Supporting the Semantic Web
and Linked Data



Overview

* EXposing
— Dereferenceable http URIs for resources

— Relationships using dereferenceable http
URIs

* ... made possible by the new REST API

« Extending the scope of relationships in
the resource index



Current situation - identifiers

* |dentifiers used

— namespace:pid

— info:fedora/namespace:pid

- http://server:port/fedora/get/namespace:pid
— http://server:port/objects/namespace:pid

e |Ssues
— identifier scope
— canonical



Current situation - relationships

Single graph

Fedora objects (or datastreams) as
subjects

|dentifiers used are info:fedora/

No support for “arbitrary” RDF — eg
“lifting” of XML metadata

Specification of relationships are in
imperative code



Resource ldentifiers...

* Deprecate the “LITE” APIs (/get)
—HTTP 301: Moved permanently
— then remove In future release

 Define canonical dereferenceable URIs
— using the REST API URIs



Support http URIs in relationships

[6]

Relationship:

* <info:fedora/ns:pidl> <#isMemberOf> <info:fedora/ns:pid2>

Exposed as:

* <http://server/fedora/objects/ns:pidl> <#isMemberOf>

Query / results rewriting?
Retain info:fedora for local/internal use

- /risearch?type=tuplesé&query=. .. &scope=local|global



Support “arbitrary” RDF .

* |ssue
— create: myns:pid1 : <s1l> <pl> <ol>
— create: myns:pid2 : <s1> <pl> <ol>
— Rl contains: <s1> <pl> <ol>
— delete: myns:pid1

- <sl1l> <pl> <ol> deleted but myns:pid2 still
asserts it

« Solution
— Named graphs



Named Graphs.

<#some :pidl> : graph containing triples
asserted by object some:pid1

<#some :pid2> : graph containing triples
asserted by object some:pid2

<#some : pidn> : graph containing triples
asserted by object some:pidn

<#ri> : defined as a view containing the
above graphs

Queries run over <#ri>



Named Graphs .

* |f the same triple is asserted by two
different objects, it appears in two
graphs

* Query results contain one instance of
the triple

» some:pid1 deleted: triple still present in
graph created for some:pid2



Mulgara and graphs .

* Mulgara Models (graphs) can be
— A model containing triples
— Definition of a “view": union (or
iIntersection) of other graphs

* Other triple stores?



Issues .

Performance: Querying <#ri> involves querying a large number
of underlying graphs

— test
Graph names
“Pollution” of resource index with arbitrary triples

— Separate graphs for
« <#ri>: “core” triples
« <#riUser> : “user” triples
o <#riFull> : <#ri> UNION <#riUser>

Free text graph(s)

Triple Store support — MPTStore?
— disable “arbitrary” graphs if triple store does not support?

Hierarchy of graphs to use



Graph Hierarchy .

<#ri> - a view containing:

<#some:pid> - object graph for some:pid, a view containing:
<#some:pid/properties> - object properties triples
<#some:pid/datastreams> - a view containing:
<#some:pid/datastreams/rels-ext> - rels-ext triples
<#some:pid/datastreams/rels-int> - rels-int triples
<#some:pid/datastreams/dc> - DC triples
<#some:pid/datastreams/{rdf datastream}> - triples from rdf datastream
<#some:pid/datastreams/{dsid}/properties> - datastream properties
<#some:otherpid> - object graph for some:otherpid, a view containing:
<#some:otherpid/properties> - etc
<#some:otherpid/datastreams> - etc

Only object graphs necessary to support main requirement



Specifying triples for objects .

» Currently generated by code

— object and datastream properties, “default”
content model

— “conversion” of DC to triples
— RELS-EXT, RELS-INT



Declarative specification of triples

[4]

» Content model specifies which
datastreams to index

— RDF datastreams

— XSLT/GRDDL etc for XML (and other)
datastreams

— Object methods producing RDF

 XSLT for object and datastream
properties



Mechanism

System object methods for generating core
triples

User content model object methods for
generating user triples

eg expose through REST API

— /objects/some:pid/relationships
Update triple store using these methods

— Move out of core DOManager code, implement
using decorator?



REST API.

GET /objects/some:pid/relationships
— /objects/some:pid/datastream/DC/relationships?
— Content negotiation (Accept: application/rdf+xmil)
— URI parameter (?format=rdf)
Other verbs
— POST: set of triples to add
— DELETE: set of triples to delete
— PUT: modification, eg SPARQL Update
Generic methods
— update “core triples” (easy to identify source)
— update arbitrary (specified) datastream
— potential overlap between RELS-EXT and arbitrary datastream

Operate directly on objects (not on triple store)
SOAP API



Finally...

* Fedora generally sits behind an
application

» Resource identifers exposed by the
application may not be Fedora resource
URIs

« /library/display?é&resourcelID=some%$3Apid



