Fedora Content Modeling
at DTU Library

Fedora-EU Meeting, Oxford, 8 December 2009

Gert Schmeltz Pedersen
DTU Library, Technical Information Center
@ DTU, Technical University of Denmark

Funded partly by the CAMMP Project
Three Use Cases

- CRIS/CERIF (for research databases)
 Current Research Information Systems
 Common European Research Information Format

- Chemical Portal
 Substance registration, risk assessment, ...

- CAMMP (backend for service provision)
 Converged Advanced Mobile Media Platforms

Approach for “sound” CMA/ECM (like 3NF for RDB)?
Three Use Cases
background and specs

- **CRIS/CERIF**
 Entity-Relationship Model -> RelDB design, XML serialization
 ~ 100,000 entities

- **Chemical Portal**
 Law, best practices, … -> XML Schemas
 ~ 10,000 chemicals

- **CAMMP**
 TV-Anytime Broadcast and On-line Services -> XML Schemas
 ~ 1,000,000 – 10,000,000 objects

In common: XML orientation
2. The CERIF 2008 – 1.0 Model

To reduce the complexity of the model towards a better understanding, this introduction and specification document follows a conceptual structure. The conceptual structure allows for different perspectives and views when talking about parts of the model and enables the emphasis to particular model features. This conceptual structure is only a virtual structure and as such not inherent in the physical data model, and therefore, also not incorporated in the physical SQL scripts. It is used for organizing this document and considered an instrument that supports the comprehension of the CERIF model.

![Diagram of CERIF Entities and Their Relationships]

Figure 1: Some CERIF Entities and their Relationships

2.1 CERIF Conceptual Structure
7.1.2 CERIF Result XML Entities (XML Examples)

```xml
<cfResPubId>publication-joerg-et-al</cfResPubId>
<cfResPubId>2008</cfResPubId>
<cfStartPage>107</cfStartPage>
<cfEndPage>123</cfEndPage>
```

```xml
<cfResPubId>publication-veca-c-storey</cfResPubId>
<cfURI>http://www.springerlink.com/content/j23263j02m850617/</cfURI>
<cfResPubId>1993</cfResPubId>
```
Chemical portal

Technical University of Denmark
Copenhagen

Safety Data Sheet, Searching

You can search for the CAS no. or name. E.g. enter 931-88-4 or 4-ethylmorpholin or N-ethylmorpholin or part of the text: chlor? (>100 documents) or ?chlor? (>300 documents).

Searching in local notes is via free text search. Searching for a string of words separated by spaces will return entries containing all the words. The more words you give, the more precise the search will be.

(Please note that ? and * replace a word or string of words in the searches).

- chem.name+synonyms [] Search
- CAS number [] Search
- fulltext [] Search
- Update date is between [] and [] (incl.)
 (use dd-mm-yyyy)

More help | Advanced search
CAMMP backend for service provision

CAMMP: Next generations mobile – when the media converge

CAMMP is a prestigious mobile media platform funded by the Danish Advanced Technology Foundation (Højteknologifonden). The project will run for a 4-year period (starting in 2008) and includes the main research institutions and companies in Denmark dealing with converged mobile media platforms and services.

The convergence between the Internet, digital TV and radio, and 3G mobile technologies will lead to many new possibilities. CAMMP will investigate and uncover the potential in the new converged infrastructure, which will change the known media as radio and TV by combining them with user-generated content and interaction between content providers and users.

The research will define new business models and new value chains for next generation mobile services. The new platform has focus on technological innovation in the industry and on strengthening of research and education.

The Danish National Advanced Technology Foundation has granted the project 22 million kroner.

The platform will be organised in 7 Work packages. The research and technological development will be performed in five dedicated Work Packages (WPs) structured in a matrix organisation, depicted below. WP1-5 are the research and development (R&D) WPs, where WP2,3 and 5 will develop and evaluate new technical solutions while WP1 and 4 are shaping and modifying these solutions in a user centric process. The user requirements, the regulatory and standardization environment and the business logic are truly integrated in the technical development in an iterative process as it is further illustrated in the figure. Taking the point of departure in the user requirements related to a fairly general conception of the very broad potentials of the involved technologies, the ‘shaping and modifying’ WPs are throughout the project involved in directing the technical solutions towards the relevant service area. Furthermore, all the partners are assigned key roles in this according to their competencies.
Figure 7: TV-Anytime documents with "TVA Main" as a root element
6.5 **TV-Anytime** document structure

The following example illustrates the structure of a valid **TV-Anytime** document:

```xml
<TVAMain xmlns="urn:tva:metadata:2007"
   xmlns:mpeg7="urn:tva:mpeg7:schema:2005"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="urn:tva:metadata:2007 schemas/tva_metadata_3-1_v141.xsd"
   version="03"
   xml:lang="en"
   publisher="...">
  <CopyrightNotice>...</CopyrightNotice>
  <ProgramDescription>
  <ProgramInformationTable>...</ProgramInformationTable>
  </ProgramDescription>
  <ProgramLocationTable>...</ProgramLocationTable>
  <ServiceInformationTable>...</ServiceInformationTable>
  <CreditsInformationTable>...</CreditsInformationTable>
  <ProgramReviewTable>...</ProgramReviewTable>
  </ProgramDescription>
  <UserDescription>
  <UserPreferences>...</UserPreferences>
  <UsageHistory>...</UsageHistory>
  </UserDescription>
</TVAMain>
```

Many of the elements are optional, so the following examples are also valid documents:

```xml
<TVAMain version="03" xml:lang="en" publisher="...">...
  <CopyrightNotice>...</CopyrightNotice>
  <ProgramDescription>
  <ProgramInformationTable>...
</ProgramDescription>
</TVAMain>
```

```xml
<TVAMain version="03" xml:lang="en" publisher="...">...
  <CopyrightNotice>...
  <ProgramDescription>
  <GroupInformationTable>...
</GroupDescription>
</TVAMain>
```
Publish

A content service provider will publish a CRID that represents a programme series, and CRIDs that represent the constituents of that programme series. The same or different service provider will publish metadata that describes this series and its constituent episodes. The same or different service provider will publish location resolution data that describes where and when the constituent episodes of this series may be acquired. The series may be available from multiple content service providers.

In this example we will use a comedy show “Fox” which has two episodes. The included XML snippets show an almost minimal way to describe this show and its episodes. Three metadata tables are needed to describe the relations for the Fox show. The GroupInformation table that holds information for all episodes of Fox and two ProgramInformation tables that contain information for the different episodes.

The link between the group and the episodes is made by the content referencing system: if the Group CRID “/hbc/foxes/all” is put to the resolution engine in the PDR, it will come back with both programme CRIDs. The link between programmes and the group is being made by the <memberOf> element in the ProgramInformation table.

```xml
<ProgramDescription>
  <ProgramInformationTable>
    <ProgramInformation programId="crid://hbc.com/foxes/episode1">
      <BasicDescription>
        <Title type="main">The one where Fox jumps in the Potomac</Title>
        <Synopsis length="short">Fox goes to Washington and jumps in the Potomac</Synopsis>
      </BasicDescription>
      <memberOf xsi:type="episodeOfType" crid="crid://hbc.com/foxes/all"/>
    </ProgramInformation>
    <ProgramInformation programId="crid://hbc.com/foxes/episode2">
      <BasicDescription>
        <Title type="main">The one where Fox drowns in the Lake of Geneva</Title>
        <Synopsis length="short">Fox goes to Geneva and tries to climb the fountain</Synopsis>
      </BasicDescription>
      <memberOf xsi:type="episodeOfType" crid="crid://hbc.com/foxes/all"/>
    </ProgramInformation>
  </ProgramInformationTable>
  <GroupInformation groupID="crid://hbc.com/foxes/all" ordered="true" numOfItems="2">
    <BasicDescription>
      <Title type="main">All episodes of Foxes ever</Title>
      <Synopsis length="short">More Foxes than you can handle</Synopsis>
    </BasicDescription>
    <memberOf xsi:type="memberOfType" crid="crid://hbc.com/comedy/all"/>
  </GroupInformation>
</ProgramDescription>
```
6.4 Documents related through the CRID

Parts of a *TV-Anytime* document are related through the CRID. Metadata may be distributed across many *TV-Anytime* documents, but it is always possible to relate appropriate pieces through CRIDs.

6.4.1 Grouping

Programmes can belong to groups, and groups can belong to other groups. Linking programme descriptions with group descriptions using CRIDs reflects this relationship in the metadata, again, which is illustrated in figure 8.

![Diagram of programme descriptions related to group descriptions through the CRID](image)

Figure 8: Programme descriptions related to group descriptions through the CRID

ProgramInformation elements are related to GroupInformation elements through the memberOf or episodeOf elements, e.g. the memberOf element contains a group CRID e.g. Foxes Episode 11 is a member of the Foxes group, which is a group that aggregates all episodes of Foxes. This supports the feature where a viewer can say "I like this. What is it? Are there more programmes like this?" By navigating up to the group the viewer may discover that the group is a member of another group and so forth. The higher one goes in the tree the more general the concepts become, e.g. moving from a specific episode of Foxes, to all episodes of Foxes, to all comedy shows, to all shows.
Three Use Cases – Fedora content model

- **CRIS/CERIF**
 - Entity-Relationship Model -> Content model per entity, rel
 - Entity-Relationship Model -> RDF Triples

- **Chemical Portal**
 - XML Schemas -> One content model, many xml datastreams

- **CAMMP**
 - XML Schemas -> Many content models, many xml datastreams
 - XML Schemas -> RDF Triples
Three Use Cases – Alternatives

- Relational database
 + for simple field values, transaction oriented, SQL
 - longer text fields, bib-type queries, transformation to/from XML
- XML database
 + flexible, Xquery
 ? performance, utilities, bib-type queries
- Fedora
 + all MIME-types, XML-oriented, RDF, bib-type queries, utilities
 + CMA, ECM
 ? approach for “sound” CMA/ECM (like 3NF for RDB)