

Re-thinking Fedora's Storage
Layer..

● Main wiki page:
https://wiki.duraspace.org/x/syTS

– Documents
● OR '10 extended abstract
● These presentation slides
● Also contains original proposal and

presentations from March 2010 London
meeting

– Issues for Discussion
Aaron Birkland, Cornell University USA (birkland@cs.cornell.edu)
Asger Askov Blekinge, State & University Library Aarhus, Denmark

https://wiki.duraspace.org/x/syTS
mailto:birkland@cs.cornell.edu

About this presentation..

● Overview high-level storage concept and
motivation

● Identify potential applications,
assumptions, and risks

● Request for feedback and participation
– This is the most important outcome!

Motivation: Thought experiment

● What prevents Fedora from scaling
horizontally? (multiple servers form a
single 'repository')

● ... storing different kinds of data in different
storage location/devices through its own
API? (e.g. based on content model)

● ...preserving data in completely different
structures?

– On-disk zip archives containing foxml +
datastreams?

Quick motivating sketch:
Scalability using Apache HBase

RegionServer

RegionServer

RegionServer

RegionServerRegionServer

RegionServer

RegionServer

Fedora

Fedora

Fedora
HDFS?

S3?

DuraCloud?

MapReduce
tools

“infinite”
scalability

High latency

No (or expensive)
incremental updates

Atomic “compare and put”

Column
oriented

Billions of rows,
<100MB each

Cached
Reads &
Writes

The “problem”

● Forced to store objects as object (foxml)
blobs, and separate datastream blobs.

– Locking, indexing, manipulation logic
mostly intertwined.

● Pluggable storage impl would need to
introspect on blob content in order to do
something intelligent.

– For datastreams, it does not have much
contextual information to work with.

The “fix”

● Remove several hard assumptions within
Fedora

– One particular blob storage paradigm

– Locking strategies

– Indexing strategies

● Provide an explicit layer for plug-in, data-
oriented services

– Intelligent storage decisions

– Data-oriented messaging, policy, caching

Fedora architecture excerpt

LowLevelStorage

Management

DOManager

Operational logic
● APIs, presentation, mutation

Object-level accounting
● Versioning, auditing, indexing

Blob storage
● Datastreams, serialized objects

Field Search,
Resource idx

Blob storage plugins, e.g. Akubra

Modified architecture

HighLevelStorage

Management

DOManager

Operational logic
● APIs, presentation, mutation

Object-level accounting
● Versioning, auditing

Data and storage logic
● Serializing, indexing, messaging

Storage Plugins

Index, cache
plugins Physical storage

● Blob, cloud, database, etc

Interface comparison (abridged)

void
addObject(String,
InputStream);

void
addDatastream(String,
InputStream);

void
replaceDatastream(String,
InputStream);

InputStream
retrieveObject(String);

Result
add(DigitalObject);

Result
update(DigitalObject,
DigitalObject)

Result
remove(DigitalObject)

DigitalObject read(PID);

Interface Explanation

Result
add(DigitalObject);

Result
update(DigitalObject,
DigitalObject)

Result
remove(DigitalObject)

DigitalObject read(PID)

● DigitalObject –
Logical
representation of a
Fedora object
(similar to the one
that exists today)

● Result – could
contain handle to
asynchronous
storage workflows

Interface Explanation

Writable
Result
add(DigitalObject);

Result
update(DigitalObject,
DigitalObject)

Result
remove(DigitalObject)

Readable
DigitalObject read(PID)

● Could further divide
into 'readable' and
'writable' interfaces

● HighLevelStorage
plugins would
implement one.

● Index, JMS hook
could be Writable,
cache could be
Readable

Implications and risks

● How flexible is too flexible? Foxml and
Files can no longer be basic assumptions

– ... though it should still remain the
mainstream, default configuration

● Different technologies will have different
preservation characteristics.

● It would seem to encourage reasoning
about stored data outside of Fedora

● It will make Fedora even harder to describe

The way forward

● The decision to proceed in this direction
needs to be vetted and verified by the
community at large.

● Many design decisions still need to be
made (see wiki)

● Start small! Use new interfaces to
duplicate Fedora's current characteristics

– high-level storage will merely allow new
paradigms and methods. Creativity is left
as an exercise for the community.

The plan so far

● Special topics meetings (watch the mailing
list) to resolve key design decisions.

● Form a panel of interested individuals to
assure that progress and decisions are
made, and make the final recommendation
on whether to proceed with a specific
design.

● Have most key decisions made by the end
of the year. Final decision at the next
committers' summit?

If you are interested, or have
something to say

● Make your thoughts/interest known!
– Developers' mailing list

– Talk to a committer

– Comment on wiki page

– Attend a committer meeting, or a special
topic meeting

– Watch lists for relevant announcements

– Watch the wiki page (literally: sign in to
wiki, go to tools->watch in upper right.)

High-level storage: Resources

● Main wiki page:
https://wiki.duraspace.org/x/syTS

– Documents
● OR '10 extended abstract
● These presentation slides
● Also contains original proposal and

presentations from March 2010 London
meeting

– Issues for Discussion

https://wiki.duraspace.org/x/syTS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

