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About this presentation..

● Overview high-level storage concept and 
motivation

● Identify potential applications, 
assumptions, and risks

● Request for feedback and participation
– This is the most important outcome!



  

Motivation: Thought experiment

● What prevents Fedora from scaling 
horizontally?  (multiple servers form a 
single 'repository')

● ... storing different kinds of data in different 
storage location/devices through its own 
API?  (e.g. based on content model)

● ...preserving data in completely different 
structures?

– On-disk zip archives containing foxml + 
datastreams?



  

Quick motivating sketch: 
Scalability using Apache HBase
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The “problem”

● Forced to store objects as object (foxml) 
blobs, and separate datastream blobs.

– Locking, indexing, manipulation logic 
mostly intertwined.

● Pluggable storage impl would need to 
introspect on blob content in order to do 
something intelligent.  

– For datastreams, it does not have much 
contextual information to work with.  



  

The “fix”

● Remove several hard assumptions within 
Fedora

– One particular blob storage paradigm

– Locking strategies

– Indexing strategies

● Provide an explicit layer for plug-in, data-
oriented services

– Intelligent storage decisions

– Data-oriented messaging, policy, caching



  

Fedora architecture excerpt

LowLevelStorage

Management

DOManager

Operational logic
● APIs, presentation, mutation

Object-level accounting
● Versioning, auditing, indexing

Blob storage
● Datastreams, serialized objects

Field Search,
Resource idx

Blob storage plugins, e.g. Akubra



  

Modified architecture

HighLevelStorage

Management

DOManager

Operational logic
● APIs, presentation, mutation

Object-level accounting
● Versioning, auditing

Data and storage logic
● Serializing, indexing, messaging

Storage Plugins

Index, cache 
plugins Physical storage

● Blob, cloud, database, etc



  

Interface comparison (abridged)

void          
addObject(String, 
InputStream);

void   
addDatastream(String, 
InputStream);

void 
replaceDatastream(String, 
InputStream);

InputStream 
retrieveObject(String);

Result     
add(DigitalObject);

Result 
update(DigitalObject, 
DigitalObject)

Result 
remove(DigitalObject)

DigitalObject read(PID);



  

Interface Explanation

Result     
add(DigitalObject);

Result 
update(DigitalObject, 
DigitalObject)

Result 
remove(DigitalObject)

DigitalObject read(PID)

● DigitalObject – 
Logical 
representation of a 
Fedora object 
(similar to the one 
that exists today)

● Result – could 
contain handle to 
asynchronous 
storage workflows



  

Interface Explanation

Writable
Result     
add(DigitalObject);

Result 
update(DigitalObject, 
DigitalObject)

Result 
remove(DigitalObject)

Readable
DigitalObject read(PID)

● Could further divide 
into 'readable' and 
'writable' interfaces

● HighLevelStorage 
plugins would 
implement one.

● Index, JMS hook 
could be Writable, 
cache could be 
Readable



  

Implications and risks

● How flexible is too flexible?  Foxml and 
Files can no longer be basic assumptions

– ... though it should still remain the 
mainstream, default configuration

● Different technologies will have different 
preservation characteristics.

● It would seem to encourage reasoning 
about stored data outside of Fedora

● It will make Fedora even harder to describe



  

The way forward

● The decision to proceed in this direction 
needs to be vetted and verified by the 
community at large.

● Many design decisions still need to be 
made (see wiki)

● Start small!  Use new interfaces to 
duplicate Fedora's current characteristics

– high-level storage will merely allow new 
paradigms and methods.  Creativity is left 
as an exercise for the community.



  

The plan so far

● Special topics meetings (watch the mailing 
list) to resolve key design decisions.

● Form a panel of interested individuals to 
assure that progress and decisions are 
made, and make the final recommendation 
on whether to proceed with a specific 
design.

● Have most key decisions made by the end 
of the year.  Final decision at the next 
committers' summit?



  

If you are interested, or have 
something to say

● Make your thoughts/interest known!
– Developers' mailing list

– Talk to a committer

– Comment on wiki page

– Attend a committer meeting, or a special 
topic meeting

– Watch lists for relevant announcements

– Watch the wiki page (literally: sign in to 
wiki, go to tools->watch in upper right.)



  

High-level storage: Resources

● Main wiki page: 
https://wiki.duraspace.org/x/syTS

– Documents 
● OR '10 extended abstract
● These presentation slides
● Also contains original proposal and 

presentations from March 2010 London 
meeting

– Issues for Discussion

https://wiki.duraspace.org/x/syTS
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