
Toward the next generation: Recommendations for the
next DSpace Architecture

Written by the DSpace architecture review group
John Mark Ockerbloom, chair
January 24, 2007

Introduction

Since its initial public release in 2002, DSpace has become a widely used and trusted
digital content repository system, with nearly 200 DSpace sites registered on the DSpace
wiki by the end of 2006, and many more unregistered sites. Designed to work "out of the
box" for basic repository needs while still being customizable, and to manage and
preserve content over long time periods, the system has been put to a wide variety of
uses, and has been entrusted with important intellectual content produced by many
institutions. As DSpace's adoption spreads, it needs to evolve to better support the
diversity of applications and repositories that are built using it, and to more effectively
preserve content managed by the software.

While a certain amount of evolution can take place simply by patches, contributions, and
reimplementation of specific components, it is also necessary to periodically review the
basic architecture of the whole system to ensure that it continues to meet the needs of its
clients as their own uses and best practices evolve. Recorded discussion of "DSpace 2.0"
began in 2004, with proposals by Robert Tansley and others. More recently, in 2006 a
group of thirteen DSpace committers, technical experts, and other interested parties, was
convened to review the DSpace architecture as a whole and make recommendations for
the architecture of the next major release. This is the report of the group.

Procedure and scope of the review

The Architecture Review Group was organized in the summer of 2006. Its members held
discussions online, and to a large extent, in public forums such as the DSpace-devel
mailing list and the DSpace wiki. Initial work of the group included drafting a set of
design issues and working principles for DSpace development. We wrote and conducted
a survey of the DSpace maintainer and developer community. We then met face to face
for a week in late October in Cambridge, Massachusetts, to agree on our basic
recommendations for the next DSpace architecture, and to plan next steps. These next
steps would include organizing two subgroups to assess and recommend open source
frameworks and workflow systems. In some cases, we prepared straw-man proposals or
specifications for consideration by the group. In the course of our discussions, we came
up with a set of recommendations for the next generation of DSpace that represent the
consensus of the group on a set of issues ranging from data model revisions to event
system changes. We made our recommendations with the expectation that a new
architecture based on them could be implemented within 18 to 24 months with a small

2

team, and that the basic architecture could have a useful lifespan at least as long as that of
the current, original DSpace architecture (which will have lasted about 7 years by the
time we expect DSpace 2 to come out.)

We have not produced detailed specifications for most of the recommendations we give.
Given the composition and the time constraints of the group, it seemed best to spend our
efforts on forging a consensus about general directions and structures for DSpace 2 that
would best serve and be supported by the larger DSpace community. In a few cases, we
have put forward more specific proposals that may be useful for DSpace implementers to
follow, but that we did not as a group consider to be requirements of the new architecture.

Some of the architectural elements needed in the next generation of DSpace have been
actively developed in the larger open source community, in particular implementation
frameworks and workflow managers. We formed subgroups to study open source efforts
in these areas, to survey ongoing work in these areas, review the advantages and
disadvantages of particular systems in these areas, and recommend systems that could be
adopted for DSpace 2.

Our expectation is that a small core group of implementers would produce detailed
specifications and implementation of the core and standard distribution of DSpace 2,
based on the recommendations of this group. A follow-on architecture oversight
committee would review and check the detailed designs and specifications produced by
the implementers, using these recommendations as a basic roadmap.

We have also made a few recommendations for releases of DSpace 1. While these
recommendations are not strictly within the scope of this group's assignment, we hope
that they will help the DSpace community prepare for and transition to the new
architecture more smoothly.

Manifesto

As one of our first activities, we ratified a set of principles that any new DSpace
architecture should uphold. These are as follows:

1. DSpace is primarily open source software for building digital repositories.

DSpace is intended to be free and open source software for digital repositories that
enables services for access, provision, stewardship and re-use of digital assets with a
focus on educational and research materials; in short, to fulfill the mission of the DSpace
Federation.

2. DSpace will be usable based purely on free and open source software.

Although setups including custom and/or proprietary features and technologies will be
possible, it will always be possible to deploy DSpace using only free and open source
software.

3

3. DSpace will have a decoupled, stable, and application-neutral core.

DSpace will always have a "core" system that supports a variety of higher-level
applications, whose full scope is not bounded unnecessarily. It will define stable APIs to
enable diverse and innovative applications and functionality built on this core, without
need to modify the source code of the core.

Exactly what constitutes the "core" was the subject of much discussion in the group. In
this document, we intend the "core" to mean the central modules (mostly in the business
logic layer), and the data model for the information they manage, on which DSpace
applications and extensions depend. By this definition, the "core" does not by itself
constitute a full DSpace installation. A full installation is instead provided by the
"standard distribution", which consists of the core plus applications and extensions that
are part of official DSpace releases and support out-of-the-box functionality. The
standard distribution is the subject of the next manifesto statement.

4. While usable for a variety of applications, DSpace will retain useful "out-of-the-
box" functionality for common use cases.

DSpace cannot support all the variable and emerging definitions and innovations in the
repository space in a single interface application. DSpace will provide out-of-the-box
functionality for a common set of use cases (e.g. an open access preprints application, a
general content archive) that can be installed with minimum possible effort. It will also
provide modular support for the easy construction of new applications.

5. DSpace will employ and support existing, open standards where possible and
practical.

Open and established standards (when available) will be employed to support applicable
DSpace functions, including interoperability of various kinds with other systems, and the
migration of data into and out of other systems. DSpace architecture and implementation
will attempt to take advantage of external development wherever possible. It will also,
however, consider the maturity of particular standards before implementing them.

6. DSpace releases should be minimally disruptive.

The architecture should reinforce good behavior in making changes, customizations, and
improvements to future releases of the system, so that upgrades are minimally disruptive
for current adopters.

7. DSpace will support an exit strategy for content.

It will be possible to export all data necessary for the future re-use and stewardship of
content held in a DSpace repository, in open, well-documented formats, for enabling
migration into other systems and/or backup.

4

8. DSpace will continue to evolve.

There are many unsolved problems associated with stewardship of digital materials,
which will require research and experimentation (including some failures) to solve. In
addition to providing a robust, stable and functional system, DSpace will enable
innovation and experimentation, and will be designed with the knowledge that future
development and re-architecting will inevitably be necessary.

Survey

We also prepared a survey of DSpace maintainers, in the form of a questionnaire that was
made available online for about a week, and advertised on several DSpace mailing lists.
The questionnaire drew 116 responses. Though the responding population was self-
selected, it was still usefully large (particularly in comparison to the number of registered
DSpace sites) and we expect that the sample included many of the most involved
participants in the DSpace community. The survey included both multiple choice
questions and opportunities for user comment.

Full summary results of the survey, including anonymized comments, can be found on
the DSpace Wiki at

http://wiki.dspace.org/index.php/PreReviewSurvey

Although the survey was open for a relatively short period of time, and its open nature
meant that some organizations may have submitted more than one result affecting the
weighting, some interesting results can be seen.

While the majority of the DSpace users surveyed use it as a university "institutional
repository", there are significantly many other uses of DSpace, including uses by
government organizations, corporations and museums. Only around half the respondents
describe their use as "production", and at least 1/3 of respondents intend to store non-
textual content (e.g. image, audio, video). Most users have some kind of custom Dublin
Core metadata, with a much smaller number having XML or RDF metadata stored in
DSpace. Surprisingly, nearly a quarter of respondents have said they found it necessary
to modify the database schema in some way.

Most users stay somewhat up to date with DSpace (with the vast majority using 1.3.x or
1.4), the main stumbling block being merging local customizations with new versions.
Around half of respondents have made modifications they describe as 'significant' (as
opposed to minor cosmetic changes and configuration). In general the documentation is
regarded as adequate but needs to be updated faster, and the version that particular
documentation describes needs to be clearly labeled.

5

Use of third-party "add-ons" remains very low. Only 60% use the CNRI Handle system
and are happy with it. The most demanded new features are modularity, more easily
customizable user interface, support for complex objects and versioning.

While installation causes few problems, documentation and ease of upgrading and
customization need work. More encouraging, the current data model is useful for most
people (70% say "good" or "very good"), and the community seems to feel positively
about collaboration/communication tools and their ability to get involved
(only a couple of respondents rating "poor" or "very poor" on either count).

Recommendations

GENERAL CONCERNS

Before we discuss specific recommendations, we generally address issues of scalability
and interoperability, two issues that cut across the architecture and that are of widespread
concern in the DSpace community.

Scalability

Concerns about the scalability of DSpace tend to fall into three general areas. The first is
capacity, or how well DSpace repositories can handle large quantities of data. The
second is ingest rate, or more generally, throughput: how fast DSpace can ingest (or
export) content from (or to) elsewhere. The third is concurrency, or, how well DSpace
performs under heavy simultaneous accesses to the repository.

Maintainers of large-scale, heavily used DSpace repositories have reported issues,
particularly related to performance, in some aspects of DSpace at large scale. While the
implementation of some of DSpace's components and database tables may need to be
revised to perform satisfactorily under heavy load or high usage, we do not believe that
the scaling issues we have encountered represent fundamental problems of the
architecture. Still, it is useful to set benchmarks about what scales we should expect a
second-generation DSpace architecture to handle, and what scales might be better served
by other systems. We therefore make the following general recommendations:

Recommendation: DSpace's design and implementation should accommodate at
least 10 million items (assuming adequate underlying storage capacity).
Recommendation: DSpace should not impose any limit of its own on the size of
content files (though the underlying storage, or third-party software used in the
standard DSpace distribution, might).
Recommendation: DSpace should not require more than one second (not including
transfer time and any requested content processing or filtering) per item to ingest
items in a 10 million item repository.

6

Recommendation: DSpace should be able to handle 10 concurrent updating users,
and 100 concurrent reading users, given adequate bandwidth and reasonable CPU and
memory capacity.
Recommendation: DSpace's design should continue to accommodate load-balanced
clusters of servers managing a single repository. (Some larger DSpace sites now use
that implementation strategy.)

We hope that some of the specific architectural changes we recommend below, such as
the event system, will further aid in DSpace's scalability.

Interoperability

As with scalability, interoperability can mean different things to different people. One
important sense is data interoperability, allowing data to be shared between DSpace and
other systems, and migrated between them when appropriate. Another is service
interoperability, in which DSpace services can be requested and performed on behalf of
external systems, whether other repositories or applications build on top of DSpace. A
related, but more intimate form of interoperability important to many DSpace adopters
and customizers, is being able to modify the functionality of DSpace itself through
connections to well-defined APIs, preferably without having to modify the "core"
DSpace modules. We therefore make the following general recommendations:

Recommendation: DSpace should have a published concrete data model (for both
content and metadata) that can be fully imported and exported.
Recommendation: DSpace should have a published, documented, and stable core
interface capable of supporting applications that can exploit the full range of DSpace
data.
Recommendation: DSpace should have a standard distribution that includes
applications for widely used protocols relevant to repository interoperation.

Having addressed basic architectural principles, we turn to specific architectural issues.

INFORMATION MODEL

As noted in the manifesto and by our community, DSpace is fundamentally focused on
the data it manages, both content and metadata. Any general review of the architecture,
then, must carefully consider the data model necessary to support the range of uses
required by the DSpace community. In particular, the repositories of community
members are using a wider range of metadata (and for a variety of uses), are relying more
heavily on persistent identifiers, are often concerned with versioning issues, and may
need more complex and flexible repository organization. Any revised data model that
better addresses these needs, however, must also support a smooth transition from
DSpace's existing data model.

7

Item structure

Recommendation: DSpace's Item model should be revised to clarify the roles, and
improve the documentation and metadata, of components of an item, as described
below.

In the new abstract data model we recommend, Items can contain multiple Manifestations
(similar to the notion of Manifestation in the FRBR model), and each Manifestation can
contain multiple Content files. Items, Manifestations, and Content files all have their
own persistent identifiers, and can all have their own metadata records (possibly multiple
metadata records).

Manifestations replace Bundles from the DSpace 1.x model, and represent FRBR
manifestations (unlike Bundles in DSpace 1.x, which could contain metadata such as
licensing information).

Content Files replace Bitstreams from the DSpace 1.x model. The renaming is partly for
clarity (the term “bitstream” is specifically used to mean something different in other
quarters, e.g. in PREMIS), and partly because Bitstreams in 1.x could also be metadata
(e.g. licensing, METS manifests). In the new model, Content Files are just content, that
is, the constituents of Manifestations.

Metadata records are not constrained to follow a built-in scheme, and are not constrained
to be flat. Note that the abstract model does not speak to how metadata is stored – i.e.
whether it is an XML file or a node/property graph (e.g. JSR-170 or RDF). For example,
metadata records for multiple entities in this abstract model may be stored in a single

8

XML file such as a METS file. In this case, the METS file is a serialization of the
abstract data model, and does not exist within the abstract data model.

These adjustments to the Item and sub-Item model allow more precise addressing and
handling of DSpace content, and more flexible metadata more clearly applied to
particular parts of an item. Some DSpace 1.x special purpose Bundles, such as licenses,
would become metadata; others would become Manifestations.

Identifiers

Recommendation: The DSpace architecture should accommodate persistent
identifiers not based on Handles.
Recommendation: The recommendation above notwithstanding, Handles should
remain the default persistent identifier standard in the DSpace standard distribution.

DSpace has used CNRI's Handles as the basis of its identifier scheme since its initial
release, and the Handle system remains robust, flexible, and low in overhead.
Nonetheless, for various reasons, whether technical concerns or strategic priorities, some
DSpace installations may prefer to use different identifier schemes. We therefore
recommend that DSpace continue to use content identifiers based on Handles by default,
but be designed to allow other identifier schemes to be implemented at minimal cost.
DSpace's architecture should therefore not depend fundamentally on the Handle system,
although identifier schemes that can be abstractly modeled as the triple (scheme,
namespace, scoped-label), which describes both Handles and a number of other
persistent identifier schemes, may still be the type preferred by DSpace.

We also propose that these persistent identifiers should be used for Communities,
Collections, any other “containers” and Items. Within Items, it is proposed that each sub-
entity has an ID hierarchically related to the Item ID. For example, if the ID of an Item is
hdl:123.456/4, the identifiers of objects within might be:

info:dspace/site/123.456/item/123.456/4/metadata1 (Item-level metadata record)
info:dspace/site/123.456/item/123.456/4/manifestation1 (Manifestation)
info:dspace/site/123.456/item/123.456/4/manifestation1/metadata1 (Manifestation metadata record)
info:dspace/site/123.456/item/123.456/4/manifestation1/contentfile1 (Content File)
info:dspace/site/123.456/item/123.456/4/manifestation1/contentfile2 (Content File)
info:dspace/site/123.456/item/123.456/4/manifestation1/contentfile2/metadata1 (Content File
metadata)
info:dspace/site/123.456/item/123.456/4/manifestation2 (Alternative manifestation)

Note these IDs are for illustrative purposes and not a specific recommendation for a
precise ID scheme.

This identifier scheme facilitates the versioning model described later in this report.
Also, the hierarchical nature of the identifiers enables “fall back” if a particular Content
File or Manifestation is no longer available for some reason. Since the Item ID is in the
identifier, it will be trivial in such cases to determine the originating Item and retrieve
alternative Manifestations.

9

While applications can store arbitrary metadata with Items, Manifestations and Content
Files, there will be a standard metadata set that DSpace will require for each – for
example for size, format and checksum of Content Files, or Dublin Core title for Items.
In some cases, this metadata might be automatically derived from supplied metadata,
rather than having to be provided explicitly.

Recommendation: EPeople should have persistent URIs

As DSpace repositories grow in size and depth of coverage and audience, the need to
unambiguously identify people in metadata and permissions is increasingly important.
Email addresses can be short lived, and personal names on their own can be ambiguous.
We recommend therefore giving persistent identifiers in the form of URIs to EPeople.
Such URIs do not necessarily have to be resolvable, but the URI form supports resolution
if desired, and also promotes compatibility with RDF-based data stores. The group as a
whole did not prescribe a particular URI schema to use, but info: or Handle schemes
could be possibilities.

The architecture review group discussed the desirability of global authority control for
named persons and groups in institutional repository systems. Such systems are beyond
the scope of DSpace to define on its own, and have historically been challenging to
coordinate. If a global name identifier scheme later becomes widespread, though, we
hope that the URI-based identifiers for EPeople could easily include or adapt to it.

Versioning

Recommendation: DSpace's data model should include native support for item
versions.

We heard requests from a number of users for versioning support, as is offered in some
other repository systems. Versioning, in which multiple revisions of items are stored in a
repository, will become increasingly important as DSpace repositories grow older and
content is migrated to new formats and technologies. Versioning in our model covers
linear revisions, not alternative representations. Hence, video, audio and transcribed-text
"versions" of a particular lecture, say, could be deposited as different Manifestations
within an Item, or different Items related to one another, but would not be considered two
Versions of the same Item.

Versions can be used to support not only migrations, but also corrections and technical
modifications of essentially equivalent semantic content. In some systems, versions are
also used for semantically different content, such as pre-refereed and published versions
of a paper. While the system we recommend would not technically prevent such versions
from being created, we recommend against using versions for this type of content
management, but instead to create a new item for this type of version and provide
relationship links between the items. Among other things, following this practice would
make it safer to consistently use identifiers to cite a particular expression of intellectual

10

content without tying it down to a specific technological instantiation of that content. In
order to make this practice realistic, DSpace applications should give robust support to
item relationship metadata and make it easier to create, view, and follow.

We further recommend that DSpace include identifiers for specific versions of items, and
for manifestations and content files within those versions. Identifiers without a version
designation should refer to the latest version of an item. Each version would have its
own metadata (which would usually be very similar from version to version).

For versions of a particular Item (for example, a correction or format migration), we
recommend a simple, linear approach. A Version of an Item is a “snapshot” of the Item
at a particular point in time, including the state of the metadata, and all Manifestations
and Content Files. One version of the Item is the most recent.

An Item may be changed, such as by changing metadata, adding new Manifestations, and
changing Content File. When these changes are complete a new Version is created. This
new Version becomes the most recent revision of the Item, although previous revisions
may be retained. We expect that previous Versions and their data would indeed be
retained over time in most cases, but that individual DSpace repositories could decide on
alternative policies to retain or purge old Versions.

Each Version gets a “revision identifier”. This could be as simple as an incremental
sequence number. A particular Version of an Item, Manifestation, Content File or
metadata record at any level will then have a unique identifier.

Our earlier identifier proposal can be easily extended to handle Versions. For example,
consider the case where item 123.456/4 is created and has two Content Files, as shown
in the “Identifiers” section above. The most current revision of the second Content File
will always be:

info:dspace/site/123.456/item/123.456/4/manifestation1/contentfile2

The first Version of that content file will always have the identifier:
info:dspace/site/123.456/item/123.456/4/r1/manifestation1/contentfile2

Note the r1 path component of the identifier. This identifier will always point to the
same exact Version of the Content File, even if that Content File is changed in later
Versions.

Now suppose that the Content File has been changed, perhaps along with some metadata
changes, and a new revision of the Item has been created.

info:dspace/site/123.456/item/123.456/4/manifestation1/contentfile2 will
now point to the updated Version's corresponding Content File.

info:dspace/site/123.456/item/123.456/4/r1/manifestation1/contentfile2

will continue to point to the original version Content File.

11

info:dspace/site/123.456/item/123.456/4/r2/manifestation1/contentfile2

will always now point to this new revision of the file (notice the r2), even if the Content
File is again changed in later Versions.

In other words, accessing

info:dspace/site/123.456/item/123.456/4/XXX/YYY

will always identify the latest revision of a particular Item or constituent Manifestation,
Content File or Metadata Record within.

info:dspace/site/123.456/item/123.456/4/rX/XXX/YYY

will always identify a specific revision of a particular Item or constituent Manifestation,
Content File or Metadata Record within.

Of course, components within an Item may be added or deleted between Versions, so it
will be very possible for e.g.

info:dspace/site/123.456/item/123.456/4/rX/manifestation3

to exist but

info:dspace/site/123.456/item/123.456/4/manifestation3

to be non-existent, and vice versa.

Item aggregation

Recommendation: DSpace's should generalize its aggregation model to better exploit
commonalities between Communities and Collections.

The group noted that Communities and Collections are very similar. They have slightly
different metadata in the current implementation, and currently Collections can only
contain Items, while Communities cannot contain Items. In many ways, however, both
Collections and Communities can be modeled by a more general Container concept. A
fully general Container could potentially include both Containers and Items, as is
possible in some other repositories (and by analogy in filesystems). However, we did
not observe significant demand for this functionality from the present-day DSpace
community, and were not sure whether removing the constraints on current DSpace
container concepts would break existing applications in ways that would be difficult to
address.

We therefore have not recommended replacing Collections and Communities with a
single Container concept at this time. However, it would still be useful for the DSpace
implementation to introduce a virtual Container interface that captures as much as can be

12

reasonably generalized from the Collection and Community concepts. If a merger of the
concepts seems called for in the future DSpace core, or in customized DSpace
installations, this construct would ease the transition. It may also be useful to support
Collections transforming into Communities or vice versa, or to a less constrained
Container class if that becomes desirable in the future.

Concrete data model

The abstract data model described above must be represented in DSpace storage
somehow. We refer to this representation as the ‘concrete data model’. In DSpace 1.x,
this representation was a bespoke relational database schema. Parts that did not
comfortably fit into the schema were stored in specially named Bundles and Bitstreams.
Our new model, in contrast, has a cleaner separation of concerns.

Recommendation: DSpace's “concrete” data model should be considered separately
from the abstract data model described above.

Thus, metadata may be stored in a file (say, XML) somewhere, but this does not make it
a Content File; it is still a Metadata Record in the abstract data model.

This approach also allows more flexibility in creating storage systems for DSpace. APIs
can operate on the abstract data model, while masking the specific storage mechanisms
and concrete data model.

Metadata plays an increasingly important role in the revised information architecture
described above for DSpace, and it appears in more places in the information model. It
therefore becomes increasingly important, especially as preservation activities become
more significant in an ongoing DSpace implementation, to manage the metadata in a
robust, sustainable manner.

Recommendation: Metadata should be maintained in the persistent store, and
extractable in serializable form.

It is insufficient to have metadata maintained in transient database tables with predefined
table fields for specified metadata attributes, if we want to make it easy to preserve
metadata and to support a wide range of metadata schemas.

The system will need to maintain default metadata schemas for Items, Manifestations,
and Content files, but should allow other metadata to be added, and should attempt to
accommodate changes in the default schemas, as DSpace 1.4 allows today.

Efficient table-based representation of metadata is important for efficiency of some
DSpace functions. Therefore, the system may need to maintain relational views of the
canonical metadata that can be efficiently and intelligibly accessed by the user interface
and other applications. These views do not necessarily need to include all metadata
maintained by the system, however. For instance, search and browse functionality may

13

only need certain descriptive metadata fields to function. Views that act as crosswalks
for parts of DSpace's metadata to basic Dublin Core may be sufficient for functions like
basic OAI export.

We do not prescribe a particular strategy for maintaining views of metadata in the general
case. However, we propose that the Event mechanism described later in this report may
prove a useful mechanism to maintain consistency between DSpace metadata and
content, and its views. It may also be useful to have such mechanisms capable of
generating specialized views for DSpace extensions and applications.

In physical storage, we propose that a METS profile be developed that allows the DSpace
abstract data model and default schemas to be serialized in a standard way.

EXTENSION FRAMEWORK

Recommendation: DSpace should adopt a general framework for adding extensions
to its core.
Recommendation: DSpace should adopt an existing open source extension
framework, rather than build a new one from scratch.

The DSpace community has been developing an increasing variety of extensions,
customizations, and applications of the basic DSpace platform. This extended
development effort of the community has done much to make DSpace widely useful and
relevant for its users, and to help it interoperate with other systems. To promote further
development and extension as the DSpace core evolves, integrating new extensions to the
DSpace core needs to be easier. Implementation frameworks have been developed inside
and outside the open source community to ease such integration. Some of these
frameworks have been developed ad-hoc for a particular need, such as the simple
framework now used to integrate Manakin with DSpace. Others, however, are more
general purpose. While general-purpose frameworks may involve more complexity than
a simple, made-to-order integration framework, they also can make it easier to integrate a
variety of extensions to DSpace that are not limited to current applications, but that can
be adapted as new needs and ideas arise.

We therefore recommend that DSpace 2 adopt a general-purpose open source extension
framework. Adopting a pre-existing framework, furthermore, avoids unnecessary effort
in developing a new framework, and also gives DSpace 2 developers ideas and possibly
working examples of how the DSpace core can interoperate with other modules and
applications using the framework.

A sub-group of the architecture review group has been commissioned to review existing
open source extension frameworks, and recommend a system for DSpace 2 to adopt, and
to describe benefits and drawback of this system and other potentially promising
candidate extension frameworks. Before this sub-group began its work, the architectural

14

review group as a whole came up with a set of requirements and desired features for the
framework. These include the following:

• Fine-grained support for dependencies between various versions of core and
extension system components, to ensure compatibility between components

• Support for separate update of different components
• Compatibility with the DSpace open source license
• Access to DSpace persistent storage, including extension-specific persistent

storage
• Compatibility with distributed environments, such as are used in some DSpace

systems
• Java support
• Ability to reconfigure a system without recompilation. (Run-time

reconfiguration of a running system would also be useful if supported, but this is
not a requirement)

• Support of relevant and applicable open standards
• Ease of use and configuration. (It should be easy to integrate with Manakin, for

instance.)
• It would also be desirable if the framework is already being used or considered in

related library, archiving, or higher education applications

Converting DSpace core modules to a framework structure would require re-engineering
of their interfaces. The form of the resulting interfaces work might be quite different
depending on the framework choice, since different frameworks use different integration
paradigms, such as Inversion of Control (IOC) patterns, or registration systems.
Evaluation of frameworks should carefully consider the conversion costs of moving to a
particular implementation framework, and who would bear those costs.

At present, the subgroup is not ready to make a definite recommendation, but a Wiki
discussion of possible candidate frameworks, currently focusing primarily on OSGi and
Spring as possible candidates, is underway at

 http://wiki.dspace.org/index.php/ArchReviewFrameworks

We hope that further discussion and analysis, with the involvement of the wider DSpace
developer community, will lead to a specific recommendation of framework choice.

While DSpace lacks a general extension framework, simple add-on mechanisms can be
used to integrate third-party components. Scott Phillips at Texas A&M has recently
released a simple add-on mechanism for integrating Manakin and other packages with
DSpace at build time. His prototype system can be downloaded from

http://di.tamu.edu/~scott/

USER INTERFACE

15

Recommendation: DSpace 2 should shift away from the current JSP-based user
interface in favor of systems that allow more decoupled composition of business logic
and user interface, such as Manakin.

Manakin is an alternative user interface to the current JSP user interface. It was
developed at Texas A&M University, and is based on XML translated into web pages via
stylesheet transformations. Although Manakin is not yet part of the standard interface,
and requires a special mechanism to make it interface with standard DSpace code, it has
attracted enough interest to be used in several DSpace sites outside Texas A&M. It can
be used to create a wider variety of user interfaces than the JSP model supports, and
interfaces that can be much more loosely coupled with the underlying DSpace business
logic. Manakin is not yet part of the official DSpace release, but there is significant
interest in integrating it, or a similar XML-based user interface, with DSpace.

Integrating Manakin into DSpace requires the use of an extension framework. While we
have recommended adopting a general-purpose extension framework above, it will not be
ready for use immediately. However, Manakin is already showing increasing use and
interest, even with its current ad-hoc add-on mechanism. We recommend that developers
of future DSpace 1 releases include a lightweight add-on mechanism capable of
integrating Manakin into DSpace 1, and provide out of the box support for Manakin in
future DSpace releases, until DSpace 2 is ready. Then DSpace 2 could integrate Manakin
via its general purpose extension framework.

EVENT MECHANISM

Recommendation: DSpace 2 should include an event notification system as a
central component to its core.

Event notification systems have long been used to provide loose integration of
components in complex systems. System components register as listeners to respond to
different kinds of events raised by the core, which include reports of changes to content
and metadata as well as other significant phenomena. When an event occurs, applicable
listeners are activated and provided a copy of the event data. (This pattern is sometimes
known as a publish-subscribe model.) For example, DSpace's history mechanism would
listen for significant events involving changes to data, and record the event details in
history logs. Event mechanisms could also be used to keep database views of repository
metadata consistent, and to coordinate activities between the data store and the user
interface, or other applications and third party components.

Events can be implemented in a variety of ways, and some component integration
frameworks and workflow systems include their own event model. Work is underway at
MIT, led by Larry Stone and others, on a prototype event model for DSpace. We
recommend that development of this model continue, so that developers get experience
with the types of events, and publish-subscribe patterns, that will be most useful in the
DSpace context. We then recommend, to avoid unnecessary complexity and duplication

16

of function, that the implementation of the event mechanism be transitioned to the
framework provided in DSpace 2, if that framework provides a suitable event
implementation.

WORKFLOW

Recommendation: DSpace should adopt a generic workflow system to manage all
phases of the information lifecycle.
Recommendation: DSpace should adopt an existing open source workflow
framework.
Recommendation: DSpace should support user interfaces to make it easy to adapt
the generic workflow interface for specific workflow needs.

The current version of DSpace includes a workflow manager for ingest. While this
manager has worked reasonably well for bringing content into DSpace, large-scale
repositories will need to be able to accommodate a wider variety of workflows, not just in
the ingest phase of information management, but also for later phases, including
migration, versioning, and export.

Just as there has been much work in the open source community on general-purpose
extension integration frameworks, so too has there been notable work on general-purpose
workflow managers. For reasons similar to those given in our extension framework
recommendations, we recommend that DSpace adopt an existing third-party system to
manage its workflows.

Workflow requirements are likely to vary significantly between different DSpace
repositories, and may change over time at any given location. Therefore, it is particularly
important that DSpace repository maintainers be able to configure, review, and
reconfigure the workflows for their repositories without needing to dive deeply into the
internal interfaces (or worse yet, implementation code) of DSpace. DSpace's standard
distribution, then, should support user interfaces for viewing and configuration of a
repository's workflow. This user interface does not need to be provided by the workflow
manager itself, but if the manager provides suitably documented APIs and/or XML
views, then Manakin or other applications could provide appropriate user interfaces on
top of them.

As we did with extension frameworks, the architecture review group drew up a set of
requirements and desired features for a workflow manager, and then formed a sub-group
to review and recommend possible candidate systems. Our requirements and desirable
features include the following:

• Ability to support the full information curation lifecycle (from ingest through
deaccession)

• Compatibility with the DSpace open source license.
• Support for changing workflows at run time

17

• Ability to specify different workflows for different communities and collections
• Compatibility with distributed environments
• Ability to receive and react to DSpace Events
• Compatibility with DSpace's new modularity/extension framework
• A well-defined API that will support user interfaces based on it. (Depending on

the circumstances, users might use the workflow manager's own user interface if
provided, or a user interface designed specially for DSpace built on top of the
workflow manager's API.)

The subgroup conducted a survey of candidate workflow engines, and prepared a
descriptive table available online at

 http://wiki.dspace.org/index.php/ArchReviewWorkflowEngines

Although the subgroup did not produce a single endorsement, it did find that Open WFE,
and OpenSymphony's OSWorkflow, and JBoss jBPM appeared to be the three most
promising systems, meriting further evaluation. These Java-based products have a strong
API for back-end use, instead of depending on an all-in-one vertical interface (though
there are also graphical front ends for tools like jBPM), and they show promising
flexibility and expressiveness. They also have open source licenses compatible with
DSpace. They are therefore likely to be easier than other workflow systems to integrate
into DSpace to support its workflow needs. Implementation experimentation with the
systems' interfaces is needed to determine which system better meets the needs of
DSpace 2. It is also worth considering which workflow systems are in use, or planning
to be used, by related systems.

CORE INTERFACE REVIEW AND DOCUMENTATION

Recommendation: DSpace 2 should include a fully documented core API as part of
its initial release.

Our manifesto calls for a stable core on which a variety of applications can be built. For
this core to meet our requirements, it is essential that full documentation be provided for
the entire core interface. This includes, among other things, public object APIs, the
events raised by the core (and the conditions that raise them) and the data model. While
such documentation is usually seen as desirable in systems as complex as DSpace, in
practice it is often left as an afterthought. For DSpace to satisfy the terms of our
manifesto, however, documentation must be an integral deliverable of the DSpace 2
releases, for this documentation provides the working contract between the DSpace core
and its applications and extensions. Having this contract explicit and well-understood
promotes the stability of the DSpace core, ensures that the interfaces are carefully
reviewed (with the opportunity to find undesirable application dependencies or design
limitations) and makes it easier for third parties to develop a wide variety of decoupled
applications, in the knowledge that they can rely on the promises of the DSpace core
documentation.

18

In order to fulfill this recommendation, implementation plans for DSpace 2 need to
include sufficient time and resources to produce and maintain this documentation. We do
not expect that these interfaces will be designed from scratch. Some interfaces, and
implementations, will be carried over from DSpace 1, with minimal changes. Others
will need to be revised or reworked to fit the new data model and implementation
architecture of DSpace 2. The choice of integration framework and workflow manager
may affect the exact composition of the interface as well, and may provide APIs that can
be used "out of the box" for certain aspects of the system.

The road to DSpace 2

Designing robust software architecture requires a careful balancing of desirability and
feasibility. What one might imagine as the perfect system may not be attainable; indeed,
for any system that has the community the size of DSpace, there is no one system that
would be perfect for all of its users. At the same time, limiting our ambitions to
incremental and easily-implemented architectural changes would mean missing important
opportunities to improve the stability, capabilities, and extensibility of the system, and to
keep it useful and relevant as repository needs and applications evolve. We have
attempted to chart a sensible middle course. Our proposed architecture includes some
significant changes from DSpace 1, particularly to the data model and the integration
framework, but changes that are realistic to implement within a two-year time period
given appropriate support, and a feasible migration path from DSpace 1 to DSpace 2.

Developing DSpace 2 will require significant resources and community support. While
this group has outlined the general architectural directions and redesigns that we
recommend for DSpace 2, we have not written detailed interface specifications. These
would need to be written by a core developer group. While the DSpace 2 architecture
does not require a complete reimplementation, many existing modules may need to be
rewritten or refitted for the new architecture, and some other modules (such as search and
browse) may need to be rewritten not for architectural reasons, but to satisfy scalability
and performance requirements of DSpace 2 users. Along with detailed specification and
reimplementation work, interface documentation also is an essential task, as we have
described above.

The work of specifying, implementing, and documenting the core of DSpace 2, based on
our recommendations and the existing code and support base for DSpace 1, could
probably be completed by three suitably-skilled developers over a two-year time period.
This projection assumes that they would not be working in a vacuum, but would be
adopting third party extension frameworks and workflow managers, publishing detailed
specifications of data structures and APIs, and reworking or reimplementing core
modules as needed to fit the new architecture. They would not be responsible for the
entire DSpace standard distribution, but would supply detailed enough specifications and
documentation such that other members of the DSpace community could implement
important non-core components (such as the Manakin user interface), write extensions
that fit the integration framework, or provide new implementations of particular modules
under the core APIs to meet community needs (such as better performance for user

19

discovery, or distributed storage mechanisms). These contributions from the wider
DSpace community will be crucial to the success of DSpace 2.

While detailed designs are often best made by small groups rather than large committees,
larger groups can play a useful role in vetting designs. To ensure that DSpace 2 design
and development addresses the needs of the DSpace community and can be completed in
a timely fashion, we recommend that a follow-on architecture oversight committee,
consisting of selected DSpace committers and other appropriate experts, should review
and check the detailed designs and specifications produced by the core DSpace 2
implementers based on the recommendations of this group.

While DSpace 2 is under development, much work can be done in DSpace 1 to prepare
for the new architecture. We have recommended, for instance, that Manakin become part
of the standard distribution, and be integrated with DSpace 1 using a simple extension
mechanism, until the more general extension mechanism for DSpace 2 is ready. We have
also mentioned that a prototype event mechanism has been implemented for DSpace, and
could be tested and exercised prior to the rollout of DSpace 2. There is also already work
in progress, and partly realized in DSpace 1.4, to support a wider variety of metadata
schemes, which we hope will pave the way for fully generalizable metadata schemes, and
mappings from them to simplified views, in the DSpace 2 architecture.

If resources are scarce and ambitions need to be cut short, a smaller core group could
implement a subset of our recommendations. If implementers need to choose among
recommendations, support for a more robust data model, along the lines we have
advocated above, may well be the most important thing to establish and get right in the
new architecture. Applications come and go, and get update or replaced by new ones;
the needs and uses of repositories will evolve over time. But the information stored in a
repository may need to last decades or even centuries, far longer than any given computer
technology will last. It will be much easier to maintain and preserve this information if it
can fully expressed in a well-supported data model than if it can only be partially
supported in a limited data model, and imperfectly transitioned to the next system. Our
manifesto goals of supporting a wide variety of applications, to support an exit strategy
for content, and to allow DSpace to continue to evolve, require the best data model we
can manage.

As we have indicated above, the success of DSpace 2 will depend heavily on the support
of the community as well as the central core developers and their immediate oversight.
DSpace 2 will need in-kind support, such as development of new modules and extensions
for the standard distribution, as well as financial support to fund the core developers. The
means for garnering the necessary support for DSpace 2 is not in the scope of this group,
but we are hopeful that the demonstrated success of DSpace as the basis of hundreds of
repositories in hundreds of institutions will make it possible for appropriate support to be
found from the DSpace community and other interested funders.

As the knowledge base of the world's institutions of research and learning become
increasingly digitally based, it is more important than ever that these institutions are able

20

to take control of their own digital destiny, without being forced to rely on the whims and
fortunes of commercial software developers and outside publishers. They need to be able
to manage their digital endowments without large expenditures for local repository
development and customization, while still being able to extend, adapt, and build on their
repositories to meet the most pressing needs of their local communities. DSpace, and the
community that has grown up around it, has already done much to meet the repository
needs of these institutions. We hope that investment in the second major version of
DSpace, along the lines we have described in this document, will deliver similarly large
returns in years to come.

Participants in the architectural review group

The architectural review group had the following members:

John Mark Ockerbloom, University of Pennsylvania, chair
Tim DiLauro, Johns Hopkins
Mark Diggory, MIT
John Erickson, Hewlett Packard
Jim Downing, Cambridge University
Henry Jerez, CNRI
Richard Jones, Imperial College
Gabriela Mircea, University of Toronto
Scott Phillips, Texas A&M University
Richard Rodgers, MIT
Mackenzie Smith, MIT
Robert Tansley, Google
Graham Triggs, Biomed Central

Larry Stone also participated in part of the meeting at MIT, presenting some of his
DSpace event system work and taking part in follow-up discussion. Numerous other
people gave useful suggestions in the online discussions, and in they survey we
conducted. We are thankful for the contributions and support of the DSpace community.

