
Sizing Fedora on Open Archive Architectures
A Sun ISV Engineering Test Report

Eric R. Reid, ISV Engineering
Sun Microsystems, Inc.

9 June 2009

Introduction

Fedora Commons' Fedora open source repository software has been identified as the central
software component of Sun's new Open Archive architectures. Intended to provide open,
enterprise-ready data preservation and archival systems, this combined hardware/software
stack promises stellar performance and reliability for long-term data archival.

N.B.: The open source archival software from Fedora Commons is not to be confused with
Fedora the Linux variant.

This document details initial sizing studies done to date on configurations based on the following
components:

• Fedora 3.x atop the included Tomcat 5.5
• MySQL 5.x
• OpenSolaris 2008.11, including ZFS
• Sun x64-based servers
• Sun Storage JBOD disk arrays

The stated goals of this project:
1. Characterize Fedora data ingest performance across configurations
2. Characterize Fedora data access performance access configurations
3. Determine performance differences introduced by different technologies and topologies
4. Determine areas for future performance work

The author recognizes the significant contributions of Dan Davis of Fedora Commons, without
whom this work could not have been possible.

Testing Approach

As this is the first round of testing on a brand-new archival architecture, we started simply, with
a few basic ground rules:

• Start with a small number of configurations, per Sun Storage Marketing
• Test with configurations 'out of the box', i.e. little or no tuning, to establish baselines
• Publish results by end of May, 2009, even if issues or follow-up testing remain

Fedora Commons' choice of test harness was The Grinder (http://grinder.sourceforge.net), an
open source, Java-based load generation platform. Running from a separate load server, the
Grinder allowed for customized test scripts to run against the configuration in a variety of ways.

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

http://grinder.sourceforge.net/

Three areas were to be tested for this effort:
1. Fedora data and object ingest performance
2. Fedora data access performance
3. Fedora object-only burn-in testing (“how many objects can Fedora ingest at one time?”)

Test Architectures

Two configurations (variations of the generic architecture) were tested.

Applications and User Data

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

A. Generic Open Archive Architecture

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Hardware Software

Load Generator Sun Fire x4450
4 x 2.93GHz dual-core Xeon
16GB Memory

The Grinder
Solaris 10 update 5

App/Storage Server Sun Fire x4150
2 x 3.16GHz quad-core Xeon
32GB Memory
2 x 32GB SSD devices

Fedora 3.1
Tomcat 5.5 app server
JDK/JRE 1.6
OpenSolaris 2008.11

Storage Sun Storage J4200 JBOD Array
12 x 250GB 7200RPM SATA II drives
SAS interface

1 striped ZFS pool over 12 disks

Database Server Sun Fire x4150
2 x 3.16GHz quad-core Xeon
32GB Memory

MySQL 5.0
Opensolaris 2008.11

Networking Trunked 3 x Gigabit Ethernet

Applications and User Data

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Database Server

Load Generator

B. Test Configuration 'Direct­Attach Storage'

App & Storage Server

(direct­attach disk)

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Hardware Software

Load Generator Sun Fire x4450
4 x 2.93GHz dual-core Xeon
16GB Memory

The Grinder
Solaris 10 u5

App Server Sun Fire x4150
2 x 3.16GHz quad-core Xeon
32GB Memory

Fedora 3.1
Tomcat 5.5 app server
JDK/JRE 1.6
OpenSolaris 2008.11

Storage Server Sun Fire x4150
2 x 2.66GHz quad-core Xeon
32GB Memory
2 x 32GB SSD devices

OpenSolaris 2008.11

Storage Sun Storage J4200 JBOD Array
12 x 250GB 7200RPM SATA II drives
SAS interface

1 striped ZFS pool over 12 disks
NFS v4 mounts of ZFS pools

Database Server Sun Fire x4150
2 x 2.66GHz quad-core Xeon
32GB Memory

MySQL 5.0
Opensolaris 2008.11

Networking Trunked 3 x Gigabit Ethernet

Applications and User Data

Open Storage

Archive Data

 Storage Preservation Abstraction
 Physical Storage Components

Fedora Com m ons
 Metadata Management
 Relationship connections
 Security
 Search Engine
 Policy Driven

M ySQL
 Digital Asset Policies
 Metadata

Database Server

Load Generator

C. Test Configuration 'Network Server'

Storage Server

(direct­attach disk)

App Server

The Fedora Workloads

While Fedora Commons' offering provides myriad functions, the two most important operations
(in the eyes of archivists) are Ingest (creation of archived objects from external sources) and
Access (retrieval of archived objects in read-only mode). Ingest performance is important for
both initial and ongoing data object ingest into an archive; in addition, most archives are not just
write-only, and the ability to access archived data is quite important.

This testing effort employed ingest and access tests against the two configurations detailed
above:

• Ingest objects (API-A)

• Access objects via SOAP (API-A)

• Access objects via HTTP (API-M-LITE)

In addition, several 'standard' object sizes were used for each test:

• 'Object-only': Zero-sized or 'placeholder' objects

• 'Small': 20KB objects (exemplifying a PDF file)

• 'Medium': 15MB object (exemplifying a YouTube video)

• 'Large': 700MB object (exemplifying a CD image)

Test Runs

A single test run consists of (for now) 8 Grinder processes with 2 threads each on the Load
Generator, making Ingest or Access requests against the App Server. The runs are at least 300
seconds each. CPU, memory and disk usage was logged on each server for each run.

In addition, a separate, one-time Ingest test against the 'Local' configuration was made with
Object-only, and allowed to run until the system failed. We denote this as the 'burn-in' test.

It should be noted that the numbers obtained via this and future Open Archive testing represent
the first testing of its kind against Fedora, and as such cannot really be compared to anything
competitive at present (anecdotally, we're told by Fedora Commons that the Ingest rates
obtained far exceed anything they've seen to date).

Test 1: Object-
only Ingest

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst (MB/s)

Average Data
Throughput (MB/s)

Local Storage
Config

117 137 18% 3.5 N/A

Storage Server
Config

54 295 12% 1 N/A

Test 1:

• Object-only means no data, therefore no data throughput

• 2:1 Ratio between untuned direct-attach storage and network storage
(expected)

Test 2: Small
Ingest

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst (MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

117 137 19% 11 2.4

Storage Server
Config

44 363 10% 4.5 0.9

Test 3: Medium
Ingest

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

6.71 2380 19% 145 100.7

Storage Server
Config

5.75 2770 30% 264 86.3

Test 4: Large
Ingest

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

0.16 97300 19% 149 109.9

Storage Server
Config

0.14 105000 29% 291 100.8

Tests 2-3:

• Data throughput for small objects indicates significant overhead (see data
throughput)

• 3:1 ratio between direct-attach storage and network storage for small
objects was expected

• Better ratio between direct-attach storage and network storage for medium
objects

• A single GigE interface was saturated using network storage for medium
objects

Test 4:

• Close to parity in terms of direct-attach vs network attach storage
performance

• Storage server case uses more App Server CPUs to support NFS client

• A single GigE interface was saturated using network storage for large
objects

Test 5: Small API-
M-LITE Access

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

406 7 12% Negligible 8.3

Storage Server
Config

400 8 13% Negligible 8.2

Test 6: Small
API-A Access

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

370 34 16% Negligible 7.6

Storage Server
Config

370 34 17% Negligible 7.6

Test 7: Medium
API-M-LITE Access

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

5.4 2930 10% 27 81

Storage Server
Config

5.5 2880 9% 7 82.5

Test 8: Medium
API-A Access

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

0.51 25100 18% 8 7.7

Storage Server
Config

0.53 24700 7% 8 8

Tests 5-8:

• Very close to parity between performance for direct storage and network
storage

• ZFS and NFS/ZFS seem to cache reads very well, disks are barely
accessed for Small cases

Test 9: Large API-
M-LITE Access

Average
TPS

Average response
time (ms)

Max App Server
CPU Usage

Max I/O
Burst
(MB/s)

Average Data
Throughput
(MB/s)

Local Storage
Config

0.11 134000 10% 70 77

Storage Server
Config

0.11 132000 20% 54 77

Test 10: Object-only
ingest burn-in

Average
TPS

Average response
time (ms)

Consecutive
Transactions w/o Errors

Elapsed Wall Time

Local Storage Config 41 24 25M 150h 32m

Test 9:

• Direct-attach performance identical to network attach

• Storage server case uses more App Server CPUs to support NFS client

Test 10:

• Something in the Fedora and/or Tomcat servers 'falls over'

• Further testing and tuning of load will definitely improve this number

Observations

This first round of Fedora/Open Archive testing yielded some important untuned baseline
numbers, and an indication of potential areas for improvement.

Firstly, the DB Server never had its resources significantly taxed. As such, an 'all-in-one'
solution (perhaps based on the Sun Fire x4540 storage server) should be considered in the
future.

At no time were any of the servers' CPU or I/O resources strained. A single GigE link would
become the bottleneck for certain of these tests, but we have shown that the inherent trunking
capabilities within OpenSolaris can tie together unused ports (the x4100 series has 4 standard)
to avoid this; alternatively, there exist 10GigE options for these servers.

The Fedora/App Server did see some significant memory usage in even this 32GB
configuration. The nature of this J2EE-based application needs to be observed in future tests,
with an eye towards garbage collection strategies optimal to Fedora and Tomcat.

ZFS proved to be performant, although when combined with NFS showed room for tuning and
improvement.

Lastly, Fedora itself needs to be examined for the way in which it accesses files/filesystems
from Java. When the results obtained were compared with simplistic Java test programs which
wrote 16 files of various sizes simultaneously (on the 'Local' configuration), significant
performance discrepancies were uncovered:

Comparision: Fedora Ingest
vs Java test program

Small Objects
(files/sec)

Medium Objects
(files/sec)

Large Objects
(files/sec)

Fedora 117 6.71 0.16

Java 11264 27.6 0.8

Ratio 9627.0% 411.3% 500.0%

Whither Hybrid Storage Pools?

This initial round of testing was conducted with storage configured as single RAID 0 ZFS Pools,
without ZILs or Caches. Any other RAID levels used will likely impact the performance numbers.

The astute reader will note that Solid-State Storage Devices (SSDs) were listed in the hardware
manifest, and indeed some testing using SSDs in ZFS Hybrid Storage Pools was conducted. In
theory, Hybrid Storage Pools can use SSDs as very fast cache devices to potentially improve
I/O performance.

In the case of these tests (see Appendix B for details), however, we did not see performance
improvements, and in fact Hybrid Storage Pools over NFS showed a significant performance
degradation. With the self-imposed timeframe of this testing, it was decided to get these results
out, and HSPs will be more fully explored and tuned-for in the subsequent rounds of Fedora
sizing testing to follow this effort.

Open Issues and Next Steps

• TODO: Test on single Sun Fire x45xx storage server

• TODO: Create Fedora 'update' tests

• TODO: Test 'Extra Large' (4.7GB, DVD size) objects

• TODO: Debug and re-run 'Burn-in' test

• TODO: Test with Sun 7000-series Unified Storage Server

• TODO: Upgrade configuration to OpenSolaris 2009.06 and Fedora 3.2

• TODO: Collapse MySQL DB server onto the App Server, and rerun the tests

• TODO: Test a SAM filesystem including copies to tape. Modify Fedora to take into
account access of data from 'disk' when it is on tape and needs to be staged to
disk

• ISSUE: Understand why ZFS Hybrid Storage Pools do not improve (or, in the case
of NFS, degrade) overall performance

• ISSUE: Review how Fedora is writing data objects to filesystem, understand
discrepancy with 'Simple Java Test Program'

Appendix A – The 'Simple Java File Writing Program'

a) collect.sh

#! /bin/bash

trap cleanup 1 2 15

cleanup()
{
 echo ***CLEANUP****
 for i in $PIDS; do kill -9 $i; done

 endtime=$(date +'%s')
 numfiles=`ls $dir/* | wc -l`
 numbytes=`wc -c $dir/* | awk '{tot=tot+$1} END {print tot}'`
 elapsedtime=`expr $endtime - $starttime`
 fps=`echo "scale=2; $numfiles / $elapsedtime" | bc`
 bps=`expr $numbytes \/ $elapsedtime`

 echo ">>>>>"$numfiles files written in $elapsedtime seconds
 echo ">>>>>""("$fps" files/sec; "$bps" bytes/sec)"
 echo

 rm -rf $dir
}

runit ()
{
echo ***RUNIT****
 runit_dir=$1
 runit_thisrun=$2
 runit_threads=$3
 runit_filesize=$4
 runit_runfor=$5

 mkdir $runit_thisrun > /dev/null 2>&1

 starttime=$(date +'%s')

 java exercise $runit_dir $runit_threads $runit_filesize 1 &
 PIDS=$!

 for command in "zpool iostat 10" "iostat -xnc 10" "prstat 10"; do
 shortname=`echo $command|awk '{print $1}'`
 eval "$command" > $runit_thisrun/$shortname 2>&1 & PIDS="$PIDS
$!"
 done

 sleep $runit_runfor
}

threads=16

for storage in ./teststorage; do
 dir=$storage/javatestfiles
 mkdir $dir
 for size in `expr 20 * 1024` `expr 15 * 1024 * 1024` `expr 700 *
1024 * 1 024`; do
 name=$threads"_"$size"_"`echo $storage | sed -e "s*./**g"`
 echo ">>>>"$name
 runit $dir $name $threads $size 10
 cleanup
 done
done

pkill -9 prstat
pkill -9 zpool
pkill -9 iostat

b) exercise.java

import java.io.*;

public class exercise {

 //Display a message, preceded by the name of the current thread
 static void threadMessage(String message) {
 String threadName = Thread.currentThread().getName();
 System.out.format("%s: %s%n", threadName, message);
 }

 static int fileSize = 15 * 1024;
 static int patience = 1000 * 60 * 60;
 static int numThreads = 16;
 static Thread[] threads = new Thread[65536];
 static String dir;
 static byte buffer [];

 private static StringBuffer randomFilename(int n) {
 StringBuffer sb = new StringBuffer();
 int c = 'A';
 int r1 = 0;

 for (int i = 0; i < n; i++) {
 r1 = (int) (Math.random() * 3);
 switch (r1) {
 case 0:
 c = '0' + (int) (Math.random() * 10);
 break;
 case 1:
 c = 'a' + (int) (Math.random() * 26);

 break;
 case 2:
 c = 'A' + (int) (Math.random() * 26);
 break;
 }
 sb.append((char) c);
 }
 return sb;
 }

 private static class FileBlast implements Runnable {
 public void run() {
 String filename = "";
 try {
 for (;;) {
 filename = dir + "/" + "javatest" +
randomFilename(15);
 FileOutputStream stream = new
FileOutputStream(filename);

 threadMessage("Open File " + filename);
 stream.write(buffer);
 stream.flush();
 stream.close();
 Thread.sleep(patience);
 }
 } catch (FileNotFoundException e) {
 threadMessage("File Not Found! " + filename);
 } catch (IOException e) {
 threadMessage("IO Error!");
 } catch (InterruptedException e) {
 threadMessage("I wasn't done!");
 }
 }
 }

 public static void main(String args[]) throws InterruptedException
{

 if (args.length > 0) {
 dir = args[0];

 try {
 numThreads = Integer.parseInt(args[1]);
 } catch (NumberFormatException e) {
 System.err.println("Argument must be an integer.");
 System.exit(1);
 }

 try {
 fileSize = Integer.parseInt(args[2]);

 buffer = new byte[fileSize];
 } catch (NumberFormatException e) {
 System.err.println("Argument must be an integer.");
 System.exit(1);
 }

 try {
 patience = Integer.parseInt(args[3]) * 1000;
 } catch (NumberFormatException e) {
 System.err.println("Argument must be an integer.");
 System.exit(1);
 }
 }
 else {
 System.err.println("Arguments: <dir> <# threads>
<filesize> <wait>");
 System.exit(1);
 }

 for (int i = 0; i < numThreads; i++) {
 long startTime = System.currentTimeMillis();
 threads[i] = new Thread(new FileBlast());
 threads[i].start();
 }

 threadMessage("Sleeping");
 }
}

Appendix B – ZFS Pool Setup

a) Simple Striped ZPool

zpool create storagepool c6t64d0 c6t65d0 c6t66d0 c6t67d0 c6t68d0
c6t69d0 c6t70d0 c6t71d0 c6t72d0 c6t73d0 c6t74d0 c6t75d0

b) Hybrid Storage Pool

zpool create hybridpool c7t59d0 c7t60d0 c7t61d0 c7t62d0 c7t63d0
c7t64d0 c7t65d0 c7t66d0 c7t67d0 c7t68d0 c7t69d0 c7t70d0 logs c3t4d0
c3t5d0

	Sizing Fedora on Open Archive Architectures
	A Sun ISV Engineering Test Report
	Introduction
	Testing Approach
	Test Architectures
	The Fedora Workloads
	Test Runs
	Observations
	Whither Hybrid Storage Pools?
	Open Issues and Next Steps
	Appendix A – The 'Simple Java File Writing Program'
	Appendix B – ZFS Pool Setup

