]/config

./templates/log4j-handle-plugin.properties

[dspace]
/log
/handle-
server.log

This is the log file for CNRI's Handle server code. If a problem occurs within the Handle server code, before DSpace's plug-in is invoked,
this is where it may be logged.

[tomcat]
/logs
/catalina.
out

This is where Tomcat's standard output is written. Many errors that occur within the Tomcat code are logged here. For example, if Tomcat
can't find the DSpace code (), it would be logged in .dspace.jar catalina.out

[tomcat]
/logs
/hostname
_log.yyyy-
mm-dd.txt

If you're running Tomcat stand-alone (without Apache), it logs some information and errors for specific Web applications to this log file. hos
 will be your host name (e.g.) and will be the date.tname dspace.myu.edu yyyy-mm-dd

[tomcat]
/logs
/apache_lo
g.yyyy-mm-
dd.txt

If you're using Apache, Tomcat logs information about Web applications running through Apache () in this log file (mod_webapp yyyy-mm-
 being the date.)dd

[apache]
/error_log

Apache logs to this file. If there is a problem with getting working, this is a good place to look for clues. Apache also writes mod_webapp
to several other log files, though tends to contain the most useful information for tracking down problems.error_log

PostgreSQ
L log

PostgreSQL also writes a log file. This one doesn't seem to have a default location, you probably had to specify it yourself at some point
during installation. In general, this log file rarely contains pertinent information--PostgreSQL is pretty stable, you're more likely to
encounter problems with connecting via JDBC, and these problems will be logged in .dspace.log

log4j2.xml File.

843

the file controls how and where log files are created. There are three sets of configurations in that file, called A1, and A2. These [dspace]/config/log4j2.xml
are used to control the logs for DSpace (as a whole), and the checksum checker respectively. As implied by the name, this configuration use Log4j v2. For
more information on syntax, see https://logging.apache.org/log4j/2.x/manual/configuration.html

844

https://logging.apache.org/log4j/2.x/manual/configuration.html

1.
2.

DSpace Item State Definitions
Workspace item

An item that is under submission and active edit by an authorized user. The workspace item is visible only to the submitter and the system
administrators. (Currently there is no simple way to find/browse such items other than with the direct item ID or to use the supervisor functionality). Using
the , a system admin can allow other authorized user to see/edit the item in the workspace state.supervisor functionality

Expected use cases:

Self deposit
Collaboration over an in-progress submission for a small group of researchers. (This use case is implemented only with major limitations, using
the supervision feature – concurrency, lack of delegation: supervision must be defined by the system administrators, etc.)

Workflow Item

An item that is under review for quality control and policy compliance. The workflow item is visible to the original submitter (currently only basic metadata
are visible out-of-box in the mydspace summary list), users assigned to the specific workflow step where the item resides, and system
administrators. (Currently there is no simple way to find/browse such items other than with the direct item ID or to use the abort workflow functionality).

Expected use cases:

Quality control
Improvements to the bibliographic record (metadata available in workflow can be different than those asked of the submitter)
Check of policy / copyright

Withdrawn item

It is the removal of an Item from the archive. However, a withdrawn item is still available to Administrative users (and may optionally be restored to the
archive at a later date). A withdrawn item disappears from DSpace (except from Administrative screens) and the item appears to be deleted.

Expected use cases:

Staging area for item to be removed when copyright issues arise with publisher. If the copyright issue is confirmed, the item will be permanently
deleted or kept in the withdrawn state for future reference.
Logical deletion delegated to community/collection admin, where permanent deletion is reserved to system administrators
Logical deletion, where permanent deletion is not an option for an organization
Removal of an old version of an item, forcing redirect to a new up-to-date version of the item (this use case is not currently implemented out-of-
box in DSpace)

By design, withdrawing an item is reversible. As an administrator, you can reverse the withdrawing of an item, through the action "reinstate". As a
mechanism to support this, a resource policy state "WITHDRAWN_READ" was introduced.

When as item is withdrawn, all READ policies associated with the item and its underlying bundles and bitstreams, are changed into WITHDRAWN_READ
policies. This achieves 2 things:

The READ policy information in itself is still preserved, and can get switched back to normal READ policies if the item gets reinstated.
As long as the item is withdrawn, those WITHDRAWN_READ policies should not give any users or groups read rights.

WITHDRAWN_READ was introduced in after it was observed that even though an item was withdrawn, the related bitstreams were still DS-3097
accessible.

Non-Discoverable item (also known as Private item)

A non-discoverable (or "private") item is one that is simply from all search/browse/OAI results, and is therefore only accessible via direct link (or hidden
bookmark). By default, all Items are , meaning they will appear in search/browse/OAI results.discoverable

It's important to clarify that non-discoverable items It is possible for an Item to be anonymously visible, but non-may or may not be access restricted.
discoverable, so that you can only access the item if you are given a link to it.

This state should only refer to the discoverable nature of the item. A non-discoverable (or "private") item will not be included in any system that aims to
help users to find items. So it will not appear in:

Browse
Recent submission
Search result
OAI-PMH (at least for the ListRecords and ListIdentifiers verb; though the OAI-PMH specification is not clear about inconsistent implementation of
the ListRecords and GetRecord verb)
REST list and search methods

It should be accessible under the actual Authorization Policies of DSpace using direct URL or query method such as:

Splash page access (i.e. /handle/<xxxxx>/<yyyyy>)

845

https://github.com/DSpace/DSpace/commit/98ae2bd0713a374e367733d11de30012ef0689e2

OAI-PMH GetRecord verb
REST direct access /rest/item/<item-id> or equivalent

Expected use cases:

Provide a light rights awareness feature where discovery is not enabled for search and/or browse
Hide “special items” such as repository presentations, guides or support materials
Hide an old version of an Item in cases where real versioning is not appropriate or liked
Hide specific types of item such as “Item used to record Journal record: Journal Title, ISSN, Publisher etc.” used as authority file for metadata (dc.
relation.ispartof) of “normal item”

Archived/Published item

An item that is in a stable state, available in the repository under the defined Authorization Policies. Changes to these items are possible only for a
restricted group of users (administrators) and should produce versioning according to the Institution's policy.

Embargoed Item

Are a special case of Archived/Published Item. The item has some time based access policy attached to it and/or the underlying bitstreams. Specifically,
read permission for someone (EPerson Group) starting from a defined date. Typically embargo is applied to the bitstreams so that "fulltext" has initially
very limited access (normally administrators or other "repository staff" groups) and only after a defined date will the fulltext become visible to all users
(Anonymous group). This scenario is used to implement typical "embargo requirements" from publishers -- see .Delayed Open Access

If the metadata of the item should be visible only to a specific group of users, it is possible to define an embargo policy also for the ITEM itself. A READ
policy for a specific group will mean that only the users in that group will be able to access the item splash page. Note that the DSpace REST API & UI
is fully rights aware (see documentation for more information, especially the section on "Access Rights Awareness"), meaning that an Discovery
embargoed item is hidden automatically until the embargo expires.

846

https://wiki.lyrasis.org/display/DSDOC8x/Embargo#Embargo-Private/PublicItem
http://en.wikipedia.org/wiki/Delayed_open_access

Metadata and Bitstream Format Registries

1 Default Dublin Core Metadata Registry (DC)
2 Dublin Core Terms Registry (DCTERMS)
3 Local Metadata Registry (local)
4 Default Bitstream Format Registry

Default Dublin Core Metadata Registry (DC)

The default DSpace Dublin Core Metadata Registry was originally derived from the 15 Dublin Core elements. This registry initializes the default schema,
where is used to identify the namespace. As this registry is meant to track the Dublin Core standard, it's recommended that the local DSpace dc
administrator not add/remove metadata fields from this namespace; the "local" namespace should be used instead (see below).

element qualifier scope note

contributor A person, organization, or service responsible for the content of the resource. Catch-all for unspecified contributors.

contributor advisor Use primarily for thesis advisor.

contributor author¹ Author(s) of the work (used by default)

contributor editor

contributor illustrator

contributor other

coverage spatial Spatial characteristics of content.

coverage temporal Temporal characteristics of content.

creator May be used as an alternative to "contributor.author"

date Use qualified form if possible.

date accessioned¹ Date DSpace takes possession of item.

date available¹ Date or date range item became available to the public.

date copyright Date of copyright.

date created Date of creation or manufacture of intellectual content if different from date.issued.

date issued¹ Date of publication or distribution.

date submitted Recommend for theses/dissertations.

identifier Catch-all for unambiguous identifiers not defined by qualified form; use identifier.other for a known identifier common to
a local collection instead of unqualified form.

identifier citation² Human-readable, standard bibliographic citation of non-DSpace format of this item

identifier govdoc² A government document number

identifier isbn² International Standard Book Number

identifier issn² International Standard Serial Number

identifier sici Serial Item and Contribution Identifier

identifier ismn² International Standard Music Number

identifier other² A known identifier type common to a local collection.

identifier uri¹ Uniform Resource Identifier

description
¹

 Catch-all for any description not defined by qualifiers.

description abstract¹ Abstract or summary.

description provenance¹ The history of custody of the item since its creation, including any changes successive custodians made to it.

description sponsorship² Information about sponsoring agencies, individuals, or contractual arrangements for the item.

847

description statementofrespo
nsibility

To preserve statement of responsibility from MARC records.

description tableofcontents A table of contents for a given item.

description uri Uniform Resource Identifier pointing to description of this item.

format² Catch-all for any format information not defined by qualifiers.

format extent² Size or duration.

format medium² Physical medium.

format mimetype² Registered MIME type identifiers.

language Catch-all for non-ISO forms of the language of the item, accommodating harvested values.

language iso² Current ISO standard for language of intellectual content, including country codes (e.g. "en_US").

publisher² Entity responsible for publication, distribution, or imprint.

relation Catch-all for references to other related items.

relation isformatof References additional physical form.

relation ispartof References physically or logically containing item.

relation¹ ispartofseries Series name and number within that series, if available.

relation haspart References physically or logically contained item.

relation isversionof References earlier version.

relation hasversion References later version.

relation isbasedon References source.

relation isreferencedby Pointed to by referenced resource.

relation requires Referenced resource is required to support function, delivery, or coherence of item.

relation replaces References preceeding item.

relation isreplacedby References succeeding item.

relation uri References Uniform Resource Identifier for related item

rights Terms governing use and reproduction.

rights uri References terms governing use and reproduction.

source Do not use; only for harvested metadata.

source uri Do not use; only for harvested metadata.

subject² Uncontrolled index term.

subject classification Catch-all for value from local classification system. Global classification systems will receive specific qualifier

subject ddc Dewey Decimal Classification Number

subject lcc Library of Congress Classification Number

subject lcsh Library of Congress Subject Headings

subject mesh MEdical Subject Headings

subject other Local controlled vocabulary; global vocabularies will receive specific qualifier.

title¹ Title statement/title proper.

title alternative² Varying (or substitute) form of title proper appearing in item, e.g. abbreviation or translation

type¹ Nature or genre of content.

¹ Used by several functional areas of DSpace. DO NOT REMOVE WITHOUT INVESTIGATING THE CONSEQUENCES

² This field is included in the default DSpace . Removing this field from your registry will break the default DSpace submission Submission User Interface
form.

848

Dublin Core Terms Registry (DCTERMS)

The Dublin Core Terms (DCTERMS) registry was introduced in DSpace 4. This registry initializes an optional metadata schema, where is used to dcterms
identify the namespace. In DSpace 4, none of these fields are used by any of the system functionality out of the box. The registry and schema were added
as a first step to facilitate the future migration of the DSpace specific DC schema, to this schema that complies to current Dublin Core standards.

The main advantage of the DCTERMS schema is that no field name details gets lost during harvesting, as opposed to harvesting of so called "simple"
dublin core, where the qualifiers from the above schema are omitted during harvesting.

As this registry is meant to track the standard, it's recommended that the local DSpace administrator not add/remove metadata fields Dublin Core Terms
from this namespace; the "local" namespace should be used instead . (see below)

term scope note

abstract A summary of the resource.

accessRights Information about who can access the resource or an indication of its security status. May include information regarding access or
restrictions based on privacy, security, or other policies.

accrualMethod The method by which items are added to a collection.

accrualPeriod
icity

The frequency with which items are added to a collection.

accrualPolicy The policy governing the addition of items to a collection.

alternative An alternative name for the resource.

audience A class of entity for whom the resource is intended or useful.

available Date (often a range) that the resource became or will become available.

bibliographic
Citation

Recommended practice is to include sufficient bibliographic detail to identify the resource as unambiguously as possible.

conformsTo An established standard to which the described resource conforms.

contributor An entity responsible for making contributions to the resource. Examples of a Contributor include a person, an organization, or a
service.

coverage The spatial or temporal topic of the resource, the spatial applicability of the resource, or the jurisdiction under which the resource is
relevant.

created Date of creation of the resource.

creator An entity primarily responsible for making the resource.

date A point or period of time associated with an event in the lifecycle of the resource.

dateAccepted Date of acceptance of the resource.

dateCopyright
ed

Date of copyright.

dateSubmitted Date of submission of the resource.

description An account of the resource.

educationLev
el

A class of entity, defined in terms of progression through an educational or training context, for which the described resource is
intended.

extent The size or duration of the resource.

format The file format, physical medium, or dimensions of the resource.

hasFormat A related resource that is substantially the same as the pre-existing described resource, but in another format.

hasPart A related resource that is included either physically or logically in the described resource.

hasVersion A related resource that is a version, edition, or adaptation of the described resource.

identifier An unambiguous reference to the resource within a given context.

instructionalM
ethod

A process, used to engender knowledge, attitudes and skills, that the described resource is designed to support.

isFormatOf A related resource that is substantially the same as the described resource, but in another format.

isPartOf A related resource in which the described resource is physically or logically included.

849

isReferenced
By

A related resource that references, cites, or otherwise points to the described resource.

isReplacedBy A related resource that supplants, displaces, or supersedes the described resource.

isRequiredBy A related resource that requires the described resource to support its function, delivery, or coherence.

issued Date of formal issuance (e.g., publication) of the resource.

isVersionOf A related resource of which the described resource is a version, edition, or adaptation.

language A language of the resource.

license A legal document giving official permission to do something with the resource.

mediator An entity that mediates access to the resource and for whom the resource is intended or useful.

medium The material or physical carrier of the resource.

modified Date on which the resource was changed.

provenance A statement of any changes in ownership and custody of the resource since its creation that are significant for its authenticity, integrity,
and interpretation.

publisher An entity responsible for making the resource available.

references A related resource that is referenced, cited, or otherwise pointed to by the described resource.

relation A related resource.

replaces A related resource that is supplanted, displaced, or superseded by the described resource.

requires A related resource that is required by the described resource to support its function, delivery, or coherence.

rights Information about rights held in and over the resource.

rightsHolder A person or organization owning or managing rights over the resource.

source A related resource from which the described resource is derived.

spatial Spatial characteristics of the resource.

subject The topic of the resource.

tableOfConte
nts

A list of subunits of the resource.

temporal Temporal characteristics of the resource.

title A name given to the resource.

type The nature or genre of the resource.

valid Date (often a range) of validity of a resource.

Local Metadata Registry (local)

Editing the DC and DCTERMS schemas is recommended against because it may complicate the upgrade path in case a newer version of DSpace needs
to make changes or migrations in these standard metadata fields. Therefore, an empty metadata schema called "local" is provided (since DSpace 6),
which can be used by the DSpace administrator as a namespace for custom local metadata fields. Such custom fields would be anything that does not fit
into DC or DCTERMS. Future DSpace migrations will not touch fields in the "local" namespace.

element qualifier scope note

<empty by default> <fields to be populated by DSpace administrator if needed>

Default Bitstream Format Registry

Mimetype Short Description Description Support
Level

Internal Extensions

application/octet-stream¹ Unknown Unknown data format Unknown false

text/plain¹ License Item-specific license agreed upon to submission Known true

application/marc MARC Machine-Readable Cataloging records Known false

850

application/mathematica Mathematica Mathematica Notebook Known false ma

application/msword Microsoft Word Microsoft Word Known false doc

application/pdf Adobe PDF Adobe Portable Document Format Known false pdf

application/postscript Postscript Postscript Files Known false ai, eps, ps

application/sgml SGML SGML application (RFC 1874) Known false sgm, sgml

application/vnd.ms-excel Microsoft Excel Microsoft Excel Known false xls

application/vnd.ms-
powerpoint

Microsoft
Powerpoint

Microsoft Powerpoint Known false ppt

application/vnd.ms-project Microsoft Project Microsoft Project Known false mpd, mpp, mpx

application/vnd.visio Microsoft Visio Microsoft Visio Known false vsd

application/wordperfect5.1 WordPerfect WordPerfect 5.1 document Known false wpd

application/x-dvi TeX dvi TeX dvi format Known false dvi

application/x-filemaker FMP3 Filemaker Pro Known false fm

application/x-latex LateX LaTeX document Known false latex

application/x-photoshop Photoshop Photoshop Known false pdd, psd

application/x-tex TeX Tex/LateX document Known false tex

audio/basic audio/basic Basic Audio Known false au, snd

audio/x-aiff AIFF Audio Interchange File Format Known false aif, aifc, aiff

audio/x-mpeg MPEG Audio MPEG Audio Known false abs, mpa,
mpega

audio/x-pn-realaudio RealAudio RealAudio file Known false ra, ram

audio/x-wav WAV Broadcase Wave Format Known false wav

image/gif GIF Graphics Interchange Format Known false gif

image/jpeg JPEG Joint Photographic Experts Group/JPEG File Interchange Format
(JFIF)

Known false jpeg, jpg

image/png image/png Portable Network Graphics Known false png

image/tiff TIFF Tag Image File Format Known false tif, tiff

image/x-ms-bmp BMP Microsoft Windows bitmap Known false bmp

image/x-photo-cd Photo CD Kodak Photo CD image Known false pcd

text/css CSS Cascading Style Sheets Known false css

text/html HTML Hypertext Markup Language Known false htm, html

text/plain Text Plain Text Known false asc, txt

text/richtext RTF Rich Text Format Known false rtf

text/xml XML Extensible Markup Language Known false xml

video/mpeg MPEG Moving Picture Experts Group Known false mpe, mpeg,
mpg

video/quicktime Video Quicktime Video Quicktime Known false mov, qt

¹ Used by several functional areas of DSpace. DO NOT REMOVE WITHOUT INVESTIGATING THE CONSEQUENCES

851

History
Changes in 8.x
Changes in Older Releases

852

Changes in 8.x

Changes in DSpace 8.0

Changes in DSpace 8.0
UI Changes: https://github.com/DSpace/dspace-angular/milestone/21?closed=1
REST API Changes: https://github.com/DSpace/DSpace/milestone/63?closed=1
REST Contract Changes: https://github.com/DSpace/RestContract/milestone/12?closed=1

853

https://github.com/DSpace/dspace-angular/milestone/21?closed=1
https://github.com/DSpace/DSpace/milestone/63?closed=1
https://github.com/DSpace/RestContract/milestone/12?closed=1

Changes in Older Releases

All historical changes from older releases of DSpace may be found in the .online documentation for those older releases

854

https://wiki.lyrasis.org/display/DSDOC

	Table of contents
	Introduction
	Technology Overview
	Functional Overview
	Release Notes

	Installing DSpace
	Upgrading DSpace
	Migrating DSpace to a new server

	Using DSpace
	Authentication and Authorization
	Authentication Plugins
	Bulk Access Management
	Embargo
	Pre-3.0 Embargo Lifter Commands

	Managing User Accounts
	Email Subscriptions

	Request a Copy

	CAPTCHA Verification
	Configurable Entities
	Curation System
	Bundled Tasks
	Bitstream Format Profiler Task
	Link Checker Tasks
	MetadataWebService Task
	MicrosoftTranslator Task
	NoOp Task
	Required Metadata Task
	Virus Scan Task

	Exporting Content and Metadata
	Signposting
	OpenAIRE4 Guidelines Compliancy
	OAI
	OAI 2.0 Server
	OAI-PMH Data Provider 2.0 (Internals)

	Exchanging Content Between Repositories
	SWORDv1 Client
	Linked (Open) Data
	Rioxx v3 schema compliance

	Ingesting Content and Metadata
	Submission User Interface
	Basic Duplicate Detection for Submission/Workflow
	Live Import from external sources
	Set a bitstream as primary
	Simple HTML Fragment Markup
	Supervision Orders

	Configurable Workflow
	Importing and Exporting Content via Packages
	Importing and Exporting Items via Simple Archive Format
	Registering Bitstreams via Simple Archive Format
	Importing Items via basic bibliographic formats (Endnote, BibTex, RIS, CSV, etc) and online services (arXiv, PubMed, CrossRef, CiNii, etc)
	Exporting and Importing Community and Collection Hierarchy
	SWORDv1 Server
	SWORDv2 Server
	Ingesting HTML Archives

	Items and Metadata
	Authority Control of Metadata Values
	ORCID Authority

	Batch Metadata Editing
	Batch Metadata Editing Configuration

	DOI Digital Object Identifier
	Item Level Versioning
	Mapping/Linking Items to multiple Collections
	Metadata Recommendations
	Moving Items
	PDF Citation Cover Page
	Request Withdrawn and Reinstate of an item
	Updating Items via Simple Archive Format

	Managing Community Hierarchy
	ORCID Integration
	Researcher Profiles
	Statistics and Metrics
	Exchange usage statistics with IRUS
	DSpace Google Analytics Statistics
	SOLR Statistics
	SOLR Statistics Maintenance
	Testing Solr Shards

	User Interface
	Multilingual Support
	IIIF Configuration
	Contextual Help Tooltips
	Discovery
	Browse
	Accessibility
	User Interface Customization
	User Interface Configuration

	Learning DSpace
	Community and Collection management
	Collection Management
	Create Collection
	Delete Collection
	Edit Collection
	Export Collection

	Community Management
	Create a Community
	Delete Community
	Edit Community

	Content (Item) management
	Add item
	Delete item
	Edit Item
	Authorizations (Manage access to an item)
	Collection Mapper
	Edit Bitstream
	Edit Metadata
	Edit Relationship
	Make an item discoverable
	Make an item non-discoverable
	Move an Item
	Versioned Item
	Withdraw an item

	Embargo an item
	Lease an item

	DSpace Demo Quick Start
	Management sidebar
	Administrator Reports (Beta feature)
	COAR Notify
	COAR Notify - Dashboard
	COAR Notify - LDN Services

	Notifications
	Publication Claim
	Quality Assurance
	COAR Notify Integration
	OpenAIRE Integration

	Menus
	Registry management
	Metadata Registry Management

	Request-a-copy
	Search - Advanced
	Submitter actions
	User management
	Add or Manage an E-Person
	Create or manage a user group

	System Administration
	AIP Backup and Restore
	DSpace AIP Format

	Ant targets and options
	Command Line Operations
	Executing streams of commands
	Database Utilities

	Handle.Net Registry Support
	Logical Item Filtering and DOI Filtered Provider for DSpace
	Mediafilters for Transforming DSpace Content
	ImageMagick Media Filters

	Performance Tuning DSpace
	Ping or Healthcheck endpoints for confirming DSpace services are functional
	Scheduled Tasks via Cron
	Search Engine Optimization
	Google Scholar Metadata Mappings

	Troubleshooting Information
	Validating CheckSums of Bitstreams

	DSpace Development
	Advanced Customisation
	DSpace Service Manager

	Batch Processing
	Curation Tasks
	Curation tasks in Jython

	Development Tools Provided by DSpace
	REST API
	Services to support Alternative Identifiers
	User Interface Design Principles & Accessibility
	Workflow

	DSpace Reference
	Architecture
	Application Layer
	Business Logic Layer
	DSpace Services Framework
	Storage Layer

	Configuration Reference
	Directories and Files
	DSpace Item State Definitions
	Metadata and Bitstream Format Registries
	History
	Changes in 8.x
	Changes in Older Releases

