
A Guidebook for Programs Serving Cultural and Scientific Heritage

10	 It Takes a Village: Open Source Software Sustainability

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

COMMUNITY
ENGAGEMENT

TECHNOLOGYGOVERNANCE

RESOURCES

P
H

A
S

E 3

PHASE 1

P
H

A
S

E
 2

GETTING STARTED

GR
O

W
IN

G
S

T
A

B
L

E
 B

U
T
 N

O
T STATIC

Sustainability Wheel

Phase I: Establishing
Working with original
engineers, project staff, or
organization. Go to page 11.

Phase II: Stabilizing
Functional but limited
in one or more aspects.
Go to page 12.

Phase III: Evolving
Strong management
structures; not necessarily
formal governance.
Go to page 13.

Phase I: Laying the
Groundwork
In design, pre-release or
early beta testing phase;
small set of early adopters.
Go to page 20.

Phase II: Expanding
and Integrating
Have more than one public
release. Go to page 21.

Phase III: Preparing
for Change
In production, well-adopted,
supported. Technology stack
stable. May be looking to next
generation. Go to page 22.

Phase I: Creating
Consistency
Funded by single
organization, grant-funded
or volunteer operated.
Go to page 26.

Phase II: Diversification
Distributed resourcing;
meeting expenses, small
number of revenue streams.
Go to page 27.

Phase III: Stable,
but not Static
Diverse staff support and
income streams; focused on
long-range strategy.
Go to page 28.

Phase I: Getting Beyond
Initial Stakeholders
Focused on primary
stakeholders; lack of
engagement with broader
communities. Go to page 32.

Phase II: Establishing
CE Infrastructure
Determining how to facilitate
engagement that works for
community. Go to page 33.

Phase III: Evolving CE
Established infrastructure to
enable engagement.
Go to page 35.

GOVERNANCE TECHNOLOGY RESOURCES
COMMUNITY
ENGAGEMENT

20	 It Takes a Village: Open Source Software Sustainability

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

l �Continue to
gather data
A community needs
analysis does not end once
a program moves from design
to development. Reach out directly to users. Continue
to have conversations with the end users of applications.
While it may be too early to ask for input on software
improvements or new features and functionality,
community members can provide valuable feedback
and engagement by assisting with testing
and documentation.

l �Communicate process and progress
with stakeholders
Museums generally do not let people view exhibits until
they are completely installed. Archivists prefer to process
a collection before making it available to researchers.
Until fairly recently, scholarly data was not made
available until the journal article was published. Contrary
to these approaches, the best OSS development is open
and transparent. Program staff need to counteract the
tendencies of subject matter experts to play things close
to the vest during design and development. By using an
open code repository, public bug tracking and regular
releases, OSS developers can inspire confidence and
engage stakeholders. This kind of transparency may be
somewhat counter to the culture of wanting to present
completely finished work, but early openness with
stakeholders and other investors will provide a good
foundation for opening up the program to the wider
community in future phases.

Facet: Technology

Phase I: Laying the Groundwork

Core Goal
Turn an idea for an application into a viable product that
serves the needs of the community.

Characteristics
Programs in Phase I are in the design, pre-release, or
early beta-testing phase of software development. These
programs may have no users yet, or a core of committed
early adopters or beta testers. New development may also
be based on newer or unproven technology, require staff
training, and may exhibit considerable technical or
resource challenges.

Concerns and Roadblocks
Programs in the early phases often suffer from the need
to be all things to all people – in order to get funding, they
often promise the moon to sponsors. This leads programs
in the early phases to be very susceptible to scope creep.
A focus on trying to cram in every last feature may leave
critical elements behind, such as testing, documentation,
and community building. It can also be difficult to accurately
assess the amount of time new development will take in a
new environment.

Moving Forward: Objectives
l �Understand core community needs

OSS for cultural and scientific heritage is often developed
in response to a specific institutional or community
need. Programs should evolve from working within a
single organization to gathering input and feedback
from the broader community. This feedback can help
define community-based functional needs, influence
the architectural approach, and help refine core needs
that require coordinated development. Programs can
gain community confidence by articulating a broader
vision; regularly releasing small, solid updates that allow
funders and stakeholders to visualize the bigger picture;
communicating how feedback influences development;
and by focusing on overall quality.

Phase I: Laying the Groundwork

Early openness with stakeholders and other
investors will provide a good foundation.

It Takes a Village: Open Source Software Sustainability	 21

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

Facet: Technology

Phase II: Expanding and Integrating

Core Goal
Refine the application: identify and strengthen areas that
are working well, identify gaps that can be filled with new
features and functionality, and phase out elements that are
not working.

Characteristics
Phase II programs have had more than one public release,
developed a formal release process that includes a
numbering system or other method for identifying major
and maintenance releases, and the application is being
used in production outside of the founding organizations.
Programs are generally adding new features and
functionality to their software packages and exploring
integrations with related applications.

Concerns and Roadblocks
Once an application has been developed and released, it
can sometimes be difficult to evaluate it with an objective
point of view. Making the decision to deprecate or redesign
features that took several sprints to design and develop can
be complicated, especially if the features were championed
by important project stakeholders. Programs that do not
engage with their communities at this phase run the risk of
developing features the community does not care about,
and can be seen as only serving their own interests.

Moving Forward: Objectives
l �Engage the community

Community involvement in the requirements gathering
and functional specification process is paramount. Sitting
down, either physically or virtually, with the people who
use the application frequently can provide development
teams with a clearer view of what is working, what
features and functionality are most heavily used, and
how the application may be improved or expanded to
better fit user needs.

Phase II: Expanding and Integrating

Long-lived OSS programs spend as much
effort on the process of producing code as
they do on producing code itself.

l �Grow thoughtfully
Once an application
has been released
and a community of
users begins to grow, the
program team must learn to balance
community feedback and interest in exciting new
features with maintaining stable, up-to-date, and well-
documented software. Programs that can communicate
clearly about architecture and infrastructure can form
a common understanding with the community of the
importance of backend maintenance and support. It
is also important during this phase to cultivate the
community of developers and committers (with commit
rights) outside of the core organization and stakeholders.
Outside contributors add not only valuable code to the
application, but also new perspectives that keep the
program from becoming an echo chamber.

l �Consider integration over new development
We have communities and we are a community. There
are many organizations working to develop open source
solutions to address cultural and scientific heritage
problems, and it may be that one of the problems an
OSS program needs to solve has already been tackled by
other members of our community. Leveraging existing
open source solutions can not only add functionality,
but also open up a program to a new set of users,
developers, and stakeholders. Instead of using scarce
resources to develop new functionality which may or may
not be ancillary to the software’s core purpose, explore
if integrations with existing platforms with appropriate
functionality can serve this function. It may be possible
to increase the sustainability of the core product,
especially if these ancillary platforms have significant
user communities, development communities and strong
governance. This leveraging of other communities allows
the program to grow in functionality and potentially
serve new audiences without having to necessarily invest
a large amount of resources.

Invest in testing, documentation and training. Long-lived
OSS programs spend as much effort on the process of
producing code as they do on producing code itself.
Robust and efficient testing, documentation, and
training (both of developers and end users) are critical to
scalability and sustainability.

22	 It Takes a Village: Open Source Software Sustainability

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

Facet: Technology

Phase III: Preparing for Change

Core Goal
Determine how the core application’s technology stack and
functionality will serve the future needs of the community;
plan ahead for expansion, integration, re-architecture,
or retirement.

Characteristics
Phase III applications are in production, well-adopted,
and well-supported. Design and development of the
core technology stack is stable, with few changes to the
application’s architecture with each release. Programs
typically have a stable supply of developers and committers,
and a published and predictable release schedule. Program
staff in this phase are generally looking to the next
generation of the application. The existing application may
be nearing the end of its useful life due to changing market
circumstances or require a technology overhaul to bring the
code up to date with new technology or community needs.

Concerns and Roadblocks
Some community members may feel comfortable with
the current platform, it is stable and has been proven as
a production-ready application for some time. For others,
Phase III can feel like a return to the drawing board. New
communities and stakeholders or technology obsolescence
may require re-architecting or retiring elements of an
application. Program staff must balance the needs of
stakeholders invested in and comfortable with earlier
versions with the need for significant refresh and potential
expansion to new communities.

Moving Forward: Objectives
l �Reassess community needs

The demand for software re-architecture or retirement
must come from stated community requirements,
balanced with the community’s ability to support and
keep up with change. Program staff must ask themselves

Phase III: Preparing for Change

Sustainability is not synonymous
with perpetuity.

how re-architecture or
retirement will serve
the community. Are
there things users would
like to accomplish but can’t
with the current architecture? Are
things fine the way they are but underlying technology is
sunsetting and must be replaced? Is there an opportunity
to migrate current users to an OSS application built
on newer technology? Users of OSS for cultural and
scientific heritage rely on these applications to care for
information held in the public trust, and must be part
of any decision-making process that would affect their
ability to create, maintain, and preserve that information.

l �Plan for evolution
Once the need for change has been identified, the
community needs to review whether incremental
improvements to the OSS application are sufficient or
whether a complete refactoring and re-architecture
is required. If the core requirements that inspired the
original development of the application still exist, but
the language, libraries, or hardware platform used to
create the application are obsolete, it may make sense to
refactor or re-architect the application. It is sometimes
the case, however, that requirements have evolved,
and at the time of refresh, additional functionality or a
fundamental restructuring is needed. Thinking ahead
rather than waiting for crises allows program staff to get
buy-in from the community, secure necessary funds,
and develop transition and migration plans for
existing implementers.

l �Document an exit strategy
Sustainability is not synonymous with perpetuity. There
are cases where a program has been successful, but
served its purpose, and should be gracefully retired.
Programs that no longer meet the needs of their
communities or have been supplanted by alternatives
may need to develop plans to communicate the end-of-
life decision to the community and organize support or
migration services for remaining users.

It Takes a Village: Open Source Software Sustainability	 23

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

Resources and Tools

Technology Resources and Tools

l �Dombrowski, Quinn. “What Ever Happened to Project
Bamboo?” Literary and Linguistic Computing, Volume 29,
no. 3 (2014): 326–339.

l �Fogel, Karl. Producing Open Source Software: How to
Run a Successful Free Software Project. Beijing: O’Reilly,
2009. http://producingoss.com/.

l �Ries, Eric. The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically Successful
Businesses. New York: Currency, 2017.

l �Rosenberg, Scott. Dreaming in Code: Two Dozen
Programmers, Three Years, 4,732 Bugs, and One Quest
for Transcendent Software. New York: Three Rivers
Press, 2008.

Software documentation examples:
l �“Avalon Media System Documentation.:” Avalon Media

System. Accessed 1 February 2018.
http://www.avalonmediasystem.org/documentation.

l �“Koha For Developers.” Koha Community. Accessed
1 February 2018. https://koha-community.org/get-
involved/for-developers/.

l �“Samvera: Developers.” Samvera Community. Accessed
1 February 2018. https://wiki.duraspace.org/display/
samvera/Developers.

24	 It Takes a Village: Open Source Software Sustainability

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

Technology Case Studies

Fedora

By David Wilcox
http://fedorarepository.org/

The first public release of Fedora
(version 1.0) was made available
in 2003. Through a combination
of grant funding and community
contributions the software
matured over time; version 2.0 was
released in 2005 and 3.0 in 2008.
But like most software projects, a
considerable amount of technical
debt built up over time as a

distributed community continued to build on top of a now-
aging codebase, and by 2012 it was time to consider a major
project re-architecture. This initiative, dubbed Fedora Futures,
focused on five key priorities:

l �Improved performance, enhanced vertical and horizontal
scalability;

l �More flexible storage options;

l �Features to accommodate research data management;

l �Better capabilities for participating in the world of linked
open data; and

l �An improved platform for developers—one that is easier
to work with and which will attract a larger core of
developers.

These priorities represented
challenges based on the then-
current version of Fedora, but
the Fedora Futures initiative also
provided an opportunity to re-
think the Fedora software based
on lessons learned and emerging
technologies and standards. Early on, the development team
decided to focus on a robust REST-API built on top of an
existing open source software platform, thereby reducing the
amount of custom code the Fedora community would need

to maintain. The API would also be aligned with modern,
well-adopted web standards, such as the Linked Data
Platform, which would help Fedora move beyond the walls of
the library into the world of the web and linked data. These
decisions provided great opportunities for the Fedora project
and community, but there were also several challenges to
overcome.

The biggest challenge of a complete software re-architecture
is how to support the existing community of users.
Specifically, many institutions were already using Fedora
in production, often with client applications that were built
based on expectations of functionality that would change
in Fedora 4. A considerable amount of community energy
has been put into supporting migrations, including tooling,
documentation, metadata mapping, and training. However,
migrations are often an institutional resourcing problem
as they inevitably take considerable, dedicated effort.
Supporting migrations continues to be a high priority for the
Fedora community as we try to move everyone forward to
the latest version of the software.

Fedora 4 has now been in production for over three years,
and our focus has shifted toward stability. Ideally, Fedora
is a dependable piece of infrastructure that works well and
doesn’t change very often. To this end, we are committing to

a slower release cycle of only one major release per year, and
publishing a formal specification of the Fedora REST-API that
will provide additional stability for client applications.

“�The biggest challenge of a complete software re-architecture
is how to support the existing community of users. ”

Case Studies

Guidebook case studies provide first-hand accounts from forum participants about their

program’s work toward sustainability. Technology case studies are from the Fedora and

LOCKSS programs.

It Takes a Village: Open Source Software Sustainability	 25

Table of Contents Using the Guidebook Sustainability Wheel Governance Technology Resources Engagement Appendices

LOCKSS

By Nicholas Taylor
https://www.lockss.org/

For nearly two decades, the
Stanford University LOCKSS
(Lots of Copies Keep Stuff
Safe) Program has supported
community-based, distributed
digital preservation through its
eponymous software. Changes in
the larger technical environment
in the intervening time have lately
prompted a major re-architecture

effort, currently underway with substantial funding from
the Andrew W. Mellon Foundation, with the goal of
bidirectional integration of LOCKSS with the broader
ecosystem. This move will support the sustainability of
the LOCKSS Program by broadening the communities that
are sharing costs to maintain functionality upon which the
LOCKSS software depends.

The LOCKSS software was originally developed in the
nineties, at the inception of web archiving by memory
institutions. Like other web archiving applications of this era,
e.g., the archival crawler Heritrix and archived web content
replay engine Wayback Machine, the LOCKSS software
evolved into a complex, monolithic Java application.
Significant developments in web technologies in the ensuing

Technology Case Studies

Case Studies

two decades motivated technical evolution in web archiving.
Though the LOCKSS software confronts similar challenges
as the broader web archiving field, its architecture has
heretofore incentivized implementing independent solutions.

Recognizing otherwise missed opportunities for alignment
with extant community initiatives and the long-term
sustainability risk posed by a siloed software stack,
we are now modularizing the major functionalities of
the LOCKSS software into a set of interoperating web
services. This will novelly enable existing open source
software to be leveraged as part of a LOCKSS system,
reducing maintenance costs and simplifying adoption of
new technologies. Conversely, it will also allow for the
incorporation of individual LOCKSS software components –
e.g., the peer-to-peer data integrity and repair mechanism –
into non-LOCKSS systems, unlocking the potential for more

flexible integration and a broader impact.

These objectives underscore that the gains
to sustainability from the re-architecture
project have as much to do with community
strategy as with technical insight. We have
a strong sense of the need to find, align
with, and invest in the broadest possible

open source software communities focused on our shared
challenges if those challenges are to be addressed both
effectively and efficiently. We need to further build, engage,
and learn from open source software communities with a
stake in the unlocked functionality of the LOCKSS software
to maximize the good that it can provide for digital
preservation broadly.

“�The gains to sustainability from the re-architecture
have as much to do with community strategy as with
technical insight.”

Photo: Ben Chernicoff

