1. Fedora 3.4 DOCUMENTAtIONttt e e e e e 3

LA DOWNIOAAS . oottt e et e e e 4
1.2 Fedora Software DiStriDULION 4
1.2, L RelE@SE NOES . ..ottt 4
1.2.1.1 Fedora Repository 3.4.2 Release NOIESt e e 5
1.2.1.2 Fedora Repository 3.4.1 Release NOES i 6
1.2.1.3 Fedora Repository 3.4 Release NOtESttt e e e e 6
1.2.1.4 Fedora Repository 3.4-RC1 Release NOteS i e e e 10
1.2.2 Installation and Configuration GUIAE 12
1.2.2.1 Alternative Webapp Context Configuration 18
1.2.2.2 Configuring LOW Level STOrageot 19
1.2.2.3 HTTP Proxy Configuration e e e e e e e e e e e 21
1.2.2.4 Installation From SOUICEottt e e et e e e e e e 21
1.2.2.51InStalling JAVA . . . oo 22
1.2.2.6 Setting JAVA_HOME in WINAOWSottt e e e e e e e e e e e e e e 23
1.2.3Upgrade GUILEttt e e e 24
1.2.3.1Upgrading from 2.X . ..ot e 25
1.2.3.2Upgrading from B.X . ..ot 31
1.2.4 License and Copyrighto 31
1.2.5 Distribution STrUCIUIE oo e e 32
1.2.6 Demonstration ODJECESot e 32
1.3 Getting Started With Fedora 34
1.4 Fedora Digital ObJeCtSot e 36
1.4.1 Fedora Digital Object MOdel 36
142 Fedora ldentifiers 42
1.4.3 Digital Object Relationships 44
1.4.4 Content Model ArChiteCtUrE oo e e 47
1.4.5 CMA CoNStruCtion GUIAE ottt e e e e e e e e e e e e e 50
1.4.5.1 Creating a Service Definition 51
1.4.5.2 Creating a Service DeplOYMENt i 53
1.4.6 INtroduction t0 FOXML . .ot e e e e 60
1.4.6.1 FOXML INQEeSt EXAMIPIEot e e e e e e e 61
LLA.7 Fedora AlOmM . .o 63
1.4.7.1 ATOM INgeSt EXAMPIE . . o . oo e e e e e e 65
148 Fedora MET S ..o 68
1.4.8.1 METS INgESt EXAMPIEo e 69
1.4.91INgeSt @nd EXPOIt . . .o e 72
1.4.9.1 Ingest with the file URI SCheme 73
1.4.10 Portable Fedora ObJeCtS 74
1.5 Fedora RePOSIIONY . ..t e et e e 76
15,0 CheCKSUMS . .ot e e e e 76
1.5.2 Command-Line ULIILIES e 77
153 MESSAGING -« o v vttt ettt e e e e 79
1.5.4 Replication and MiIrTONNGottt e e e e e e e e e 84
1.5.4.1J0UM@AIING ..ot 85
15,5 RESOUICE INABX . . ottt et e e e e e e e e e e e e 94
1.5.5.1 Triples in the ReSOUICe INAEXot e e e e e e e e e e e e e 99
L D8 S UMY .ottt et e e e e e 101
1.5.6.1 Authentication and User Attributes 104
1.5.6.2 Fedora Security Layer (FESL)t e e 105
1.5.6.2.1 FeSL INStallationo e e 105
1.5.6.2.2 FESL AUtNENtICAtION oo 106
1.5.6.2.3 FESL AULNONZAION . . . oo 108
1.5.6.3 XACML Policy ENfOrCement 109
1.5.6.3.1 Fedora XACML Policy Writing GUIAEo\ttt e e e e e e e e e 119
1.5.6.3.2 XACML Vocabulary and EXamplest e 130
1.5.7 Service FrameworK 132
L 5B VeISIONING . . oottt et e e e e e e e e e e e 133
1.5.9Web Service INterfaceso 137
15,0 L AP A e 137
15,9, 2 AP AL TE .ttt 141
15,0 3 AP M 147
1.5.9.4 API-M-LITE o 153
15,9 5 REST APl 155
1.5.9.6 BaSIC SearCho 176
1.5.9.7 Basic OAI-PMH Provider e e e 179
1.5.9.8 Resource INdex SearCh 179
1.6 Fedora Framework SEIVICESttt e et et e e e 183
L7 Fedora ClENtS . .. e e e e e 183
1.7.1 Client Command-line ULItIES e e e e 183
1.7.2 Example SOAP ClIENtot e e e 189
1.7.3 Fedora AdmINIStratoro et e e e e e 190
1.7.3. 1 BatCh PrOCESSING . . oottt ettt e e 206
1.7.4 Fedora Web AdminiStrator 223

1.7.5 Messaging Client 227

1.7.6 REST APIJava Client e e e e e e e e e 227

1.8 Fedora LOCal SEIVICESottt e e 227
LB L FOP SEIVICE ..ttt e 227
1.8.2 Image Manipulation SEIVICE 228
1.8.3 SAXON XSLT PrOCESSOI SEIVICE . . .t ittt it it ettt e ettt e et et e e e e e ettt 228

1.9 Frequently Asked QUESHIONSttt et 230
1.9.1 AdMINISTration FAQ . ..ottt e e 231

1.9.1.1 How do | configure Fedora to allow API-M access from remote hosts? 231
1.9.1.2 How do | turn Off API-M 8CCESS?ottt e e e e e e 231
1.9.1.3 How do | undo SSL-only access to API-M funCtionS? 232
1.9.2 Backup And RebUild FAQ o 233
1.9.2.1 How can | backup my Fedora Repository without havingtorebuild ? i 233
1.9.2.2 Is it possible to rebuild without taking my repository offline? 234
1.9.2.3 What do | need to backup in order to be able to rebuild my Fedora Repository ? 236
1.9.3 Development FAQ . ..o 237
1.9.3.1 How do you configure Eclipse for Fedora with Maven? i e e e 237
1.9.3.2 Where are Fedora's bugs reported?t 255
1.9.3.3 Where is the source code ? How canitbe accessed ? it e 256
1.9, 4 Installation FAQ .. .o e e 256
1.9.4.1 How do | the get Fedora running under the JBoss Application Server? 257
1.9.4.2 How do | uninstall Fedora COMIMONS 2ttt et ettt e e et 257
1.9.4.3 Which Linux Distribution is best for Fedora CoOmmONS?t 257
1.0 5 USagE FAQ ..t 257
1.9.5.1 "Policy blocked datastream resolution" error while adding datastream i
1.9.5.2 How can | implement collections in Fedora CoOmMMONS? ottt e e et et 258
1.9.5.3 How can | retrieve the audit datastream ? 259
1.9.5.4 How do | customize the HTML views produced by the REST API? e 259
1.9.5.5 How do | set my own PIDs (at runtime) for Fedora objects? 259
1.9.5.6 Mime type for SDEp OULPULottt et e e e e 259
1.9.5.7 Must | provide DC, RELS-EXT and RELS-INT as Inline XML Metadata?cciuiiiiinanenene... 260
1.9.5.8 Resource Index date comparison With ITQL e e 260

1.9.5.9 Where is the list of Dublin Core and FOXML PropertiesS?ottt e ettt 260

Fedora 3.4 Documentation

Downloads

Fedora Software Distribution

Release Notes

Installation and Configuration Guide
Upgrade Guide

License and Copyright

Distribution Structure
Demonstration Objects

Getting Started with Fedora

Fedora Digital Objects

Fedora Digital Object Model
Fedora Identifiers

Digital Object Relationships
Content Model Architecture
CMA Construction Guide
Introduction to FOXML
Fedora Atom

Fedora METS

Ingest and Export

Portable Fedora Objects

Fedora Repository

Checksums
Command-Line Utilities
Messaging

Replication and Mirroring
Resource Index

Security

Service Framework
Versioning

Web Service Interfaces

Fedora Framework Services

Fedora Clients

Client Command-line Utilities
Example SOAP Client
Fedora Administrator

Fedora Web Administrator
Messaging Client

REST API Java Client

Fedora Local Services

® FOP Service
® Image Manipulation Service
® SAXON XSLT Processor Service

Frequently Asked Questions

Administration FAQ
Backup And Rebuild FAQ
Development FAQ
Installation FAQ

Usage FAQ

Downloads

Fedora

Fedora 3.4.2 Installer 110mb MD5 Checksum @ PGP Signature
Fedora 3.4.2 Source Code 14mb MD5 Checksum = PGP Signature
Fedora 3.4 Messaging Client 7mb MD5 Checksum = PGP Signature

Fedora 3.4 Journal Receiver A 0.5mb MD5 Checksum = PGP Signature

Compatible Services

GSearch 2.2 19mb Documentation
OAI Provider 2.1 6mb Documentation
SWORD-Fedora 1.2 Documentation
Diringest 1.2 8mb Documentation

Related Software

Please see Fedora Create for a complete list of Fedora-related software and projects.

Fedora Software Distribution

Release Notes

Installation and Configuration Guide
Upgrade Guide

License and Copyright

Distribution Structure

Demonstration Objects

Release Notes

http://downloads.sourceforge.net/fedora-commons/fcrepo-installer-3.4.2.jar
http://downloads.sourceforge.net/fedora-commons/fcrepo-installer-3.4.2.jar.md5
http://downloads.sourceforge.net/fedora-commons/fcrepo-installer-3.4.2.jar.asc
http://downloads.sourceforge.net/fedora-commons/fcrepo-src-3.4.2-src.zip
http://downloads.sourceforge.net/fedora-commons/fcrepo-src-3.4.2-src.zip.md5
http://downloads.sourceforge.net/fedora-commons/fcrepo-src-3.4.2-src.zip.asc
http://downloads.sourceforge.net/fedora-commons/fcrepo-client-messaging-3.4.zip
http://downloads.sourceforge.net/fedora-commons/fcrepo-client-messaging-3.4.zip.md5
http://downloads.sourceforge.net/fedora-commons/fcrepo-client-messaging-3.4.zip.asc
http://downloads.sourceforge.net/fedora-commons/fcrepo-server-3.4-rmi-journal-recv.zip
http://downloads.sourceforge.net/fedora-commons/fcrepo-server-3.4-rmi-journal-recv.zip.md5
http://downloads.sourceforge.net/fedora-commons/fcrepo-server-3.4-rmi-journal-recv.zip.asc
http://downloads.sourceforge.net/fedora-commons/genericsearch-2.2.zip
https://wiki.duraspace.org/display/FCSVCS/Generic+Search+Service+2.2
http://downloads.sourceforge.net/fedora-commons/oaiprovider-1.2.1.zip
https://wiki.duraspace.org/display/FCSVCS/OAI+Provider+Service+1.2.1
https://wiki.duraspace.org/display/FCSVCS/SWORD-Fedora+1.2
http://downloads.sourceforge.net/fedora-commons/diringest-1.2.zip
https://wiki.duraspace.org/display/FCSVCS/Directory+Ingest+Service+1.2
https://wiki.duraspace.org/display/FEDORACREATE/Create+Forum

Fedora Repository 3.4.2 Release Notes
Fedora Repository 3.4.1 Release Notes
Fedora Repository 3.4 Release Notes

Fedora Repository 3.4-RC1 Release Notes

Fedora Repository 3.4.2 Release Notes

Introduction

Release Date: January 19th, 2011

Fedora 3.4.2 is a bugfix release that addresses several memory and stability problems with the core repository service.

Many thanks to those in the community who contributed to this release; particularly Janna Wemekamp (FCREPO-774 and FCREPO-823), Jorg
Panzer (FCREPO-774), Nigel Thomas (FCREPO-846) and Mark Roy (FCREPO-820). Your help in identifying bugs, submitting patches, and
road-testing fixes is very much appreciated.

We rely on continuing feedback from the community to ensure the ongoing quality and improvement of the Fedora Repository. Contributions are
always welcome, particularly comments and feedback on your use of Fedora, reporting of any bugs you discover, code contributions and patches,
and assistance with testing. Please let us have your thoughts via the Fedora Commons Users mailing list. Please see our Getting Involved page
for more information about code contributions.

See below for details about each change in this release.

Bug Fixes and Improvements

(16 issues)

Type Key Summary Priority
@ FCREPO-819 Memory leak due to Mulgara bug 'i’
@ FCREPO-811 POLICY datastreams (possibly others) subject to race conditions when control group is "R" i
@ FCREPO-835 Migrate Fedora Source Code to GitHub #
@ FCREPO-822 ' Ingesting with "M" datastream contentLocation set to a file fails with Akubra i
[€] FCREPO-845 Memory leak in OwlApi used by ECM i
@ FCREPO-774 | REST Servlet throws exception under access load. L
@ FCREPO-843 ' Ban all known slf4j bindings except logback i
@ FCREPO-842 | If a previous "add" to the policy index (dbxml) fails, subsequent updates fail as the existing doc can't be deleted = ¥
FCREPO-837 Standardize on LF for all text-based formats in the git repository &
@ FCREPO-820 modifyObject API-M with no state change causes XACML policy to be removed from index. i
@ FCREPO-785 ECM validator reports invalid, if no form declaration is specified 4
@ FCREPO-784 Fedora object 3.0 declare wrong format uri for the POLICY datastream i
@ FCREPO-841 FeSL FedoraRIAttributeFinder attempts to locate RI attributes using hierarchical resource paths i
@ FCREPO-780 NPE thrown on disseminations if external web service response does not contain a Content-type header ¥
@ FCREPO-846 Concurrency issues with DBXML ¥
@ FCREPO-823 ' Ingesting object with managed content DC datastream fails if content specified using a file:/// URL i

http://www.fedora-commons.org/community/userlist
https://wiki.duraspace.org/display/FCREPO/Getting+Involved
https://jira.duraspace.org/secure/IssueNavigator.jspa?reset=true&pid=10051&resolution=1&fixfor=10359&sorter/field=priority&sorter/order=DESC&tempMax=1000
https://jira.duraspace.org/browse/FCREPO-819
https://jira.duraspace.org/browse/FCREPO-819
https://jira.duraspace.org/browse/FCREPO-819
https://jira.duraspace.org/browse/FCREPO-811
https://jira.duraspace.org/browse/FCREPO-811
https://jira.duraspace.org/browse/FCREPO-811
https://jira.duraspace.org/browse/FCREPO-835
https://jira.duraspace.org/browse/FCREPO-835
https://jira.duraspace.org/browse/FCREPO-835
https://jira.duraspace.org/browse/FCREPO-822
https://jira.duraspace.org/browse/FCREPO-822
https://jira.duraspace.org/browse/FCREPO-822
https://jira.duraspace.org/browse/FCREPO-845
https://jira.duraspace.org/browse/FCREPO-845
https://jira.duraspace.org/browse/FCREPO-845
https://jira.duraspace.org/browse/FCREPO-774
https://jira.duraspace.org/browse/FCREPO-774
https://jira.duraspace.org/browse/FCREPO-774
https://jira.duraspace.org/browse/FCREPO-843
https://jira.duraspace.org/browse/FCREPO-843
https://jira.duraspace.org/browse/FCREPO-843
https://jira.duraspace.org/browse/FCREPO-842
https://jira.duraspace.org/browse/FCREPO-842
https://jira.duraspace.org/browse/FCREPO-842
https://jira.duraspace.org/browse/FCREPO-837
https://jira.duraspace.org/browse/FCREPO-837
https://jira.duraspace.org/browse/FCREPO-837
https://jira.duraspace.org/browse/FCREPO-820
https://jira.duraspace.org/browse/FCREPO-820
https://jira.duraspace.org/browse/FCREPO-820
https://jira.duraspace.org/browse/FCREPO-785
https://jira.duraspace.org/browse/FCREPO-785
https://jira.duraspace.org/browse/FCREPO-785
https://jira.duraspace.org/browse/FCREPO-784
https://jira.duraspace.org/browse/FCREPO-784
https://jira.duraspace.org/browse/FCREPO-784
https://jira.duraspace.org/browse/FCREPO-841
https://jira.duraspace.org/browse/FCREPO-841
https://jira.duraspace.org/browse/FCREPO-841
https://jira.duraspace.org/browse/FCREPO-780
https://jira.duraspace.org/browse/FCREPO-780
https://jira.duraspace.org/browse/FCREPO-780
https://jira.duraspace.org/browse/FCREPO-846
https://jira.duraspace.org/browse/FCREPO-846
https://jira.duraspace.org/browse/FCREPO-846
https://jira.duraspace.org/browse/FCREPO-823
https://jira.duraspace.org/browse/FCREPO-823
https://jira.duraspace.org/browse/FCREPO-823

Known Issues

Please see the bug tracker for the latest list of outstanding issues.

Migration to GitHub

This is the first release of Fedora since the source code was migrated from SourceForge to GitHub. The Fedora Repository GitHub page can be
found here. Instructions on accessing the source code can be found at [here].

Previous Release Notes

All release notes for Fedora 3.4.x can be found here.

Fedora Repository 3.4.1 Release Notes

About This Release

Release Date: October 19th, 2010

This bugfix release FCREPO-798, a “Denial of Service” (DOS) vulnerability affecting all prior versions of Fedora 2.x and 3.x, and FCREPO-790, a
bug that could lead to the operating system running out of file handles.

FCREPO-798 was discovered during a code review and verified in testing. However, there have been no known attacks on any public or private
Fedora repository. Our review indicates this vulnerability can corrupt the Fedora database in a way that will cause failure of your operating
repository. However, it cannot be used to damage your archival storage. Fortunately, the repository may be recovered through the use of the
rebuilder utility but until your system is patched it could be subject to additional DOS attacks.

A set of patches for Fedora 3.3 and Fedora 3.4 as well as a full release of Fedora 3.4.1 in which the issue is fixed has been posted on
SourceForge. We ask you contact your repository operator immediately about the issue. If you are using Fedora 3.0 through 3.2, we urge you to
update to patched copies of Fedora 3.3 or 3.4, or the 3.4.1 release at your earliest opportunity. The security releases may be found at:

® http://sourceforge.net/projects/fedora-commons/files/fedora/3.3.1/
® http://sourceforge.net/projects/fedora-commons/files/fedora/3.4.1/

The instructions for installation may be found in the README files at the above locations along with the downloads.

Unfortunately, Fedora 2 repositories remain vulnerable; a patch to Fedora 2, whose code base was declared at “end-of-life” two years ago, has
proven beyond our resources at this time. Because of this, we will not being providing details about potential exploits in the near term. Fedora 2
installations are still of great concern to the Fedora committers since we know there are many installations in our community who may not be in a
position to update to the latest Fedora release. We are seeking resources or volunteers to fix Fedora 2 but, at this time, we are not able to commit
to a timeline for this work.

If you cannot update soon please read the following section containing suggestions that may help mitigate the vulnerability of your repository.
Your installation may have minimal risk if Fedora is not directly exposed to un-trusted users. You should:

® Restrict access to Field Search including for front applications which pass unmodified query parameter text directly from users
® Restrict access from anonymous users for:

® API-A Lite “get” operations

® REST API “get” operations

® REST API “findObjects” operations
® Restrict ingest of new digital objects from un-trusted users

If you have front-end applications (like Islandora or Muradora) which control access, the format of queries, or FOXML ingest or modifications your
risks are mitigated. It is best if direct access to Fedora is hidden from users and only your front-end applications are exposed. In all cases, we
recommend close monitoring of your repository.

This notification is to warn operators of production Fedora repositories. Please notify us if you have a sudden, unexplained failure of your system.
As with all software, security issues may arise. We are collecting contact information for a responsible person for each production Fedora systems
to help the notification process. Could you or your repository administrator please provide us with a suitable contact? If you know of any other
production Fedora repositories, could you provide a suitable contact for it?

If you have any questions or are operating a Fedora system in production please contact ddavis at duraspace dot org or cwilper at duraspace dot
org.

Previous Release Notes

All release notes for Fedora 3.4.x can be found here.

Fedora Repository 3.4 Release Notes

https://jira.duraspace.org/browse/FCREPO
https://github.com/
https://github.com/fcrepo/fcrepo
https://jira.duraspace.org/browse/FCREPO-790
http://sourceforge.net/projects/fedora-commons/files/fedora/3.3.1/
http://sourceforge.net/projects/fedora-commons/files/fedora/3.4.1/

Introduction

Release Date: August 23, 2010

We are proud to announce the release of Fedora 3.4. Although a minor release, this version includes a number of exciting new features and bug
fixes that make Fedora an ever more compelling repository platform.

You are encouraged to download this new release and give it a spin. Please let us have your comments and feedback via the mailing lists, and of
course please let us know of any problems you discover.

Some of the important new features are:

DC, RELS-EXT, RELS-INT as Managed Content: The Dublin Core and Relationships datastreams can now be stored as Managed
Content, improving performance particularly when these datastreams are large. A migration tool is included to migrate existing inline XML
datastreams to managed content datastreams

REST API relationships methods: New methods in the REST API for adding and manipulating relationships in RELS-EXT and
RELS-INT

Enhanced Content Models: Including the ability to validate objects against their content models, and support for optional datastreams
Optimistic Locking: The REST API now provides support for optimistic locking to ensure no one else has made a change to an object
since you started editing it

FeSL Authentication: FeSL Authentication can now be used independently of FeSL's experimental authorization mechanism, and is
now the default authentication mechanism (although the old mechanism can be specified during installation). FeSL Authorization is still
disabled by default.

FeSL policies as Fedora Objects: XACML policies are now managed in FeSL directly through the Fedora API by manipulating Fedora
objects containing a FESLPOLICY datastream

Logging reconfiguration without restart: Using the new SLF4J and Logback logging framework, logging configuration changes now
become effective without having to restart the server

Akubra low-level storage: Akubra is now considered production-ready and is the default low-level storage module

REST APl improvements and bug fixes: further stabilizing the REST API

Deprecation of "LITE" APIs: As of this release, the API-A-LITE and API-M-LITE APlIs are deprecated, and will be removed in a future
release. You are encouraged to migrate any code using these APIs to use the new REST API.

As of version 3.4, we recommend the MediaShelf Java Client Library.. The existing client libraries supplied with the server distribution are now
considered deprecated, and will no longer be maintained.

Java package naming and Java version

® As of version 3.4, Java 5 (JDK 1.5) is no longer supported. Java 6 (JDK 1.6) or later is required both to build and run
Fedora.

® Java package names have undergone a thorough revision for this release. If you have your own code built against
Fedora libraries and you update these to use the libraries from this version you will need to update your code to use the
new package names.

® If you have built your own storage plugins you will need to modify these to work with the new package names
and some minor changes to the ILowLevelStorage interface

Akubra Low-level Storage

® As of version 3.4, Akubra is the default low-level storage module, replacing the legacy file storage module

® Akubra is not backwards-compatible with object and datastream file storage from pre 3.4 repositories (these will have
been using the legacy file storage module)

® If you are upgrading an existing pre-3.4 repository please ensure you select the legacy-fs option for Low Level
Storage when installing (or use listore.type=legacy-fs in your install.properties file)

Enhanced Content Models

® Version 3.4 includes Enhanced Content Models (ECM)
® This is the first version of Fedora with ECM, and we welcome feedback from the community on these new features
® Please note that some features in ECM are liable to change based on this feedback

http://mediashelf.github.com/fedora-client/

Y
L]

REST API

® |n version 3.4 many bug-fixes and improvements have been made to the REST API

® Previously the output of some REST API methods was incorrect and invalid against the schemas
® |f your client applications use the REST API, you may need to update your handling of some REST API

responses, particularly if you use namespace-aware parsing (default namespaces have been added to some method
responses which were previously missing these)

For a detailed list of features and bugfixes comprising this release see the tables below.

Features and Improvements

(25 issues)

Type

B B [() [D) ())) ()) (0 (3 [())) [[0 (& () [() () [)

Key
FCREPO-705

FCREPO-683
FCREPO-428
FCREPO-531
FCREPO-551
FCREPO-385
FCREPO-603
FCREPO-492
FCREPO-445
FCREPO-730
FCREPO-685
FCREPO-622
FCREPO-630
FCREPO-689
FCREPO-621
FCREPO-639
FCREPO-733
FCREPO-669
FCREPO-670
FCREPO-671
FCREPO-686
FCREPO-577
FCREPO-552
FCREPO-646

FCREPO-647

Bug Fixes

Summary

Extend Config A test coverage to include REST API support
Enhanced Content Models

Extend fedora-validate-objects to include referential integrity reporting
CMA and server should support optional datastreams sensibly
Akubra replaces LLStore as primary blob storage abstraction

Extend Validator to Support CMA-defined integrity checks
Standalone, reusable, Java client library for Fedora

Allow DC, RELS-EXT, etc, to be Managed Content

Improved CMA modeling capabilties

Provide link to datastream history from the "datastream profile view"
Validate APl method

Java repackaging: org.fcrepo

Switch to SLF4J with Logback as primary logging framework

Enable optimistic locking for modify operations

Move to Java 6+ (Java 5 no longer supported)

Allow log re-configuration without restart

Get validate to also validate the ontologies for RELS-INT

Do a Java version sanity check at install time

Better error reporting when database connection test fails at install time
Allow use of FeSL AuthN without FeSL AuthZ during install

Migration tool for migrating datastreams from one type (control group) to another
Make XACML policies first-class Fedora digital objects

Configurable parameters for the Fedora internal http client

Remove undocumented/unused/broken ReportServiet

Remove unused/unnecessary ThreadMontitor

Priority

4 4 0 0 8 L 0 8 b 9 8 e P e s eyl) D)] B B

https://jira.duraspace.org/secure/IssueNavigator.jspa?reset=true&type=4&type=2&pid=10051&resolution=1&fixfor=10190&sorter/field=priority&sorter/order=DESC&tempMax=1000
https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-683
https://jira.duraspace.org/browse/FCREPO-683
https://jira.duraspace.org/browse/FCREPO-683
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-730
https://jira.duraspace.org/browse/FCREPO-730
https://jira.duraspace.org/browse/FCREPO-730
https://jira.duraspace.org/browse/FCREPO-685
https://jira.duraspace.org/browse/FCREPO-685
https://jira.duraspace.org/browse/FCREPO-685
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-686
https://jira.duraspace.org/browse/FCREPO-686
https://jira.duraspace.org/browse/FCREPO-686
https://jira.duraspace.org/browse/FCREPO-577
https://jira.duraspace.org/browse/FCREPO-577
https://jira.duraspace.org/browse/FCREPO-577
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-647
https://jira.duraspace.org/browse/FCREPO-647
https://jira.duraspace.org/browse/FCREPO-647

(44 issues)

Type Key

(o] o] (2] (o] [2) [o) [o] [o) [8) [8] [8]) [o] [o] [o] [o] [o] [o] [o] [o] [o] [o]) [o] [o] [o] (o] (o] [o] [o] [8) [8] [o] [o] [2] [e]

FCREPO-753

FCREPO-703

FCREPO-701

FCREPO-696

FCREPO-623

FCREPO-680

FCREPO-699

FCREPO-627

FCREPO-641

FCREPO-712

FCREPO-736

FCREPO-754

FCREPO-509

FCREPO-638

FCREPO-660

FCREPO-566

FCREPO-704

FCREPO-802

FCREPO-628

FCREPO-64

FCREPO-615

FCREPO-732

FCREPO-708

FCREPO-758

FCREPO-698

FCREPO-620

FCREPO-616

FCREPO-607

FCREPO-771

FCREPO-766

FCREPO-700

FCREPO-609

FCREPO-587

FCREPO-610

Summary

Credentials not passed through for API-A REST calls when FeSL AuthN enabled

REST API calls to getDatastreamDissemination fails when XACML enabled, API-A auth disabled
REST API purgeDatastream - invalid date format for start time purges all versions of a datastream
Adding datastream with managed content throws Exception when providing a checksum
Journaling RMI transport writer does not send close() events

REST API throws NPE when adding new datastream without providing media- and mime type
PUT /objects/{pid}/datastreams/{dsid} sets versionable to true if it is not specified (REST API)
Fedora REST-style object viewer does not properly handle encoded slashes in the pid value.
AuthFilterJAAS prevents the server from starting when FEDORA_HOME is not set

Date strings with milliseconds are parsed incorrectly

System test failures when fesl authn enabled (fesl authz disabled)

No authentication for UserServlet with FeSL AuthN and API-A auth turned off

REST API does not properly handle ingests with FOXML that does not contain a PID

Fedora basic search interface returns results with old-style "/fedora/get" URLs instead of new REST interface

URLs

Regression: setting FEDORA_HOME via context-param fails

Trunk fails to build on Windows if path contains spaces

Ingesting a managed content datastream via REST fails with files larger than 2GB

external JMS broker unavailable at startup halts startup

FieldSearch query with bad syntax does not immediately release connection to pool
Datastream SIZE attribute not fully implemented

With FeSL enabled, authentication is required for every resource

Parameter datastreamDefaultFilename mis-spelt as datstreamDefaultFilename in fedora.fcfg
REST API purgeDatastream returns HTTP 204 No Content instead of the dates of the deleted versions
FeSL policy validation issues

info:fedora registration contains outdated information

Tomcat 6 server.xml:SSLEnabled defaults to false with non-bundled Tomcat

Installer-generated web.xml drops namespace and schemalocation declarations

REST getObjectProfile method has a datetime attribute in the return value, but this is not present in the
schema

FeSL - conversion of policy "name" to PID incorrect

System test failure on Windows with Akubra: TestCommandLineFormats.testExportATOM_ZIP
REST api export specifies the wrong media type for atomZlp archives

Purge object will throw general exception if force=true

DOValidatorSchematron error on Fedora startup with WebLogic

ObjectHistory only includes datastream timestamps, and only from currently active datastreams

Priority

o o o o b o o & e e P) D))) D D o D 5 R

https://jira.duraspace.org/secure/IssueNavigator.jspa?reset=true&type=1&pid=10051&resolution=1&fixfor=10190&sorter/field=priority&sorter/order=DESC&tempMax=1000
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-703
https://jira.duraspace.org/browse/FCREPO-703
https://jira.duraspace.org/browse/FCREPO-703
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-712
https://jira.duraspace.org/browse/FCREPO-712
https://jira.duraspace.org/browse/FCREPO-712
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-509
https://jira.duraspace.org/browse/FCREPO-509
https://jira.duraspace.org/browse/FCREPO-509
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-566
https://jira.duraspace.org/browse/FCREPO-566
https://jira.duraspace.org/browse/FCREPO-566
https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-758
https://jira.duraspace.org/browse/FCREPO-758
https://jira.duraspace.org/browse/FCREPO-758
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-771
https://jira.duraspace.org/browse/FCREPO-771
https://jira.duraspace.org/browse/FCREPO-771
https://jira.duraspace.org/browse/FCREPO-766
https://jira.duraspace.org/browse/FCREPO-766
https://jira.duraspace.org/browse/FCREPO-766
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-610
https://jira.duraspace.org/browse/FCREPO-610
https://jira.duraspace.org/browse/FCREPO-610

FCREPO-618 Content-Disposition tests in fedora.test.api. TestRESTAPI fail on WebLogic

FCREPO-666 = Maven build warnings for ${version} ${pom.version} ${artifactld}

FCREPO-640 Some IPv6 loopback addresses fail to match for default policies

FCREPO-665 ' DefaultDOManager logging WARNings for valid dsLocations

FCREPO-617 "Other" servlet container option does not provide local services webapps

FCREPO-613 Purge datastream will throw a general exception if force=true

FCREPO-673 REST getNextPID with invalid PID namespace throws error but results in update to PIDGEN table

FCREPO-614 ConfigC test failures/errors

Datastream Profile in /objects/{pid}/datastreams/{dsld}?format=xml use attribute datetime, which is not in the

FCREPO-612
schema

L =HE =R =L SR R B R

FCREPO-727 Provide a link to datastream content from the "list datastreams" view

o) [o) [o]) (o] (o] [o) [o] [o) [9] [o]

Previous Release Notes

All release notes for Fedora 3.4.x can be found here.

Fedora Repository 3.4-RC1 Release Notes

Introduction

We are proud to announce the release of Release Candidate 1 of Fedora 3.4. Although a minor release, this version includes a number of exciting
new features and bug fixes that make Fedora an ever more compelling repository platform. We aim to release the final version of Fedora 3.4 in
August, and in the meantime you are encouraged to give this Release Candidate a try. Please let us have any comments and any problems you
find via the mailing list.

Some of the important new features are:

® DC, RELS-EXT, RELS-INT as Managed Content: The Dublin Core and Relationships datastreams can now be stored as Managed
Content, improving performance particularly when these datastreams are large

® REST API relationships methods: New methods in the REST API for adding and manipulating relationships in RELS-EXT and
RELS-INT

®* Enhanced Content Models: Including the ability to validate objects against their content models, and support for optional datastreams

® Optimistic Locking: The REST API now provides support for optimistic locking to ensure noone else has made a change to an object
since you started editing it

® FeSL Authentication: FeSL Authentication can now be used independently of FeSL's experimental authorization mechanism, and is
now the default authentication mechanism (although the old mechanism can be specified during installation). FeSL Authorization is still
disabled by default.

® Logging reconfiguration without restart: Using the new SLF4J and Logback logging framework, logging configuration changes now
become effective without having to restart the server

®* REST APl improvements and bug fixes: further stabilizing the REST API

® Deprecation of "LITE" APIs: As of this release, the API-A-LITE and API-M-LITE APIs are deprecated, and will be removed in a future
release. You are encouraged to migrate any code using these APIs to use the new REST API.

r. Javapackage naming and Java version

® As of version 3.4, Java 5 (JDK 1.5) is no longer supported. Java 6 (JDK 1.6) or later is required both to build and run
Fedora.

® Java package names have undergone a thorough revision for this release. If you have your own code built against
Fedora libraries and you update these to use the libraries from this version you will need to update your code to use the
new package names.

For a detailed list of features and bugfixes comprising this release see the tables below.

Features and Improvements

(20 issues)
Type Key Summary Priority

https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-613
https://jira.duraspace.org/browse/FCREPO-613
https://jira.duraspace.org/browse/FCREPO-613
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-614
https://jira.duraspace.org/browse/FCREPO-614
https://jira.duraspace.org/browse/FCREPO-614
https://jira.duraspace.org/browse/FCREPO-612
https://jira.duraspace.org/browse/FCREPO-612
https://jira.duraspace.org/browse/FCREPO-612
https://jira.duraspace.org/browse/FCREPO-612
https://jira.duraspace.org/browse/FCREPO-727
https://jira.duraspace.org/browse/FCREPO-727
https://jira.duraspace.org/browse/FCREPO-727
https://fedora-commons.org/jira/secure/IssueNavigator.jspa?reset=true&type=4&type=2&pid=10051&resolution=1&fixfor=10190&component=10100&sorter/field=priority&sorter/order=DESC&tempMax=1000

@ FCREPO-705 Extend Config A test coverage to include REST API support

@ FCREPO-428 Extend fedora-validate-objects to include referential integrity reporting

@ FCREPO-531 CMA and server should support optional datastreams sensibly

@ FCREPO-551 Akubra replaces LLStore as primary blob storage abstraction

@ FCREPO-385 Extend Validator to Support CMA-defined integrity checks

@ FCREPO-603 Standalone, reusable, Java client library for Fedora

@ FCREPO-492 Allow DC, RELS-EXT, etc, to be Managed Content

@ FCREPO-445 Improved CMA modeling capabilties

@ FCREPO-622 Java repackaging: org.fcrepo

@ FCREPO-630 Switch to SLF4J with Logback as primary logging framework

@ FCREPO-689 Enable optimistic locking for modify operations

@ FCREPO-621 Move to Java 6+ (Java 5 no longer supported)

@ FCREPO-639 Allow log re-configuration without restart

@ FCREPO-733 Get validate to also validate the ontologies for RELS-INT

@ FCREPO-669 Do a Java version sanity check at install time

@ FCREPO-670 Better error reporting when database connection test fails at install time

@ FCREPO-671 Allow use of FeSL AuthN without FeSL AuthZ during install

@ FCREPO-552 Configurable parameters for the Fedora internal http client

@ FCREPO-646 Remove undocumented/unused/broken ReportServiet

@ FCREPO-647 Remove unused/unnecessary ThreadMontitor

Bug Fixes

(35 issues)

Type Key Summary

@ FCREPO-753 ' Credentials not passed through for API-A REST calls when FeSL AuthN enabled

@ FCREPO-701 REST API purgeDatastream - invalid date format for start time purges all versions of a datastream
@ FCREPO-696 Adding datastream with managed content throws Exception when providing a checksum

@ FCREPO-623 Journaling RMI transport writer does not send close() events

@ FCREPO-680 REST API throws NPE when adding new datastream without providing media- and mime type
@ FCREPO-699 PUT /objects/{pid}/datastreams/{dsid} sets versionable to true if it is not specified (REST API)
@ FCREPO-627 Fedora REST-style object viewer does not properly handle encoded slashes in the pid value.
@ FCREPO-641 AuthFilterJAAS prevents the server from starting when FEDORA_HOME is not set

@ FCREPO-736 System test failures when fesl authn enabled (fesl authz disabled)

@ FCREPO-754 No authentication for UserServlet with FeSL AuthN and API-A auth turned off

@ FCREPO-638 E%dlf)sra basic search interface returns results with old-style "/fedora/get" URLs instead of new REST interface
@ FCREPO-660 Regression: setting FEDORA_HOME via context-param fails

@ FCREPO-566 ' Trunk fails to build on Windows if path contains spaces

4 4 b b b b L 0 b e e sy)]) R)

Priority

B o P o) o o 5 B

https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-705
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-428
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-531
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-551
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-385
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-603
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-492
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-445
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-622
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-630
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-689
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-621
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-639
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-733
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-669
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-670
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-671
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-552
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-646
https://jira.duraspace.org/browse/FCREPO-647
https://jira.duraspace.org/browse/FCREPO-647
https://jira.duraspace.org/browse/FCREPO-647
https://fedora-commons.org/jira/secure/IssueNavigator.jspa?reset=true&type=1&pid=10051&resolution=1&fixfor=10190&component=10100&sorter/field=priority&sorter/order=DESC&tempMax=1000
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-753
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-701
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-696
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-623
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-680
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-699
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-627
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-641
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-736
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-754
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-638
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-660
https://jira.duraspace.org/browse/FCREPO-566
https://jira.duraspace.org/browse/FCREPO-566
https://jira.duraspace.org/browse/FCREPO-566

FCREPO-704

FCREPO-802

FCREPO-628

FCREPO-64

FCREPO-615

FCREPO-732

FCREPO-708

FCREPO-698

FCREPO-620

FCREPO-616

FCREPO-607

Ingesting a managed content datastream via REST fails with files larger than 2GB

external JMS broker unavailable at startup halts startup

FieldSearch query with bad syntax does not immediately release connection to pool

Datastream SIZE attribute not fully implemented

With FeSL enabled, authentication is required for every resource

Parameter datastreamDefaultFilename mis-spelt as datstreamDefaultFilename in fedora.fcfg

REST API purgeDatastream returns HTTP 204 No Content instead of the dates of the deleted versions
info:fedora registration contains outdated information

Tomcat 6 server.xml:SSLEnabled defaults to false with non-bundled Tomcat

Installer-generated web.xml drops namespace and schemalocation declarations

REST getObjectProfile method has a datetime attribute in the return value, but this is not present in the
schema

FCREPO-700 REST api export specifies the wrong media type for atomZIp archives

FCREPO-609 Purge object will throw general exception if force=true

FCREPO-587 DOValidatorSchematron error on Fedora startup with WebLogic

FCREPO-610 ObjectHistory only includes datastream timestamps, and only from currently active datastreams
FCREPO-618 Content-Disposition tests in fedora.test.api. TestRESTAPI fail on WebLogic

FCREPO-666 = Maven build warnings for ${version} ${pom.version} ${artifactld}

FCREPO-640 Some IPv6 loopback addresses fail to match for default policies

FCREPO-665 DefaultDOManager logging WARNIngs for valid dsLocations

FCREPO-617 "Other" servlet container option does not provide local services webapps

FCREPO-673 REST getNextPID with invalid PID namespace throws error but results in update to PIDGEN table

o & o o & b b e e o e e e e e e] B

(o] [o] (o] (o] [o] [o) [o] [8] [o] [o] [o) [o) [o]) (o] [o] [o] [o) [8]) [o] [o] [o] [o]

FCREPO-727 Provide a link to datastream content from the "list datastreams" view

Previous Release Notes

All release notes for Fedora 3.4.x can be found here.

Installation and Configuration Guide

Introduction

This guide will show you how to install a new Fedora Repository using the installer, or from source code. If you are upgrading from a previous
release, please see Upgrading from 2.x or Upgrading from 3.x

Prerequisites

#) Download Fedora 3.4.2

® Fedora 3.4.2 Installer (110M)
® Fedora 3.4.2 Source Code (14M)

Java SE Development Kit (JDK) 6.
Whether installing a binary or source distribution, JDK 6 is required. The JDK should be installed on the machine you intend to use as the Fedora
server. It is available from http://java.sun.com/. Look here for more information on installing Java.

https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-704
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-802
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-628
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-64
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-615
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-732
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-708
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-698
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-620
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-616
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-607
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-700
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-609
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-587
https://jira.duraspace.org/browse/FCREPO-610
https://jira.duraspace.org/browse/FCREPO-610
https://jira.duraspace.org/browse/FCREPO-610
https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-618
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-666
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-640
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-665
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-617
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-673
https://jira.duraspace.org/browse/FCREPO-727
https://jira.duraspace.org/browse/FCREPO-727
https://jira.duraspace.org/browse/FCREPO-727
http://downloads.sourceforge.net/fedora-commons/fcrepo-installer-3.4.2.jar
http://downloads.sourceforge.net/fedora-commons/fcrepo-src-3.4.2-src.zip
http://java.sun.com/

Database

Fedora uses a relational database to support some of its functions. To simplify installation, the Fedora installer includes and can configure an
embedded instance of the Derby SQL Database 10.5.3. Fedora supports four external databases: MySQL, Oracle, PostgreSQL and Microsoft
SQL Server. The embedded Derby database should only be used for evaluation and development purposes; Derby should not be used for any
production repository. It is recommended that you use one of the supported external databases which must be installed, configured and running
before proceeding with the installation. To configure Fedora to use an external database, please see the Database section below for further
instructions.

Application Server

The Fedora Repository installer includes Tomcat 6.0.20. Optionally, Fedora may be installed into any existing application server that implements
Servlet 2.5/JSP 2.1 or higher. At this time, Fedora has chiefly been tested with Tomcat 5.x and Tomcat 6.0.x but users have reported running
Fedora successfully with Jetty and JBoss.

Maven 2
Fedora uses Maven for its build environment. Maven2 is available from http://maven.apache.org/.

Prepare Environment Variables

The following environment variables must be correctly defined:

JAVA_HOME
This should point to the base directory of your Java installation. On Windows systems, this might be C: \ j ava. For UNIX derivatives, this might be
something like / usr /1 ocal /j dk1. 6. 0_17.

FEDORA_HOME

This is the directory where Fedora will be installed, for example, C: \ f edor a (Windows) or / usr /1 ocal / f edor a (UNIX derivatives). Note: This
is only required when running the Fedora client command line utilities. The server also requires this information at run time, but can accept it from
the following sources (listed in order of preference):

®* The f edor a. hone init-param in the Fedora webapp's web.xml file (Fedora 3.2+ only). The installer will automatically include the correct
path in your web.xml at installation time, so if you move your Fedora Home directory later, you will need to also modify this file and restart
the webapp container.

®* The fedora.home system property, configured as appropriate for your web application server of choice.

® The FEDORA_HOME environment variable, as available when the web application server starts.

PATH

This must include the Java and Fedora bin directories. For UNIX derivatives, this will be $FEDORA_HOVE/ ser ver/ bi n,
$FEDORA_HOVE/ cl i ent / bi n and usually $JAVA_HOVE/ bi n. For Windows, this will be %-EDORA_HOVE% ser ver \ bi n,
%-EDORA_HOVE% cl i ent\ bi n and usually %J AVA_HOVE% bi n.

If you will be building from source, Maven should also also be on your path.

JAVA_OPTS
If Fedora is configured to use SSL, JAVA_OPTS must include the j avax. net . ssl . trust St or e and
j avax. net. ssl . trust St or ePasswor d properties. See the SSL section below for more information.

CATALINA_HOME
If Fedora is configured to use Tomcat, CATALI NA_HOVE must be set before starting Fedora. If using the quick install option, CATALI NA_HOVE
should be set to $FEDORA_HOVE/ t ontat (or %-EDORA_HOME% t ontat in Windows).

DISPLAY (Unix-only)

When running a Fedora server in a Unix-like operating system (Linux, Solaris, OS X, etc), you should ensure that this environment variable is
NOT set by the user who will be running the application server in which Fedora is installed (e.g. Tomcat). Background: Fedora and the included
web applications are designed to run without access to a graphics output device. Although rare, having this environment variable set has been
reported to cause stability problems in certain installations of Fedora. Since a graphic output device should never be needed by the Fedora
server, it is safest to ensure this environment variable is not set.

The Fedora Installer provides three installation options: quick, custom, and client.

To start the installer, change to the directory where you downloaded the installer and at a command prompt, enter:

java -jar fcrepo-installer-3.4.2.jar

http://db.apache.org/derby/
http://www.mysql.com/
http://www.oracle.com/
http://www.postgresql.org/
http://www.microsoft.com/sqlserver
http://www.microsoft.com/sqlserver
http://maven.apache.org/
http://n2.nabble.com/A-ImageManipulation-that-kill-my-fedora-daemon-td2826668.html

Tip

ﬁ Fedora can also be installed in non-interactive mode by specifying an install.properties file as an argument to the installer. After
installing interactively, you will find an install.properties file in your $FEDORA_HOME/install/ directory. You can use this file as a
template for future, non-interactive installations. Take care if you are using an install.properties file from an earlier release
as the file may not contain some properties defined in the later release, default settings will be used in this case, which
may or may not be appropriate for your installation

Please ensure that the user account that is running the installer has sufficient permissions to write to the directories where Fedora will be installed
(if deploying to an existing Tomcat installation, this includes permissions to the Tomcat directory). Installer created files will usually be owned by
the user running the installer. Consequently, for example, after installation users of the Fedora Admin client will need write permissions to the log
files defined by FEDORA_HOME/client/log4j.xml.

Quick Install

The quick option is designed to get Fedora up and running as quickly as possible, with a minimum of advanced options. The quick install will
automatically install Tomcat pre-loaded with the Fedora Repository and the Derby database. Neither SSL support nor XACML policy enforcement
is enabled by the quick install.

Custom Install

The custom option provides the most flexibility in configuring an installation. Options include the choice of servlet container, database, the host,
ports and application server context Fedora will be running on, enabling optional services, as well as security options including SSL, XACML
policy enforcement, and FeSL.

Servlet Container

The installer will automatically configure and deploy to Tomcat 5.0.x, 5.5.x, and 6.0.x servlet containers. However, if an existing Tomcat
installation (as opposed to the Tomcat bundled with the installer) was selected, the installer will not overwrite your existing ser ver . xm , but
rather, place a modified copy at FEDORA _HOVE/ i nst al | so that you may review it before before installing it yourself.

Other servlet containers will require manual deployment of the war files located at FEDORA_HOWE/ i nst al | .

Application Server Context

The installer provides the option to enter an application server context name under which Fedora will be deployed. The context name defaults to
Fedora (resulting in http[s]://host:port/fedora), however any other valid context name can be supplied. The installer will name the resulting war file
according to the supplied context name (defaults to f edor a. war). Please ensure that the servlet container configuration reflects the name of the
Fedora context name in case it needs to be configured explicitly. For further details see Alternative Webapp Context Configuration.

SSL

Configuring SSL support for Fedora's API-M interface is an optional feature. It strongly recommended for production environments if Fedora is
exposed to unsecured application and users. However, if your installation is within a managed data center with firewall services, you may choose
to provide SSL using a software or hardware front-end instead. For example, a reverse proxy implemented using the Apache HTTP Server and

hiding Fedora generally provides better SSL performance.

If the Tomcat servlet container is selected, the installer will configure ser ver . xm for you. However, as noted above, if an existing Tomcat
installation was selected, the installer will not overwrite your existing ser ver . xni .

Please consult your servlet container's documentation for certificate generation and installation. (In particular, the example certificate provided by
the installer for Tomcat should not be used in a production environment).

If Fedora is configured to use SSL, the JAVA_OPTS environment variable must include the j avax. net . ssl . trust St ore and
j avax. net. ssl . trust St or ePasswor d properties. The value of j avax. net . ssl . t rust St or e should be the location of the truststore file

and the value of j avax. net . ssl . trust St or ePasswor d is the password for the keystore. The following values may be used with the sample
keystore included with the installer:

-Djavax.net.ssl.trustStore=$FEDORA_HOME/server/truststore -Djavax.net.ssl.trustStorePassword=tomcat

FeSL

The Fedora Security Layer is an experimental feature introduced from Fedora 3.3. FeSL Authentication is now the default authentication
mechanism, however Fesl Authorization is still considered experimental. Enabling FeSL Authorization will disable the legacy policy enforcement.
See FeSL Installation for more information about FeSL requirements that must be satisfied prior to installation.

Resource Index

If the Resource Index is enabled, Fedora will use Mulgara as its underlying triplestore, with full-text indexing disabled.

https://fedora-commons.org/confluence/display/FCR30/Alternative+Webapp+Context+Configuration
http://httpd.apache.org/
http://www.mulgara.org/

Messaging
If Messaging is enabled, Fedora will create and send a message via JMS whenever an API-M method is called.

Client Install

Both the quick and custom options will install the Fedora client software in addition to the Fedora server. The client option, however, will install
only the Fedora client software.

Running the Fedora Server

If you selected the quick install option, you will find Tomcat installed in FEDORA_HOVE/ t ontat . To run Fedora, start Tomcat by entering:

$FEDORA_HOME/tomcat/bin/startup.sh

(or for Windows)

"%FEDORA_HOME%\tomcat\bin\startup.bat"

If you selected the custom install option, ensure that your database server is running (unless you selected the included Derby option which will be
automatically started when the first database connection is made).

Demo Objects

If you just started Fedora for the first time, it's a good idea to check out the demonstration objects to get an idea of how Fedora works. See the
Demonstration documentation for complete descriptions.

NOTE: If, during a custom install, you entered values other than the defaults for fedoraServerHost (localhost) or fedoraServerPort (8080), you
must run the demo object converter utility script to change the host and/or port in the demonstration object ingest files. The demonstration
object conversion is only required if you are ingesting demonstration objects. If the demonstration objects are already ingested into the repository
(e.g. from a previous installation), there is no need for conversion. The demonstration objects are shipped with references to "localhost:8080" and
these references must reflect the new values of fedoraServerHost fedoraServerPort. Refer to the Command-line Utilities documentation for
additional details on running the demo object converter.

To ingest the demonstration objects, at a command prompt, enter:

fedora-ingest-demos.sh [hostname] [port] [username] [password] [protocol]

(or for Windows)

fedora-ingest-demos.bat [hostname] [port] [username] [password] [protocol]

For additional information on the fedora-ingest-demos command, see the documentation for the Client Command-line Utilities. Please note that
the demonstration objects must be ingested before they can be discovered using the default search interface.

Database

Fedora is designed to be RDBMS-independent. Fedora has been tested with Derby, McKoi, MySQL, Oracle, PostgreSQL and Microsoft SQL
Server. The embedded version of Derby included with the installer is provided as a convenience; Derby is not recommended for use in production
repositories. If you choose to use any database other than the embedded Derby provided by the Fedora Installer, you must install that database
first.

Follow the instructions below for the RDBMS of your choice in order to create the user and tables required by Fedora.

MySQL
Please note that the MySQL JDBC driver provided by the installer requires MySQL v3.23.x or higher.

The MySQL commands listed below can be run within the mysgl program, which may be invoked as follows:

mysql -u root -p

Create the database. For example, to create a database named "fedora3", enter:

CREATE DATABASE fedora3;

Set username, password and permissions for the database. For example, to set the permissions for user fedoraAdmin with password
fedoraAdmin on database "fedora3", enter:

GRANT ALL ON fedora3.* TO fedoraAdmin@localhost IDENTIFIED BY ‘fedoraAdmin’;
GRANT ALL ON fedora3.* TO fedoraAdmin@'%' IDENTIFIED BY ‘fedoraAdmin’;

MySQL 4.1.x users must also specify the default character set for the Fedora database as "utf8" and the default collation as "utf8_bin". For
example, to set the default character set and collation on a database named “fedora3", enter:

ALTER DATABASE fedora3 DEFAULT CHARACTER SET utf8;
ALTER DATABASE fedora3 DEFAULT COLLATE utf8_bin;

Oracle

To prepare Oracle for use with Fedora, the following steps should be taken by an administrative user. First, using the Database Configuration
Assistant, ensure that the database you'll be using is created with the UTF8 charset. Next, you'll need to create a Fedora tablespace and user in
the database. Assuming the administrative user is sys and the SID is fedora3, log in using SQL*Plus using the following command:

sqlplus sys/lPASSWORD@fedora3 as sysdba

To create a tablespace named "fedora_tblspace" with data in / var /| i b/ or acl e, enter the following:

CREATE TABLESPACE fedora_tblspace

DATAFILE '/var/lib/oracle/fedora_tblspace.dat' SIZE 1024M REUSE
AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED

SEGMENT SPACE MANAGEMENT AUTO;

To create a user “fedoraAdmin" with password "fedoraAdmin”, using the “fedora_tblspace”, enter the following:

CREATE USER fedoraAdmin IDENTIFIED BY fedoraAdmin
DEFAULT TABLESPACE fedora_tblspace;

Using the GRANT command, make sure the user has permission to connect, create, alter, and drop tables sequences, triggers, and indexes in
this tablespaces. For example:

GRANT ALL PRIVILEGES TO fedoraAdmin;

NOTE: Due to distribution license restrictions, the Fedora Installer does not include the Oracle JDBC driver. Oracle JDBC drivers are available
from http://technet.oracle.com/software/tech/java/sqlj_jdbc/content.html. The installer will prompt you for the location of the driver on your
filesystem. Also, if you run Fedora in Java 6 as is required by Fedora 3.4, you will need an Oracle Java 6 jdbc jar such as oj dbc6. j ar .

PostgreSQL
Please consult the documentation at http://www.postgresgl.org/docs/ for more detailed information about configuring PostgreSQL.

Launch the PostgreSQL interactive terminal, psql , (optionally appending the -U argument to connect as a different user).

psql -d postgres

To create a user "fedoraAdmin™ with password "fedoraAdmin" and database named "fedora3", enter the following:

CREATE ROLE "fedoraAdni n* LOG N PASSWORD ' f edor aAdmni n' ;
CREATE DATABASE "fedora3" W TH ENCODI NG=' UTF8' OWNER="fedor aAdmi n";

http://technet.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://www.postgresql.org/docs/

Microsoft SQL Server

David Handy has contributed a guide for interfacing Fedora with MS SQL Server

Other Databases

To use a database other than Derby, McKoi, MySQL, Oracle, PostgreSQL and Microsoft SQL Server, the database must support common
SQL-92 syntax and you must have a JDBC version 3 driver available.

The JDBC driver will need to be installed manually. For most containers, the driver may be placed in the Fedora webapp's VEB- | NF/ | i b
directory. For Tomcat 5.0.x, however, the driver should be installed to TOMCAT_HOVE/ common/ | i b. The JDBC URL will need to be configured
appropriately in the Fedora Server Configuration File.

Upon startup, Fedora checks the database for all required tables. If the tables do not exist, Fedora will create them. Because table creation is
much less standardized task across RDBMSs than SQL queries you must do one of the following:

1. Create the tables and indexes and auto-increments yourself in your own database (see the file:
src/ dbspec/ server/fedoral server/ st orage/ resour ces/ Def aul t DOVanager . dbspec in the source distribution for the

RDBMS-neutral table specifications).

2. Write a subclass of f edora. server. utilities. DDLConvert er for your database software, include it in the Fedora
VAEB- | NF/ cl asses directory or in a jar file in the Fedora VEB- | NF/ | i b directory, and associate it with the JDBC driver inside the
FEDORA _HOVE/ server/ confi g/ f edor a. f cf g file (see how it's done by looking at the MySQLDDLConverter and
DerbyDDLConverter associations with their respective drivers in the f edor a. f cf g file, and the classes' implementations in the source
distribution). If you choose option #2, please tell us about it, as it will be useful for other users of Fedora. Option 2 is harder, but it will
make future installations of new versions of Fedora (where the db schema will likely change) much easier for you if you plan on using that
database later.

Configuring the Fedora Server

fedora.fcfg

The Fedora Server's configuration is chiefly governed by the Fedora Server Configuration File, f edor a. f cf g, located at
FEDORA_HOME/ server/ confi g/ fedora. fcfg.

The Fedora server configuration file contains:

® Global parameters for the Fedora server
® Configuration parameters for each server module
® Configuration parameters for each persistent data store

The configuration file has a simple schema. It starts with a server element, under which a series of parameter elements occur, followed by a
series of module elements, followed by a series of dat ast or e elements. The parameter elements directly following the root server element are
used to control what are considered generic server functionality; for example: the port on which the server is exposed.

The module elements are used to configure specific parts of Fedora. For instance, the module with the role attribute

f edor a. server. sear ch. Fi el dSear ch is used to configure the field-searching component of the server. Inside the module element, several
par amelements are included. These are specific to that module's implementation. Descriptions of each parameter can currently be found in the
configuration file itself.

The dat ast or e elements are used to configure various databases that might be used by the system. Although the sample configuration file
holds several, you will typically only need one. The dat ast or e elements are associated with the modules by means of a parameter inside the
associated module. In the sample configuration file, for example, the pool Nanes parameter of the

fedora. server. storage. Connecti onPool Manager module refers to one of the dat ast or e elements in its value.

There are many other parameters you can configure with Fedora. Refer to the Fedora Server Configuration File itself (f edor a. f cf g) for internal
documentation on all the parameters.

Logging in Fedora

Fedora uses the Simple Logging Facade for Java (SLF4J) framework for logging with Logback as the actual logging implementation. For detailed
information about using SLF4J, consult the SLF4J Manual: http://www.slf4j.org/manual.html, and for information about using Logback consult the
Logback manual: http://logback.qos.ch/manual/index.html.

The log configuration file is located at FEDORA_HOVE/ ser ver/ confi g/ | ogback. xni . One of the benefits of using SLF4J and Logback is that
configuration changes take effect without needint to restart the server.

Normally, coarse-grained logs for Fedora are written to FEDORA_HOVE/ ser ver/ | ogs/ f edor a. | og. The following examples show the kinds of
configuration changes you can make to aid in debugging.

To change the level to DEBUG for all Fedora classes, change the | ogger name="or g. f crepo” line to the following:

https://wiki.duraspace.org/download/attachments/28181158/Interfacing_Fedora_with_Microsoft_SQL_Server.pdf?version=1&modificationDate=1251970272018
http://www.slf4j.org/manual.html
http://logback.qos.ch/manual/index.html

<logger name="org.fcrepo" additivity="false" level="DEBUG">

To change the level to DEBUG for just one class, add the following lines:

log4j.logger.fedora.server.utilities.SQLULtility = DEBUG, FEDORA
log4j.additivity.fedora.server.utilities. SQLUtility = false

To change the level to DEBUG for a whole package, add the following lines:

<logger name="org.fcrepo.server.resourcelndex" additivity="false" level="DEBUG">
<appender-ref ref="FEDORA"/>

Related Topics

Installation From Source

Alternative Webapp Context Configuration

Introduction

This optional Fedora server configuration provides for the ability to deploy a Fedora server under a different webapp context than the default
'fedora’.

For example, instead of running the server at
* www.example.com/fedora

It is now possible to run at
* www.example.com/newContextName

One immediate opportunity offered by the decoupling of the server from a particular context path (namely, 'fedora’), is the capability to deploy
multiple Fedora servers within a single application server.

Configuration

Installer
This is the step where the webapp context is actually set. If the 'custom’ option is chosen during the execution of fcrepo-installer-3.3.jar, the option

to specify "Fedora application server context" is presented. Simply specify the desired '[new context]' at this point if something other than the
default (‘fedora’) is wanted.

Server Command-line Scripts

The server command-line scripts need to know the name of the app server context when they are run. By default, they assume ‘fedora’, but this
assumption may be changed by defining the environment variable WEBAPP_NAME:

WEBAPP_NAME =newContextName

where newContextName is the fedora appserver context specified at installlation.

Client Command-line Scripts

By default, the client command-line scripts assume ‘fedora’ as the app server context. This assumption may be changed by specifying the new
context as an additional argument. See Client Command-line Utilities for the exact usage information for each script.

System Tests

This is relevant to the fedora development process, and not a concern for normal fedora operation. In the source distribution, live junit system

tests are defined in the maven pom file of the integration test subproject (fcrepo-integrationtest/pom.xml). When running these tests while using
an alternate fedora app server context, the fedora.appserver property must be set to the new app server context. If it is not, certain tests for
command line utilities will fail.

<properties>
<fedora.appServerContext>newContextName</fedora.appServerContext>

</properties>

Known Issues

When using an alternate context, the 'view' dissemination from the demo:SmileyStuff object will contain broken image links. This is a problem
with the demo object itself, and does not represent user or system error. You can fix this manually by modifying the
image-collection-demo/SmileyStuff-ViewStylesheet.xsl| stylesheet within the fedora-demo webapp. Simply change occurances of "/fedora/get" to
"InewContextName/get".

Configuring Low Level Storage

Introduction

Often abbreviated "LLStore", the Low Level Storage Interface is a critical component of Fedora. It stores and provides access to the authoritative
copy of all digital object XML (FOXML) and datastreams managed by a Fedora repository.

LLStore is an internal Java interface and is not intended to be accessed directly by user applications. Instead, applications are expected to
interact with Fedora through the web-based respository APIs.

Fedora's default LLStore module stores digital object XML and datastreams as individual files in a regular filesystem. However, there are several
other options that can be configured.

General Configuration

If you don't want to use the default implementation or configuration options, you must configure the LLStore module before starting Fedora for the
first time. Configuration is done within the server/config/fedora.fcfg file, by modifying the class and param values as appropriate for the LLStore
implementation you are plugging in:

<nodul e rol e="fedora. server. storage.| ow evel .| Low evel St or age"
cl ass="org. exanpl e. SomeLLSt or eMbdul e" >
<par am nane="sonePar an' val ue="soneVal ue"/ >
<l-- etc -->
</ modul e>

Consult the documentation for each plug-in listed below for the specific class name and configuration options supported. Depending on the plug-in
you are installing, you may also need to add one or more .jar files to the Fedora webapp's classpath (e.g. WEB-INF/lib).

Plug-Ins Provided by Fedora Commons

Akubra Low Level Storage (New)

Akubra is a newly-developed, generic "blob" storage API. The AkubralLowlevelStorage plug-in is included with Fedora 3.2 and acts as a bridge
between Fedora and Akubra, so that Akubra implementations can be used to support low-level storage in Fedora.

Because it offers an improved file storage abstraction and is pluggable itself, we plan to use Akubra as the default low-level storage option for
future releases of Fedora. However, it is also a very new API; we would like to gain more experience with it and hear more user feedback before
making it the default option.

To use this plug-in, replace the existing LowlevelStorage module in fedora.fcfg with the following:

<nodul e rol e="fedora. server. storage.| ow evel . | Low evel St or age"
cl ass="fedora. server. storage. | ow evel . akubra. Akubr aLow evel St or ageMdul e"/ >

Then modify the akubra-listore.xml file as appropriate. This is a Spring bean configuration file and is where you tell Fedora which Akubra
BlobStore implementation to use and how it should be configured.

https://wiki.duraspace.org/display/AKUBRA/Akubra+Project
http://fedora-commons.org/documentation/3.2/javadocs/fedora/server/storage/lowlevel/akubra/AkubraLowlevelStorage.html

Default Akubra-LLStore Configuration

The default Akubra-LLStore configuration is similar to the Filesystem Low Level Storage module traditionally used by Fedora in that it stores
object xml and datastreams as individual files on your local filesystem. However, it differs in a couple important ways:

® |t does not require the use of database tables to "look up" the path to each file.
® |t stores files in a deterministic location based on an md5 hash of a the unique id of each file.

Customizing the Akubra-LLStore Configuration
By editing the default akubra-listore.xml file in a couple simple ways, you can control:
®* The base directory of the object xml and datastream storage areas. Unless you are just testing out Fedora with Akubra, you should
definitely change these values to a permanent storage location. Look for /tmp/datastreamStore and /tmp/objectStore in the file and
change the values as desired.
® The shape of the directory tree in which to store the files. You control this by changing the "##" values in the configuration file. The
default values of "##" ensure that there are at most 256 directories in each store, all at the top level, and files will be distributed fairly
evenly among them. For more information on what "##" means and how it controls the directory structure, see HashPathldMapper in the
Fedora 3.2 Javadocs.

For more extensive information on Akubra, please refer to the Akubra Wiki Space.

Filesystem Low Level Storage (Mature)

This is Fedora's default storage option and requires no additional setup to use. It comes pre-configured with your Fedora installation to store all
objects in $SFEDORA_HOME/data/objects/, and all datastreams in $FEDORA_HOME/data/datastreams/. Paths are allocated based on the date
the item was first created. For example, a datastream created on May 8th, 2009 might be located in the 2009/0508/20/48/ directory.

To change these locations, consult the fedora.fcfg file that came with your Fedora installation and change the indicated param values as desired.

S3 Low Level Storage (Experimental)

This plugin stores all object XML and datastream content on Amazon's Simple Storage System (S3) and serves as a good example of how a
LowlevelStorage implementation can be built. However, we do not recommend the use of this plugin in production environments because:

® |t does not support rebuilds (see "Rebuilder Support" below)
® We plan to replace it with an Akubra S3 implementation in the near future.

For an overview of how this plugin works and how it can be configured to work with Fedora, please see this document.

The S3 Low Level Storage is not distributed in binary form. You may obtain it from our legacy Subversion repository via:

svn co https://svn. fedora-comons. svn. sourceforge. net/svnroot/fedora-conmons/ i ncubat or/ AmazonS3St or age

Third-Party Plug-Ins

iRODs Low Level Storage

This plugin was developed by the DICE Group and allows Fedora to use iRODs to store digital objects and datastreams. It is based on the SRB
plugin developed by the DART Project (see below).

For more information on this plugin, please visit https://www.irods.org/index.php/Fedora

SRB Low Level Storage

This plugin was developed by the DART Project and allows Fedora to use the Storage Resource Broker (SRB) to store digital objects and
datastreams.

For more information on this plugin, please visit http://www.itee.uq.edu.au/~eresearch/projects/dart/outcomes/FedoraDB.php
Sun Honeycomb Low Level Storage
This plugin was developed by Sun Microsystems and allows Fedora to use the StorageTek 5800 Systemto store digital objects and datastreams.

For more information on this plugin, please visit http://opensolaris.org/os/project/honeycomb/

Rebuilder Support

Fedora's Rebuild Utility (fedora-rebuild) provides repository administrators with an automated way to reconstitute Fedora's higher-level indexes
(the SQL database and the Resource Index) when upgrading Fedora, migrating to another SQL database, or recovering from inconsistencies.

http://fedora-commons.svn.sourceforge.net/viewvc/fedora-commons/fedora/tags/release-3.2/src/fcfg/server/akubra-llstore.xml
http://fedora-commons.org/documentation/3.2/javadocs/fedora/server/storage/lowlevel/akubra/HashPathIdMapper.html
http://fedora-commons.org/confluence/display/AKUBRA/Akubra+Project
https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/incubator/AmazonS3Storage/README.txt
http://diceresearch.org/
https://www.irods.org/
https://www.irods.org/index.php/Fedora
http://dart.edu.au/
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.itee.uq.edu.au/~eresearch/projects/dart/outcomes/FedoraDB.php
http://sun.com/
http://www.sun.com/storage/disk_systems/enterprise/5800/
http://opensolaris.org/os/project/honeycomb/

Historically, the only Low Level Storage implementation that supported this utility was the Filesystem Low Level Storage module that came
bundled with Fedora. As of Fedora 3.2, the rebuilder now works with any LLStore implementation that supports the new IListable interface.

Currently, the only LLStore implementations that support this interface (and thus can be used with the rebuild utility) are the Akubra and
Filesystem LLStore modules released with Fedora 3.2.

HTTP Proxy Configuration

Http Proxy Usage

For networks within an organization, the access to the public domain Internet is often routed through a web proxy and therefore only accessible by
using this proxy. Fedora >= v3.3 allows the usage of a http proxy. This means that you can for example have objects with external referenced
content that is only reachable through a proxy server.

Proxy properties

There are five properties that can be used for configuring the http proxy:

Parameter Description
htt p. pr oxyHost The hostname or IP address of the machine the proxy server is running on.
http. proxyPort The port of the proxy. Defaults to 80.

htt p. nonProxyHosts | A list of hosts that should be reached directly, bypassing the proxy. This is a list of regular expressions separated by
‘|I'. Any host matching one of these regular expressions will be reached through a direct connection instead of
through a proxy. If the nonProxyHosts list is invalid, the Fedora web client dismisses it, writes the error to the logfile
and continues its operation.

http. proxyUser Should the http proxy require credentials in the form of username and password, you must provide them with these
properties. Note: if the proxyUser is set the proxyPassword must not be empty, otherwise the username is not being
used by Fedora's web client.

http. proxyPassword The password for the http proxy.

1. Note
Note: https proxies are currently not supported.

For more detailed information see the official java documentation.
Tomcat Setup

The proxy setup can be done in basically two ways. Either by using the JAVA_OPTS environment variable:

JAVA_OPTS="-DproxyHost=host -DproxyPort=3128 -DnonProxyHosts=host1|host2 -DproxyUser=fedora -DproxyPassword=secret

Or by supplying these values directly to Tomcat (JCATALINA_HOME/bin/catalina.sh for *nix or %CATALINA_HOME%/bin/catalina.bat for
Windows). Please consult the official Tomcat documentation for further details.

Installation From Source

Installation from Source

Fedora now builds with Maven
As of version 3.3, Fedora is now built with Maven instead of Ant. This document describes how to build Fedora 3.3 from source
-- instructions for building Fedora 3.2.x are still available here.

To build the installer, at a command prompt, enter:

mvn clean install -P fedora-installer

http://fedora-commons.org/documentation/3.2/javadocs/fedora/server/storage/lowlevel/IListable.html
http://java.sun.com/javase/6/docs/technotes/guides/net/proxies.html
http://fedora-commons.org/documentation/3.2/Installation%20From%20Source.html

Once the build has been run with the fedora-installer profile (-P), you will be able to run the Fedora installer application. To start the installer, at a
command prompt, enter:

java -jar fcrepo-installer/target/fcrepo-installer-VERSION .jar

Please ensure that the user account that is running the installer has sufficient permissions to write to the directories where Fedora will be installed
(if deploying to an existing Tomcat installation, this includes permissions to the Tomcat directory). For more information on the Installer, see the
Installation instructions in the Installation and Configuration Guide.

Other useful build targets in the source distribution include:

1. mvn clean install
® builds all source code
® runs all unit & integration tests
2. mvn install -Dintegration.test.skip=true
® runs all unit tests
® skips all integration tests
3. mvn install -Dmaven.test.skip=true
® skips all unit tests
4. mvn integration-test -P config[A|B|C|Q]
® runs system tests per given configuration. For details on what each system test does, see the README at the
root of the source distribution.

Back to Installation and Configuration Guide

Installing Java

This page is part of the Installation and Configuration Guide.

The Fedora Repository release 3.4 requires Java 6 (JDK 1.6)
The Fedora Repository nees JDK 1.6 to be installed on your computer. JDK 1.5 (and below) is no longer supported. This
release has only been tested with the Sun JDK though other distributions may work.

* A JRE (Java Runtime Environment) is not enough.
® JDK 1.6 is the supported platform and Fedora has been tested against this platform.
® JDK 1.5 is no longer supported in Fedora Repository 3.4 or later.

1. If you are not sure whether you have JDK installed correctly, please confirm by doing the following:
® Open a command prompt.
® On Windows: Open your 'Start' menu and select 'Run’, then type cmd and click 'OK'. Alternately, you can open a
Command Prompt window from the Accessories menu item.
® Type the following in the command prompt and then press Enter:
® On Windows: echo %JAVA HOVE%
® On Unix: echo $JAVA HOVE
® View the result:
® Ifaline is displayed such as C: \ Progr a~1\ Java\j dk1. 6. 0_17, please check that the letters just before the final
numbers are 'jdk'. If you see those letters, the JDK is installed.
® |f nothing is displayed, or you do not see 'jdk' plus some numbers, the JDK is not installed.
2. Ifyou need to install the JDK, follow these instructions:
Go to the Java Sun download page.
® Download the version entitled 'JDK 6 Update XX', where 'XX' stands for some number. (Sun will provide the latest version on that
page.)
®* When the download has finished, run the Java installer. At one point, you will be asked to choose a directory to install to. Copy or
write this directory down for use later.

! Java 6
The Fedora Repository can be compiled using the Java SE 6 JDK. The Sun Java 1.5 has been set to EOL
(end of life) in 2009 by Sun Microsystems. As of release 3.4 Fedora has moved to Java 6 as the standard
platform and Java 5 is no longer supported. We would appreciate feedback from installations using Java EE
application servers.

3. On Windows: Please follow these instructions to set your JAVA_HOVE environment variable to the directory you where you have just
installed the JDK. By default, this directory is under C: \ Progr am Fi | es\ Java. Please note that some scripts on Windows may not
work correctly from the Windows command line when directories having spaces in their names are encountered. Usually, putting the

http://java.sun.com/javase/downloads/index.jsp

command in double quotation marks will fix the problem. The JDK can also be installed anywhere in the file system such as C: \ Java
avoiding spaces in directory names.

Setting JAVA_HOME in Windows

'ﬂ This information is only relevant if you are installing the Fedora Repository on a Windows server.

After you have installed the Java Development Kit in Windows, you must set the JAVA_HOME variable to the installation directory.

@ Please check that you have a JDK or SDK — Java JRE is not enough
A common problem is that people have only installed the Java Runtime Environment (JRE). You need either a Java
Development Kit (JDK) or J2SE Software Development Kit (SDK). To confirm that you have the right version, you can check the
Java installation path. Unless you changed the path during installation, Java will be installed to a subdirectory under
C:.\ Program Fi | es\ Java, for example C. \ Program Fi | es\ Java\j dk1.5.0_17
Open C: \ Program Fi | es\ Java and confirm the installation path is for a JDK or SDK. JRE installations are not suitable, and
have an installation directory beginning with j r e. The numbers after the j r e are not relevant. Example JREs are:

m jrel.5.0_16
jre6

SDK and JDK installations are suitable. Their installation directory begins with j dk or j 2sdk, the numbers at the end are not
relevant. Example JDK and SDKs are:

@ jak1.5.0 17
2 jdk1.6.0_07

If you cannot see an installed JDK or SDK, install the JDK now (see Installing Java). It is perfectly fine to leave your currently
installed JRE in place. Windows will generally use its registry to support Java functions. You can install an additional JDK within
C.\ Program Fi | es\ Java or in a separate directory for use with the Fedora Repository. We will set the JAVA HOVE
environment variable to provide compatibility.

Step 1. Locate the JDK Installation Directory

If you already know the installation path for the Java or Software Development Kit, go to Step 2 below. Otherwise, find the installation path by
following these instructions:

1. Unless you changed the installation path for the Java Development Kit during installation, it will be in a directory under C: \ Pr ogr am
Fi | es\ Java. Using File Explorer, open the directory C:. \ Progr am Fi | es\ Java.

2. Inside that path will be one or more sub-directories such as j dk1. 5. 0_17. If you have just installed the Java Development Kit, it will be
installed to the newest directory, which you can find by sorting by date. For example, it may be installed in C: \ Pr ogr am
Fi I es\ Java\j dkl. 5. 0_17. This is the installation path.

Step 2. Set the JAVA_HOME Variable

Once you have identified the JDK installation path:

. Right-click the My Computer icon on your desktop and select 'Properties’.

. Click the 'Advanced' tab.

. Click the 'Environment Variables' button.

Under 'System Variables', click 'New".

. Enter the variable name as JAVA_HOVE.

. Enter the variable value as the installation path for the Java Development Kit.

Click 'OK".

. Click 'Apply Changes'.

. If you are running the Fedora Repository as a WAR rather than the Standalone, you may need to restart your application server.

This diagram shows setting the JAVA_HOME variable to an installation path of C: / Java/ j dk1. 5. 0_12:

8 o b P BT e

If you came here from Installing Standalone, go back and begin Step 3.

RELATED TOPICS

Installing Java
Upgrade Guide

Migration Guides

® Upgrading from 2.x
® Upgrading from 3.x

Fedora 3 Migration Support

If you are still using a 2.x Fedora installation, it is highly recommended that you move to 3.2.
This page is meant to be a starting point to provide extra information to ease the migration process from Fedora versions 2.x to versions 3.x. We
are enlisting your participation in creating a community of support to not only ensure successful migration experiences, but to provide meaningful

feedback and patches to help improve the migration utilities software.

® |f you have recently migrated to 3.x, you are encouraged to note your experiences, successes @ and otherwise @ below.

® |f you are planning (or would like to start planning) a migration, please do not hesitate to let us know.
Users are encouraged to add questions, resources or their contact information if they are willing to help. This information is all meant to

supplement the official migration guides listed above.

Contacts

The following individuals have volunteered to share their experience and try to answer questions and offer support for those having difficulty
migrating their repository. If information cannot be found here, or in the mailing list archives, users are encouraged to e-mail the mailing list to
maximize the number of individuals that can help and so that others may benefit from the exchange.

® Michael Durbin

Migration FAQ

Many questions about migration have been posted to the Fedora mailing lists. The most common themes are linked below, though a full listing or
search can be performed here: http://sourceforge.net/mail/?group_id=177054

Questions encountered when migrating from 2.x to 3.2
® none yet

Questions encountered when migrating from 2.x to 3.1

® What do | do when the Analyzer/Generator/Transformer fails because of an exception "Caused by: java.lang.NoClassDefFoundError:

org/jrdf/graph/PredicateNode"?
® Mailing list thread

https://wiki.duraspace.org/download/attachments/28181162/EnvironmentVariables.png
http://sourceforge.net/mail/?group_id=177054
http://sourceforge.net/mailarchive/message.php?msg_name=497F2B49.7080403%40func.nl

® Mailing list question
® What do | do when the analyzer fails because duplicate PID?
® Mailing list thread

Experiences, Walkthroughs and Information

Chris Wilper's Blog posts about Fedora (includes an overview of the new CMA)
Indiana University Digital Library Program's Migration Experience
Open Repositories 2009 presentation: Fedora 3: A Smooth Migration
Survey of Experiences
® results pending

Discussion and advice

Users are encouraged to add their own stories, problems, or advice here.

Upgrading from 2.x

@ Upgrade utility not currently compatible with version 3.4.2
The upgrader utility is not currently compatible with version 3.4.2 of Fedora, due to the Java package renaming in this release.

This issue is currently being addressed, see the JIRA issue. We will announce on the mailing lists when a new version of the
utility is available. In the meantime, you must upgrade to Fedora 3.3 as described below, then follow the instructions on
Upgrading from 3.x.

Overview

This document explains how to migrate your Fedora repository from version 2.x to 3.x. Although it is written assuming 3.3, the same instructions
apply if you are upgrading to an older 3.x release. Before continuing, you should familiarize yourself with the new Content Model Architecture. A
basic understanding of how the CMA works will be helpful in understanding the migration process.

Throughout this guide, OLD_FEDORA_HOVE refers to the home directory of your Fedora 2.x installation, and NEW FEDORA_HOVE refers to the
home directory of your new Fedora 3.x installation.

NOTE: To reduce confusion during this process, if you have previously ingested the Fedora demo objects, you should purge them from your 2.x
repository before starting with the migration process. The demo objects have changed significantly since 2.x, and if you'd like the new versions,
we recommend that you ingest them after performing a successful migration of your old repository.

1. Install, Start, and Stop Fedora 3.x

Follow the instructions in the Fedora Installation and Configuration Guide. When finished, start the server and verify your installation was
successful by visiting the describeRepository page (e.g. http://localhost:8080/fedora/describe
). Finally, shut down Fedora. It should not be restarted again until later in the migration process.

2. Point Fedora 3.x to Existing Objects

A. Object XML (FOXML)

Determine where your old object XML is stored. If you're unsure, consult OLD_FEDORA_HOWVE/ ser ver/ confi g/ f edor a. f cf g and find the
value of obj ect _st ore_base.

Edit NEW FEDORA HOVE/ ser ver/ f edor a. f cf g and change the value of obj ect _st or e_base the full path of your old object's directory.

NOTE: The upgrade process will transform the objects in obj ect _st or e_base of NEW FEDORA HOWE/ server/ f edor a. f c¢f g in place. Thus,
by following the above instructions, the new upgraded files will exist in their old location. If that is not what is desired, then you could copy the old
files (both objects and content) to their final location, point the NEW FEDORA_HOVE/ ser ver / f edor a. f cf g to that new location, and then
continue the update process.

e

Warning
If you haven't already done so, make a backup of all original object XML files. These will be changed during the transformation
part of the migration process, and if something goes wrong, this backup will be your only way of recovering.

B. Managed Datastreams

http://sourceforge.net/mailarchive/message.php?msg_name=D506E62AE6628C42B87D7AFD05EF3E5A050A3475%40EX04.asurite.ad.asu.edu
http://sourceforge.net/mailarchive/message.php?msg_name=op.urawnulg2fojsj%40slm-wxp-770.sprachwiss.uni-hamburg.de
http://cwilper.blogspot.com/search?q=fedora
https://wiki.dlib.indiana.edu/confluence/display/INF/Test+Server+Migration+Notes
http://article.gmane.org/gmane.comp.cms.fedora-commons.devel/1001
http://www.surveymonkey.com/s.aspx?sm=ot4lVTGkp51uXHLDs07kKA_3d_3d
https://jira.duraspace.org/browse/FCREPO-782
http://localhost:8080/fedora/describe

Determine where your old Fedora Repository's managed Datastreams are stored. Again, you can check your old f edor a. f cf g file. Look for the
value of dat ast r eam st or e_base.

Edit NEW FEDORA_HOVE/ ser ver/ f edor a. f cf g and change the value of dat ast r eam st or e_base the full path of your old Datastreams
directory.

NOTE: The migration process will not make any changes to these files.
2. Install the Migration Utilities
The migration utilities come as a separate download from the Fedora installation. They are all included, with source, in a single download

fedora-migration-3.2.zip at sourceforge.net. Once unzipped, you will find the executable jars in the top directory.

lﬂ Although the filename is fedora-migration-3.2.zip, the utilities will also work for migrating to Fedora 3.3

3. Run the Analyzer

The analyzer examines all of your existing digital objects and looks for similarities. It outputs the following information in a directory you specify.
® A set of generated content models.
® Alist of PIDs for each content model.

® Service Deployment (formerly known as Behavior Mechanism) information for each content model.

The analyzer does not make changes to any source objects.

A. Configuring the Analyzer

The analyzer accepts a Java properties file for configuration.

o T
In properties files, the "\" character must be escaped. When using Windows, this means paths like c: \ wor k\ abc must be
written with two backslashes as a path delimiter rather than one.

Create afile (e.g. mi grati on. properti es) with the following content, filling in values appropriate to your environment:

https://sourceforge.net/project/downloading.php?group_id=177054&filename=fedora-migration-3.2.zip&a=68336988

This is the directory where the analyzer's output files should be sent.
1f it doesn't already exist, it will be automatically created.

1f it already exists, it nust be enpty (to avoid accidental overwites)
To disable the above restriction, uncomment clearQutputDir=true bel ow.
output Di r=c:\\fedora-mgration

#cl ear Qut put Di r=true

The Fedora 3.x hone directory.
f edor aHone=c: \\ f edora- 3. 3

The full path to the JDBC driver Fedora is configured to use.
NOTE: The anal yzer only uses the database to aid in |ooking up
the location of FOXML. It will populate the initial paths in
the database the first time it runs, if the necessary.
jdbcJar=c:\\fedora-3.3\\tontat\\webapps\\fedora\\ VWEB-|I NF\\ | i b\\ post gresql -8. 3-603. j dbc3.j ar
Aspects of the original objects to ignore for the purpose of
classification. This is optional. |If unspecified, the generated
content nodels will be the MOST SPECI FI C POSSIBLE. [f
specified, this property nmust consist of a space-delimted
list of any of the follow ng:
O i gCont ent Model
If specified, objects that have differing values in the original
cont ent Model property may be assigned to the same content
nodel if they are otherwise simlar.
Dat ast r eam Ds
If specified, only datastreans bound to disseninators will
be considered inportant for classification. Objects that have
differing sets of UNUSED datastream | Ds nmay be assigned to
the sane content nodel if they are otherwise sinilar.

M METypes
If specified, the MMETYPE of each candi date datastream
wi Il be ignored for the purpose of classification. Objects that

have differing M ME types for the same datastream may be
assigned to the same content nodel if they are otherw se
simlar.

For mat URI s

This works exactly the sane as M METypes, but applies to

the FORVAT_URI of candi date datastreans.

gnor eAspect s=Ori gCont ent Mbdel Dat astrean Ds M METypes Format URI s

o oH H H H H H H HH HH KRR R HHHHHH

*

Specific datastream|IDs to ignore for the purpose of classification.

This is optional. |If specified, this property nust consist of a

space-delimted list of datastream|Ds to ignore. Note: This configuration
has no effect if Datastreaml Ds is already specified as an ignoreAspect

above.

i gnor eDat ast r eam Ds=DC RELS- EXT RELS-INT POLI CY

Explicitly declare objects to be in the FedoraCbject-3.0 content nodel.
The default is 'false', or inplicit. |If left inplicit, the objects
wi Il not have an explicit basic nodel, and it will be up to the
systemto use a default value at runtime. This option nay have

an inpact on future upgrades. Future versions of Fedora nay adopt a new
basi c nbdel that has additional system nethods, or require certain

dat astreans or formats. bj ects that explicitly declare a 3.0

nodel shoul d behave exactly the same if Fedora is upgraded to a

post 3.0 version. If left inmplicit, the objects may be interpreted

in light of the new nodel, and may inherit new nmethods, or may

fail validation and require updating if the new nodel introduces
requirenments they do not fulfill.

o oH H H W HHHHHH

FH*

Uncomment to force explicit basic nodel declarations in the
upgr aded obj ects.
explicitBasi cModel = true

H*

B. Analyzer Usage

The analyzer utility is an executable jar and takes the configuration file as a parameter. For example, if your configuration is in the current
directory and is named migration.properties, enter the following:

java -jar analyzer.jar migration.properties

Analysis of small repositories will finish very quickly. For repositories with millions of objects, analysis will take several hours. With modern
hardware, expect a rate of about 10,000 objects per minute.

-ﬂ Information
If upgrading to Fedora 3.3 with an embedded Derby database (a configuration that is not recommended for production), you

may notice an error similar to "java.sql. SQLException: Cannot close a connection". This does NOT indicate that the analyzer
failed, and can be safely ignored.

C. Reviewing Analyzer Output

The analyzer will produce several files in the output directory.

Generated content models will be in FOXML 1.1 format and will be named cnodel - n. xm (where n is a number used for association). For each
of these, there will be an associated crrodel - n. menber s. t xt file containing a list of PIDs that conform to the content model.

Each content model object will contain the following inline XML datastreams:

® CLASS-DESCRIPTION - This is a simple human-readable log of the matching aspects of all member objects found during the analysis
process. This datastream is not used or recognized by Fedora; it is only included for documentation purposes and may be removed at

any time.
®* DS-COMPOSITE-MODEL - This is a special Fedora-defined description of the datastreams (and aspects thereof) that member objects

are expected to have. You'll notice that it contains a subset of the information expressed in CLASS-DESCRIPTION. This datastream is
important, and should not be removed from the content model object.

If the member objects had disseminators:

® You will notice that the generated content model also has a RELS- EXT Datastream. This RDF Datastream points to the original Behavior
Definition (now known as Service Definition) objects via a Fedora-defined f edor a- nbdel : hasSer vi ce relationship. This relationship
means that members of this content model should have the behaviors defined within the target SDef(s).

® There will also be an associated cnodel - n- depl oynment s. t xt file in the output directory. For each Behavior Mechanism formerly
used by the objects' disseminators, this file identifies the original BMech, specifies a PID for a new, similar Service Deployment, and
specifies a set of Datastream input name changes that the copy should have. This information is used by the generator to create new

content-model-specific Service Deployment objects.

Three additional files will be created in the output directory:

® sdefs.txt - This lists all original Behavior Definition (now onown as Service Definition) objects. The generator will create a stylesheet to

upgrade these objects to FOXML 1.1.
® sdeps.txt - This lists all original Behavior Mechanism objects. Although these objects will be made obsolete by the new generated

Service Deployments, the generator will create a stylesheet to upgrade them to Service Deployments in FOXML 1.1 so that you can view

them in the Fedora 3.0 Repository before deciding to purge them.
®* nocmodel.txt - This lists objects that should NOT be assigned a content model. Initially, the file is empty but it can be customized, if

desired (see Upgrading Objects Without Content Models below).

D. Customizing Content Model PIDs

By default, the PIDs assigned to the generated content models are of the form, changene: Cvbdel N. You should change these to use your own
repository's namespace. You may also want to change the identifier part of the PID (e.g. myns:Journal).

To do this, open each cnodel - n. xm file in an editor and change the following as desired:

® The value of the PID attribute at the root of the document.
® |f there is a RELS- EXT Datastream, change the part after i nf o: f edor a/ in the r df : about attribute. For example, change

rdf : about ="i nf o: f edor a/ changene: CVvbdel 1" tor df : about ="i nf o: f edor a/ myor g: Journal ".

E. Customizing Service Deployment PIDs

If any cnodel - n- depl oynent s. t xt files were created by the analyzer, you should also change any NEW DEPLOYMENT pid values specified
within each before continuing. These PIDs will default to values like changene: Cvbdel 1- BMech1l, but again, you should specify your own (e.g.

myns:Journal-Defaultimpl).

Warning
DO NOT specify the same PID for NEW_DEPLOYMENT as OLD_BMECH, as this will cause ingest problems later.

F. Upgrading Objects Without Content Models

By default, the analyzer ensures that every data object is assigned to a content model. If you'd rather avoid assigning an explicit content model to
an object, you may do so by a) removing its PID from the cnodel - n- nenber s. t xt file in which it resides and b) adding it to the
nocnodel . t xt file. This may be done for any number of objects.

gy Warning
In order for migration to work properly, the PID of every object in the source repository must occur exactly once in the set of PID

list files.

5. Run the Generator
The generator reads the output of the analyzer (along with any customizations you have made) and adds the following to the same directory:
® New Service Deployment objects (as specified in each cnodel - n- depl oynent s. t xt file)

® Stylesheets for transforming existing objects as necessary

Information
The generator does not make changes to the source objects.

A. Configuring the Generator

Like the analyzer, the generator accepts a Java properties file for configuration.

The configuration file should have the following content, with values filled in appropriate to your environment.
@ T

Since you already entered f edor aHone and j dbcJar in i grati on. properti es, you can minimize typing by just using that
file, and adding the necessary sour ceDi r parameter as shown below.

This is the directory containing the analyzer's output, and where the generator's
results should be witten.
sourcebDir=c:\\fedora-nmigration

The Fedora 3.x home directory
f edor aHonme=c: \\ f edora- 3. 3

The full path to the JDBC driver Fedora is configured to use
jdbcJar=c:\\fedora-3.3\\tontat\\webapps\\fedora\\ VWEB-|I NF\\ | i b\\ post gresql -8. 3-603. j dbc3.j ar

B. Generator Usage

The generator utility also accepts the configuration file as a parameter. For example:

java -jar generator.jar migration.properties

The generator should finish very quickly, regardless of the size of the repository.

C. Reviewing Generator Output

The generator will produce several files in the output directory. These files, along with those already produced by the analyzer, will be used in the
next steps of the migration process.

One stylesheet will be written for each PID list: sdeps. xsl t, sdef s. xsl t, nocnodel . xsl t, and each cnodel - n. menber s. xsl t file. Each
of these stylesheets will include transformation rules for upgrading the objects to FOXML1.1 and adding the necessary
f edor a- nodel : hasModel relationship via RELS- EXT, if necessary.

Information
The generated stylesheet will cause a new RELS- EXT Datastream to be created, or will amend the content of the latest revision

of the RELS- EXT Datastream, if it already exists.

The output will also include a new, generated Service Deployment object (cnodel - n. depl oynent N. xnl) for each one listed in the input's
cnodel - n. depl oynent s. t xt files. This SDep will match the content of the source SDep in the repository, but it will have a different PID, will
be in FOXML 1.1 format, and will use input part names consistent with the Datastream IDs specified in the associated content model's

DS- COVPCSI TE- MODEL Datastream.

6. Run the Transformer

The transformer applies stylesheets to FOXML stored in a Fedora repository. Although it directly accepts the output of the analyzer and generator,
it can also be used outside of the migration process for making low-level changes to batches of objects. When running the transformer in this way,
the repository should be shut down, and the r ebui | der should be run immediately afterward (see section below).

Here's how the transformer works: It scans a directory for PID list files, ending with .txt. For each, if a .xslt file exists with the same name, that
stylesheet is applied to the repository's FOXML for each object in the PID list.

Warning
The transformer makes changes to object XML in the repository. It is possible to damage some, or all of the objects in the
repository by using the transformer, so be sure to make a backup first!

A. Configuring the Transformer

Like the analyzer and generator, the transformer accepts a Java properties file for configuration. The transformer is configured with the same
properties that the generator is configured with (see above), and also takes the following:

Whether to run the transformer in "dry run" node or not.
In dry run node, transfornmation will be tested but no changes will be witten
dryRun=t rue

Although not required, it is strongly recommended that you run the transformer with dr yRun=t r ue the first time, to ensure all transformations will
fully succeed.

B. Transformer Usage

The transformer utility also takes the configuration file as a parameter. For example:

java -jar transformer.jar migration.properties

Transformation will take roughly double the time that analysis took, since it must read and write each file in the repository.

7. Run the Rebuilder

Now that all of your existing objects have been upgraded, you need to run the r ebui | der so Fedora's database is up-to-date with the files on
disk. See the Rebuilder documentation for further details.

Information
You MUST rebuild the SQL database. Rebuilding the Resource Index is required only if your Fedora 3.x Repository has been
configured to enable the Resource Index.

Rebuilding the SQL database will take around double the time that the transformer took. Rebuilding the Resource Index may take significantly
longer.

8. Ingest Generated Objects

After the rebuilder has run successfully, you should restart your Fedora 3.x instance and visit the describe page (e.g.
http://localhost:8080/fedora/describe
) again to make sure it started successfully.

Now you'll need to ingest all the new Content Model and Service Deployment objects created during the analyzer and generator steps. To do this:
® Runfedora-adm n. bat orfedora-adm n. sh and login to your new repository from the local machine.

® Go to File -> Ingest > Objects from Directory, and choose directory where these files were written (e.g. C: \ f edor a- m gr ati on)
® Choose FOXML as the format, and select OK.

http://localhost:8080/fedora/describe

Information
The admin client may try to ingest all files in the directory, including the non-FOXML files. While harmless, you may
wish to copy all FOXML files (all files in that directory that end in .xml) to a separate directory, and ingest from there.

10. Verify Success and Clean Up

You should now verify that the upgraded objects are behaving as expected. Pick a few from each cnodel - n. menber s. t xt file and do the
following for each:

® Visit the object's "Object Profile" page (e.g. http://localhost:8080/fedora/get/demo:MyPID
)

® From that page, navigate to "View ltem Index", and click each Datastream, ensuring it downloads properly.

® If you had Dissseminators in your original repository, you should also navigate to the "View Dissemination Index" page and make sure
your old Disseminations appear, and that they execute properly.

If you had Disseminators in your original repository, you are now making use of a NEW set of Service Deployment objects. You may now want to
purge the original BMechs, since they are no longer in use. The simplest way to do this is with the f edor a- admi n GUI . The PIDs of the old
former BMechs are enumerated in the file sdeps. t xt .

Upgrading from 3.x

Upgrading from 3.4.1to 3.4.2

Version 3.4.2 is a bugfix release and does not require a database or resource index rebuild, nor does it require an upgrade to your configuration.
In order to "swap in" the new version of the software, you may:

1. Shut down your old 3.4.1 repository
2. Install the newer version of Fedora in a different location, but before starting it:

a. Copy your old server/config/ directory into the new installation's server/config/ directory.

b. If you are using the legacy lIstore implementation instead of Akubra, modify the fedora.fcfg file, ensuring that the
object_store_base and datastream_store_base values point to the absolute path of these existing directories. If you'd rather keep
the paths relative in the config file, move or copy the content to the matching location in the new installation instead.

c. If you have previously made changes to the repository-wide XACML policies, copy them into the new repository installation's
data/fedora-xacml-policies directory (you will need to create this directory)

3. Start the new instance of Fedora for the first time.

Upgrading from 3.x to 3.4.2

.a Akubra low-level storage
As of Fedora 3.4, Akubra is the default low-level storage implementation. Akubra is not backwards-compatible with the
datastream and object storage from previous releases, so when upgrading ensure you select the legacy-fs option for Low level
Storage. If you are using an install.properties file ensure you specify the llstore.type=legacy-fs property. A migration utility to
migrate from legacy low-level storage to Akubra will be provided in a future release.

1. Shut down your old 3.x repository
2. Install the newer version of Fedora in a different location, but before starting it, modify the new fedora.fcfg so that:
a. It points to your previous 3.x database
b. The object and datastream paths point to your previous 3.x locations
c. Note: Due to the Mulgara version upgrade, if you have enabled the Resource Index previously, it will need to be rebuilt.
Therefore, it is unnecessary to point the resource index configuration to the old location.
. Start the new repository for the first time.
. Shut down the new repository.
. If you have previously made changes to the repository-wide XACML policies, copy them into the new repository's XACML directory.
. If you previously enabled messaging, and there were messages from your old repository that have not yet been delivered, copy its
activemq-data directory over the new activemq-data directory in your new install.
. Run the Resource Index Rebuilder.
8. Restart the new repository

oOUh W

~

License and Copyright

Fedora Repository Software License

Copyright © 2009-2011 DuraSpace

http://localhost:8080/fedora/get/demo:MyPID

Copyright © 2008-2009 Fedora Commons, Inc.
Copyright © 2002-2007 The Rector and Visitors of the University of Virginia and Cornell University

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and
limitations under the License.

The Fedora Repository Software distribution includes several third-party libraries, each with their own license terms. For a complete copy of all
copyright and license terms, including those of third-party libraries, please see:

® Fedora License and Copyright Page

Distribution Structure

Introduction

All of the directories named below are relative to FEDORA HOVE.

server - Contains the server configuration, command-line utilities, and policy files.

client - Contains the client classes, libraries, and utilities.

data - The default parent directory for obj ect _st or e_base, dat astr eam st or e_base, and XACML policies.

docs - Contains the licenses, javadocs, and Fedora documentation.

derby - If the included Derby database was chosen during the installation (i.e. either a "quick" install or the "included" database was
selected as part of a custom install, this will contain the configuration and data for the embedded Derby instance.

® tomcat - If the "quick" option was selected during the installation, this will contain an installation of Tomcat 5.5.26.

Server

® server/access - Stylesheets for the default dissemination service. All objects in the repository automatically subscribe to this service
through the system default content model. This service provides operations for listing and retrieving the components of the object.

¢ server/bin - Contains server command-line utilities, including f edor a- r ebui | d, f edor a- r el oad- pol i ci es, and

val i dat e- pol i cy.

server/config - Contains the server configuration files, including f edor a. f cf g, f edor a- users. xm , and | 0g4j . properti es.

server/logs - Contains the server log files.

server/schematron - Files supporting the validation of serialized digital objects.

server/xsd - W3 XML schemas, for reference and validation support.

Client

® client/bin - Contains client command-line utilities, including f edor a- admi n, f edor a- convert - denos, f edor a- i ngest - denos and
various batch utilities.

® client/demo - Contains sample digital objects that can be used as examples.

® client/fedora-client.jar - Contains the classes necessary to run the client applications.

® client/log4j.xml - Log4J configuration file for client applications.

® data/objects - The default root directory (defined in f edor a. f cf g) for the internal storage of Fedora objects.
® data/datastreams - The default root directory (defined in f edor a. f cf g) for the internal storage of Managed Content datastreams.
* data/fedora-xacml-policies/repository-policies - The default directory (defined in f edor a. f cf g) for repository-wide XACML policies.

Docs

® docsl/license - Contains license documentation for Fedora and third-party licenses and attributions.
® docsl/javadocs - Javadoc API documentation for Fedora.

Demonstration Objects

About

This document describes the demonstration objects that are distributed with Fedora.

After installing Fedora, you'll find these objects, in several formats, in your $FEDORA_HOVE/ cl i ent/ denp directory.

http://www.apache.org/licenses/
http://fedora-commons.org/license

These objects can be ingested into the repository in one of two ways.

® Using the Fedora Administrator GUI, selecting File, Ingest, Multiple Objects, From Directory and pointing to the demo/foxml directory.
® Running the fedora-ingest-demos command line script.

Once ingested, the demo objects can be viewed in a web browser using API-A-LITE. For example, to view the demo:5 object:
http://localhost:8080/fedora/get/demo:5

All demo objects are intended to work when the Fedora repository server is in a stand-alone condition (e.qg., if the repository is running without a
network connection, or if the repository is behind a firewall and not set up to receive outside connections)

Simple Document Demo

This Fedora data object demo:18 demonstrates the simplest Fedora digital object scenario. It is the case where we aggregate content in the
Fedora object, and let Fedora's default object behaviors provide access to the content. This is an example of a Fedora digital object that only has
default dissemination services. In this case, there are 3 datastreams in the object, one for each format of a particular document (in this case the
Fedora paper presented at ECDL2002). We can use the basic Fedora object dissemination service (also called "datastream disseminations")
which are part of the basic content model shared by all objects. The basic content model is dynamically associated with every object in the
repository (though it may optionally be statically associated). It has a default service definition (sDep) which provides basic operations for every
object which includes the ability to list items in the object, get an item, get the dissemination index, get the Dublin Core record, and retrieve other
information about the object. The results of these operations can be returned as either HTML (method names begin with "view...") or XML
(method names begin with "get..."). The end result is that the object is simply a container for content and metadata. The user can view the
contents and get any item from the object. While this scenario may be easy to implement and useful, it does not take advantage of Fedora's
extensible service features where custom operations can be associated with an object.

Formatting Objects Demo

There are two demonstrations of using Fedora to display XML content styled using XSL Formatting Objects. First, the Fedora data object
demo:21 shows the transformation of native formatting object document stored as an inlined XML datastream into PDF. Second, the Fedora data
object demo:26 shows the use of formatting objects to process TEI documents.

Simple Image Demo

The Fedora data object demo:5 demonstrates the UVA Simple Image behaviors by associating a simple dissemination with the object through its
content model. There are 4 Datastreams in the object, one for each of four different image resolutions. The object is linked to one dissemination
service which provides four behavior methods: getVeryHigh, getHigh, getMedium, and getThumbnail. The fulfillment of the service contract entails
the Fedora HTTP Image Getter resolving the URL of the appropriate datastream for each of the UVA Simple Image behaviors. There are no
transformations performed on the datastreams. This object shows how a service definition can be used to create a normalized set of methods for
a particular type of object, an image object in this case, which is defined by a content model. The idea here is that the Simple Image service
definition provides a standard set of dissemination services that can be used on any image object that conforms to the standard image content
model. As we will see later, different variants of image objects can subscribe to the same service definition, and in some cases the datastreams
will be dynamically transformed by a service to provide the appropriate image disseminations. This demo shows a simple one-to-one mapping of
the datastreams in the object to the behavior methods.

Document Transformation Demo

The Fedora data object demo:14 demonstrates the Document Transformation behaviors. There are 3 datastreams in the object, one XML source
document, and two XSLT stylesheets. The object's content model provides one dissemination service which is associated with the "Document
Transform" service definition and the Fedora Local Saxon Service (service deployment). Two services are available: getDocumentStylel and
getDocumentStyle2. When these methods are run the repository mediates access to the Fedora Local Saxon Service to produce the appropriate
transformation on the XML source in the object. The dissemination result will be one of two document styles.

Image Collection Demo

This demo illustrates the use of the Resource Index search service to fulfill collection behaviors. For this demo to work, the Resource Index must
be enabled prior to ingesting these objects.

A series of data objects (demo:SmileyBucket, demo:SmileyKeychain, etc.) subscribe to the image behaviors defined by the sDef object
demo:DualResIlmage. Each of these image objects also use the RELS-EXT datastream to assert its membership in the demo:SmileyStuff
collection. The demo:SmileyStuff collection subscribes to sDef object demo:Collection, which defines two methods: list and view. The collection
object uses the demo:DualResIlmageCollection sDep to implement those behaviors.

To see the dynamic HTML listing of collection members in action, you can view
http://host name/ f edor a/ get/ deno: Smi | eySt uf f/ denp: Col | ecti on/ vi ew.

This dissemination first requests the list of members of the demo:SmileyStuff collection using the local risearch service. Then it uses the local
saxon service to transform the XML results into a human-readable HTML page. The query text and the stylesheet are both datastreams of the

http://localhost:8080/fedora/get/demo:5

SmileyStuff collection and act as inputs to the list and view behaviors, respectively.

Getting Started with Fedora

Getting Started with Fedora

The Fedora Basics

Using the Fedora Repository Software
Search and Discovery

Tutorials

Fedora-based Applications

The Flexible Extensible Digital Object Repository Architecture is a conceptual framework that uses a set of abstractions about digital information
to provide the basis for software systems that can manage digital information. It provides the basis for ensuring long-term durability of the
information, while making it directly available to be used in a variety of ways. It is very important to understand that Fedora provides a foundation
upon which to build a variety of information management schemes for different use cases, not a full solution for a specific use case. The Fedora
software that DuraSpace distributes has been designed to provide many different possibilities for a large array of applications.

Fedora has a very active developer community, both contributing to the core software development process and developing complete applications
on top of Fedora that address particular use cases or application areas. This guide is designed to give you a basic understanding of the Fedora
architecture and the core repository management software, and to give you some general ideas about how to use it. Whether you want to look at
adopting one of the existing Fedora-based solutions or develop you own, this general introduction should be useful to you.

The Fedora Basics

In a Fedora repository, all content is managed as data objects, each of which is composed of components ("datastreams") that contain either the
content or metadata about it. Each datastream can be either managed directly by the repository or left in an external, web-accessible location to
be delivered through the repository as needed. A data object can have any number of data and metadata components, mixing the managed and
external datastreams in any pattern desired.

Each object can assert relationships to any number of other objects, providing a way to represent complex information as a web of significant
meaningful entities without restricting the parts to a single context.

Each data object is represented by an XML file that is managed in the file system, which contains information about how to find all of the
components of the object, as well as important information needed to ensure its long-term durability. The system keeps an audit trail of actions
that have affected the object, any formal policies may be asserted about the object and its use, and things like checksums, all within that XML file.
As long as both the XML files and the content files that are managed by the repository are backed up properly, the entire running instance of the
repository can be reconstructed from the XML files. There is no dependence upon any software to do so, no relational database that cannot be
completely reconstructed from the files.

Fedora also provides a way to define any number of views of the digital object as a set of virtual datastreams or behaviors of the object, some of
which can created on the fly. This allows the object to present a set of virtual data products on the front end that are derived from the actual data
that is being managed on the backend.

While Fedora can easily be used to model digital collections of surrogates of traditional, catalog-based collections, it has been designed to be able
to support durable web-like information architectures. Because each object completely contains all of the content, metadata and attributes of a
unit of content, and can assert any number of relationships to any other object, it is easy to support schemes in which objects have multiple
contexts with no dependencies upon each other. A Fedora repository does not have a particular catalog. Any number of indices, designed for
specific purposes can be applied to any pattern of components of objects desired.

®* The Fedora Abstractions - A description of the essential abstractions defined by the Fedora architecture that are implemented in
DuraSpace's Fedora software. (coming soon)

® An introduction to Fedora digital objects - A detailed description of the four types of Fedora objects and what they can do.

® An introduction to FOXML - The details about the XML encoding of Fedora objects.

® Relationships using RDF - A description of how Fedora can use the Resource Description Framework (RDF) to represent object
relationships.

® Content modeling - A general introduction to using Fedora to manage different kinds of information. (coming soon)

Using the Fedora Repository Software

We provide a test repository instance that starts up your own instance of Fedora in the cloud. You can use this to play with the web-based
administrator client to get a feel for making objects and managing a repository. Note that the instance of Fedora that is started up for you will stay
active for one hour, at which time it will be terminated, removing all objects that you have created.

When you are first getting started with setting up a Fedora repository on your own machine, a quick start option is provided that makes it easy to

http://fedora-commons.org/confluence/display/FCR30/Fedora+Digital+Object+Model
http://fedora-commons.org/confluence/display/FCR30/Introduction+to+FOXML
http://fedora-commons.org/confluence/display/FCR30/Digital+Object+Relationships

get going. This type of installation does not use any of the security features that Fedora provides, eliminating much of the complexity that often
trips up new users. It is recommended that you start with that, then turn on the security features as you get comfortable with the basics.

There are two ways to create objects in your Fedora repository. You can use the web-based client to create them interactively one at a time, or
you can construct your own workflows that create FOXML files which can be ingested into Fedora, either singly or as batch from a single
directory.

When you are ready to start using service objects, we provide an application called EZService that makes it easy to create basic service objects
from some XML template files. When you are ready to get more into the details, take a look at the Content Model Architecture (CMA) Construction
Guide to get more of the fine details of what is possible.

When you are getting started with Fedora it is usually best to keep the security and policy enforcement functionality turned off. When you are
interested in using that functionality, Fedora provides complete policy expression and enforcement systems that allow you to write policies that
can be applied repository wide, to any object or any component of any object.

® Use our test repository- We provide instance of a Fedora repository running in the cloud that you can use without having to download and
configure software.

® |[nstallation and Configuration on your machine - This is the starting point for setting up a Fedora repository on your server, which
includes a quick start option.

®* The Fedora Web-based Administrator - You can use this to interactively create and update objects, as well as to administer your

repository.

Creating and Updating Data Objects - The complete guide to building objects.

EZService - A quick start for creating service objects.

The CMA Construction Guide - A detailed guide to creating content model and service objects

Security

Search and Discovery

The nature of an object-based repository, like Fedora, is to manage all information in the most modular manner, in a way that is as independent of
any particular software as possible.There is no database that holds metadata fields. There are services, such as GSearch and PrOAl, that harvest
content and metadata from objects in various ways for various purposes. The best practice for building access systems for a Fedora repository is
to use such services to build one or more indexes that are tailored to your needs.

There is a built-in search, Basic Search, that was included so that repository managers would have something to use to help them manage their
repository. It indexes the required DC datastream, which is either an in-line XML datastream or a managed content datastream. If you provide this
information as in-line XML it is best to keep this datastream as small as possible, as the data is actually stored in the FOXML file. If your FOXML
files average larger than about 20 k in size, performance can be affected in situations where you have many simultaneous users. It is best to put
basic info in the DC datastream that is useful in repository management, but not elaborate descriptive info. If you want a rich Dublin core record it
is best to put it in a managed content datastream and index it using GSearch.

Both GSearch and PrOAl are designed to let you be selective in which objects you want included and to let you specify which datastreams you
want to be included, either actual datastreams or virtual ones that result from a service call. GSearch lets you use one or more search engines
that are already included to define different kinds of indexes. It also provides a way for you to create a plugin for your favorite search engine, if it is
not already included. PrOAI lets you selectively expose your repository under the Open Archives Initiative (OAI) scheme.

Basic Search - The built-in search that is intended for repository managers use, not intended to be exposed externally.
GSearch - The Generic Search Service that makes Fedora's features useful to different search engines.
PrOAl - The OAI provider service that is designed to take advantage of Fedora's features.

[]
[]
[]
®* The RDF-based Resource Index - This is Fedora's built-in semantic store.

Tutorials

® Tutorial 1 - Introduction to Fedora
® Tutorial 2 - Creating Fedora Objects

Fedora-based Applications

Below is a list of applications that run on the current 3.x versions of Fedora (or will soon be available). For a more complete community software
registry that includes applications that run on earlier generations of Fedora, or are other useful tools and utilities, see our Community Software
Registry .

ActiveFedora- Built on RubyFedora, this ruby gem provides an active record oriented way of working with objects in Fedora

ESciDoc - An eResearch environment developed specifically for use by scientific and scholarly communities.

The Fascinator - A front end to Fedora commons repository that uses Solr to handle all browsing, searching, and security.

Hydra - Will provide a "Lego Set" of web services and templates that can be used for a wide range of content management workflows.
(Not released yet but coming soon.)

http://testdrive.fedora-commons.org
http://fedora-commons.org/confluence/display/FCR30/Installation+and+Configuration+Guide
http://fedora-commons.org/confluence/display/FCR30/Fedora+Web+Administrator
http://fedora-commons.org/confluence/display/FCR30/Ingest+and+Export
http://fedora-commons.org/confluence/pages/viewpage.action?pageId=13762993
http://www.fedora-commons.org/confluence/display/FCR30/CMA+Construction+Guide
http://fedora-commons.org/confluence/display/FCR30/Fedora+Authorization+with+XACML+Policy+Enforcement
http://fedora-commons.org/confluence/display/FCR30/Basic+Search
http://fedora-commons.org/confluence/display/FCSVCS/Generic+Search+Service+2.2
http://fedora-commons.org/confluence/display/FCSVCS/OAI+Provider+Service+1.2
http://fedora-commons.org/confluence/display/FCR30/Resource+Index
https://wiki.duraspace.org/display/FEDORACREATE/Tutorial+1+-+Introduction+to+Fedora
https://wiki.duraspace.org/display/FEDORACREATE/Tutorial+2+-+Creating+Fedora+Objects
http://www.fedora-commons.org/confluence/display/DEV/Community+Software+Registry
http://www.fedora-commons.org/confluence/display/DEV/Community+Software+Registry
http://mediashelf.us/activefedora/
https://www.escidoc.org/
http://fascinator.usq.edu.au/trac
http://fedora-commons.org/confluence/display/hydra/The+Hydra+Project

® |slandora - A Drupal module that allows users to view and manage objects stored in Fedora.
® RODA - An OAIS-compliant, service-oriented digital repository system designed to preserve government authentic digital objects.

Fedora Digital Objects

Fedora Digital Object Model
Fedora Identifiers

Digital Object Relationships
Content Model Architecture
CMA Construction Guide
Introduction to FOXML
Fedora Atom

Fedora METS

Ingest and Export

Portable Fedora Objects

Fedora Digital Object Model

The Fedora Digital Object
The Fedora Digital Object Model
Datastreams
Digital Object Model - Access Perspective
Four Types of Fedora Digital Objects

¢ Data Object

® Service Definition Object

® Service Deployment Object

® Content Model Object

The Fedora Digital Object

Fedora defines a generic digital object model that can be used to persist and deliver the essential characteristics for many kinds of digital content
including documents, images, electronic books, multi-media learning objects, datasets, metadata and many others. This digital object model is a
fundamental building block of the Content Model Architecture and all other Fedora-provided functionality.

The Fedora Digital Object Model

Fedora uses a "compound digital object" design which aggregates one or more content items into the same digital object. Content items can be of
any format and can either be stored locally in the repository, or stored externally and just referenced by the digital object. The Fedora digital object
model is simple and flexible so that many different kinds of digital objects can be created, yet the generic nature of the Fedora digital object allows
all objects to be managed in a consistent manner in a Fedora repository.

A good discussion of the Fedora digital object model (for Fedora 2 and prior versions) exists in a recent paper (draft) published in the International
Journal of Digital Libraries. While some details of this paper have been made obsolete by the CMA (e.g. Disseminators), the core principles of the
model are still part of the CMA. The Fedora digital object model is defined in XML schema language (see The Fedora Object XML - FOXML). For
more information, also see the Introduction to FOXML in the Fedora System Documentation.

http://www.fedora-commons.org/confluence/display/ISLANDORA/Islandora
http://redmine.keep.pt/projects/show/roda-public
http://arxiv.org/abs/cs.DL/0501012
http://springerlink.metapress.com/app/home/journal.asp?wasp=pegkpkwqvg72m6ypfmel&referrer=parent&backto=linkingpublicationresults,1:100475,1
http://springerlink.metapress.com/app/home/journal.asp?wasp=pegkpkwqvg72m6ypfmel&referrer=parent&backto=linkingpublicationresults,1:100475,1
http://www.fedora.info/definitions/1/0/foxml1-0.xsd

Persistent 11

PID }"‘ Digital Object Identifier

|__ System Properties
_ Manage and track the object

Object Properties

™
Datastream 1 ‘
Datastrenm Datastreams
 Agaregates content items
Datastream N ‘
\ g -

The basic components of a Fedora digital object are:

® PID: A persistent, unique identifier for the object.
® Object Properties: A set of system-defined descriptive properties that are necessary to manage and track the object in the repository.
® Datastream(s): The element in a Fedora digital object that represents a content item.

Datastreams

A Datastream is the element of a Fedora digital object that represents a content item. A Fedora digital object can have one or more Datastreams.
Each Datastream records useful attributes about the content it represents such as the MIME-type (for Web compatibility) and, optionally, the URI
identifying the content's format (from a format registry). The content represented by a Datastream is treated as an opaque bit stream; it is up to
the user to determine how to interpret the content (i.e. data or metadata). The content can either be stored internally in the Fedora repository, or
stored remotely (in which case Fedora holds a pointer to the content in the form of a URL). The Fedora digital object model also supports
versioning of Datastream content (see the Fedora Versioning Guide for more information).

Each Datastream is given a Datastream Identifier which is unique within the digital object's scope. Fedora reserves four Datastream Identifiers for
its use, "DC", "AUDIT", "RELS-EXT" and "RELS-INT". Every Fedora digital object has one "DC" (Dublin Core) Datastream by default which is
used to contain metadata about the object (and will be created automatically if one is not provided). Fedora also maintains a special Datastream,
"AUDIT", that records an audit trail of all changes made to the object, and can not be edited since only the system controls it. The "RELS-EXT"
Datastream is primarily used to provide a consistent place to describe relationships to other digital objects, and the "RELS-INT" datastream is
used to describe internal relationships from digital object datastreams. In addition, a Fedora digital object may contain any number of custom
Datastreams to represent user-defined content.

Decisions about what to include in a Fedora digital object and how to configure its Datastreams are choices as you develop content for your
repository. The examples in this tutorial demonstrate some common models that you may find useful as you develop your application. Different
patterns of datastream designed around particular "genre" of digital object (e.qg., article, book, dataset, museum image, learning object) are known
as "content models" in Fedora.

~
Persistent [Ty -

7 - . .
PID Qi Digital Object Identifier
Object Properties - '|.’____ System Properties
_ Manage and track the object
Relations ™
RELS-EXT
Dublin Core ‘.. Reserved Datastreams
nC Fey aect metadalta
Audit Trail
AUDIT)

Datastream 1

Datastream -~ Datastreams
¢ Aggregates content items

Datastream N)

The basic properties that the Fedora object model defines for a Datastream are as follows:

Datastream Identifier: an identifier for the datastream that is unique within the digital object (but not necessarily globally unique)

State: the Datastream's state: Active, Inactive, or Deleted

Created Date: the date/time that the Datastream was created (assigned by the repository service)

Modified Date: the date/time that the Datastream was modified (assigned by the repository service)

Versionable: an indicator (true/false) as to whether the repository service should version the Datastream (by default the repository

versions all Datastreams)

Label: a descriptive label for the Datastream

* MIME Type: the MIME type of the Datastream (required)

® Format Identifier: an optional format identifier for the Datastream such as emerging schemes like PRONOM and the Global Digital
Format Registry (GDRF)

® Alternate Identifiers: one or more alternate identifiers for the Datastream (such identifiers could be local identifiers or global identifiers
such as Handles or DOI)

® Checksum: an integrity stamp for the Datastream content which can be calculated using one of many standard algorithms (MD5, SHA-1,
etc.)

® Bytestream Content: the content (as a stream resource) represented or encapsulated by the Datastream (such as a document, digital
image, video, metadata record)

® Control Group: the approach used by the Datastream to represent or encapsulate the content as one of four types or control groups:

® Internal XML Content - the content is stored as XML in-line within the digital object XML file

®* Managed Content - the content is stored in the repository and the digital object XML maintains an internal identifier that can be
used to retrieve the content from storage

® Externally Referenced Content - the content is stored outside the repository and the digital object XML maintains a URL that
can be dereferenced by the repository to retrieve the content from a remote location. While the datastream content is stored
outside of the Fedora repository, at runtime, when an access request for this type of datastream is made, the Fedora repository
will use this URL to get the content from its remote location, and the Fedora repository will mediate access to the content. This
means that behind the scenes, Fedora will grab the content and stream in out the the client requesting the content as if it were
served up directly by Fedora. This is a good way to create digital objects that point to distributed content, but still have the
repository in charge of serving it up.

* Redirect Referenced Content - the content is stored outside the repository and the digital object XML maintains a URL that is
used to redirect the client when an access request is made. The content is not streamed through the repository. This is beneficial
when you want a digital object to have a Datastream that is stored and served by some external service, and you want the
repository to get out of the way when it comes time to serve the content up. A good example is when you want a Datastream to
be content that is stored and served by a streaming media server. In such a case, you would want to pass control to the media
server to actually stream the content to a client (e.g., video streaming), rather than have Fedora in the middle re-streaming the
content out.

Digital Object Model - Access Perspective

Below is an alternative view of a Fedora digital object that shows the object from an access perspective. The digital object contains Datastreams
and a set of object properties (simplified for depiction) as described above. A set of access points are defined for the object using the methods
described below. Each access point is capable of disseminating a "representation” of the digital object. A representation may be considered a
defined expression of part or all of the essential characteristics of the content. In many cases, direct dissemination of a bit stream is the only
required access method; in most repository products this is the only supported access method. However, Fedora also supports disseminating
virtual representations based on the choices of content modelers and presenters using a full range of information and processing resources. The
diagram shows all the access points defined for our example object.

For the access perspective, it would be best if the internal structure of digital object is ignored and treated as being encapsulated by its access
points. Each access point is identified by a URI that conforms to the Fedora "info" URI scheme . These URIs can be easily converted to the URL
syntax for the Fedora REST-based access service (API-A-LITE). It should be noted that Fedora provides a several protocol-based APIs to access
digital objects. These protocols can be used both to access the representation and to obtain associated metadata at the same access point.

http://info-uri.info/registry/OAIHandler?verb=GetRecord&metadataPrefix=reg&identifier=info:fedora/

P ation
i . que“
; - c\REp X

/,.r' Datastreams . dire —
> / infio:fedora/demos 11/
iy ™,
o e fion
! Sen‘a
i N d'hrthRer
{ PID = demo:11
{ TYPE = FedoraOhject THUMB ¢ \ . "--._.--i" T THLME
[STATE = Active image/gif inio:ledommdema PiE!

directRepresentation,

| CREATED = 2008-6-10 |'_-"'-~
| 0 ‘I, \’
".\ | = _,-'I (
! -

edormdemo: | L/HIGH

.,
.,

wir
A lualRepresumatr‘on

s

S P"“'—-.._,_lr.ip-, \7‘\
- L,
IR,y ()

. = reg
—— I g
n

N, '
\._____.-"
- info:fedora/demo: | 1/sdef: 2/ Zoom View

LY
\‘\._

info:fedora‘demo: 1 1/5def: 2/ GrayscaleView

By default, Fedora creates one access point for each Datastream to use for direct dissemination of its content. The diagram shows how these
access points map to the Datastreams. The example object aggregates three Datastreams: a Dublin Core metadata record, a thumbnail image,
and a high resolution image. As shown, each Datastream is accessed from a separate URI.

Custom access points are created using the Content Model Architecture by defining control objects as described below. Behind the scenes,
custom access points connect to services that are called on by the repository to produce representations of the object. Custom access points are
capable of producing both virtual and direct representations (though they are likely to provide slower performance). Content in the Datastreams
may be used as input as well as caller-provided parameters. A "virtual representation” is produced at runtime using any resource the service can
access in conjunction with content generated in its code. In this example, there is one service that contains two operations, one for producing
zoomable images and one for producing grayscale images. These operations both require a jpeg image as input, therefore the Datastream
labeled "HIGH" is used by this service. Fedora will generate one access point for each operation defined by the service. The control objects
contains enough information so that a Fedora repository can automatically mediate all interactions with the associated service. The Fedora
repository uses this information to make appropriate service calls at run time to produce the virtual representation. From a client perspective this
is transparent; the client just requests a dissemination from the desired access point.

Four Types of Fedora Digital Objects

Although every Fedora digital object conforms to the Fedora object model, as described above, there are four distinct types of Fedora digital
objects that can be stored in a Fedora repository. The distinction between these four types is fundamental to how the Fedora repository system
works. In Fedora, there are objects that store digital content entities, objects that store service descriptions, objects used to deploy services, and
objects used to organize other objects.

Data Object

In Fedora, a Data object is the type of object used to represent a digital content entity. Data objects are what we normally think of when we
imagine a repository storing digital collections. Data objects can represent such varied entities as images, books, electronic texts, learning
objects, publications, datasets, and many other entities. One or more Datastreams are used to represent the parts of the digital content. A
Datastream is an XML element that describes the raw content (a bitstream or external content). In the CMA, Disseminators, a metadata construct
used to represent services, are eliminated though their functionality is still provided in other ways.

The Data object, indeed all Fedora digital objects, now consists of the FOXML digital object encapsulation (f oxmi : di gi t al Obj ect) and two
fundamental XML elements: Object Properties (f oxm : obj ect Properti es) and Datastreams (f oxnm : dat ast r eam). The Data object is the
simplest, most common of all the specialized object types and is identical to the digital object described in the Fedora Digital Object Model section
above.

Data objects can now be freely shared between Fedora repositories. If a federated identifier-resolver system, such as the Handle System™, or
any authoritative name registry system is used, the Data object will have the same identifier for each copy of itself in each participating repository.
Sharing Data objects while keeping the same identifier in each copy greatly simplifies replication, and enables many business processes and
services that are needed for large scale repository installations integrated within the Fedora Framework. Data objects can still be shared between
repositories by including both the original identifier and alternate identifiers as part of the object's metadata.

Service Definition Object

In Fedora, a Service Definition object or SDef is a special type of control object used to store a model of a Service. A Service contains an
integrated set of Operations that a Data object supports. In object-oriented programming terms, the SDef defines an "interface" which lists the
operations that are supported but does not define exactly how each operation is performed. This is also similar to approaches used in Web

(REST) programming and in SOAP Web services. In order to execute an operation you need to identify the Data object, the SDef, and the name
of the Operation. Some Operations use content from Datastreams (supplied by the Data object) and, possibly, additional parameters supplied by
the client program or browser requesting the execution.

i N
Perststent 1D } Digital Object Identifier
Object Properties System Properties
Manage and trad: the object
Dublin Core
D
Feserved Datastreams
Audit Trail Key object metadata
AUDIT
Service Definition Contral Datastream
Y OPERATIONM AP y Lists Individual Operations

Conceptually an Operation is called using the following form (the specifics vary with the actual Fedora interface being used but all will contain
some form of this information):

Repository : Get : Data object PID : SDef PID : Operation Name : Optional Parameters

A SDef is a building block in the CMA that enables adding customized functionality for Data objects. Using a SDef is a way of saying "this Data
object supports these operations." Essentially, a SDef defines a "behavior contract" to which one or more Data objects may "subscribe." In
repositories, we usually create a large number of similar Data objects and want them all to have the same functionality. To make this approach
flexible and easier to use, the CMA uses the Content Model (CModel) object (described below) to contain the model for similar Data objects.
Instead of associating the SDef directly with each Data object, the relation hasService is asserted to the CModel object. By following the relation
between the Data object to the CModel object, and then from the CModel object to the SDef object, we can determine what Operations the Data
object can perform. Also note that a Data object (through its CModel object) may support more than one Service (by having multiple SDef
relations).

SDef objects can now be freely shared between Fedora repositories. If a federated identifier-resolver system, such as the Handle System™, or
any authoritative name registry system is used the SDef object will have the same identifier for each copy of itself in each participating repository.
Sharing SDef objects while keeping the same identifier in each copy greatly simplifies replication, and enables many business processes and
services that are needed for large scale repository installations integrated within the Fedora Framework. SDef objects can still be shared between
repositories by including both the original identifier and alternate identifiers as part of the object's metadata. The best results will be gained by
sharing the Data object, SDef objects, and Content Model object as a group maintaining the same original identifiers. By using the CMA in this
fashion, you transfer a significant unit of the data and metadata that documents the expression pattern for your intellectual work. While this is, by
itself, not everything needed, it is a big step forward for creating a durable content repository.

It is worth noting that Service Definition objects conform to the basic Fedora object model. Also, they are stored in a Fedora repository just like
other Fedora objects. As such, a collection of SDef objects in a repository constitutes a "registry" of Service Definitions.

Service Deployment Object

The Service Deployment object is a special type of control object that describes how a specific repository will deliver the Service Operations
described in a SDef for a class of Data objects described in a CModel. The SDep is executable code but instead it contains information that tells
the Fedora repository how and where to execute the function that the SDep represents. In the CMA, the SDep acts as a deployment object only
for the specific repository in which it is ingested; each repository is free to provide functionality in a different way. For example, one Fedora
repository may choose to use a Servlet and another may use a SOAP Web service to perform the same function. As another example, individual
repository implementations may need to provide the functionality at different end points. Or perhaps, a specific installation may use a dynamic end
point resolution mechanism to permit failover to different service providers.

"
Pﬂﬁl;[t;l“ ID } Digital Object Identifier

Object Properties Systern Properties
Manage and track the object

Relations I
RELSEXT

Dublin Core Reserved Datastreams
nc key object metadata

Andit Trail
AUDIT

AN

Deployrnent
W5DL

Service Profile
SERVICE-PROFILE

Control Datastreams
Data Mapping Service deployment data
DSINPUT SPEC

service Binding
OPERATIONMAP _/)
b v

Since the SDep operates only within the scope of an individual repository, the operators of that repository are free to make changes to the SDep
or the functionality it represents at any time (except for temporarily making the object's services unavailable while the change is being made). This
approach permits the system operators to control access to services called by the Fedora repository to institute security or policies as their
organization determines. It enables Fedora-called services to be managed using the same principles and tools for the deployment of any
distributed system. It also enables the system operators to reconfigure their systems quickly without having to change any part of their content
except the SDep object.

The SDep stores concrete service binding metadata. A SDep uses a isDeploymentOf relation to a SDef as its way of saying "I am able to perform
the service methods described by that SDef." A SDep object is related to a SDef in the sense that it defines a particular concrete implementation
of the abstract operations defined in a SDef object. The SDef also uses a isContractorOf relation to a CModel as a way of saying "Use me to do
the service operations for any Data objects conforming to that CModel."

A SDep object stores several forms of metadata that describe the runtime bindings for invoking service methods. The most significant of these
metadata formats is service binding information encoded in the Web Services Description Language (WSDL). The Fedora repository system uses
the WSDL at runtime to dispatch service method requests in fulfilling client requests for "virtual representations” of a Data object (i.e., via its
Operations). This enables Fedora to talk to a variety of different services in a predictable and standard manner. A SDep also contains metadata
that defines a "data contract" between the service and a class of Fedora Data objects as defined in the CModel. For the initial deployment of the
CMA a simple data contract mechanism was chosen. Since the Datastream IDs are specified in the CModel and the SDep is now a deployment
control object only for a specific repository, the SDep is able to uniformly bind directly to these IDs. In the future a more abstract binding
mechanism may be used but this approach is simple and clear, though it may require the creation of a small number of additional SDep objects.

A major aspect of the CMA redesign is that there is no requirement that conformance to a Content Model or that referential integrity between
objects be checked at ingest time. This may result in a run-time error if the repository cannot find referenced objects, interpret the Content Model
or if there are any conformance problems.

It is worth noting that SDep objects conform to the basic Fedora object model. Also, they are stored in a Fedora repository just like other Fedora
objects. As such, a collection of SDep objects in a repository constitutes a "registry" of service deployments that can be used with Fedora objects.
In the CMA, SDep objects are not freely sharable across repositories. They represent how a specific repository implements a service. However,
SDep objects can be shared if the operator of the system modifies them for local deployment. Because of this, SDep objects should not be
automatically replicated between repositories without considering the affect.

Content Model Object

The Content Model object or CModel is a new specialized control object introduced as part of the CMA. It acts as a container for the Content
Model document which is a formal model that characterizes a class of digital objects. It can also provide a model of the relationships which are
permitted, excluded, or required between groups of digital objects. All digital objects in Fedora including Data, SDef, SDep, and CModel objects
are organized into classes by the CModel object. In this section, we will primarily discuss the relationship between the Data and CModel objects.

To create a class of Data objects, create a CModel object. Each Data object belonging to the class asserts the relation hasModel using the
identifier of the CModel as the object of the assertion. The current CModel object contains a structural model of the Data object. Over time there

will be additional elements to the Content Model document but this initial implementation is sufficient to describe the Datastreams which are
required to be present in each Data object in the class. The other key relation is to the SDef objects. You can assert zero or more hasService
relations in the CModel to SDef objects.

A Data object may assert a hasModel relationship to multiple CModel objects. Such a Data object should conform to all of its Content Models,
containing an aggregation of all the Datastreams defined by the Content Models. If two or more Content Models define Datastreams which have
the same name but different characteristics, no well-formed Data object can be constructed and likely the repository will be unable to deliver its
content or services. Fedora automatically assumes that all objects conform to a system-defined "Basic Content Model." There is no need to assert
a relation to this content model explicitly but, if the Data object asserts other relations, it is a good practice to make the assertion to the Basic
Content Model explicit. Regardless, the repository will behave the same whether the relation is asserted or not. Along with the Basic Content
Model, the repository defines a "Basic Service Definition" which supplies Operations common to all objects. One such service provides direct
access to the Datastreams.

Because of the Basic Content Model and the Basic Service Definition, nothing needs to be added to a Data object if the user only wants to store
and disseminate Datastreams by name. However, without an explicit Content Model you cannot validate whether the Data object is correctly
formed. In the CMA, if the repository cannot find and interpret all the control objects related to a Data object, or cannot interpret the Content
Model, it will issue a runtime error when the Data object is accessed. Note that the repository will always be able to able to perform basic
Datastream operations because they are a part of the Basic Content Model and Basic Service Definition. Other than conformance to the rules for
a properly formed digital object, there is no warning or error issued on ingest or modification of an object in the CMA.

i Persistent ID A o))
oD Cigital Object [dentifier
Chject Properies system Froperties
Manage and track the object
Eelatons
EELSEXT
Dublin Core Reserved Datastreams
DC Key object metadata
Andit Trail
AUDIT
structural Model Control Datastreams
LDS'COI"[PGSHE'MOIELJ Content Model data

CModel objects can now be freely shared between Fedora repositories. If a federated identifier-resolver system, such as the Handle System™, or
any authoritative name registry system is used the CModel object will have the same identifier for each copy of itself in each participating
repository. Sharing CModel objects while keeping the same identifier in each copy greatly simplifies replication, and enables many business
processes and services that are needed for large scale repository installations integrated within the Fedora Framework. CModel objects can still
be shared between repositories by including both the original identifier and alternate identifiers as part of the object's metadata. The best results
will be gained by sharing the Data object, SDef objects, and CModel objects as a group maintaining the same original identifiers. By using the
CMA in this fashion, you transfer a significant unit of the data and metadata that documents the expression pattern for your intellectual work.
While this is, by itself, not everything needed, it is a big step forward for creating a durable content repository. Over time, Content Model
languages can be developed that permit describing an ever larger portion of the essential characteristics of the content and its behaviors.

It is worth noting that Content Model objects conform to the basic Fedora object model. Also, they are stored in a Fedora repository just like other
Fedora objects. As such, a collection of Content Model objects in a repository constitutes a "registry" of Content Models.

Fedora ldentifiers

PIDs

A PID is a unique, persistent identifier for a Fedora digital object. PIDs may be user-defined or automatically assigned by a repository. In this
section we describe the syntactic and normalization considerations for PIDs.

Syntax

PIDs are case-sensitive and consist of a namespace prefix and a simple string identifier. The syntax is described below using augmented BNF:

http://www.ietf.org/rfc/rfc2234.txt

obj ect-pid = nanmespace-id ":" object-id

nanespace-id = 1*(ALPHA/ DG T/ "-" [".")

object-id =1*(ALPHA/ DIGT /["-" ["." ["~" ["_" | escaped-octet)
escaped-octet = "% HEXDI G HEXD G

The maximum length of a PID is 64 characters.

For convenience, we provide the following single regular expression, which can be used to validate a normalized PID string:

AMNIA-Za-z0-9] |-\)+ (([A-Za-z0-9]) [-|\. |~ _| (4 0-9A-F]{2})) +$

Examples

® demo:1
® demo:A-B.C_D%3AE
* demo:MyFedoraDigitalObject

Normalization

HEXDIG characters may occur in lowercase, but should be capitalized for normalization purposes. The separator character may occur as "%3A"
or "%3a", but should be changed to a colon ":" for normalization purposes.

Datastream IDs

Datastreams IDs may consist only of XML NCName characters and must not exceed 64 characters in length.

URIs for Objects

It is often useful to have Uniform Resource Identifiers ("URIs") that refer to Fedora Objects. For instance, semantic web technologies require the
use of a URI to identify a subject. Other benefits of exposing and using URIs are described in Section 2 of the W3C's Architecture of the World
Wide Web.

Every Fedora object has an implicit URI associated with it. These identifiers exist within the "fedora” namespace of the "info" URI scheme. We
chose this URI scheme due to it's resolution protocol independence and syntactic freedom.

Syntax

The URI for a Fedora object is constructed simply by appending the PID to the string “info:fedora/".

Examples

¢ info:fedora/demo:1
¢ info:fedora/demo:A-B.C_D%3AE
* info:fedora/demo:MyFedoraDigitalObject

Normalization

To normalize an object URI, normalize the PID part as described above.

URIs for Disseminations

Every dissemination of an object also has an implicit URI associated with it. This is useful when describing or referring to the representations
provided by a digital object.

Syntax

Dissemination URIs take one of two forms. In the case of a method call the URI indicates the service definition and the method (along with any
parameters). In the case of a datastream dissemination, the URI indicates the Datastream id.

di ssem nation-uri = "info:fedora/" pid "/" (nethod-call / datastreamid)
met hod- cal | sDef-pid "/" method-nane ["?" param*("&' param)]
param paranmNane "=" paranval ue

http://www.xmlplease.com/xmlname
http://www.w3.org/TR/webarch/#identification
http://www.w3.org/TR/webarch/#identification
http://info-uri.info/

Note: Although datastream-ids and method-names may consist of XML NCName characters. NCName characters that are not URI-safe must be
escaped using one to four escaped UTF-8 octets per character, each of the form "%" HEXDIG HEXDIG.

Examples

info:fedora/demo:1/demo:MySDef/method
info:fedora/demo:1/demo:MySDef/method?paraml=valuel
info:fedora/demo:1/title.jpg

info:fedora/demo:1/DC

Normalization

To normalize a dissemination URI:

Normalize the PID portion(s) of the URI.

Un-escape any URI-escaped characters that do not need escaping according to the definition of the "info" scheme.

Make all remaining escaped octets use UPPERCASE (%ff becomes %FF).

Parameters should be alphabetized in order by name, then by value. The order should be according to occurrence in UTF-8.

rPONPRE

Digital Object Relationships

What are Fedora Digital Object Relationships?

Fedora digital objects can be related to other Fedora objects in many ways. For example there may be a Fedora object that represents a
collection and other objects that are members of that collection. Also, it may be the case that one object is considered a part of another object, a
derivation of another object, a description of another object, or even equivalent to another object. For example, consider a network of digital
objects pertaining to Thomas Jefferson, in which scholarly works are stored as digital objects, which are related to other digital objects
representing primary source materials in libraries or museums. The composite scholarly objects can be considered a graph of related digital
objects. Other types of objects can also be related to the scholarly object over time, for instance annotations about the scholarly object can be
created by others and related to the original object. Also, digital objects can be created to act as "surrogates” or "proxies" for dynamically
produced web content such as an Amazon page for a book relevant to the scholarly object. Such a network of digital objects can be created using
Fedora, which in the abstract, would look like this:

scholarly objects

annotationOf nasPart

Ve

LT

el museum and library objects
commercial web content

Digital object relationship metadata is a way of asserting these various kinds of relationships for Fedora objects. A default set of common
relationships is defined in the Fedora relationship ontology (actually, a simple RDF schema) which defines a set of common generic relationships
useful in creating digital object networks. These relationships can be refined or extended. Also, communities can define their own ontologies to
encode relationships among Fedora digital objects. Relationships are asserted from the perspective of one object to another object as in the
following general pattern:

<subjectFedoraObject> <relationshipProperty> <targetFedoraObject>

The first Fedora object is considered the "subject" of the relationship assertion. The relationship, itself, is considered a property of the subject. The

http://www.fedora.info/definitions/1/0/fedora-relsext-ontology.rdfs

target Fedora object is the related object. Thus, a valid relationship assertion as an English-language sentence might be:

<MyCatVideo> <is a member of the collection> <GreatCatVideos>

Using RELS-INT, relationships can also be asserted from the datastream of one object to another object or datastream.

<MyCatPicture/Thumbnail> <is thumbnail of> <MyCatPicture/FullSizelmage>

Why are Fedora Digital Object Relationships Important?

The creation of Fedora digital object relationship metadata is the basis for enabling advanced access and management functionality driven from
metadata that is managed within the repository. Examples of the uses of relationship metadata include:

® QOrganize objects into collections to support management, OAIl harvesting, and user search/browse
® Define bibliographic relationships among objects such as those defined in Functional Requirements for Bibliographic Records
® Define semantic relationships among resources to record how objects relate to some external taxonomy or set of standards

®* Model a network overlay where resources are linked together based on contextual information (for example citation links or collaborative
annotations)

® Encode natural hierarchies of objects

® Make cross-collection linkages among objects (for example show that a particular document in one collection can also be considered part
another collection)

Where is Digital Object Relationship Metadata Stored?

Object-to-Object relationships are stored as metadata in digital objects within special Datastreams. These Datastreams are known by the
reserved Datastream identifiers of "RELS-EXT" (which stands for "Relationships-External") and "RELS-INT" (which stands for
"Relationships-Internal"). Each digital object can have one RELS-EXT datastream which is used exclusively for asserting digital object
relationships and one RELS-INT datastream which is used exclusively for asserting relationships from datastreams of the digital object.

RELS-EXT and RELS-INT Datastreams can be provided as part of a Fedora ingest file. Alternatively, they can be added to an existing digital
object via component operations of the Fedora management service interface (i.e., addDatastream, addRelationship). Refer to the FOXML
reference example to see an example of the RELS-EXT Datastream in context. Modifications to the RELS-EXT and RELS-INT Datastreams are
made via the Fedora management interface (i.e., modifyDatastream).

The RELS-EXT and RELS-INT Datastreams should be encoded as either Inline XML Datastreams, meaning that the relationships metadata is
expressed directly as XML within the digital object XML file, or as Managed Content datastreams. The datastream control group used when
Fedora creates new relationships datastreams (eg as part of an addRelationship API method) is specified in the DOVanager section of

f edor a. f cf g using the property def aul t RELSCont r ol G- oup.

@ Ensure DC, RELS-EXT and RELS-INT are versionable if using Managed Content
Due to an outstanding bug FCREPO-849, if you use Managed Content for DC, RELS-EXT or RELS-INT then please make sure
these datastreams are versionable (the default setting for versionable is "true”, so if you haven't specified this datastream
property then you are safe).

How is Digital Object Relationship Metadata Encoded?

Fedora object-to-object metadata is encoded in XML using the Resource Description Framework (RDF). The relationship metadata must follow a
prescribed RDF/XML authoring style where the subject is encoded using <r df : Descri pt i on>, the relationship is a property of the subject, and
the target object is bound to the relationship property using the r df : r esour ce attribute. The subject of a relationship assertion must be a URI
that identifies either a Fedora digital object for RELS-EXT, or a Fedora digital object datastream for RELS-INT. These URIs are based on Fedora
object PIDs and conform to the syntax described for the Fedora "info" URI scheme.

The syntax for asserting RELS-EXT relationships in RDF is as follows:

http://archive.ifla.org/VII/s13/frbr/frbr.pdf
https://wiki.duraspace.org/download/attachments/28181168/foxml_reference_example.xml?version=1&modificationDate=1217850937285
https://wiki.duraspace.org/download/attachments/28181168/foxml_reference_example.xml?version=1&modificationDate=1217850937285
https://jira.duraspace.org/browse/FCREPO-849
http://www.w3.org/TR/rdf-primer/
http://info-uri.info/registry/OAIHandler?verb=GetRecord&metadataPrefix=reg&identifier=info:fedora/

<rdf: RDF
xm ns: rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. or g/ 2000/ 01/ r df - schema#"
xm ns: f edora="i nf o: f edor a/ f edor a- syst em def / rel ati ons- ext er nal #"
xm ns: myns="http://ww. nsdl . org/ontol ogi es/ rel ati onshi ps#">
<rdf: Description rdf:about="info:fedoral/ denp: 99" >
<f edora: i sMenber Of Col | ecti on rdf:resource="info:fedoral/ deno: cl"/>
<nyns:isPartOf rdf:resource="info:fedoral/ nystuff:100"/>
<nyns: owner >Jane Doe</ myns: owner >
</rdf: Description>
</ rdf : RDF>

The above RDF fragment indicates that the Fedora digital object identified as "info:fedora/demo:99" is the subject that is being described (as
specified by the rdf:about attribute). This object has two relationships to other digital objects. It has an "isMemberOfCollection" relationship to the
object identified as "info:fedora/demo:c1" which is a Fedora object that represents a collection. This collection object is considered the target of
the relationship assertion. The second relationship assertion that is just like the first one, except that it asserts that the subject is a part of another
Fedora digital object, "info:fedora/mystuff:100". The third relationship asserts that the digital object has owner "Jane Doe". Note that the object of
this relationship is a text literal, not a URI.

The syntax for asserting RELS-INT relationships in RDF is as follows:

<rdf: RDF
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. or g/ 2000/ 01/ r df - schema#"
xm ns: f edora="i nf o: f edor a/ f edor a- syst em def/ rel ati ons- ext er nal #"
xm ns: myns="http://ww. nsdl . or g/ ont ol ogi es/rel ati onshi ps#">
<rdf: Description rdf:about="info:fedoral/ deno: 99/ Thunbnai | ">
<nyns:isThunmbnai | O rdf:resource="info: fedoral deno: 99/ Ful | Si zel mage"/ >
</rdf: Description>
<rdf: Description rdf:about="info:fedoral/deno: 99/ Ful | Si zel nage" >
<nyns: hasl nageSi ze>1600 x 900</ nyns: hasl mageSi ze>
</rdf: Description>
</ rdf : RDF>

The above RDF fragment indicates that the Fedora digital object datastream identified as "info:fedora/demo:99/Thumbnail" is the subject that is
being described (as specified by the rdf:about attribute) in the first rdf:Description element. This datastream has a relationship to another
datastream, in this case within the same digital object. It has an "isThumbnailOf" relationship to the datastream identified as
"info:fedora/demo:99/FullSizelmage", asserting that it is a thumbnail of the full-sized image.

The second rdf:Description element has the datastream "info:fedora/demo:99/FullSizelmage" as the subject, and it asserts that the image size is
1600 x 900 pixels. Note that the object of this relationship is a text literal, not a URI.

Unlike RELS-EXT, the RDF for RELS-INT can have multiple rdf:Description elements, with each having an rdf:about attribute identifying a
datastream within this Fedora digital object, and each rdf:Description element can contain one or more relationships with specified datastream as
the subject.

To ensure the integrity of relationship metadata so that it can be properly indexed by Fedora, the Fedora repository service validates all
RELS-EXT and RELS-INT Datatreams and enforces the following constraints on the RDF.

RELS-EXT Validation

1. The subject must be encoded as an <r df : Descri pti on> element, with an "rdf:about" attribute containing the URI of the digital object
in which the RELS-EXT Datastream resides. Thus, relationships are asserted about this object only. Relationship directionality is from
this object to other objects.

2. The relationship assertions must be RDF properties associated with the <r df : Descr i pt i on>. Relationship assertions can be
properties defined in the default Fedora relationship ontology, or properties from other namespaces.

3. Prior to 2.1, the objects of relationships were restricted to other Fedora digital object URIs. This has since been relaxed so that a
relationship property may reference any URI or literal, with the following exception: a relationship may not be self-referential,
r df : r esour ce attribute must not point to the URI of the digital object that is the subject of the relationship.

4. There must be only one <r df : Descri pti on> in the RELS-EXT datastream. One description can have as many relationship property
assertions as necessary.

5. There must be no nesting of assertions. Specifically, there cannot be an <r df : Descri pti on> within an <r df : Descri pti on>. In
terms of XML "depth," the RDF root is considered at the depth of zero. The must be one <r df : Descri pti on> element that must exist
at the depth of one. The relationship assertions are RDF properties of the <r df : Descr i pt i on> that exist at a depth of two.

http://www.fedora.info/definitions/1/0/fedora-relsext-ontology.rdfs

6. Assertions of properties from certain namespaces for forbidden in RELS-EXT. There must NOT be any assertion of properties from the
Dublin Core namespace or from the FOXML namespace. This is because these assertions exist elsewhere in Fedora objects and may
conflict if asserted in two places. The RELS-EXT Datastream is intended to be dedicated to solely object-to-object relationships and not
used to make general descriptive assertions about objects.

RELS-INT Validation

1. The subject must be encoded as an <r df : Descri pti on> element, with an "rdf:about" attribute containing the URI of a digital object
datastream in which the RELS-INT Datastream resides. Thus, relationships are asserted about datastreams in this object only.
Relationship directionality is from this object's datastreams to other objects and datastreams. (Note that the existence of the datastream
is not checked, the URI must be syntactically valid for a datastream in this digital object, but the datastream does not actually have to
exist.)

2. The relationship assertions must be RDF properties associated with the <r df : Descr i pt i on>. Relationship assertions can be
properties defined in the default Fedora relationship ontology, or properties from other namespaces.

3. A relationship property may reference any URI or literal.

4. There may be more than one <r df : Descri pti on> elements. One <r df : Descri pti on> should be included for each datastream to
be described, and each must have an "rdf:about" attribute identifying the datastream being described. One description can have as many
relationship property assertions as necessary.

5. There must be no nesting of assertions. Specifically, there cannot be an <r df : Descri pti on> within an <r df : Descri pti on>. In
terms of XML "depth," the RDF root is considered at the depth of zero. The must be one <r df : Descri pti on> element that must exist
at the depth of one. The relationship assertions are RDF properties of the <r df : Descr i pt i on> that exist at a depth of two.

6. Assertions of properties from certain namespaces is forbidden in RELS-INT. There must NOT be any assertion of properties from the
Fedora object properties namespaces (model and view). This is because these assertions exist elsewhere in Fedora objects and may
conflict if asserted in two places.

Resource Index - RDF-based Indexing and Searching for Digital Objects

Yes! The Fedora repository service automatically indexes the RELS-EXT and RELS-INT Datastreams for all objects as part of the RDF-based
Resource Index.

This provides a unified "graph” of all the objects in the repository and their relationships to each other. The Resource Index graph can be queried
using SPARQL or iTQL which are SQL-like query languages for RDF. The Fedora repository service exposes an web service interface to search
the Resource Index. Please refer to the Resource Index documentation for details.

Content Model Architecture

Audience

If you are only interested in using a Fedora Repository to store your content (and associated metadata) and access the content exactly in the
format you stored it, you do not need to read this section. Fedora will use the Content Model Architecture behind the scenes and you do not have
to do anything different from earlier versions of Fedora. However, if you want to use Fedora's full capability the CMA is the gateway. We will try to
lead you through steps to understanding the CMA and what it can potentially do for you.

Introduction

A major goal of the Fedora architecture has been to provide a simple, flexible and evolvable approach to deliver the "essential characteristics" for
enduring digital content. Whenever we work with digital content, it is with an established set of expectations for how an intellectual work may be
expressed. With experience we develop "patterns of expression” that are the best compromise we can craft between the capabilities of our digital
tools and the intellectual works we create in digital form. We store our digital content with the expectation that all the important characteristics of
our intellectual works will be intact each and every time we return to access them, whether it has been a few minutes or many years.

We also want to communicate our intellectual works effectively to others. To do this, we have an expectation that the important aspects of our
digital works are delivered accurately to users accessing them. Often we teach the same patterns of expression used to create our works to aid
our users in comprehending them. And the same patterns may be used once again to enable collaboration for creating new or derived works.

Librarians, archivists, records managers, media producers and the myriad other author and publishers of intellectual works have long used
content patterns calling them, for example: books, journals, articles, collections, installations. The term "content model" originated with the
publishing community to describe the physical structure of the intellectual work. Users and collectors of intellectual works often add value by
organizing works, annotating them, and producing ways to find them or information within them.

With the development of digital technology, publishers, users and collectors have applied these same patterns to this new media with some initial
success. But like many advancements, digital technology enables ways to create and use content in ways that cannot be achieved with physical
media. While it is beyond the scope of this document to discuss the many emerging aspects of digital content technology and its use, there are
two key subjects that help in understanding the requirements of the architecture presented here.

http://www.fedora.info/definitions/1/0/fedora-relsext-ontology.rdfs

First, reusable patterns such as content models can reduce the effort to create or capture, ingest, store, manage, preserve, transform, and access
digital content. For example, content models can be used for content classification to facilitate discovery. Other uses include content validation
usually at ingest or modification. Content models can be, for example, used as a template when content is created to generate user interfaces,
drive workflows, describe content components, or to manage policy enforcement.

Second, digital content is not defined by its format or technology, and may also incorporate functions as a part of its nature. For example, when
we access a digital picture we experience its resolution and color fidelity; the technology that delivers that experience is irrelevant. A spreadsheet
or a video game is hardly the same thing if there is no software to make it function. Those features which must be present to provide an authentic
experience of the digital content are called the "essential characteristics” and they can be captured in a content model to ensure durability of the
experience as format and technology changes over time. Those same characteristics also facilitate sharing by describing the nature of the content
and the ways it can be used.

Similar needs have been noted in the software engineering community for the development of complex computer systems. Often, organizational
information outlasts the technology used to create and access it. Corporate mergers and breakups raise havoc with the integration of company
information technology infrastructures. The same concepts that have been developed to satisfy agile IT infrastructures can help provide solutions
for creating, accessing and preserving content. In this document, we introduce the fundamental concepts of Fedora's Content Model Architecture
or CMA. The CMA builds upon the basic building blocks established by previous versions of the Fedora architecture, restructuring them to both
simplify use while unlocking their potential.

We use the term "content model" to mean both:

1. Content structure as used by publishers and other traditional content-related professions
2. A computer model describing an information representation and processing architecture

By combining these very different views, CMA has the potential to provide a way to build an interoperable repository for integrated information
access in our organizations and to provide durable access to our intellectual works.

As we introduce CMA concepts, we will discuss the rationale behind the design decisions. This is only the first generation of the CMA and, like the
rest of Fedora, we expect it to evolve. An understanding of design decisions behind this "first-generation” CMA is a key element for community
participation in future generations of CMA development. Most important is an understanding of three significant and interrelated developments in
software engineering: (1) object-oriented programming, (2) design patterns, and (3) model-driven architectures. It is beyond the scope of this
document to discuss any of these developments in detail but we will make reference in this document to aspects of them which inform the design
of the CMA.

Content Model Architecture Overview

The Content Model Architecture (CMA) describes an integrated structure for persisting and delivering the essential characteristics of digital
objects in Fedora. In this section we will describe the key elements of the architecture, how they relate, and the manner in which they function.
The original motivation for the CMA was to provide a looser binding for Disseminators, an element of the Fedora architecture used to stream a
representation to a client. However, the CMA as described in this document has encompassed a far greater role in the Fedora architecture, in
many ways forming the over-arching conceptual framework for future development of the Fedora Repository.

The Fedora application community developed a number of clever approaches to add content model-like capabilities to Fedora. The CMA
formalizes some of the "best of breed" techniques gained from further research and from our application community. Two primary ways of thinking
about content models have emerged and both are supported by the CMA. The first approach is focused on using complex single-object models
and is commonly called "compound.” The second approach is to use multi-object models and is commonly called "atomistic" or "linked."

Prior implementations of the Fedora Repository utilized a set of specialized digital objects as a functional and persistence framework. All of these
objects conform to the same basic object model. Digital objects in CMA are conceptually similar in prior versions of Fedora though some
important implementation details have changed. Fedora still implements a compound digital object design consisting of an XML encapsulation
(now FOXML 1.1) and a set of bitstreams identified by the "Datastream” XML element. We can also assemble multi-object groups of related
digital objects as before using semantic technologies.

In the CMA, the "content model" is defined as a formal model that describes the characteristics of one or more digital objects. A digital object may
be said to conform to a content model. In the CMA, the concept of the content model is comprehensive, including all possible characteristics
which are needed to enable persistence and delivery of the content. This can include structural, behavioral and semantic information. It can also
include a description of the permitted, excluded, and required relationships to other digital objects or identifiable entities.

The content model is expressed in a modeling language and stored in one or more bitstreams like any other kind of content. It may be useful to
think of the content model as one or more closely related documents that contain a machine processable model.

There will likely be more than one content modeling language; the CMA does not specify that there be only a single standardized one. One of the
key aspects of Fedora is the expectation that over time all things will change and the same will be true of content modeling languages. There are
many valid approaches to content modeling and we wish to enable innovation in this area. Guided by these observations, the CMA is designed to
be a framework for developing and deploying content model-driven repository infrastructures. However, while it is a Fedora first principle to
minimize required elements, there are a small set of features, described below, that the content modeling language must provide in order for
Fedora to function.

Since we anticipate that a large number of digital objects will conform to the same content model, they may be treated as a class. While we need
to be careful about analogies between “class" in CMA and "class" in object oriented programming languages or in semantic technologies,
exploiting the notion of "class" is a major objective of CMA.

We must have a unique, unambiguous method to identify the class. For this purpose, in the CMA we have defined the "Content Model object," a
digital object that both represents the notion of the class and can contain the content model. We use the identifier of the content model object (or

CModel) as the class identifier. Following the rules of Fedora identifiers, the identifier of the CModel object can be encoded within a URI. We will
describe the rationale for this decision in a later section but this approach provides two immediate benefits: (1) it provides a scheme which works
within the Fedora architecture with minimal impact, and (2) it is compatible with the Web architecture, RDF and OWL. We can even build
functionality using just the knowledge of the identifier without creating a content model. Having a uniform method for identifying a digital object's
class maximizes interoperability.

The CMA does not require that digital objects explicitly conform to its architecture or explicitly declare any of its metadata elements beyond
providing well-formed Fedora digital objects - unless you want to use the advanced features provided by the Fedora repository. The CMA uses a
"descriptive" approach where the Fedora Repository will issue a run-time error for any operation it cannot perform. In most cases, you should still
be able to disseminate bitstreams exactly as they are stored. CMA's dissemination approach is more consistent with the Web architecture, and
provides a better balance between durable access to content and future innovations.

The minimum requirement to participate in the CMA is for a digital object to assert a relation to record its class' identity. Digital objects that do not
explicitly identify their class are assumed to belong to a system-defined "Default Content Model" which has a repository-defined reserved
identifier. In CMA, you should use a digital object (see CModel below) as a way to register a "class" in a repository federation.

The remaining functionality is enabled by creating the content model and storing it within Fedora digital objects like any other content. This
permits applications or the repository itself to disseminate the content model, interpret it and use it to provide functionality for the set of objects it
describes. Content designers are free to develop content models (or even content modeling languages). Content Models and Content Model
objects are designed to be shared. Digital objects having the same content model automatically form an interoperable information community. If
the whole Content Model object is shared, keeping the object's identifier the same across multiple repositories, the community can easily extend
across multiple organizations.

There are two basic approaches to using content models. First, the content and content models can be disseminated to applications able to
interpret them to deliver the essential characteristics of the content. Disseminating the content model to external services can be also be used
when creating new digital objects for ingest, validation, transformation and replication.

Alternately, the Fedora Repository can be used as a content mediation layer which interprets the content model to disseminate the content
correctly. To accomplish this, the Fedora Repository must have access to code compatible with the Content Model. The compatible code may be
added to the Fedora Repository using its plug-in architecture in combination with service mechanisms. While all the tools needed to plug in your
own Content Model mediation are not complete in Fedora 3.0, this feature of the CMA will permit serving several generations of digital objects in
the same repository reducing the need to update objects whenever there are new releases of Fedora. This will increase the durability of
collections and enable longer periods between migrations of Fedora digital objects to new formats.

While the CMA does not force you to use a specific content modeling language, Fedora 3.0 contains a reference implementation that enables the
Fedora Repository to operate much as it did in prior versions. The following sections describe CMA in more detail and provide instructions on how
to use the reference content modeling language so you can create your own CMA compatible objects immediately. Over time Fedora Commons
will support the development of one or more content modeling languages as part of solution bundles that may be used by the community with
minimum effort.

Specializing Digital Objects

One of the basic elements of the Fedora architecture is the Fedora digital object. Every digital object stored in a Fedora repository is some
variation of the same basic Fedora digital object model. In Fedora, digital objects containing data (Data object) utilize an XML element called the
Datastream to describe the raw content (a bitstream or external content). In Fedora 2 and prior versions, digital objects containing data may also
have contained Disseminators. The Disseminator is a metadata construct used by Fedora to describe how a client can access content within the
digital object or remotely referenced by the digital object. If you only needed to access the raw content, default functionality was provided by the
Fedora Repository which did not require that a Disseminator be explicitly added to the digital object. Unfortunately, the older design meant that
the Disseminator was repeated in every Data object.

In Fedora 2 and prior versions, three specializations of the Fedora digital object were used: the Data object, the Behavior Definition (BDef) and
the Behavior Mechanism (BMech). The BDef contained a description of the access interface which, in turn, was implemented by the BMech. In
combination, the Fedora digital object model provides a uniquely flexible way to persist and access digital content. However, these features were
not as simple to use as they could be. In particular, repeating the Disseminator in every Data object made changes to the access interface very
difficult since every object had to be changed.

In the CMA, the Fedora digital object remains the model for all digital objects just as it was in prior versions of Fedora. However, for the CMA we
define four specialized variations of the Fedora digital object (see Table 1).

Object Type Code Description
Data Data A container for content
Service Definition |SDef |A container for the service definitions, an element of a content model
Service Deployment SDep A container for service deployment bindings
Content Model CModel|A container for content models

Table 1 - Fundamental Fedora Object Types

Each of these specialized digital objects will be described in much greater detail below. The BDef and BMech have long been recognized as
having reserved functions in Fedora and we often called them "control" objects because they contain data used to control object-specific
functionality. CMA adds a new control object, the CModel. However, some of the data needed for object-specific functionality was located in the
Data object (often just labeled generically as the digital object) in prior Fedora versions. In particular, Disseminators were defined in the Data
object. The CMA eliminates the Disseminator and redistributes control data in a more logical and reusable fashion among the "control" objects.

Care should be taken in equating the names of object types in the Fedora 3.0 from the prior (Release 2 and earlier) Fedora architecture because
there are some similarities to roles played by these objects in both the old and new architecture. However, the CMA is a major redesign so care
should be taken not to automatically equate the roles of the control objects in the old and new implementations. In pre-release reviews with
community members, we discovered that there were concerns about the potential of confusion so we have used a hew naming scheme for
Fedora 3.0.

Also, care should be taken not to equate the digital object as a container and any data (or metadata) it contains. Since the deployment, functional
, persistence and information views of the Fedora architecture tend to intermingle more than in most architectures, it is easy to accidently conflate
characteristics of the architectural elements across views. We will try to make the distinctions clear where needed.

Table 2 lists the supported relationships between fundamental object types in the CMA.

Origin | Target Relation Purpose
Data |CModellhasModel Identifies the class and, optionally, the object containing a model of the essential characteristics of the class
CModel|{SDef |hasService Identifies the object containing a model of the functional characteristics of class members

SDep |SDef |isDeploymentOf|ldentifies the object containing a model of the functions being deployed
SDep |CModeljisContractorOf |lIdentifies the object containing a model of the information being deployed

Table 2 - Relationships Between the Fedora Object Types

Content | | Service

fedora-model:hasService s .
| Model S ~ 7| Definition
| S
%
/“-@\
o
fedora-model :hasModel C’Ep_ fedora-model;isDeploymentOf
ol
\5\ ,
{C',x
/ﬂ!{_‘\
I}f'
O,
_ Qe
| Service
Data

: Deployment |

Figure 1 - Fundamental CMA Relationships

Figure 1 illustrates the required relationships between fundamental object types in the CMA. In the CMA object serialization these relations are
asserted as RDF statements in the digital objects’ RELS-EXT Datastream. These relations are asserted only in the object at the origin of each
arrow though typically these relations will be harvested and indexed within utilities such as Semantic Triplestores or relational databases to enable
fast query over them, or into caches which permit rapid access to their functionality.

The "hasModel" relation identifies the class of the Data object. There may or may not be a Fedora digital object that corresponds to the identifier.
If the identifier refers to an object it must be a CModel object and contain the base content model document. It is expected that many Data objects
conform to a single Content Model (and have a relation asserted to the same CModel object). The Content Model characterizes the Data objects
that conform to it.

The SDef object describes a Service and the Operations it performs. Defining a Service is the means by which content developers provide
customized functionality for their Data objects. A Service consists of one or more Operations, each of which is an endpoint that may be called to
execute the Operation. This approach is similar to techniques found in both object-oriented programming and in Web services. The CModel object
uses the "hasService" relation to assert that its' class members provides a Service (and its associated Operations). A CModel is free to assert
relations to more than one Service. A Service may be related to many CModels.

Deployment of a Service in a repository is accomplished by using the "isDeploymentOf" relation to the SDef object. The Service Deployment
(SDep) object is local to a Fedora repository and represents how a Service is implemented by the repository.

Finally, the SDep object asserts the "isContractorOf" to indicate the CModel (effectively the class of Data objects) for which it deploys Services.
This permits the SDep to access the Datastreams in the Data object and user parameters when an Operation is called for a Data object.

To see more information about the Fedora Digital Object Model, please go to: Fedora Digital Object Model

CMA Construction Guide

CMA Construction Guide

The following pages explain how to construct CMA objects for adding services to Fedora data objects. As an alternative, you might be interested
in EZService which enables the creation of the FOXML for these objects from a simple XML definition of the methods and parameters using sone
XSLT stylesheets.

® Creating a Service Definition
® Creating a Service Deployment

Creating a Service Definition

Senvice
Definition

Content Service
Madel Deployment

Data Object

This guide describes how Service Definition Objects are constructed in detail. For a conceptual overview of these and other special Fedora object
types, please see the Fedora Digital Object Model document.

Introduction

In Fedora, a Service Definition ("SDef") is a special kind of object that defines a set of operations on objects in a repository. As you will see, that
set of operations needs to be expressed in a particular way inside the object in order for Fedora to understand it.

Although you may author Fedora objects in other ways (e.g. by making a series of API calls to your repository), we will assume for this guide that
the object is being constructed in FOXML format outside the repository, then ingested in a single step.

Persistent Identifier

As with all Fedora objects, Service Definitions must declare a persistent identifier ("PID") that is unique within the repository. There are no special
restrictions on the PID beyond those described in the Fedora Identifiers document. In FOXML format, the PID is declared in the root element of
the XML document as shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<foxm : di gital Object xm ns:foxnm ="info: fedora/fedora-system def/foxmn #"
VERSI ON="1. 1" PI D="denp: MyServi ceDefinition">
<l-- Object Properties -->
<!-- Datastreans -->
</foxmn : digital Object>

Object Properties

There are also no special restrictions on the top-level object properties for Service Definitions. In the following FOXML fragment, we assert that
the state of the object is Active and the label is My Service Definition.

https://wiki.duraspace.org/pages/viewpage.action?pageId=13762993

<foxnl : obj ect Properties>

<foxm : property
NAME="i nf o: f edor a/ f edor a- syst em def / nodel #st ate
VALUE="Acti ve"/ >

<foxm : property
NAME="i nf o: f edor a/ f edor a- syst em def / nodel #l abel "
VALUE="My Service Definition"/>

</ foxm : obj ect Properti es>

DC Datastream

The DC datastream describes the object in human terms using the Dublin Core Metadata Element Set. If you don't provide it yourself, Fedora will
automatically add a bare-bones DC datastream for the object at ingest time. For an example DC datastream, please see the FOXML Ingest
Example.

RELS-EXT Datastream

The RELS-EXT datastream expresses relationships and properties of the object in RDF. An object asserts that it is a Service Definition Object
through a special hasModel relationship to the fedora-system:ServiceDefinition-3.0 object as shown below:

i <foxm :datastream | D="RELS- EXT" H
! CONTROL_CGROUP=" X" STATE="A" VERSI ONABLE="true" > i
<f oxml : dat ast r eanVer si on | D="RELS- EXT1. 0"
M METYPE="appl i cati on/ rdf +xm "
i FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aRELSExt - 1. 0" i
LABEL="RDF Statenents about this object">
<f oxm : xni Cont ent >
: <rdf: RDF xnl ns:rdf ="http://ww. w3. or g/ 1999/ 02/ 22-r df - synt ax- ns#" :
xm ns: f edor a- model ="i nf o: f edor a/ f edor a- syst em def / nodel #" >
i <rdf: Descri ption rdf:about="info:fedoral deno: MySer vi ceDefini tion"> i
: <f edor a- nodel : hasMdel :
: rdf:resource="info: fedora/fedora-system Servi ceDefinition-3.0"/> :
; </ rdf: Description> :
i </ r df : RDF> i
</ foxm : xm Cont ent >
</ foxn : dat ast r eanVer si on>
</ foxml : dat ast r ean®

METHODMAP Datastream

The METHODMAP datastream is the heart of the Service Definition object. It defines the set of methods in the Fedora Service Definition Method
Map format. Each method may be defined in this datastream as taking zero or more user-supplied parameters. Each parameter may be required
or optional, with a default value and optionally, a set of valid values.

In the following example, we define several methods:

®* methodOne - takes no user parameters
®* methodTwo - takes one parameter:
® parml - optional, with any possible value and default value of "valuel"
®* methodThree - takes two parameters:
® parml - optional, with two possible values and a default value of "valuel"
® parm2 - required, with any possible value and a default value of ™" (empty string)

http://dublincore.org/documents/dces/
http://fedora-commons.org/definitions/1/0/fedoraSDefMethodMap.xsd
http://fedora-commons.org/definitions/1/0/fedoraSDefMethodMap.xsd

i <foxm :datastream | D=" METHODVAP" !
! CONTROL_CGROUP="X" STATE="A" VERSI ONABLE="t rue" > !
<f oxnl : dat ast r eanVer si on | D=" METHCDVAP1. 0"
FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aSDef Met hodMap- 1. 0"
: LABEL="Abstract Method Map" M METYPE="text/xm "> 1
<f oxm : xn Cont ent >
| <f nm Met hodMap f
: xm ns: frm¥"http://fedora. conm nsdlib. org/servi ce/ net hodnap" :
i name="N A"> i
: <f nm Met hod oper at i onName=" et hodOne"/ > i
i <f mm Met hod oper ati onNanme=" et hodTwo" > H
! <f mm User | nput Par m par mNane="par mL" def aul t Val ue="val uel"” H
i requi red="fal se" passBy="VALUE"/> !
i </ f mm Met hod> i
<f nm Met hod oper at i onNare="net hodThr ee" >
<f mm User | nput Par m par mNanme="par mL" def aul t Val ue="val uel"
i requi red="fal se" passBy="VALUE"> i
<f nm Val i dPar nval ues>
: <f mm Val i dPar m val ue="val uel"/> !
| <f mm Val i dPar m val ue="val ue2"/> i
: </ f mm Val i dPar nval ues> :
: </ f mm User I nput Par m» :
: <f mm User | nput Par m par nNane="par n2" def aul t Val ue= :
! requi red="true" passBy="VALUE'/> :
! </ f mm Met hod> !
| </ f nm Met hodMap> ;
| </ f oxm : xn Cont ent > ;
i </ foxm : dat ast r eanVer si on> i
</ foxm : dat ast r ean>

Creating a Service Deployment

Service
Definition

Content Service
Madel Deployment

Data Object

This guide describes how Service Deployment Objects are constructed in detail. For a conceptual overview of these and other special Fedora
object types, please see the Fedora Digital Object Model document.

Introduction

In Fedora, a Service Deployment ("SDep") is a special kind of object that describes how the methods of a particular Service Definition are to be
deployed for a particular Content Model.

Although you may author Fedora objects in other ways (e.g. by making a series of API calls to your repository), we will assume for this guide that
the object is being constructed in FOXML format outside the repository, then ingested in a single step.

Persistent Identifier

As with all Fedora objects, Service Deployments must declare a persistent identifier ("PID") that is unique within the repository. There are no
special restrictions on the PID beyond those described in the Fedora Identifiers document. In FOXML format, the PID is declared in the root

element of the XML document as shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<foxm : di gital Obj ect xm ns:foxnm ="info: fedora/fedora-system def/foxmn #"
VERSI ON="1. 1" PI D="denp: MySer vi ceDepl oynent " >
<l-- Object Properties -->
<!-- Datastreans -->
</foxmn : digital Object>

Object Properties

There are also no special restrictions on the top-level object properties for Service Deployments. In the following FOXML fragment, we assert that
the state of the object is Active and the label is My Service Deployment.

<f oxnl : obj ect Properties>

<foxm : property
NAME="i nf o: f edor a/ f edor a- syst em def / nodel #st at e"
VALUE="Act i ve"/>

<foxml : property
NAME="i nf o: f edor a/ f edor a- syst em def / nodel #l abel "
VALUE="My Service Depl oynent"/>

</ foxm : obj ect Properties>

DC Datastream

The DC datastream describes the object in human terms using the Dublin Core Metadata Element Set. If you don't provide it yourself, Fedora will
automatically add a bare-bones DC datastream for the object at ingest time. For an example DC datastream, please see the FOXML Ingest
Example.

RELS-EXT Datastream

The RELS-EXT datastream expresses relationships and properties of the object in RDF. An object asserts that it is a Service Deployment Object
through a special hasModel relationship to the fedora-system:ServiceDeployment-3.0 object. SDeps must also have two additional relationships
asserted in RELS-EXT:

¢ an isDeploymentOf relationship to the associated Service Definition. This tells Fedora which set of methods are deployed by this SDep.
® an isContractorOf relationship to the associated Content Model. This tells Fedora which set of objects this SDep is capable of operating
on.

<foxnl : dat astream | D=" RELS- EXT" H
CONTROL_GROUP="X" STATE="A" VERSI ONABLE="tr ue" > :
<f oxml : dat ast r eanVer si on | D="RELS- EXT1. 0"
M METYPE="appl i cati on/ rdf +xm "
FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aRELSExt - 1. 0" 1
LABEL="RDF Statenents about this object">

<f oxm : xni Cont ent >
<rdf: RDF xm ns:rdf="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#" :

xm ns: f edor a- nodel ="i nf o: f edor a/ f edor a- syst em def / nodel #" > :

<rdf: Description rdf:about="info:fedoral/deno: MySer vi ceDepl oynent " >

<f edor a- nodel : hasMbdel H

rdf: resource="i nfo: fedora/ f edor a- syst em Servi ceDepl oynent - 3. 0"/ >

<f edor a- nodel : i sDepl oynent Of :

rdf: resource="i nfo: f edor a/ deno: MySer vi ceDefi nition"/> :

<f edor a- nodel : i sContract or &

rdf: resource="inf o: f edor a/ deno: MyCont ent Model "/ >

</rdf: Description> i

</ rdf : ROF> f

</ foxni : xm Cont ent > !
</ foxm : dat ast r eanVer si on> i
</ f oxnl : dat ast r ean> :

METHODMAP Datastream

The METHODMAP datastream in the Service Deployment object is similar to the one stored in the corresponding Service Definition, but it also
indicates which datastreams (if any) are required as input to each deployed method. This information is specified in the Service Deployment

http://dublincore.org/documents/dces/
http://fedora-commons.org/definitions/1/0/fedoraSDepMethodMap-1.1.xsd

Method Map format, which is an extension of the Service Definition Method Map format.

When creating a Service Deployment method map, it is helpful to copy the method map from the corresponding Service Definition, then add
information as necessary.

Continuing with the example method map set out in Creating a Service Definition, below we will specify that:

®* methodOne accepts a single datastream as input, whose ID is "FOO".
* methodTwo accepts no datastreams as input.
® itincludes the user input parameter "paraml" specified in the SDef
® itincludes a default input parameter "uri" with default value $objuri, allowing the URI of the Fedora object to be used as a
parameter when calling an external service
®* methodThree accepts three datastreams as input, whose IDs are "FOQ", "BAR", and "BAZ".
® it also includes the user input parameters specified in the SDef
® it also includes a default input parameter "pid" with default value $pid, allowing the PID of the Fedora object to be used as a
parameter when calling an external service

-ﬂ Default input parameters
Default input parameters can be specified in the method definitions. These are parameters that are then available to the
WSDL's specification of the external service in a similar way to user input parameters and datastreams. The default value of the
parameter can either be specified as some constant value, or the following “special” variables may be used which will be
substituted when the method is invoked:

® $pi d - will be substitued with the (URL-encoded) value of the Fedora object's PID, eg changene: 1234
® $obj uri - will be substituted with the (URL-encoded) value of the Fedora object's URI, eg
i nf o: f edor a/ changene: 1234

Note: Differences from the METHODMAP specified in the corresponding Service Definition are indicated below with a preceding "+" sign.

http://fedora-commons.org/definitions/1/0/fedoraSDepMethodMap-1.1.xsd
http://fedora-commons.org/definitions/1/0/fedoraSDefMethodMap.xsd

<f oxm : dat ast r eam | D=" METHODVAP"
CONTROL_GROUP="X" STATE="A" VERSI ONABLE="tr ue" >
<f oxm : dat ast r eanVer si on | D=" METHCDVAPL. 0"
FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aSDepMet hodMap- 1. 1"
LABEL="Depl oynent Met hod Map" M METYPE="text/xm ">
<f oxm : xm Cont ent >
<f nm Met hodMap
xm ns: frm¥"http://fedora. conm nsdlib. org/servi ce/ net hodnap"
name="N A">
<f nm Met hod oper at i onNane="net hodOne"
wsdl MsgNanme=" et hodOneRequest "
wsdl MsgQut put ="r esponse" >
<f mm Dat ast r eanl nput Par m par nNane=" FOO'
passBy="URL_REF" required="true"/>
<f mm Met hodRet ur nType wsdl MsgNane="r esponse"
wsdl MsgTOM ME="N A"/ >
</ f mm Met hod>
<f nm Met hod oper at i onNane="net hodTwo"
wsdl MsgNanme="net hodTwoRequest "
wsdl MsgQut put ="r esponse" >
<f mm User | nput Par m par mNanme="par nil" def aul t Val ue="val uel"
requi red="fal se" passBy="VALUE"/>
<f mm Def aul t | nput Par m par mNane="uri" defaul t Val ue="$obj uri"
passBy="VALUE" required="true"/>
<f mm Met hodRet ur nType wsdl MsgNane="r esponse"
wsdl MsgTOM ME="N A"/ >
</ f mm Met hod>
<f nm Met hod oper ati onNane="net hodThr ee"
wsdl MsgNanme="net hodThr eeRequest "
+ wsdl MsgQut put ="r esponse" >
<f mm User | nput Par m par mNanme="par nil" def aul t Val ue="val uel”
requi red="fal se" passBy="VALUE">
<f mm Val i dPar nVal ues>
<f mm Val i dPar m val ue="val uel"/>
<f nm Val i dPar m val ue="val ue2"/>
</ f mm Val i dPar nVal ues>
</ f mm User | nput Par n>
<f mm User | nput Par m par mName="par n2" def aul t Val ue=""
required="true" passBy="VALUE"/>
<f mm Def aul t | nput Par m par mName="pi d" def aul t Val ue="$pi d"
passBy="VALUE" required="true"/>
<f nm Dat ast r eanl nput Par m par mNane="FQOO'
passBy="URL_REF" required="true"/>
<f mm Dat ast r eanm nput Par m par nNane=" BAR"
passBy="URL_REF" required="true"/>
<f nm Dat ast r eaml nput Par m par nNane="BAZ"
passBy="URL_REF" required="true"/>
<f mm Met hodRet ur nType wsdl MsgNane="r esponse"
wsdl MsgTOM ME="N A"/ >
</ f mm Met hod>
</ f rm Met hodMap>
</ foxm : xm Cont ent >
</ foxml : dat ast r eanVer si on>
<foxnl : dat astrean»

+ + + + + + + o+ + + + o+ + +

+

+ o+ o+ o+ o+ A+ A+ A+ 4+

DSINPUTSPEC Datastream

The DSINPUTSPEC datastream specifies additional information about each datastream. It is written in the Fedora Datastream Input Specification
format.

http://fedora-commons.org/definitions/1/0/fedoraBindingSpec-1.1.xsd
http://fedora-commons.org/definitions/1/0/fedoraBindingSpec-1.1.xsd

<f oxm : dat ast r eam | D=" DSI NPUTSPEC"
CONTROL_GROUP="X" STATE="A" VERSI ONABLE="tr ue" >
<f oxml : dat ast r eanVer si on | D="DSI NPUTSPECL. 0"
M METYPE="t ext / xni "
FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aDS| nput Spec- 1. 1"
Label =" Dat astream | nput Specification">
<f oxm : xm Cont ent >
<f bs: DSI nput Spec
xm ns: fbs="http://fedora. conmnsdlib. org/servi ce/ bi ndspec"
| abel =" N A">
<f bs: DSl nput wsdl MsgPar t Nane=" FOO'
DSMax="1" DSM n="1" DSOrdi nality="fal se">
<f bs: DSl nput Label / >N/ A</ f bs: DSI nput Label >
<f bs: DSM ME>N A</ f bs: DSM Me>
<f bs: DSl nput | nstructi on>N A</ f bs: DSI nput | nstructi on>
</ f bs: DSI nput >
<f bs: DSl nput wsdl MsgPar t Name="BAR'
DSMax="1" DSM n="1" DSOrdi nal ity="fal se">
<f bs: DSI nput Label / >N/ A</ f bs: DSI nput Label >
<f bs: DSM ME>N A</ f bs: DSM ME>
<f bs: DSl nput | nstructi on>N A</ f bs: DSI nput | nstructi on>
</ fbs: DSl nput >
<f bs: DSI nput wsdl MsgPart Nane="BAZ" pi d="deno: MyCont ent Model "
DSMax="1" DSM n="1" DSOrdinality="fal se">
<f bs: DSl nput Label / >N/ A</ f bs: DSI nput Label >
<f bs: DSM ME>N A</ f bs: DSM Me>
<f bs: DSI nput | nstructi on>N A</ f bs: DSI nput | nstructi on>
</ f bs: DSI nput >
</ f bs: DSI nput Spec>
</ foxm : xm Cont ent >
</ foxm : dat ast r eanVer si on>
</foxn : dat astreanr

Notice that the BAZ datastream input specification above has an extra attribute, "pid" specified. When present, the pid attribute tells Fedora that
the datastream to be used as input is located inside a specific object. In this case, it is the BAZ datastream in the "demo:MyContentModel" object.
Normally, each input datastream is expected to come from the particular data object from which the method is invoked. When a pid is specified,
the associated datastream effectively serves as a constant.

WSDL Datastream

The WSDL datastream brings everything together, describing to Fedora exactly what needs to be done under the hood when a dissemination
request is made. For each method, the WSDL provides enough information to Fedora so that it may do a URL replacement in order to fulfill a
request.

Fedora does not work with arbitrary WSDL in this datastream; it must be in a very specific form. Notably, Fedora currently only supports
performing disseminations via HTTP GET. You may use the following as a template for your own WSDL datastreams, changing the messages,
port type, and binding sections as appropriate.

To customize this for your own use:

® |eave the "response"” wsdl:message as-is, but replace the others with your own. You should have a wsdl:message element for each
method defined by the Service Definition. By convention, the name of each message should be the method name followed by the word
"Request" (e.g. "methodOneRequest"). Within each wsdl:message element, add a wsdl:part for each user and/or datastream input
parameter, and specify all types as "this:inputType".

® Within the wsdl:portType section, replace each existing operation with your own. Each operation should reference the corresponding
request method as the input, and point to "this:response” as the output.

® Finally, in the wsdl:binding section, replace each existing operation with your own. In this section, the location attribute is the important
bit. The location should given as a URL template, where all occurances of (VARIABLE) are automatically replaced with the appropriate
value at runtime. If VARIABLE denotes a datastream, it will be replaced with a URL reference to the datastream content at runtime. If
VARIABLE denotes a user input parameter, it will replaced with the URL-encoded value of the variable at runtime. If VARIABLE is "PID"
and your METHODMAP specifies $PID as the default value for the PID variable as in the example METHODMAP above , it will be
replaced with the data object's URL-encoded PID at runtime.

<f oxnl : dat ast ream | D="W8DL"
CONTROL_CGROUP=" X" STATE="A" VERS| ONABLE="t rue" >
<f oxnl : dat ast r eanVer si on | D="WsDL1. 0"
M METYPE="t ext / xnmi "

FORMAT_URI =" htt p: // schemas. xm soap. or g/ wsdl /"
LABEL="WSDL Bi ndi ngs" >
<f oxm : xm Cont ent >
<wsdl : definitions nane="definitions"
t ar get Nanespace="ur n: t hi sNanespace"
xm ns: http="http://schemas. xnl soap. org/wsdl /http/"
xm ns: m me="http://schemas. xm soap. or g/ wsdl / mi ne/"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap"
xm ns: soapenc="http://schemas. xnl soap. or g/ wsdl / soap/ encodi ng
xm ns: thi s="urn:thi sNamespace"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: //ww. w3. or g/ 2001/ XM_Schema" >
<wsdl : types>
<xsd: schenm target Nanmespace="urn: t hi sNanespace" >
<xsd: si npl eType nane="i nput Type" >
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>
</ xsd: schema>
</wsdl : types>
<wsdl : message nane="net hodOneRequest ">
<wsdl : part nanme="FQOO' type="this:inputType"/>
</ wsdl : message>
<wsdl : ressage nane="net hodTwoRequest " >
<wsdl : part nanme="parml" type="this:inputType"/>
<wsdl : part name="uri" type="this:inputType"/>
</ wsdl : ressage>
<wsdl : mressage nane="net hodThr eeRequest " >
<wsdl : part nanme="parnl" type="this:inputType"/>
<wsdl : part nanme="parnR" type="this:inputType"/>
<wsdl : part nanme="pid" type="this:inputType"/>
<wsdl : part nanme="FQOO' type="this:inputType"/>
<wsdl : part nane="BAR' type="this:inputType"/>
<wsdl : part nanme="BAZ" type="this:input Type"/>
</ wsdl : ressage>
<wsdl : ressage nane="response">
<wsdl : part nanme="response" type="xsd: base64Bi nary"/>
</ wsdl : ressage>
<wsdl : port Type nane="port Type">
<wsdl : operati on nane="net hodOne" >
<wsdl : i nput nessage="t hi s: net hodOneRequest "/ >
<wsdl : out put nessage="t hi s: response"/>
</wsdl : operation>
<wsdl : operation name="nmet hodTwo" >
<wsdl : i nput nessage="t hi s: net hodTwoRequest "/ >
<wsdl : out put nmessage="t hi s: response"/>
</ wsdl : operati on>
<wsdl : operati on nane="net hodThree">
<wsdl : i nput nmessage="t hi s: met hodThr eeRequest "/ >
<wsdl : out put nmessage="t hi s: response"/ >
</wsdl : operation>
</wsdl : port Type>
<wsdl : servi ce name="service">
<wsdl : port bindi ng="t hi s: bi ndi ng" name="port">
<htt p: address | ocati on="LOCAL"/>
</ wsdl : port>
</wsdl : servi ce>
<wsdl : bi ndi ng nane="bi ndi ng" type="this: portType">
<htt p: bi ndi ng verb="CET"/ >
<wsdl : operati on nane="net hodOne" >
<htt p: operation |ocation="(FQOO"/>
<wsdl : i nput >
<htt p: url Repl acenent/ >
</ wsdl : i nput >
<wsdl : out put >
<m me: content type="N A"/>
</ wsdl : out put >
</ wsdl : operation>
<wsdl : operati on nane="net hodTwo" >
<htt p: operation

location="http://local.fedora.server/fedoral/risearch?format=(parnl)&np;type=tripl es&anp; | ang=spo&anp; qu
<wsdl : i nput >
<http: url Repl acenent/ >
</ wsdl : i nput >
<wsdl : out put >
<m ne: content type="N A"/>
</ wsdl : out put >
</wsdl : operation>
<wsdl : operati on nane="net hodThree" >
<htt p: operation

I ocation="http://exanpl e. org/ servi ce?a=(par nml) &np; b=(par n2) &anp; c=(par nB) &anp; d=(FOO) &anp; e=(BAR) &anp; f
<wsdl : i nput >
<http: url Repl acenent/ >
</ wsdl : i nput >
<wsdl : out put >
<m ne: content type="N A"/>
</ wsdl : out put >
</wsdl : operation>
</ wsdl : bi ndi ng>
</wsdl : definitions>

€

T —— i i Al EEE S S A A T i e S e S e B e o e i ...,

</ foxm : xm Cont ent >
</ foxml : dat ast r eanVer si on>
</ foxm : dat ast r ean»

Introduction to FOXML

What is FOXML?

FOXML is a simple XML format that directly expresses the Fedora Digital Object Model. As of Fedora 2.0, digital objects are stored internally in
a Fedora repository in the FOXML format. In addition, FOXML can be used for ingesting and exporting objects to and from Fedora repositories.
The Fedora extension of METS will continue to be supported as an ingest and export format.

At the highest level, the FOXML XML schema defines elements that correspond directly to the fundamental Fedora digital object components (see
recent paper on Fedora). Below is a brief sketch of these elements.

<di gi t al Obj ect PI D="uni quel D'>

<l-- there are a set of core object properties -->
<obj ect Properties>

<property/>

<property/>

</ obj ect Properti es>

<l-- there can be zero or nobre datastreans -->
<dat ast r ean»

<dat ast r eanVer si on/ >

<dat ast r eanVer si on/ >

</ dat ast r ean®

</ di gi tal Ooj ect >

Why FOXML?

The introduction of FOXML was motivated by several requirements: (1) simplicity, (2) optimization and performance, and (3) flexibility in evolving
Fedora. Regarding simplicity, user feedback called for a conceptually easy mapping of the Fedora concepts to an XML format. Users wanted an
obvious sense of how to create Fedora ingest files, especially those who are not familiar with formats such as METS. Regarding optimization and
performance, the FOXML schema was designed to improve repository performance, both at ingest and during disseminations. Overall ingest
performance was positively affected with the introduction of FOXML, especially in the validation phases. Regarding flexibility, establishing FOXML
as the internal storage format for Fedora objects enables easier evolution of functionality in the Fedora repository, without requiring ongoing
extensions to other community formats.

What does a FOXML instance document look like?

An example is worth a thousand words. Therefore, we have provided a fully-annotated digital object encoded in FOXML. This example is
presented from the perspective of how a digital object looks when it is stored inside a Fedora repository. However, the documentation also
indicates how to encode an object in FOXML for ingesting into the repository. There are certain data attributes that can be omitted in ingest files
since the Fedora Repository service assigns them.

To learn more, please consult the FOXML reference example now!

Where is the FOXML XML schema?

An offical published version of the FOXML XML schema is also published on the Fedora Commons web site. Also, a copy of the schema is
provided with the Fedora open-source distribution. The Fedora repository service validates all Fedora objects against this schema before objects
are permanently stored in the repository.

Are other XML Formats supported by Fedora?

Yes! The Fedora repository service is designed to be able to accommodate different XML formats for encoding digital objects through its ingest
and export operations, available via the Fedora management service interface (API-M) and command-line tools.

http://www.arxiv.org/abs/cs.DL/0501012
https://wiki.duraspace.org/download/attachments/28181165/foxml_reference_example.xml?version=1&modificationDate=1217847185364
http://fedora-commons.org/definitions/1/0/foxml1-1.xsd

Currently, Fedora supports ingest and export of objects in the following formats:

FOXML 1.1 (info:fedora/fedora-system:FOXML-1.1)
FOXML 1.0 (info:fedora/fedora-system:FOXML-1.0)

METS 1.1 (info:fedora/fedora-system:METSFedoraExt-1.1)
METS 1.0 (info:fedora/fedora-system:METSFedoraExt-1.0)
ATOM 1.1 (info:fedora/fedora-system:ATOM-1.1)

ATOM Zip 1.1 (info:fedora/fedora-system:ATOMZip-1.1)

FOXML Ingest Example

Sample FOXML Ingest Encoding

<?xm version="1.0" encodi ng="UTF-8"?>

<!__***
FOXML 1.1 | NGEST EXAMPLE:

-->

<l-- This is an exanple of a FOXM. object as it should be encoded for ingest in the repository. Note
that attributes -->

<l-- that are automatically assigned by the Fedora repository are onitted. Notable onmi ssions are the
created and last -->

<!-- nodified dates in the object properties, the created date, size, and versionable attributes on

dat astreans. -->
<!__***

NOTE!'! Pl ease see the FOXML Ref erence Exanpl e object linked fromthe "Introduction to FOXM." docunent
in the -->

<!-- Fedora System Docunentation. This will give an el ement-by-el enent explanation of a FOXM
i nstance docunent. -->
<!__***

xm ns: foxm ="i nf o: fedora/ f edor a- syst em def / f oxm #"* VERSI ON="1. 1" PI D="denp: 999"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="i nf o: f edor a/ f edor a- syst em def / f oxm #
http://ww. fedora.info/definitions/1/0/foxm 1-1. xsd">
<f oxnml : obj ect Properties>
<foxm : property NAVE="i nfo: fedora/fedora-system def/nodel #state" VALUE="A"/>
<foxm : property NAVE="info: fedoral/fedora-system def/nodel #| abel " VALUE="FOXM. Reference Exanple"/>
</ foxn : obj ect Properties>
<foxnml : datastream | D="DC' STATE="A" CONTROL_GROUP="X">
<f oxnl : dat ast r eanVer si on FORVAT_URI ="htt p: // ww. openar chi ves. or g/ OAl / 2. 0/ oai _dc/"
I D="DC. 0" M METYPE="text/xm "
LABEL="Dublin Core Record for this object">
<f oxm : xm Cont ent >
<oai _dc: dc xm ns:oai _dc="http://ww. openar chi ves. org/ OQAl/ 2. 0/ oai _dc/"
xm ns:dc="http://purl.org/dc/elenents/1.1/">
<dc:titl e>FOXM. Reference Object</dc:title>
<dc: creat or >Sandy Payette</dc: creator>
<dc: subj ect >Fedor a docunent ati on</dc: subj ect >
<dc: descri pti on>
FOXML showi ng how a digital object is encoded for persistent storage in a Fedora
repository
</ dc: description>
<dc: publ i sher >Cornel | Cl S</dc: publisher>
<dc:identifier>denp: 999</dc:identifier>
</ oai _dc: dc>
</ foxm : xm Cont ent >
</ foxml : dat ast r eanVer si on>
</ foxm : dat astrean>
<foxnl : dat astream | D="RELS- EXT" CONTROL_GROUP="X">
<f oxml : dat ast r eanVer si on FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aRELSExt - 1. 0"
| D="RELS- EXT. 0" M METYPE="appl i cation/rdf +xm "
LABEL="RDF Statenments about this object">
<f oxm : xm Cont ent >
<rdf: RDF xm ns:rdf="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. or g/ 2000/ 01/ r df - schema#"
xm ns: f edora="i nf o: f edor a/ f edor a- syst em def/rel ati ons- ext er nal #"
xm ns: myns="http://ww. nsdl . org/ ont ol ogi es/rel ati onshi ps#"
xm ns:dc="http://purl.org/dc/elenents/1.1/"

xm ns: oai _dc="http://ww. openarchi ves. org/ OAl /2. 0/ oai _dc/ ">
<rdf: Description rdf:about="info:fedoral/deno: 999" >
<l-- This object ("info:fedora/denp:999") is a nmenber of Collection #1
(info:fedora/test:collectionl) -->
<f edora: i sMenber Of Col | ecti on rdf:resource="info:fedora/test:collectionl"/>

<l-- ... and it is also a nmenber of Collection #2 (info:fedora/test:collection2) -->
<fedora: i sMenber O Col | ection rdf:resource="info:fedora/test:collection2"/>
<l-- You can al so nake your own relationship assertions in your own nanespace...-->

<nyns:isPartOf rdf:resource="info:fedoral/ nystuff:100"/>
</rdf: Description>
</ rdf : RDF>
</ foxm : xnl Cont ent >
</ foxm : dat ast r eanVer si on>
</foxm : dat astreanr
<f oxm : dat ast r eam CONTROL_GROUP="E" | D="1 MAGE" STATE="A">
<f oxnl : dat ast reanVer si on |1 D="1 MAGE. 0" M METYPE="i mage/ x- nr si d-i mage"
LABEL="1mage of Pavilion Ill, University of Virginia">
<foxm : content Location REF="http://iris.lib.virginia.edu/nrsid/nrsid_i mages/ivalarcherpOl. sid"
TYPE=" URL"/ >
</ foxml : dat ast r eanVer si on>
</ foxm : dat astrean>
<f oxnl : dat ast r eam CONTROL_GROUP="R" | D="DRAW NG BEST" STATE="A">
<f oxml : dat ast r eanVer si on | D=" DRAW NG BEST. 0" M METYPE="i nage/j peg"
LABEL="Architectural Drawing Pavilion Ill (veryhigh res)">
<foxm : content Locati on REF="http://icarus.lib.virginia.edu/inmges/ivalarcherd05high.jpg"
TYPE="URL"/ >
</ foxm : dat ast r eanVer si on>
</foxn : dat astreanr
<f oxml : dat ast r eam CONTROL_GROUP="M' | D="DRAW NG- BETTER' STATE="A">
<f oxml : dat ast r eanVer si on | D="DRAW NG BETTER. 0" M METYPE="i nmage/j peg"
LABEL="Architectural Drawing Pavilion Il (med res)">
<f oxm : content Locati on REF="http://icarus.lib.virginia.edu/inmges/ivalarcherd05nedi unt. jpg"
TYPE="URL"/ >
</ foxm : dat ast r eanVer si on>
</foxm : dat astreanr
<f oxm : dat ast r eam CONTROL_GROUP="M' | D="DRAW NG- | CON' STATE="A">
<f oxnl : dat ast r eanVer si on | D="DRAW NG | CON. 0" M METYPE="i nage/j peg" LABEL="Architectural Draw ng
Pavilion I11">
<foxm : content Locati on REF="http://icarus.lib.virginia.edu/inmges/ivalarcherd05snall.jpg"
TYPE=" URL"/ >
</ foxml : dat ast r eanVer si on>
<f oxml : dat ast r eanVer si on | D="DRAW NG- | CON. 1" M METYPE="i nmage/j peg"
LABEL="Architectural Drawing Pavilion IlIl (thunbnail icon)"
ALT_I DS="doi : 10. 1234/ 123" >
<foxm : content Locati on REF="http://icarus.|ib.virginia.edu/inmges/ivalarcherd05small.jpg"
TYPE="URL"/ >
</ foxm : dat ast r eanVer si on>
</foxn : dat astreanr
<f oxm : dat astream | D=" UVATECH' STATE="A" CONTROL_GROUP="X">
<f oxml : dat ast r eanVer si on | D="UVATECH. 0" M METYPE="t ext/xm "
FORMAT_URI ="i nf o: f edor a/ f or mat : xm : uval i badmni n"
LABEL="UWVA Techni cal Metadata Record">
<f oxm : xni Cont ent >
<uval i badm n: admi n xm ns: uval i badm n="http://virginia.lib.edu/uvalibadm n:tech">
<uval i badmi n: techni cal >
<uval i badm n: f or mat >i mage/ j peg</ uval i badmi n: f or mat >
<uval i badm n: conpr essi on>LZW/ uval i badmi n: conpr essi on>
<uval i badmi n: bi t Depth BI TS=""/>
<uval i badmi n: col or Space/ >
<uval i badmi n: col or Profil e CPLOCAT="" CPFILE=""/>
<uval i badmi n: resol uti on>600</ uval i badmi n: resol uti on>
</uval i badni n: t echni cal >
</ uval i badmni n: adni n>
</ foxm : xni Cont ent >

</ foxmnl : dat ast r eanVer si on>
</ foxm : dat ast rean»
</ foxnm : di gital Obj ect>

Fedora Atom

r. Experimental
This is an experimental feature and subject to change in future versions.

Introduction

Fedora Atom is a serialization of a Fedora Digital Object using the Atom Syndication Format RFC 4287 in conjunction with the Atom Threading
Extensions RFC 4685.

Many of the programming languages and platforms used with Fedora already provide libraries and tools for working with Atom feeds. By offering
an Atom serialization of Fedora objects, these now become tools and libraries for authoring, browsing and validating Fedora digital objects as

well.
Serialization Formats

Fedora Atom

A Fedora Digital Object is represented as an atom:feed element and Datastreams are represented as an atom:entry elements.

<feed xm ns="http://ww. w3. or g/ 2005/ At oni >

<i d>i nf o: f edor a/ deno: 5</i d>

<title type="text">Sinple |Image Denp</title>

<updat ed>2008- 07- 02T05: 09: 42. 015Z</ updat ed>

<aut hor ><nane>f edor aAdni n</ nane></ aut hor >

<category schene="info: fedora/ f edora-system def/ nodel #st ate"
term="Active"/>

<category schenme="info: fedoralfedora-system def/ nodel #cr eat edDat e"
t er n¥"2008- 07- 02T05: 09: 42. 015Z2"/ >

Object properties are represented using various atom:feed elements. In the abbreviated example above, the object's pid, label, ownerld and
lastModifiedDate are represented using the feed's id, title, author, and updated elements respectively. atom:category elements are used to
represent object properties such as state and createdDate.

<entry>

<i d>i nf o: f edor a/ denp: 5/ DC</ i d>

<title type="text">DC</title>

<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>

<link href="info:fedoral/denpn: 5/ DC/ 2008- 07- 02T05: 09: 43. 375Z" rel ="al ternate"/>

<cat egory scheme="i nf o: f edor a/ f edor a- syst em def/ nodel #st at e"
terme" A"/ >

<cat egory schene="i nfo: fedora/ f edor a- syst em def / nodel #contr ol G oup”
term" X"/ >

<cat egory schenme="i nf o: f edor a/ f edor a- syst em def / nodel #ver si onabl e"
terme"true"/>

</entry>

<entry xmns:thr="http://purl.org/syndication/thread/1.0">
<i d>i nf o: f edor a/ denp: 5/ DC/ 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">DCl.0</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/ deno: 5/ DC"'/ >
<cat egory scheme="i nf o: f edor a/ f edor a- syst em def / nodel #f or mat URI "
term="http://ww. openar chives. org/ QAl /2. 0/ oai _dc/"/>
<cat egory scheme="i nf o: f edor a/ f edor a- syst em def / nodel #l abel "
term="Dublin Core Record for this object"/>
<content type="text/xm">
<oai _dc:dc xm ns:dc="http://purl.org/dc/elements/1.1/"
xm ns: oai _dc="http://ww. openarchi ves. org/ QAl /2. 0/ oai _dc/ ">
<dc:title>Coliseumin Rome</dc:title>
</ oai _dc: dc>
</ content >
</entry>

The hierarchy of Datastreams and their Datastream versions is represented via the Atom Threading Extensions. For convenience, a Datastream
entry references its latest Datastream version entry with an at om | i nk element. In the example above, the DC datastream entry refers to its
most recent version as follows:

<link href="info:fedoral/denp: 5/ DU 2008- 07- 02T05: 09: 43. 375Z" rel ="alternate"/>

Each Datastream version refers to its parent Datastream viaat hr: i n-repl y- t o element. In the example above, the entry for the DC
Datastream version refers to its parent as follows:

<thr:in-reply-to ref="info:fedoral/deno: 5/ DC'/>

Fedora Atom Zip

Fedora Atom Zip is a serialization of a Fedora digital object using the ZIP file format and a Fedora Atom manifest document. Inline and managed
datastream content are packaged in the ZIP archive as individual files.

The manifest must be a Fedora Atom document named "atommanifest.xml".
Format URIs

Fedora Atom and Fedora Atom Zip are identified respectively with the following URIs:

* info:fedora/fedora-system:ATOM-1.1
* info:fedora/fedora-system:ATOMZip-1.1

Examples

A complete set of demonstration objects in both Fedora Atom and Fedora Atom Zip are included in the Fedora distribution. Please see the
Demonstrations documentation for more information.

References

[RFC 4287] — The Atom Syndication Format, Mark Nottingham, Robert Sayre, 2005.
[RFC 4685] — Atom Threading Extensions, James Snell, 2006.

http://www.atompub.org/rfc4287.html
http://www.ietf.org/rfc/rfc4685.txt

ATOM Ingest Example

Sample ATOM Ingest Encoding

<?xm version="1.0" encodi ng="UTF-8"?>
<feed xm ns="http://ww. w3. or g/ 2005/ At ont' >
<i d>i nf o: f edor a/ denp: 5</i d>
<title type="text">Data Cbject (Coliseum) for Local Sinple |nmage Denp</title>
<updat ed>2008- 07- 02T05: 09: 42. 015Z</ updat ed>
<aut hor >
<nane>f edor aAdnmi n</ nane>
</ aut hor >
<category schenme="info: fedoralfedora-system def/ nodel #state" term="Active"/>
<cat egory schenme="info: f edora/ f edora-system def/ nodel #cr eat edDat e" term="2008-07-02T05: 09: 42. 015Z2"/ >
<i con>http://ww. f edora- conmons. or g/ i mages/ | ogo_vertical _transparent _200_251. png</i con>
<entry>
<i d>i nf o: f edor a/ deno: 5/ DC</ i d>
<title type="text">DC</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/denp: 5/ DC/ 2008- 07- 02T05: 09: 43. 375Z" rel ="al ternate"/>
<category scheme="info: fedora/fedora-system def/nodel #state" term="A"/>
<cat egory scheme="i nfo: f edoral/f edor a- syst em def / nodel #control G oup" term="X"/>
<cat egory scheme="info: fedoral/fedora-system def/ nodel #versi onabl e" term="true"/>
</entry>
<entry xm ns:thr="http://purl.org/syndication/thread/1l.0">
<i d>i nf o: f edor a/ deno: 5/ DC/ 2008- 07- 02T05: 09: 43. 375Z</ i d>
<title type="text">DCl.0</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/deno: 5/ DC'/>
<cat egory scheme="info: fedora/fedora-system def/ nodel #f or mat URI "
term="http://ww. openarchi ves. org/ QAl /2. 0/ oai _dc/"/>
<cat egory scheme="info: fedora/fedora-system def/nodel #l abel " term="Dublin Core Record for this
obj ect"/>
<content type="text/xml">
<oai _dc: dc xm ns:dc="http://purl.org/dc/elements/1.1/"
xm ns: oai _dc="http://ww. openarchi ves. org/ QAl / 2. 0/ oai _dc/ ">
<dc:title>Coliseumin Rone</dc:title>
<dc: creator>Thornton Stapl es</dc: creator>
<dc: subj ect >Archi tecture, Roman</dc: subject>
<dc: description>l mage of Coliseumin Rone</dc:description>
<dc: publ i sher>University of Virginia Library</dc: publisher>
<dc: f or mat >i mage/ j peg</ dc: f or nmat >
<dc:identifier>denp: 5</dc:identifier>
</ oai _dc: dc>
</ content >
</entry>
<entry>
<i d>i nf o: f edor a/ denp: 5/ RELS- EXT</ i d>
<title type="text">RELS-EXT</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/denp: 5/ RELS- EXT/ 2008- 07- 02T05: 09: 43. 375Z" rel ="al ternate"/>
<cat egory schenme="info: fedora/fedora-system def/nodel #state" term"A"/>
<cat egory scheme="i nfo: fedoral/fedor a-syst em def/ nodel #control G oup" term="X"/>
<cat egory scheme="info: fedora/fedora-system def/nodel #versi onabl e" term="true"/>
</entry>
<entry xm ns:thr="http://purl.org/syndication/thread/ 1. 0">
<i d>i nf o: f edor a/ deno: 5/ RELS- EXT/ 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">RELS-EXT1.0</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/ deno: 5/ RELS- EXT"/ >
<cat egory scheme="info: fedora/fedora-system def/ nodel #f or mat URI "
term="info: fedoralfedora-system Fedor aRELSExt - 1. 0"/ >
<cat egory scheme="info: fedoral/fedora-system def/nodel #l abel " term="RDF Statenents about this
obj ect"/>
<content type="application/rdf+xm ">
<rdf: RDF xm ns: f edor a- rodel ="i nf o: f edor a/ f edor a- syst em def / nodel #"

xm ns: rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#" >
<rdf: Description rdf:about="info:fedoral/deno: 5">
<f edor a- nodel : hasMbdel rdf:resource="info:fedoral/ denp: UVA_STD | MAGE_1"/>
</rdf: Description>
</ rdf: RDF>
</ content >
</entry>
<entry>
<i d>i nf o: f edor a/ deno: 5/ THUMBRES_| M=/ i d>
<title type="text">THUMBRES_| Mx/title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/ denp: 5/ THUMBRES_| M& 2008- 07- 02T05: 09: 43. 375Z" rel ="al ternate"/>
<cat egory schene="info: fedora/fedora-system def/ nodel #state" ternm="A"/>
<cat egory schenme="i nf o: fedor a/ f edor a- syst em def / nodel #control Group" terns"M/>
<cat egory schenme="i nfo: fedora/ f edor a- syst em def / nodel #ver si onabl e" terns"true"/>
</entry>
<entry xm ns:thr="http://purl.org/syndication/thread/1l.0">
<i d>i nf o: f edor a/ denp: 5/ THUMBRES_| M& 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">THUVBRES_| MGL. O</titl e>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/ denp: 5/ THUMBRES_| MG'/ >
<cat egory schene="info: f edora/f edor a- syst em def / nodel #l abel " term"Thorny's Coliseum thurmbnail jpg
i mage"/ >
<sunmary type="text">THUVBRES_| M&l. 0</ sunmar y>
<cont ent
src="http://1 ocal host: 8080/ f edor a- deno/ si npl e-i mage- deno/ col i seum t hunb. j pg" type="i nage/j peg"/>
</entry>
<entry>
<i d>i nf o: f edor a/ denp: 5/ MEDRES_| M=/ i d>
<title type="text">MEDRES | Mx/title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/ deno: 5/ MEDRES_| M& 2008- 07- 02T05: 09: 43. 375Z" rel ="alternate"/>
<cat egory scheme="info: fedoral/fedora-system def/nodel #state" term="A"/>
<cat egory schenme="i nf o: fedora/ f edor a- syst em def / nodel #control G oup" tern¥"M/>
<cat egory schenme="i nf o: fedora/ f edor a- syst em def / nodel #ver si onabl e" terns"true"/>
</entry>
<entry xmns:thr="http://purl.org/syndication/thread/1l.0">
<i d>i nf o: f edor a/ deno: 5/ MEDRES_| M3 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">MEDRES | MGL. 0</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/deno: 5/ MEDRES_I MG'/ >
<cat egory schene="info: f edora/ f edor a- syst em def / nodel #l abel " term="Thorny's Coliseum nedi um j pg
i mage"/ >
<summary type="text">MEDRES | MGL. 0</ sunmar y>
<cont ent
src="http://1 ocal host: 8080/ f edor a- deno/ si npl e- i mage- deno/ col i seum nmedi um j pg"
type="i mage/j peg"/ >
</entry>
<entry>
<i d>i nf o: f edor a/ denp: 5/ H GHRES_| M=/ i d>
<title type="text">H GHRES_| Mx/titl e>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/denp: 5/ H GHRES_| M& 2008- 07- 02T05: 09: 43. 375Z" rel ="al ternate"/>
<cat egory scheme="info: fedoral/fedora-system def/nodel #state" term="A"/>
<cat egory schenme="i nf o: fedora/ f edor a- syst em def / nodel #control Group" tern"M/>
<cat egory schenme="i nf o: fedora/ f edor a- syst em def/ nodel #ver si onabl e" terns"true"/>
</entry>
<entry xmns:thr="http://purl.org/syndication/thread/1l.0">
<i d>i nf o: f edor a/ deno: 5/ H GHRES_| M3 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">H GHRES_| MGL. O</titl e>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/deno: 5/ H GHRES_I MG'/ >
<cat egory schene="info: f edora/f edor a- syst em def / nodel #l abel " term="Thorny's Coliseum high jpg
i mage"/ >
<summary type="text">H GHRES_| MGL. 0</ sunmar y>
<cont ent
src="http://1 ocal host: 8080/ f edor a- deno/ si npl e-i mage- deno/ col i seum hi gh. j pg" type="image/jpeg"/>
</entry>
<entry>
<i d>i nf o: f edor a/ deno: 5/ VERYH GHRES_| M=/ i d>

<title type="text">VERYH GHRES | Mx</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<link href="info:fedoral/denp: 5/ VERYH GHRES_| M3 2008- 07- 02T05: 09: 43. 375Z" rel ="alternate"/>
<cat egory schene="info: fedora/fedora-system def/ nodel #state" tern="A"/>
<cat egory schenme="i nf o: fedor a/ f edor a- syst em def / nodel #control Group" terns"M/>
<cat egory schene="i nf o: fedor a/ f edor a- syst em def / nodel #ver si onabl e" terns"true"/>
</entry>
<entry xmns:thr="http://purl.org/syndication/thread/1.0">
<i d>i nf o: f edor a/ deno: 5/ VERYH GHRES | M& 2008- 07- 02T05: 09: 43. 375Z</i d>
<title type="text">VERYH GHRES | MGL. 0</title>
<updat ed>2008- 07- 02T05: 09: 43. 375Z</ updat ed>
<thr:in-reply-to ref="info:fedoral/ demo: 5/ VERYH GHRES_| M5'/ >
<cat egory schenme="i nf o: fedora/ f edor a- syst em def/ nodel #l abel " tern¥"Thorny's Coliseum veryhigh jpg
i mage"/ >
<sunmary type="text" >VERYH GHRES | MGL. 0</ sunmary>
<cont ent
src="http://1ocal host: 8080/ f edor a- deno/ si npl e-i mage- deno/ col i seum ver yhi gh. j pg"

type="i mage/j peg"/ >
</entry>
</ feed>

Fedora METS

Table of Contents

1. Introduction
2. Object Encoding Rules

Introduction

As usual an example is worth a thousand words. So, please refer to the sample Fedora object that is encoded for ingest in METS 1.1:
mets-ingest-example.xml.

Fedora supports ingest of objects in a Fedora-specific extension of Metadata Encoding and Transmission Standard (METS). More information on
METS can be found at http://www.loc.gov/standards/mets/. For specific information about the Fedora extension to METS, please see the METS
1.1 schema.

Since METS was designed to be very generic and support a variety of uses, the rules of the METS Schema are very general-purpose. Fedora
objects must conform to other rules that are beyond the scope of what is expressed in the METS schema. Therefore, the Fedora Object XML
submissions will also be validated against a set of Fedora-specific rules that are expressed using the Schematron language. Internally, the
repository will use Schematron to enforce these rules on incoming XML submission packages. The Schematron rules are expressed in XML and
can be found in the Fedora server distribution at: %-EDORA_HOVE% ser ver\ schenat r on\ net sExt Rul es1- 1. xn .

For convenience and ease of understanding we have enumerated the Fedora rules in plain English below.

Object Encoding Rules

Encoding by hand requires a pretty good understanding of METS, although it can be done by following the patterns in the demo objects that come
with the Fedora distribution. Demo objects are located at: %-EDORA_HOVE% cl i ent \ deno.

General attributes

® On METS root element, the OBJID attribute will represent the Fedora object PID. Normally, this should be left empty so that the Fedora
repository can generate a new PID. However, you can assign test/demo PIDs by inserting a value in OBJID that begins with "demo:" or
"test:" for example, "demo:100"

® On METS root element, the value of the EXT_VERSION attribute must be "1.1".

®* On METS root element, the value of LABEL serves as the official description of the object. If there is no Dublin Core record present in the
object, the Fedora repository will use this label to populate the title element of a baseline Dublin Core record for the object.

®* On METS root element, the PROFILE element can be used by institutions to classify different types of Fedora data objects.

® Onthe METS:metsHdr element the CREATEDATE attribute should be omitted since the Fedora repository will assign this at ingest time.
Fedora dates are in the ISO 8601 format in milliseconds and with UTC time as follows: yyyy-MM-ddTHH:mm:ss.SSSZ. The same thing
goes for LASTMODDATE.

® Onthe METS:metsHdr element the RECORDSTATUS should be set to "A", "I, or "D" to indicate that the object is in the "Active”,
"Inactive", or "Deleted" state. The usual state is "A" (Active). These states may be used by policy enforcement, for example, to prevent
access to items in non-Active states. They may also be used by external tools, for example, to indicate whether an object's data should
be indexed or not.

Datastreams

® To create a proper section for Datastreams in the METS file, the METS:fileSec must have a single child METS:fileSec element whose ID
attribute has the value "DATASTREAMS"

® Datastreams that are encoded in the METS:fileSec must follow the following pattern to establish proper version groups and datastream
IDs. Each datastream has its own METS:fileGrp whose ID attribute is the official datastream ID. The recommended convention is
ID="DSn" where n is a number (for example ID="DS1" or ID="DS2)."

® Within a METS:fileGrp, there can be one or more METS:file elements to represent different versions of a datastream. As of Fedora 1.2,
versioning of data objects is supported. The METS:file element for the datastream must have and ID attribute that represent the version
number relative to the datastream ID set in the METS:fileGrp. The recommended convention is ID="DSn.v" where n is the number of the
datastream and v is the version number (for example ID=DS1.0 or ID=DS1.1).

® The METS:file element for a datastream must have a MIMETYPE.

® The METS:file element for a datastream must have an OWNERID attribute. In Fedora, the OWNERID attribute is used to encode the
Datastream Control Group. The following are valid values:

* "M" - Managed Content. This tells the repository to store the datastream's content byte stream inside the repository. When the
METS:file contains "M" on the OWNERID, the repository will resolve the URL associated with the METS:file element and pull the

https://wiki.duraspace.org/download/attachments/28181163/mets-ingest-example.xml?version=1&modificationDate=1218724461862
http://www.loc.gov/standards/mets/
http://fedora-commons.org/definitions/1/0/mets-fedora-ext1-1.xsd
http://fedora-commons.org/definitions/1/0/mets-fedora-ext1-1.xsd

content into the repository for permanent storage. Fedora will establish its own local identifier for retrieving the content, and
disregard the original URL that came in on the METS submission package.

® "E" - External Referenced Content. This tells the repository to store the URL for the datastream content, not the content byte
stream itself. For this type of datastream, Fedora does not actually manage or have custodianship of the content, but it manages
the link to the content and some basic metadata about it.

* "R" - Redirected Content. Like "E" this tells the repository to store the URL for the datastream content, not the content byte
stream itself. More importantly, it tells the repository not to mediate or proxy this content at runtime. Instead, the repository will
redirect to the URL at run time. This is desirable when a datastream points to a streaming media source, or to a complex web
page where some components are lost during proxying.

Inline XML Datastreams

® Datastreams can also be encoded in the METS:dmdSecFedora and METS:amdSec. These are considered "inline XML datastreams" in
Fedora. The METS:dmdSecFedora and METS:amdSec elements act as datastream version group containers just like the METS:fileGrp
acts for regular datastreams. Within these elements, the METS "metadata section" elements (i.e., METS:techMD, METS:rightsMD, etc.)
are used for the specific version instances of the inline metadata datastreams, just like the METS:file acts for regular datastreams. The
datastream IDs work the same way, where the ID attribute on the container element acts as the datastream ID, and the ID on the
metadata section element acts as the datastream version ID.

® Do not use the schemalocation attribute in the root element of inline XML datastreams (within METS:mdWrap element).

Dublin Core Record Datastream

® A Dublin Core (DC) record is optional in the Fedora object submission package. If one is not provided the repository will automatically
create a minimal DC record in the object by using the LABEL (on METS root) as the DC title element. It will also use the object PID as the
DC identifier element.

® |f a DC record is provided in the METS submission package it should be encoded within a METS:dmdSecFedora. The dmdSecFedora
element will act as the datastream version group container. It MUST have an ID attribute whose value is "DC" to be recognized by
Fedora!

® Within the METS:dmdSecFedora, there must be one METS:descMD element. This element is part of the Fedora extension of METS 1.1
and is used to encode a specific version of the DC datastream within the version group container. The ID attribute on the METS:descMD
element MUST have the value "DC1.0" to be recognized by Fedora.

® The actual DC metadata should be encoded using the Open Archives Initiative (OAI) Dublin Core schema.

METS Ingest Example

Sample METS Ingest Encoding

<?xm version="1.0" encodi ng="UTF-8"?>
<METS: nets EXT_VERSI ON="1.1" LABEL="METS 1.1 Reference Exanpl e" OBJI D="denp: 999"
PROFI LE="TEST_| MAGE" TYPE="Fedor aCbj ect"
xm ns: METS="htt p: // ww. | oc. gov/ METS/ "
xm ns: audi t ="i nf o: fedor a/ f edor a- syst em def / audi t #"
xm ns: foxm ="i nf o: f edor a/ f edor a- syst em def / f oxmi #"
xm ns: xli nk="http://ww.w3. org/ 1999/ xI i nk"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. | oc. gov/ METS/
http://ww. f edora.info/definitions/1/0/nets-fedora-extl-1.xsd">
<METS: net sHdr RECORDSTATUS="A"/ >
<METS: andSec | D="DC' STATUS="A">
<METS: t echMD | D="DC. 0" >
<METS: ndW ap LABEL="Dublin Core Record for this object"
MDTYPE=" OTHER" FORMAT_URI ="htt p://wmv. openar chi ves. org/ QAl/ 2. 0/ oai _dc/"
M METYPE="t ext/ xm " OTHERMDTYPE=" UNSPECI FI ED" >
<METS: xm Dat a>
<oai _dc:dc xm ns:dc="http://purl.org/dc/elements/1.1/"
xm ns: oai _dc="http://ww. openarchi ves. org/ QAl /2. 0/ oai _dc/ ">
<dc:title>METS 1.1 Reference Object</dc:title>
<dc: creat or>Sandy Payette</dc:creator>
<dc: subj ect >Fedor a docunent ati on</dc: subj ect >
<dc: descripti on>METS 1.1 showi ng how a digital object is encoded in METS Fedora
Ext ensi on 1. 1</dc: description>
<dc: publ i sher>Cornel | Cl S</dc: publisher>
<dc:identifier>denn: 999</dc:identifier>
</ oai _dc: dc>
</ METS: xni Dat a>
</ METS: ndW ap>
</ METS: t echMD>

</ METS: andSec>
<METS: andSec | D="RELS- EXT" STATUS="A">
<METS: t echMD | D=" RELS- EXT. 0" >
<METS: ndW ap LABEL="RDF Statenents about this object" MDTYPE="COTHER'
FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aRELSExt - 1. 0"
M METYPE="appl i cati on/ rdf +xm * OTHERMDTYPE=" UNSPECI FI ED" >
<METS: xnl Dat a>
<rdf: RDF xm ns:dc="http://purl.org/dc/elements/1.1/"
xm ns: f edora="i nf o: f edor a/ f edor a- syst em def/ rel ati ons- ext er nal #"
xm ns: myns="http://ww. nsdl . org/ontol ogi es/ rel ati onshi ps#"
xm ns: oai _dc="http://ww. openarchi ves. org/ QAl/ 2. 0/ oai _dc/"
xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. org/ 2000/ 01/ r df - schema#" >
<rdf: Description rdf:about="info:fedoral/ deno: 999" >
<fedora: i sMenber Of Col | ection rdf:resource="info:fedora/test:collectionl"/>
<fedora: i sMenber Of Col | ection rdf:resource="info:fedoral/test:collection2"/>
<nyns:isPartOf rdf:resource="info:fedoral/ nystuff:100"/>
</rdf: Description>
</ rdf: RDF>
</ METS: xni Dat a>
</ METS: mdW ap>
</ METS: t echMD>
</ METS: andSec>
<METS: andSec | D="UVATECH' STATUS="A">
<METS: t echMD | D=" UVATECH. 0" >
<METS: ndW ap LABEL="UWVA Techni cal Metadata Record"
MDTYPE=" OTHER' M METYPE="t ext/xm " OTHERMDTYPE="UNSPECI FI ED" >
<METS: xni Dat a>
<uval i badmi n: admi n xm ns: uval i badmi n="http://virginia.lib.edu/uvalibadnin:tech">
<uval i badni n: t echni cal >
<uval i badni n: f or mat >i nage/ j peg</ uval i badm n: f or mat >
<uval i badmi n: conpr essi on>LZW/ uval i badmi n: conpr essi on>
<uval i badni n: bi t Depth BI TS=""/>
<uval i badni n: col or Space/ >
<uval i badmi n: col or Profil e CPFILE="" CPLOCAT=""/>
<uval i badmi n: resol uti on>600</ uval i badmi n: resol uti on>
</uval i badni n: t echni cal >
</ uval i badmni n: admi n>
</ METS: xnl Dat a>
</ METS: mdW ap>
</ METS: t echND>
</ METS: andSec>
<METS: fil eSec>
<METS: fil eG p | D="DATASTREANS" >
<METS: fileGp | D="1 MAGE" STATUS="A">
<METS: file I D="I1 MAGE. 0" M METYPE="i nage/ x- nr si d-i nage" OWERI D="E">
<METS: FLocat LOCTYPE="URL"
xlink: href="http://iris.lib.virginia.edu/nrsid/ nrsid_i mages/ivalarcherp01. sid"
xlink:title="Inmage of Pavilion IIl, University of Virginia"/>
</METS: file>
</METS: fil eG p>
<METS: fileG p | D="DRAW NG- | CON' STATUS="A">
<METS: file | D="DRAW NG- | CON. 0" M METYPE="i nage/j peg" OMNERI D="M >
<METS: FLocat LOCTYPE="URL"
xlink:href="http://icarus.lib.virginia.edu/imges/ivalarcherdO5small.jpg"
xlink:title="Architectural Drawing Pavilion I11"/>
</METS: file>
</ METS: fil eG p>
<METS: fil eG p | D="DRAW NG BETTER' STATUS="A">
<METS: fil e | D="DRAW NG BETTER. 0" M METYPE="i mage/ j peg" OWNERI D="M >
<METS: FLocat LOCTYPE="URL"
xlink:href="http://icarus.lib.virginia.edu/inages/ivalarcherd05medi uml.jpg"
xlink:title="Architectural Drawing Pavilion Ill (ned res)"/>
</ METS: file>
</ METS: fil eG p>
<METS: fil eG p | D="DRAW NG BEST" STATUS="A">
<METS: fil e | D="DRAW NG BEST. 0" M METYPE="i mage/ j peg" OMNERI D="R"'>
<METS: FLocat LOCTYPE="URL"
xlink:href="http://icarus.lib.virginia.edu/imges/ival archerd05hi gh.jpg"
xlink:title="Architectural Drawing Pavilion Il (veryhigh res)"/>

</ METS: file>
</ METS: fil eG p>

</ METS: fil eG p>
</ METS: fil eSec>
</ METS: net s>

Ingest and Export

Table of Contents

Table of Contents

A Brief Note on Ingest/Export XML Formats

Ingest and Export via the Fedora Web Administrator
Ingest and Export via the Fedora Administrator
Ingest an Object via Command Line

Export an Object via Command Line

Ingest/Export via Your Own SOAP Client

Related Information

A Brief Note on Ingest/Export XML Formats

Fedora digital objects can be encoded in several XML formats for ingest and export. Those formats are FOXML 1.1, FOXML 1.0, METS 1.1,
METS 1.0, ATOM 1.1, and ATOM ZIP 1.1.

For encoding ingest files in FOXML 1.1, please refer to the FOXML 1.1 XML schema and the Introduction to FOXML guide in the Fedora System
Documentation. Also look at the FOXML ingest example file for a model of a typical ingest file using FOXML.

FOXML 1.0 is included for backwards compatibility. This facilitates ingesting any existing objects you may have in FOXML 1.0 format or exporting
objects in FOXML 1.0 for ingest into a legacy repository. It is recommended that if you are creating new objects using FOXML, that you use the
FOXML 1.1.

For encoding ingest files in METS 1.1, please refer to the METS XML schema (Fedora extension) and also rules for encoding Fedora objects in
METS.

For encoding ingest files in ATOM 1.1 or ATOM ZIP 1.1, please refer to Fedora Atom documentation.

Ingest and Export via the Fedora Web Administrator

The Fedora Web Administrator provides options to ingest and export single objects from the repository using a web-based user interface. The
Fedora Web Administrator uses the Fedora REST API to perform all of its functions. Please refer to the Fedora Web Administrator documentation
for more information.

Ingest and Export via the Fedora Administrator

The Fedora Administrator client provides a graphical user interface for ingesting and exporting from the repository. Behind the scenes, the
Administrator uses Fedora API-M, and the appropriate SOAP calls are made to the repository to accomplish the ingest. Objects are ingested as
XML files. The Fedora Administrator allows for ingesting single files and file sets, both from the local file system and from other repositories.
Please refer to the Fedora Administrator documentation for more information.

Ingest an Object via Command Line

The Fedora Administrator client provides a command line utility for ingesting objects into a Fedora repository. Behind the scenes, Administrator
uses Fedora API-M, and the appropriate SOAP calls are made to the repository to accomplish the ingest. Objects are ingested as XML files.
Please see the the fedora-ingest utility in the Fedora Command Line Utility Guide.

Export an Object via Command Line

The Fedora Administrator client provides a command line utility for exporting objects from a Fedora repository. Behind the scenes, Administrator
uses Fedora API-M, and the appropriate SOAP calls are made the the repository to accomplish the export. Objects are export as XML files.
Please see the the fedora-export utility in the Fedora Command Line Utility Guide.

Ingest/Export via Your Own SOAP Client

Of course, you can write your own client to perform ingest and export operations on a Fedora repository. To do this, you must familiarize yourself
with the operation syntax as expressed in the WSDL for API-M.

http://fedora-commons.org/definitions/1/0/foxml1-1.xsd
http://fedora-commons.org/definitions/1/0/mets-fedora-ext1-1.xsd
http://fedora-commons.org/definitions/1/0/api/#apim

Related Information

® FOXML Ingest Example

Ingest with the file URI scheme

Ingest using the file URI scheme

Since Fedora 3.3 it is possible to reference managed and externally-managed content (type "M" and "E") with a fi | e: URI within the digital
object for the ingest. In order to enable this functionality the following changes are necessary:

First edit the predefined XACML policy, uncomment the relevant rule in the preinstalled policy file deny- unal | owed-fi |l e-resol uti on. xm
and adapt the regex to your needs (or write your own policy). Optionally bind the rule to a specific user. Make sure the Ruleld is unique.

<Rule Ruleld="1" Effect="Permit">

<Condition Functionld="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchematstring">{"}f i | e: / al | owed/ . * $</AttributeValue>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<ResourceAttributeDesignator Attributeld="urn:fedora:names:fedora:2.1:resource:datastream:fileUri"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

</Apply>

</Condition>

</Rule>

Then create your digital object FOXML and use the fi | e: URI where necessary.

<foxml:datastream CONTROL_GROUP="E" ID="MEDIUM_SIZE" STATE="A" VERSIONABLE="true">
<foxml:datastreamVersion CREATED="2008-07-02T05:09:42.9372"

ID="MediumSize.jpg.0" LABEL="Medium-size image" MIMETYPE="image/jpeg">
<foxml:contentLocation

REF="file:///path/to/files/image.jpeg" TYPE="URL"/>

</foxml:datastreamVersion>

</foxml:datastream>

' file URI format
The provided f i | e: URIs must not have an authority component or the authority component must be empty. This means that
URIs with the fi | e: scheme must either have one slash (no authority component) after the scheme:
file:/datalimge.|peg
or have three or more slashes (an empty authority component) after the scheme:
file:///datal/image.|peg
If you use this form the regex in the policy that matches the "one slash form" will nontheless match because internally Fedora
translates all f i | e: URIs into the one slash form.
As aresult {"}f il e:/data/.*$ will match both forms above.

The use of two slashes after the scheme is not allowed and will result in an error because it defines an authority component.

1 File URIs and externally-managed datastreams
The default policy deny- unal | owed-fil e-resol uti on only allows authenticated users to retrieve files from the allowed file
paths. For managed content (type "M"), this restriction only applies at datastream creation; once the datastream is created, it is
available via the API-A methods to any user allowed by your policies (by default, API-A methods are unrestricted). However,
externally-managed content is protected by the deny- unal | owed- fi | e-resol uti on policy at the moment the datatream is
created, and thereafter every time the datastream is accessed via either API-A and API-M methods; please be aware that this
has the effect of making externally-managed content with file URIs available only to authenticated users, such as
f edor aAdmi n.

file:///data/image.jpeg

Note:

Please bear in mind that the activation of fi | e: URIs for managed content exposes your filesystem to the ingest process and
as such could be abused by inserting URIs to files that are not intended for ingestion. While Fedora sanitizes the given URI and
denies URIs such as file:///data/../etc/passwd, Make sure that you:

=

® only expose directories without symlinks

® only expose directories that don't contain any sensitive information, like access to configuration files, password files,
user home directories, etc.

® deny file URIs as soon as the ingest is finished

Portable Fedora Objects

Fedora objects that are intended for public distribution or migration must be careful to assure portability so that they can be ingested by a foreign
repository and expected to work. Currently, the primary concern is with links or other references to resources assumed to exist locally within the
fedora server.

Motivation

Links to resources within the fedora web application typically take the form ht t p: / / HOST: PORT/ APP/ PATH, where HOST is the host on which
Fedora runs, PORT is the port on which the server runs, and APP is the name of the a web application, and PATH is the path, and PATH is the rest
of the path.

As an example, consider a url invoking a dissemination. Using default hosts, ports, and context names, such url might look like:

>
=
-
=
<
=
@
X
3
o
o
=
«Q
©
o
©
o
2
°
=
o
o
|—h
@
o
o
=
2
w
N
R
Q
@
ot
Z
a
@
w
3.
@
<
)
c
=8
=
Z
o
@
@
O
2
o)
=}
2
%]
=

Considering both URLS, we notice that the PATH is the only part of the url that hasn't changed.

Likewise, there is often a need to link to applications that are not in fedora, but are in the same servlet container. An obvious example of this is the
saxon servlet, which is distributed with Fedora:

http://1ocal host: 8080/ saxon/ SaxonServl et ?. ..
http://exanpl e. org: 9090/ saxon/ SaxonServl et ?. ..

In this situation, both APP and PATH have remained the same.

In fedora objects, there are sometimes needs to link to a dissemination of another object, or invoke a servlet installed alongside Fedora such as
the 'saxon' servlet. Here are some examples:

In a datastream (based on demo:SmileyStuff demo object)

<f oxnl : dat ast r eam CONTROL_GROUP="E" | D="LI ST" STATE="A" VERS| ONABLE="true" >
<f oxnl : dat astreanVer si on | D="LI ST. 0"
LABEL="Result of list dissem nation" M METYPE="text/xm ">
<foxm : cont ent Locati on
REF="http://exanpl e. org: 9090/ pr od_f edor a_32/ get/ deno: Sni | eySt uf f/ deno: Col | ection/list"
TYPE="URL"/ >
</ foxml : dat ast r eanVer si on>
</ foxnl : dat astreanr

In the WSDL of a Service Deployment (SDep) object (based on demo:Collectionimpl):

file:///data/../etc/passwd
http://HOST:PORT/APP/PATH

<wsdl : servi ce nane="1|nageCol | ecti on"> !
<wsdl : port binding="this:|nageCol | ecti on_http" nane="|mgeCol | ecti on_port"> !
<http: address | ocation="http://exanpl e.org/9090/"/>
</wsdl : port >

</ wsdl : servi ce> :
<wsdl : bi ndi ng name="1nmageCol | ection_http" type="this:|mgeCol | ectionPortType">
<ht t p: bi ndi ng verb="GET"/ > f
<wsdl : operati on nanme="vi ew'> H
<htt p: operation

| ocati on="/saxon/ SaxonSer vl et ?sour ce=(LI ST) &anp; styl e=(XSLT) &np; cl ear - st yl esheet - cache=(CLEAR_CACHE) "/ >

<wsdl : operation name="list">
<http: operation
| ocation="/prod_fedora_32/risearch?type=(TYPE) &np; | ang=(LANG) &anp; f or mat =(FORVAT) &anp; quer y=(QUERY) "/ >

If fedora objects are truly written this way and ingested into a repository with a different hostname, port, or fedora app context, they will fail since
the links will be broken in that environment

Solution

As a solution, Fedora uses a form of text substitution that allows local links to be represented in a portable way. Two variables are defined:

http://local.fedora.server/ = http://HOST: PORT/
http://1ocal .fedora.server/fedora/ = http://HOST: PORT/ FEDORA_APP/

This substitution applies only to URLSs for external reference datastreams (control groups R and E), and to the content of WSDL datastreams in
SDep objects. At present, it does NOT occur in the content of datastreams (WSDL being the exception).

Let us re-write the FOXML examples above into a portable form.
In a datastream (based on demo:SmileyStuff demo object)

<foxnl : dat ast ream CONTROL_GROUP="E" | D="LI ST" STATE="A" VERS| ONABLE="true" > :
! <f oxm : dat astreanVersi on | D="LI ST. 0" H
LABEL="Result of |ist dissem nation" M METYPE="text/xm ">
<f oxm : cont ent Locat i on
: REF="http://local . fedora.server/fedoral get/denmo: Sni | eySt uf f/ denmo: Col | ection/list" TYPE="URL"/> !
</ foxm : dat ast r eanVer si on>
</ foxmn : dat ast rean>

At runtime, this will be interpreted as real url
http://exanpl e. org: 9090/ prod_f edor a_32/ get/ deno: Smi | eySt uf f/ deno: Col | ection/list or
http://1ocal host: 8080/ f edora/ get/ deno: Sm | eySt uf f/ deno: Col | ecti on/ i st, etc depending on the local Fedora configuration.

As far as the WSDL from (based on demo:Collectionimpl), we re-write it as follows:

<wsdl : servi ce name="1mageCol | ection">
<wsdl : port binding="this:|nageCol | ecti on_http" nane="|mageCol | ecti on_port">
<http: address | ocati on="LOCAL"/>
</wsdl : port>
</ wsdl : servi ce>
<wsdl : bi ndi ng nanme="1nmageCol | ection_http" type="this:|mgeCol | ectionPortType">
<htt p: bi ndi ng verb="CET"/ >
<wsdl : operati on nanme="vi ew'>
<htt p: operation
location="http://local.fedora.server/saxon/ SaxonSer vl et ?sour ce=(LI ST) &np; styl e=(XSLT) &np; cl ear - st yl esh

€

<wsdl : operation name="|ist">
<http: operation
location="http://local.fedora.server/fedoral/risearch?type=(TYPE) &np; | ang=(LANG) &anp; f or nat =(FORMAT) &anp;

Notice, we made a minor structural change in order to allow the entire URL to be written in a contiguous fashion.

http://example.org:9090/prod_fedora_32/get/demo:SmileyStuff/demo:Collection/list
http://localhost:8080/fedora/get/demo:SmileyStuff/demo:Collection/list

Use and Practice

® By default, Fedora will store objects internally in their portable form. It is only on runtime access that the URLs are translated to concrete
values. Thus, changing the port or app server context of an already-installed Fedora instance with loaded objects should work fine

® Objects can be exported in portable form from an existing repository only when exported in the "Migrate" context. See ingest & export
documentation for more details

Fedora Repository

Checksums
Command-Line Utilities
Messaging

Replication and Mirroring
Resource Index

Security

Service Framework
Versioning

Web Service Interfaces

Checksums

Introduction

Fedora provides the capability of computing and storing checksums for Datastreams in a digital object, and later using that checksum to verify that
the contents of that object has not been changed. This Datastream checksumming was added to Fedora to aid those in preservation and content
security. Using this capability, Fedora repositories can compute a checksum for each Datastream of a digital object, and can later use this
checksum to conclusively determine whether the contents of the Datastream has been changed, either through a minor hardware failure (such as
a bad disk sector) changing the data stored in the low-level store, or through a user changing the contents of a file in the low-level store either
accidentally or maliciously. This is achieved by the Fedora repository computing a checksum for the content whenever the content is added or
modified via Fedora API-M functions, and allowing that stored checksum to be compared to one computed for the currently stored version of that
content. Note that since valid changes made to Datastreams via the Fedora API-M functions cause the stored checksum to be recomputed, the
checksumming feature is only designed to detect changes to the Datastreams of a digital object outside of Fedora; changes made to Datastreams
within Fedora (via API-M functions) can be tracked through content versioning and through the audit trail records.

Enabling Automatic Checksumming

Since computing checksums for every Datastream when a Datastream is initially added and whenever a Datastream is modified via a Fedora
API-M call will cause all such operations to run more slowly, automatic checksumming of Datastreams is disabled by default. To enable automatic
checksumming, the Fedora Administrator must edit the f edor a. f cf g file by finding the line in that file specifying: <par am

nane="aut oChecksunt val ue="f al se" > and changing the value to "true". The configuration file entry immediately following the
"autoChecksum" entry: <par am nanme="checksumAl gori t hm val ue="MD5" > specifies which checksumming algorithm is to be used for the
automatically generated checksums. The default algorithm is "MD5" and the other valid values for this entry are: "SHA-1" "SHA-256" "SHA-384"
and "SHA-512". Entering any other value for the "checksumAlgorithm" parameter will effectively disable automatic checksumming and will
generate annoying warning messages.

How Automatic Checksumming Works

When automatic checksumming is enabled, whenever a object is ingested into Fedora, as each Datastream is processed, all of the bytes
comprising the content of the Datastream are passed to the appropriate checksumming algorithm. This algorithm will compute and return a digital
signature for the content of the Datastream. These checksumming algorithms are designed such that any minor change to the content will
produce a wildly different result for the computed checksum. These computed Datastream checksums will then be stored in the XML

representation of the digital object. Additionally, whenever a new Datastream is added to an existing object (via addDatastream), and whenever a
existing Datastream is modified (via modifyDatastreamByValue or modifyDatastreambyReference) a new checksum will be computed and stored
in the object.

Subsequently, someone interested in verifying that the content of a Datastream has been neither damaged nor tampered with will be able to
invoke the new API-M function compareDatastreamChecksum. This new function will take the checksum string stored for the specified
Datastream and compare it with a newly-computed checksum using the same checksum algorithm as was originally used. If the checksums
match, the new API-M function will return a string containing the checksum value. However if the checksums do not match, the function will return
a string indicating the error.

Overriding Automatic Checksumming

In some circumstances a user of Fedora will encounter a situation where the checksumming configuration specified for the repository as a whole
is not suitable for one or more Datastreams of a given object. Perhaps automatic checksumming is disabled, but there is some Datastream for
which you want to have a checksum computed, or, conversly, perhaps automatic checksumming is enabled and some object has a Datastream
for which checksumming doesn't make sense (i.e. either a Datastream with dynamic content that changes over time or a truly enormous
Datastream for which the checksumming operation would be too time consuming.

It is possible to override the checksumming operation that will be performed and stored for a given Datastream via new parameters that have
been added to the API-M functions addDatastream, modifyDatastreamByValue and modifyDatastreamByReference. These functions each have
two new parameters, checksumType and checksum. If a value is specified for the parameter checksumType for any of these three functions that
is the algorithm that will be used for computing the checksum for that particular Datastream, rather than the global default checksum algorithm
specified in the fedora.fcfg file.

The valid values for the checksumType parameter for these three functions are: "MD5" "SHA-1" "SHA-256" "SHA-384" "SHA-512" as above, but
also "DISABLED" which will turn off checksumming for that particular Datastream. Additionally for the two modifyDatastream functions the value
null specifies that the checksum algorithm in force before the modify operation should continue to be used, whereas the value "DEFAULT"
specifies that the checksumming algorithm for that particular Datastream should be changed back to whatever default checksum algorithm has
been specified in the fedora.fcfg file.

Another way to override the default checksumming mechanism is via new attributes that have been added to the FOXML and METS specs for
ingesting digital objects. The FOXML and METS specifications now allow the checksum algorithm to be used for each Datastream to be specified
as attributes on one of the elements defining that Datastream. When a checksum algorithm is specified in the XML for a Datastream of a digital
object, this value will be used to compute the checksum for that Datastream rather than the default algorithm specified in the fedora.fcfg file. Note
that the syntax for thusly specifying a checksum algorithm for a Datastream in a digital object is different for FOXML and for METS, the specific
syntax to use can be found in the schemas for those XML formats.

Verifying Datastream Content

Once checksums are computed and stored for a given Datastream it is possible to verify that the contents of that Datastream has not been
changed in any way since the checksum was initially computed. To perform this verification a user simply invokes the new Fedora API function
compareDatastreamChecksum, passing in the object id and Datastream id of the Datastream to be verified (plus an optional date string if a
version of the Datastream other than the most recent one is to be verified). The API function will read in the digital content of the Datastream, and
compute a checksum using the same checksum algorithm stored with the Datastream, and compare the resulting value with the one it previously
computed and stored in the digital object. If the two checksums are identical, the function will return the value of the checksum (which could then
be stored externally, if desired, as an added measure of security). If the newly computed checksum doesn't match the stored one, the API
function will return a message indicating this checksumming failure. The action to take when this situation occurs is left to the user.

Additional Datastream Verification

In some circumstances a user may want further assurances that the content of a Datastream has not been unintentionally changed, perhaps
through a faulty network connection or through a "man-in-the-middle" data modification. To provide this capability, there is another new parameter
that can be passed in for the API-M functions addDatastream, modifyDatastreamByValue and modifyDatastreamByReference, named checksum.
If a value is specified for this parameter, rather than leaving it null it is interpreted as a request to compute the checksum using the provided
checksumType, and then compare it with the checksum that was passed in. If the checksums do not match, Fedora will assume that the data that
it read for the content of the new of modified Datastream somehow was changed or damaged in transmission and the API-M function will fail and
the repository will be rolled back to the state it was in prior to the call. N.B. for inline XML Datastreams, the content is normalized internally during
the checksum computation process, which will make devising and passing-in the correct checksum to ensure the integrity of the passed-in content
will be somewhat difficult.

Fedora Administrator

The Datastream display panels in the Fedora Administrator display the checksum algorithm and computed checksum. For the current version of a
Datastream, the algorithm to be used can be changed via a drop-down list. For previous versions of a Datastream these values are displayed, but
are not editable.

Command-Line Utilities

Introduction

The Fedora server distribution comes with several useful command-line utilities. A description and usage instructions for each follows.

The scripts are located in FEDORA_HOVE/ ser ver / bi n/ . In Windows, these commands resolve to batch files (.bat); in Unix, they resolve to shell
scripts (.sh).

Note: There are also client command-line utilities which perform object ingest and export as well as several other functions.

This guide assumes you have correctly installed the Fedora server distribution as per the install guide, including having set up your PATH and
FEDORA _HOVE appropriately.

) Information
Currently, if you are running Fedora with a servlet container other than Tomcat, these scripts will need to be manually modified
for your environment to pick up the paths to the Fedora classes and required libraries from a location other than
CATALI NA_HOVE.

fedora-rebuild

fedora-rebuild

Reconstitutes Fedora's indexes (the SQL database and/or Resource Index) from the FOXML and datastream files on disk.

This is an interactive utility that should be run only when the server is offline. Depending on the size of your repository, this may take minutes
(thousands of objects) or hours (millions of objects) to complete.

It is useful in a variety of situations:

® Upgrading from a previous version of Fedora when the SQL database or Resource Index changed significantly between releases.
® Migrating from one SQL database product to another in an existing Fedora installation. This can be done at any time by

1. Modifying your fedora.fcfg file to point to a properly-configured <datastore..> (see fedora.fcfg for examples)

2. Copying the appropriate JDBC jar file into the Fedora webapp's WEB-INF/lib directory.

3. Running a rebuild of the SQL database
® Recovering from inconsistencies and/or corruption of the indexes.

When you run this utility, a text menu will appear, allowing you to specify whether you need to rebuild the SQL database or the Resource Index.
To Run a Rebuild:

. Stop the Fedora server (if using Tomcat, this can be done with the shutdown.bat or shutdown.sh command)
Runfedora-rebuild.bat or fedora-rebuild.sh

. Select which index you want to rebuild and confirm your choice when prompted.

. Repeat steps 2-3 to rebuild the other index, if needed.

. Restart the Fedora server (if using Tomcat, this can be done with the startup.bat or startup.sh command)

GAWN P

#) Information
When running a SQL rebuild using MySQL with Java 1.5, it may fail with a java.lang.UnsupportedClassVersionError.
This can occur if the MySQL JDBC driver you're using is a newer version. To resolve, simply run the rebuilder with Java
1.6 (ensuring your JAVA_HOME environment variable is set correctly), or use an older MySQL JDBC driver.

fedora-reload-policies

fedora-reload-policies [http|https] [username] [password]

Where:

® http|https - Indicates which protocol to use to send the "reload policies" signal to the running Fedora server.
® username - An administrative Fedora user with permission to reload polcies.
® password - Password for the administrative user.

Causes any new or changed repository-wide policies to take effect immediately on the running Fedora server.

As described in the document, Fedora Authorization with XACML Policy Enforcement, Fedora can be configured to enforce a variety of access
policies. Many of these XACML policies are applied for all actions and access attempts performed on the repository as a whole. These
"repository-wide" XACML policies are automatically loaded at the time the Fedora server is started. If the Fedora server administrator needs to
change one or more of these repository-wide policies, this command can be used to tell the running Fedora server to reload the policies. The
alternative to using this command is to stop the Fedora server and restart it.

validate-policy

validate-policy [policyFilename]
Where:

® policyFilename - Name of XACML file containing the new or modified policy
Schema-validates a XACML policy file.

If the Fedora server administrator creates or modifies an existing repository-wide XACML policy, the new policy should be run through this
program to ensure that it is well-formed before attempting to install it in the Fedora server. Validating a policy in this way will ensure that it is
well-formed XML and can follows the XACML XML schema.

fedora-modify-control-group

@ Ensure DC, RELS-EXT and RELS-INT are versionable if using Managed Content
Due to an outstanding bug FCREPO-849, if you use Managed Content for DC, RELS-EXT or RELS-INT then please make sure
these datastreams are versionable (the default setting for versionable is “true”, so if you haven't specified this datastream
property then you are safe). Particularly take care if you are migrating an existing datastream who's VERSIONABLE property is
set to “false", as this will cause problems. You will need to ensure the VERSIONABLE property is “true" before migrating.

The fedora-modify-control-group command line utility enables you to modify the control group of existing datastreams. Currently only modifying
inline XML datastreams ("X") to managed content ("M") is supported. The utility can be used to modify DC, RELS-EXT and RELS-INT
datastreams to managed content with the introduction of support for managed content for these datastreams in Fedora 3.4.

fedora-modify-control-group [protocol] [user] [password] [pid] [dsid] [controlGroup] [addXMLHeader] [reformat] [setMIMETypeCharset]
Where:

protocol - the protocol to communicate with Fedora server, either http or https.
user - the Fedora administrator username (e.g., fedoraAdmin).

password - the password for the Fedora administrator user.

pid - either

® asingle pid (eg demo:123)

® acomma-separated list of pids (eg demo:123,demo:124)

* the name of a file containing a list of pids (eg file:///path/to/pidfile.xml). The file may either be a simple text file containing a list of
pids, or an XML file specifying pids as <pid>demo:123</pid> elements. The XML output of Fedora's basic search (the
findObjects REST API method) can be used.

® dsid - either a single datastream identifier or a comma-separated list of datastream identifiers (eg DC or DC,RELS-EXT)

® controlGroup - the control group to set on the datastream. Only "M" is currently supported

* addXMLHeader - optional. If true, an XML declaration specifying the XML version and a character encoding of UTF-8 will be added at
the start of the datastream.

® reformat - optional. If true, the XML will be reformatted with line breaks and indents.

* setMIMETypeCharset - optional. If true, a charset declaration of UTF-8 will be added to the datastream's MIMEType property if one is

present

If a single pid and datastream are specified, an error will be generated if the datastream is not found. If a list of datastreams is specified, the
datastreams will be upgraded only if found in the object, and no error will be given if the datastream is not found in a particular object. The output
will give a full list of objects, datastreams and datastream versions migrated to the new control group.

Messaging

Table of Contents

. Introduction

. Messaging in Fedora

. Configuring Messaging

. Messaging Client

Messages

. Configuring Messaging with ActiveMQ for Higher Availability

CUTAWN R

Introduction

Messaging is a communication mechanism used to send and receive information in a manner which allows the senders and receivers to be
unaware of the activities or status of the other parties involved in the exchange. This loose coupling is achieved through the use of an
intermediary queue or topic managed by a messaging provider. The messaging provider is responsible for delivering messages sent by message
producers to message consumers. Messaging in Fedora is implemented using the Java Messaging Service (JMS) which is a specification used
by many messaging providers that allows messages to be sent or received from a queue or topic in a generic fashion.

https://jira.duraspace.org/browse/FCREPO-849
file:///path/to/pidfile.xml
http://java.sun.com/products/jms/

Messaging in Fedora

The goal of messaging in Fedora is to provide updates about the activities of the repository as they occur. This allows external applications to
monitor and perform actions based on those activities. In order to provide the capability for multiple independent clients to receive identical update
messages simultaneously, an asynchronous publish-and-subscribe model was chosen as the default for Fedora's messaging capability. The
messages sent using this model indicate when functions of API-M have been exercised, thus providing information about every update made to
digital objects within the repository.

Fedora uses Apache ActiveMQ as its default messaging provider. While the use of JMS suggests that any messaging provider supporting JMS
can replace ActiveMQ, no other providers have been tested. If you do use Fedora with another JMS-compliant messaging provider, please let us
know your results.

Configuring Messaging

Messaging in Fedora is configured primarily through the messaging module within the fedora.fcfg file. The following parameters, specified as part
of the messaging module, are required in order to establish a JMS Connection:

® enabled
® Default: false
® Determines whether the messaging module should be initialized in order to send messages. If you want messages to be sent,
this must be set to true.
® java.naming.factory.initial
® Default: org.apache.activemg.jndi.ActiveMQInitialContextFactory
® Specifies the INDI initial context with which the connection factory and destination administered objects will be looked up. As
indicated by the default value, Fedora uses ActiveMQ as its default INDI provider as well as its default messaging provider. The
messaging provider and JNDI provider do not need to be the same.
® java.naming.provider.url
¢ Default: vm:(broker:(tcp://localhost:61616))
® Specifies the address at which a connection can be made to the messaging provider. Depending on the provider, this address
may indicate any of several protocols and may include additional parameters. The default URL uses ActiveMQ specific syntax to
allow for both internal JVM transport and transport over TCP connections via port 61616. More information on ActiveMQ broker
URIs can be found on their website.
® Fedora will attempt to connect to the messaging provider at this address on startup, so make sure that your provider is running
and available.
® connection.factory.name
¢ Default: ConnectionFactory
® Specifies the INDI name of the ConnectionFactory object needed to create a connection to the JMS provider. ActiveMQ creates
a connection factory on startup and stores it under the name ConnectionFactory in its included JNDI provider. If you are using a
different JMS or JNDI provider, you will need to create a connection factory in JINDI and specify the name under which it is stored
as the value of this parameter.

Once a connection is established to the JMS provider, Fedora needs to know where to publish messages. Two topics are currently available for
this purpose:

* fedora.apim.update - API-M methods which cause an update to occur within the repository. This includes all ingest, add, modify, set,
and purge activities.

* fedora.apim.access - API-M methods which access the repository but do not cause an update to occur. This includes all methods not
considered updates.

The names of these topics may be changed by specifying new values for the name parameter of the apimUpdateMessages and
apimAccessMessages datastores within the fedora.fcfg file. Changing the names will not alter the messages being sent but will send those
messages to different destinations.

If a point-to-point messaging model is preferred, the type parameters of the datastores mentioned above can be changed to "queue”, which will
result in the messages being placed in a queue of the name specified in the datastore. Queues allow only a single entity to retrieve and process
each message, but they do remove timing dependencies inherent with the publish-and-subscribe model (subscribers must register their interest
prior to a message being published in order to receive that message.)

Messaging Client

In order to receive the messages that are being sent by Fedora, you will need to create a message consumer to listen for Fedora's notification
messages. To aid in this effort, the Messaging Client was created. To build the Messaging Client, run the messaging-client Ant target from the
source distribution. After the build completes, look in the dist directory for fedora-messaging-client.zip, which includes all of the jars necessary to
use the Fedora Messaging Client. If you are using a messaging provider other than ActiveMQ, you will need to replace the activemg-all jar with
the appropriate jars from your messaging provider of choice.

The Messaging Client was designed to provide a simple Java interface for receiving messages from Fedora. Some configuration parameters are
necessary in order for the client to create a connection and listen to the appropriate topic or queue. The parameter names here are the same as
those listed above for messaging, and the values should be the same as those in your fedora.fcfg file. The topic or queue name(s) on which to
listen are also included as parameters and the value(s) should match those in the fedora.fcfg datastores. If you are using ActiveMQ as your JMS
and JNDI providers each topic or queue will be created for you, otherwise you will need to create destination object(s) in JNDI to match the
property values you specify here.

http://activemq.apache.org/index.html
http://sourceforge.net/mail/?group_id=177054
http://sourceforge.net/mail/?group_id=177054
http://activemq.apache.org/index.html
http://activemq.apache.org/broker-uri.html

java.naming.factory.initial - this String value can be found in javax.naming.Context.INITIAL_CONTEXT_FACTORY
java.naming.provider.url - this String value can be found in javax.naming.Context. PROVIDER_URL

connection.factory.name - this String value can be found in fedora.server.messaging.JMSManager. CONNECTION_FACTORY_NAME
topic.{name} OR queue.{name} - topics are specified using the prefix "topic." followed by a topic name. Queues are specified using the
prefix "queue." followed by a queue name.

The code below is a simple example of how to use the Messaging Client. The JmsMessagingClient constructor includes three required
parameters and two optional parameters. The required parameters include the client ID, the MessagingListener instance, and the connection
properties mentioned above. The optional parameters include a message selector and flag which determines whether durable subscribers should
be used to listen over the topics listed in the properties. More information about each of the available parameters can be found in the
JmsMessagingClient javadocs.

public class Exanple inplenents Messagi ngLi stener {
Messagi ngd i ent nmessagi ngd i ent;
public void start() throws Messagi ngException {
Properties properties = new Properties();
properties. set Property(Context.|N TI AL_CONTEXT_FACTORY,

"org. apache. acti venq. j ndi . Acti veMJ ni ti al Cont ext Factory");
properties. set Property(Context. PROVIDER URL, "tcp://local host:61616");
properties. set Property(JVMSManager. CONNECTI ON_FACTORY_NAME, "Connecti onFactory");
properties.setProperty("topic.fedora", "fedora.apim*");
messagi ngd i ent = new JmsMessagi ngCl i ent ("exanpl el", this, properties, false);
messagi ngCient.start();

}
public void stop() throws Messagi ngException {
nmessagi ngd i ent. stop(fal se);
}
public void onMessage(String clientld, Message nessage) {
String nmessageText = "";
try {
nessageText = ((Text Message) nmessage). get Text();
} catch(JMsException e) {
Systemerr.printin("Error retrieving nessage text " + e.getMessage());
}

System out. println("Message received: " + messageText + " fromclient " + clientld);

A new feature in Fedora version 3.1 is the option to start the JmsMessagingClient asynchronously. If you are starting a messaging client only to
listen for messages on a topic, there is likely no need to wait for that connection to be made before continuing with other processing. Once the
connection is made, messages will be passed to your onMessage() method as usual. To take advantage of this, simply call
jmsMessagingClient.start(false) rather than messagingClient.start() in the example above. Note that if you intend to publish messages, you will
still need to wait for the connection to complete (i.e. use messagingClient.start()) prior to adding a message to a topic or queue.

Messages

The content of messages sent by Fedora takes the form of feed entries based on the Atom Syndication Format. These messages correspond to
API-M method calls, indicating the name of the method, its parameters, return value, and other information about the method. Each message will
be similar to the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<entry xm ns="http://ww. w3. or g/ 2005/ At ont'
xm ns: fedora-types="http://ww. fedora.info/definitions/1/0/types/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<i d>urn: uui d: 3773e144- 1b63- 4dde- 8786- 464243af 9186</ i d>
<updat ed>2008- 04- 14T22: 35: 13. 953Z</ updat ed>
<aut hor >
<nane>f edor aAdnmi n</ nane>
<uri>http://1ocal host: 8080/ fedora</uri>
</ aut hor >
<title type="text">purgeCbject</title>
<category term="denp: 5" schenme="fedora-types: pid" |abel ="xsd: string"></category>
<category term="purge nmessage" schene="fedora-types:| ogMessage" | abel ="xsd: stri ng"></category>
<category term="fal se" scheme="fedora-types:force" |abel ="xsd: bool ean" ></ cat egory>
<summary type="text">deno: 5</ sunmar y>
<content type="text">2008-04-14T22: 35: 13. 953Z</ cont ent >
</entry>

http://www.atomenabled.org/developers/syndication/

The Atom tags in each message will have the following values:

® <id> uniquely identifies each entry
® <updated> indicates the date and time at which the call occurred
® <author> identifies the initiation point of the API-M method call
® <name> specifies the name of the user making the call
® <uri> corresponds to the baseURL of the Fedora repository from which the call originated
® <title> specifies the method name
® Each <category> corresponds to a method's argument:
® The term indicates the argument value. However, null values are indicated as "null", and non-null xsd:base64Binary values are
indicated as "[OMITTED]".
® The scheme indicates the argument name
® The label indicates the argument datatype
® <summary> corresponds to the PID of the object operated on by the method, if applicable.
® <content> corresponds to the textual representation of the method's return value, noting the following:
® Null values are represented as "null”.
fedora-types:ArrayOfString values are represented as a comma-separated list, e.g. "valuel, value2, value3".
Non-null xsd:base64Bina